Exercises on Derived Categories and Perverse Sheaves

PRAMOD N. ACHAR

Let $\mathcal{O} = \mathbb{C}[x]$. Regard this as a graded ring by putting deg x = 1. All \mathcal{O} -modules below should be assumed to be graded. In particular, $D^{b}(\mathcal{O})$ will denote the bounded derived category of graded \mathcal{O} -modules.

For any \mathcal{O} -modules M, we write M(n) for the same module with a shift in grading by n. Thus, $\mathcal{O}(n)$ is the free \mathcal{O} -module generated by a generator in degree -n.

Of course, \mathcal{O} -modules are the same as quasicoherent sheaves over \mathbb{A}^1 . The restriction of an \mathcal{O} -module M to the open set $U = \mathbb{A}^1 \setminus \{0\}$ is denoted M_U . In particular, we have $\mathcal{O}_U = \mathbb{C}[x, x^{-1}]$.

Lecture 1: Basics of derived categories

- 1. Let \mathcal{D} be a triangulated category that is also abelian, and in which all distinguished triangles are short exact sequences. Prove that \mathcal{D} contains only the zero object.
- 2. Let $M = \mathcal{O}/(x)$. Check that $R\text{Hom}(M, \mathcal{O}(-1)[1]) \simeq M$.
- 3. Let \mathcal{A} be an abelian category with enough projectives (or enough injectives). Show that the following conditions are equivalent:
 - (a) $\operatorname{Ext}^2(M, N) = 0$ for any two objects $M, N \in \mathcal{A}$.
 - (b) For any $M \in D^{\mathbf{b}}(\mathcal{A})$, we have $M \simeq \bigoplus H^{i}(M)[-i]$.

(*Hint*: The cone of the zero morphism $C^{\bullet} \xrightarrow{0} D^{\bullet}$ is $D^{\bullet} \oplus C^{\bullet}[1]$.) A category with these properties is said to be *hereditary*. Prove that the category of \mathcal{O} -modules is hereditary.

4. (Serre–Grothendieck duality for \mathbb{A}^1) Prove that the functor $\mathbb{D} = R\text{Hom}(\cdot, \mathcal{O}(-1)[1]) : D^{\mathrm{b}}(A) \to D^{\mathrm{b}}(A)$ is an antiautoequivalence, and that $\mathbb{D}^2 \simeq \text{id} : D^{\mathrm{b}}(A) \to D^{\mathrm{b}}(A)$.

Lecture 2: t-structures and perverse sheaves

1. Let

$$D^{\leq 0} = \{ M \in D^{\mathrm{b}}(\mathcal{O}) \mid H^{i}(M) \text{ is in graded degrees } \geq i, \text{ and } H^{i}(M_{U}) = 0 \text{ for } i > 0 \},\$$
$$D^{\geq 0} = \{ M \in D^{\mathrm{b}}(\mathcal{O}) \mid \mathbb{D}(M) \in D^{\leq 0} \}.$$

Prove that $(D^{\leq 0}, D^{\geq 0})$ is a *t*-structure on $D^{b}(\mathcal{O})$. Prove also that every object has finite length, and determine the simple objects.

- 2. Which indecomposable objects in the heart C of the *t*-structure above are projective (or injective)? Show that C is *not* hereditary, and conclude that $D^{b}(C) \not\simeq D^{b}(\mathcal{O})$.
- 3. Let X denote the 2-sphere, regarded as stratified with a single stratum. Then the category \mathcal{C} of constructible sheaves is just the category of local systems on X. Show that $\operatorname{Hom}(\underline{\mathbb{C}},\underline{\mathbb{C}}[2]) = 0$ in $D^{\mathrm{b}}(\mathcal{C})$, but that $\operatorname{Hom}(\underline{\mathbb{C}},\underline{\mathbb{C}}[2]) \simeq \mathbb{C}$ in $D^{\mathrm{b}}_{\mathrm{c}}(X)$. Thus, $D^{\mathrm{b}}_{\mathrm{c}}(X)$ is not the derived category of \mathcal{C} .

Lecture 3: D-modules and Riemann-Hilbert correspondence

In this section, let $\mathcal{D} = \mathbb{C}[x, \frac{d}{dx}]$. We regard \mathcal{D} as graded by putting deg x = +1 and deg $\frac{d}{dx} = -1$. All \mathcal{D} -modules are assumed to be graded as well.

- 1. Determine the indecomposable \mathcal{D} -modules. (Up to shift in grading, there are four.) Which of those are simple? (Two of them are simple.) Is the category of \mathcal{D} -modules hereditary?
- 2. For each indecomposable \mathcal{D} -module M, compute $R\operatorname{Hom}_{\mathcal{D}}(M, \mathcal{O})$ and $R\operatorname{Hom}_{\mathcal{D}_U}(M_U, \mathcal{O}_U)$.

3. Because we are considering graded modules, it turns out that for all other Zariski open sets $V \subset \mathbb{A}^1$, RHom_{\mathcal{D}_V} (M_V, \mathcal{O}_V) is determined by the answers to the previous question. Specifically,

$$R\mathrm{Hom}_{\mathcal{D}_V}(M_V, \mathcal{O}_V) \simeq \begin{cases} R\mathrm{Hom}_{\mathcal{D}_U}(M_U, \mathcal{O}_U) & \text{if } V \subset U, \\ R\mathrm{Hom}_{\mathcal{D}}(M, \mathcal{O}) & \text{otherwise.} \end{cases}$$

Explain why. Then describe the complex of sheaves $R\mathcal{H}om_{\mathcal{D}}(M, \mathcal{O})$.

4. The four complexes of sheaves obtained in the previous problem are precisely the four indecomposable perverse sheaves on \mathbb{A}^1 , stratified by \mathbb{G}_m -orbits. Identify the simple ones as IC objects. What are the Ext¹-groups among the simple perverse sheaves?

Lecture 4: Weights, purity, and the decomposition theorem

Lecture 5: Applications; perverse coherent sheaves