PARTITIONING INTO TWO GRAPHS WITH ONLY SMALL COMPONENTS

GUOLI DING1, BOGDAN OPOROWSKI2,4, DANIEL P. SANDERS5, AND DIRK VERTIGAN4

ABSTRACT. The paper presents several results on edge partitions and vertex partitions of graphs into graphs with bounded size components. We show that every graph of bounded tree-width and bounded maximum degree admits such partitions. We also show that an arbitrary graph of maximum degree three has a vertex partition into two graphs, each of which has components on at most two vertices, and an edge partition into two graphs, each of which has components on at most eight vertices. It is not known whether similar results are true for maximum degree four and five, but we show that a similar result is false for maximum degree six or higher, even for planar graphs.

1. INTRODUCTION

Graphs in this paper are simple, that is, without loops or multiple edges. The set of vertices of a graph G will be denoted by $V(G)$, and the set of edges of G will be denoted by $E(G)$. An edge partition of a graph G is a set $\{A_1, A_2, \ldots, A_k\}$ of subgraphs of G such that $\bigcup_{i=1}^{k} E(A_i) = E(G)$. Similarly, a vertex partition of G is a set $\{A_1, A_2, \ldots, A_k\}$ of induced subgraphs of G such that $\bigcup_{i=1}^{k} V(A_i) = V(G)$.

Observe that vertex coloring and edge coloring are special cases of partitions. More precisely, a proper vertex k-coloring is a vertex partition into k edgeless graphs, and a proper edge k-coloring is an edge partition into k matchings. Of course, there are many results on proper coloring, but other types of partitions have been studied as well. Tutte [8] considered edge partitions of arbitrary graphs into planar graphs, Nash-Williams [7] considered edge partitions of arbitrary graphs into forests, while Chartrand and Kronk [2] considered vertex partitions of arbitrary graphs into forests. Further types of partitions can be found in [1], [4], and [5]. These results answer questions of the following type: Given classes of graphs \mathcal{G}, \mathcal{S}_1, \mathcal{S}_2, \ldots, \mathcal{S}_k, does every graph $G \in \mathcal{G}$ have a vertex partition (or edge partition) $\{G_1, G_2, \ldots, G_k\}$ such that each G_i is in \mathcal{S}_i? Note that a negative answer to questions of the above type may be viewed as a Ramsey-theoretic result.

Date: August 6, 1998.

1991 Mathematics Subject Classification. Primary: 05C15; Secondary: 05C55.

Key words and phrases. tree-width, vertex partitions, edge partitions, small components.

1This author’s research was partially supported by National Science Foundation under Grant DMS-9406946.

2This author’s research was partially supported by the National Security Agency, grant number MDA904-94-H-2057.

3This author’s research was supported by the Office of Naval Research, grant number N00014-92-J-1965.

4Research of these authors was partially supported by the Louisiana Education Quality Support Fund, grant LEQSF(1995-98)-RD-A-08.
Let k be a positive integer. A k-tree is a graph defined inductively as follows: A complete graph on k vertices is a k-tree. If G is a k-tree, and K is a subgraph of G that is a complete graph on k vertices, then a graph obtained from G by adding a new vertex and joining it by new edges to all vertices of K is a k-tree. Any subgraph of a k-tree is a partial k-tree. The tree-width of a graph G is zero if G is edgeless; otherwise it is the smallest integer k such that G is a partial k-tree. Nontrivial forests have tree-width 1, while every graph has some tree-width.

In a previous paper [4], the authors consider (among other problems) finding partitions of graphs embedded on surfaces into partial k-trees. Also, in [3], the authors find partitions of partial k-trees into graphs of even lower tree-width. The partitions in this paper will be different, and are a natural generalization of proper colorings. Note that a proper vertex (edge) coloring can be described as a vertex (edge) partition into graphs with only components of one vertex (at most two vertices). In this paper, we investigate the existence of vertex and edge partitions into two graphs with only components of bounded size.

As the first result of the paper, we show that graphs of bounded tree-width and bounded maximum degree admit an edge partition and a vertex partition into two graphs with bounded size components. We also investigate whether bounding just one of tree-width and maximum degree suffices to guarantee the existence such partitions. The answer turns out to be easy for tree-width, but it is much more difficult for maximum degree. We show that an arbitrary graph of maximum degree three has a vertex partition into two graphs, each of which has components on at most two vertices, and an edge partition into two graphs, each of which has components on at most eight vertices. It is not known whether similar results are true for maximum degree four and five, but we show that a similar result is false for maximum degree six or higher, even for planar graphs.

2. Bounding Both Tree-Width and Maximum Degree

The main theorem of this section is based on the following result [3]. A tree-partition of a graph G is a pair (T, P) where T is a tree and P is a (disjoint) partition $\{P_t : t \in V(T)\}$ of $V(G)$ such that, for every pair of adjacent vertices u and v of G, either they are both contained in the same P_t, or there are two adjacent vertices s and t of T such that $u \in P_s$ and $v \in P_t$. The width of a tree-partition (T, P) is the maximum size of a P_t.

Proposition 2.1. Every graph of maximum vertex degree Δ and tree-width k admits a tree-partition of width at most $24k\Delta$.

As a consequence of Proposition 2.1, we show that graphs of bounded tree-width and bounded maximum vertex degree can be vertex partitioned and edge partitioned into graphs whose connected components have bounded size.

Theorem 2.2. Let k and Δ be positive integers, and let G be a graph whose tree-width is at most k and whose maximum vertex degree is at most Δ. Then G admits a vertex partition $\{G_1, G_2\}$ such that every connected component of G_1 and G_2 has at most $24k\Delta$ vertices, and G admits an edge partition $\{H_1, H_2\}$ such that every connected component of H_1 and H_2 has at most $24k\Delta(\Delta + 1)$ vertices.

Proof. By Proposition 2.1, G has a tree-partition (T, P) of width at most $24k\Delta$ where $P = \{P_t : t \in V(T)\}$. Since T is a tree, it has a vertex partition $\{T_1, T_2\}$
such that neither T_1 nor T_2 has any edges. Let $G_i = \bigcup_{t \in V(T_i)} P_t$ for $i \in \{1, 2\}$. It is clear that \{G_1, G_2\} is as described in Theorem 2.2.

Now we shall construct the edge partition \{H_1, H_2\}. Begin by choosing an arbitrary vertex t_0 of T. For each vertex t of T, let $h(t)$ denote the set of vertices s of T such that $s = t$ or s is a neighbor of t that is separated from t_0 by t. For each t, let $H(t)$ denote the subgraph of G that is induced by the edges with one endpoint in P_t and the other endpoint in $P_{h(t)}$ for some $s \in h(t)$. Now let $H_i = \bigcup_{t \in V(T_i)} H(t)$ for $i \in \{1, 2\}$. Since P_i has at most $24k\Delta$ elements, each of which has at most Δ neighbors, the conclusion follows.

3. **Bounding Only Tree-Width**

It is natural to ask whether bounding just one of tree-width and maximum vertex degree suffices to ensure the existence of a vertex partition or an edge partition into two graphs with bounded size components. We show that, in general, the answer to this question is negative. However, we also show that all graphs whose maximum vertex degree does not exceed three do admit such partitions.

In the remainder of this section, we consider the easy case of bounding only the tree-width. Let S_n be a star on $2n$ vertices, that is, a tree with $2n - 1$ edges, all incident with the same vertex. Let F_n be a fan on $n^2 + n + 1$ vertices, that is, a graph obtained from a path on $n^2 + n$ vertices by adding a new vertex and joining it to all vertices of the path. Observe that, if n is a positive integer, the tree-width of S_n is one, and the tree-width of F_n is two. Yet it is clear that for every edge partition \{G_1, G_2\} of S_n each of G_1 and G_2 is a star, and at least one of them has more than n vertices. Similarly, it is easy to show that, for every vertex partition \{G_1, G_2\} of F_n, at least one of G_1 and G_2 has a connected component with more than n vertices. It is worth noting that the above examples have the smallest tree-width possible, for a graph of tree-width zero has no edges, and a graph of tree-width one is a forest, and hence has a vertex partition into two edgeless parts.

4. **Bounding Only Maximum Degree**

In this section, we consider bounding only the maximum vertex degree. A graph is a near-triangulation if it is a plane graph whose every face, except possibly for the infinite face, is a triangle. For a positive integer n, let T_n be the graph whose vertices are the triples of nonnegative integers summing to n, with an edge connecting two triples if they agree in one coordinate and differ by one in each of the other two coordinates. The graph T_n may be viewed as embedded in the plane whose equation in \mathbb{R}^3 is $x + y + z = n$ where the name of each vertex forms its coordinates, and edges are straight line segments. The graph T_5 is illustrated in Figure 1. It is clear that each T_n is a near-triangulation with no vertices of degree exceeding six. The next theorem states that it is impossible to find a vertex partition or an edge partition of T_n into two graphs neither of which has connected components with more than n vertices.

Theorem 4.1. If \{G_1, G_2\} is a vertex partition or an edge partition of T_n, then at least one of G_1 and G_2 has a connected component with more than n vertices.

Before addressing the proof of the theorem, we need a few definitions. Let G be a near-triangulation and let v_1, v_2, and v_3 be three distinct vertices in the cycle C that bounds the infinite face. Then v_1, v_2, and v_3 induce a partition of C into
paths P_1, P_2, and P_3 such that, for each $i \in \{1, 2, 3\}$, P_i avoids v_i and has the other two members of $\{v_1, v_2, v_3\}$ as endvertices. A connector of G with respect to $\{v_1, v_2, v_3\}$ is a connected subgraph H of G such that, for each $i \in \{1, 2, 3\}$, the set $V(H) \cap V(P_i)$ is not empty.

The part of Theorem 4.1 that speaks of vertex partitions follows immediately from the following two results of [6].

![Graph T_5](image)

Figure 1: T_5

Proposition 4.2. Let G be a near-triangulation and let v_1, v_2, and v_3 be distinct vertices in the cycle bounding the infinite face of G. For every vertex partition $\{G_1, G_2\}$ of G there is a connector H of G with respect to $\{v_1, v_2, v_3\}$ that is a subgraph of G_1 or of G_2.

Proposition 4.3. If H is a connector of T_n with respect to $(0, 0, n)$, $(0, n, 0)$, and $(n, 0, 0)$, then H has more than n vertices.

The part of Theorem 4.1 on edge partitions follows immediately from Proposition 4.3 and the edge version of Proposition 4.2, which is stated and proved below.

Proposition 4.4. Let G be a near-triangulation and let v_1, v_2, and v_3 be distinct vertices in the cycle bounding the infinite face of G. For every edge partition $\{G_1, G_2\}$ of G there is a connector H of G with respect to $\{v_1, v_2, v_3\}$ that is a subgraph of G_1 or of G_2.

Proof. We will apply Proposition 4.2 to a graph G' obtained from G in the following process. Let the vertex set of G' be $V(G) \cup E(G)$ with two such vertices being joined by an edge if and only if one of them is an edge e and the other is either a vertex of G incident with e, or an edge of G that shares a common vertex and a common finite face with e. Alternatively, G' may be viewed as obtained from G by subdividing each of its edges once, and adding new edges incident with the new vertices so that each of the finite faces of G becomes subdivided into four triangular faces. For example, if $G = T_n$, then G' is isomorphic to T_{2n}.

Note that each of v_1, v_2, and v_3 lies in the cycle bounding the infinite face of G'. For each $i \in \{1, 2\}$, let $V_i = V(G) \cup E(G_i)$ and let G'_i be the subgraph of G' induced
by V_i. Then $\{G'_1, G'_2\}$ is a vertex partition of G'. Upon applying Proposition 4.2 to G', we conclude that there is a connector H' of G' with respect to v_1, v_2, and v_3 that is a subgraph of G'_1 or of G'_2. Without loss of generality, we may assume that H' is a connected component of G'_1. Let H be a subgraph of G induced by those vertices of H' that are also vertices of G. We shall prove that H is a connector of G with respect to v_1, v_2, and v_3. Let $P_1, P_2,$ and P_3 be the paths that partition the cycle bounding the infinite face of G as described in the definition immediately preceding Proposition 4.2, and let $P'_1, P'_2,$ and P'_3 be the corresponding paths in G'. Then, for each $i \in \{1, 2, 3\}$, the vertex set of P'_i is the union of $V(P_i)$ and $E(P_i)$.

Suppose H avoids one of the paths P_i for some $i \in \{1, 2, 3\}$. But H', being a connector, has a vertex e in P'_i, which must be an edge of P_i. Let v be a vertex that is incident in G with e. Then, clearly, $v \in V(P_i)$. Since all vertices of G are in V_1, which induces G'_1, and H' is a connected component of G'_1, we conclude that v is a vertex of H', and hence also of $P_i \cap H$; a contradiction.

It remains to show that H is connected. Let u and v be two vertices of H. Then, as H' is connected, it contains a path P from u to v. Take the list of consecutive vertices of P and modify it as follows: Between every two consecutive vertices of P that are both edges of G insert the vertex of G that is incident with both edges. Since V_1 contains all vertices of G, and G'_1 is induced by V_1, the modified list consists of vertices of H'. The same list, when interpreted in G, alternates vertices and edges with two consecutive entries being incident. Since all vertices of G that appear in the list are in H', and hence in H, the list forms a walk in H that begins in u and ends in v. It follows that H is a connector G with respect to v_1, v_2, and v_3, as required.

The last theorem of the paper deals with graphs whose vertices have degree at most three.

Theorem 4.5. Let G be a graph with no vertices of degree exceeding three. Then

(i) the graph G has a vertex partition $\{G_1, G_2\}$ such that every connected component of G_1 and of G_2 has at most two vertices; and

(ii) the graph G has an edge partition $\{H_1, H_2\}$ such that every connected component of H_1 and of H_2 is a path with at most eight vertices.

Proof. The proof of (i) is straightforward: From among all vertex partitions of G choose one $\{G_1, G_2\}$ for which the number of edges of G whose endvertices lie in different parts of the partition is maximum. Let v be a vertex of G_i for some $i \in \{1, 2\}$. The degree of v in G_i is at most one, since otherwise the partition of G obtained from $\{G_1, G_2\}$ by moving v together with the edges between v and $V(G_3 - i)$, from G_i to $G_3 - i$, contradict the choice of $\{G_1, G_2\}$. Thus $\{G_1, G_2\}$ is as described in (i).

The proof of (ii) is fairly complicated, and it occupies nearly all of the remainder of the paper. To aid in reading the proof, certain important points in the proof have been marked by labels (1)-(15). To construct $\{H_1, H_2\}$ as described in (ii), first we observe that G may be assumed 3-regular, since every graph whose maximum vertex degree is at most three is a subgraph of a 3-regular graph G. The graph G can be constructed by taking three disjoint copies of G, and for each vertex v of G whose degree d is less than three, adding new $3 - d$ vertices and joining each of these new vertices to the three vertices of G that correspond to v.
For a subgraph H of G, let $c(H)$ denote the number of cycles of H. Observe that a well-known theorem of Vizing [9] implies that G, having no vertex of degree exceeding three, can be properly edge-colored with at most four colors. This easily implies that G has an edge partition $\{N_1, N_2\}$ such that each of N_1 and N_2 has maximum vertex degree at most two. From among all such edge partitions choose one $\{L_1, L_2\}$ for which $c(L_1) + c(L_2)$ is the minimum.

Suppose $c(L_1) + c(L_2) > 0$. Without loss of generality, we may assume that L_1 has a cycle. Let e and f be two adjacent edges of this cycle. Since L_2 has maximum degree two, from among the three vertices incident with e and f in L_1, at most two lie in the same connected component of L_2. Thus, by symmetry, we may assume that no path of L_2 joins the endpoints of e. Then $c(L_1 \setminus e) < c(L_1)$, while $c(L_2 \cup e) = c(L_2)$ and each of $L_1 \setminus e$ and $L_2 \cup e$ has no vertices of degree exceeding two. This contradiction to the choice of $\{L_1, L_2\}$ proves that all connected components of L_1 and of L_2 are paths.

Let $\mathcal{C}(G)$ denote the collection of connected components of a graph G. For a collection \mathcal{S} of subgraphs of G, let $\omega(\mathcal{S})$ denote the number of elements of \mathcal{S} on exactly i edges. The weight of \mathcal{S}, denoted by $\omega(\mathcal{S})$, is the triple $(\omega(\mathcal{S}), \omega(\mathcal{S}), \omega(\mathcal{S}))$. The weight of an edge partition $\{G_1, G_2\}$ of G is $\omega(\mathcal{C}(G_1) \cup \mathcal{C}(G_2))$. We order the weights lexicographically. From among all edge partitions $\{G_1, G_2\}$ of G such that all components of G_1 and all components of G_2 are paths, let $\{L_1, L_2\}$ be one with minimum weight. We shall show that no path of L_1 and no path of L_2 has more than seven edges.

Let \mathcal{S} be the set of those members of $\mathcal{C}(L_1) \cup \mathcal{C}(L_2)$ that have at least three edges. An edge e of G is free if it is an edge of an element S of \mathcal{S} and is incident with a vertex whose degree in S is one. Let F denote the subgraph of G containing all of its vertices and all of its free edges. Observe that every free edge is adjacent to an edge that is not free. Thus

(1) no vertex of F has degree exceeding two.

Suppose S is a path of L_1 that has more than seven edges, and let v be a vertex of S whose distance in S from each of its endvertices exceeds three. Let f_0 and h_0 be the edges of S incident with v, and let u and w be the endvertices of, respectively, f_0 and h_0 that are different from v. For each $x \in \{u, w\}$, let F_x be the component of F that meets x. Clearly, the degree of x in F_x is at most one. This, together with (1), implies that each F_x is a path. Let $y_x = x$ if F_x has no edges, otherwise let y_x be the endvertex of F_x other than x.

We will show that y_x is an endvertex of a path T_x from $(\mathcal{C}(L_1) \cup \mathcal{C}(L_2)) \setminus \mathcal{S}$. Consider the case for u (the w case is symmetric). If F_u is edgeless, then let $n = 0$. In this case the edge incident with $u = y_u$ not on S is not free and must then be an edge of such a path. Otherwise, let f_1, f_2, \ldots, f_n be the list of edges of F_u so that for all $i \in \{1, 2, \ldots, n\}$, f_i and f_{i-1} are incident with the same vertex v_i. By induction, one can see that each f_i is an endedge of a path P_i in \mathcal{S} with endvertex v_i. In this case the edge incident with y_u not on P_u is not free and must then be an edge of an appropriate path.

Since the degree of v in S is two and G is 3-regular, at most one of T_u and T_w meets v. By symmetry, we may assume that

(2) T_u avoids v.

Since u is not an endvertex of S, it is incident with an edge g_0 of S that is different from f_0. For each $i \in \{1, 2, \ldots, n\}$, let g_i denote the edge that is incident with f_i
and is in the same component of S. Note that every vertex y of F_u different from y_u avoids T_u since it is incident with f_i, g_i, and f_{i+1} for some $i \in \{0, 1, \ldots, n - 1\}$. Therefore,

(3) T_u and F_u meet in exactly one vertex, y_u.

Let now $L_i = L_i \Delta \{f_0, f_1, \ldots, f_n\}$ where $i \in \{1, 2\}$ and Δ denotes the symmetric difference operator. It is clear that $\{L_1, L_2\}$ is an edge partition of G. Also observe first that, by the definition of F_u,

(4) for every $i \in \{1, 2, \ldots, n\}$, the edges f_{i-1} and f_i are in different parts of $\{L_1, L_2\}$, and in different parts of $\{L_1', L_2'\}$, and

(5) for every $i \in \{0, 1, \ldots, n\}$, the edges f_i and g_i are in the same part of $\{L_1, L_2\}$, and in different parts of $\{L_1', L_2'\}$.

We shall show that

(6) each component of L_1' and of L_2' is a path, and

(7) the weight of $\{L_1', L_2'\}$ is smaller than the weight of $\{L_1, L_2\}$, thereby arriving at a contradiction.

Suppose first that (6) fails. Then at least one of L_1' and L_2' contains a cycle or a vertex of degree exceeding two. Assume first that a vertex z has degree three in one of L_1' and L_2'. It follows from (4) and the 3-regularity of G that $z \in \{v, y_u\}$. But $z \neq v$ since f_0 and h_0 are in different parts of $\{L_1, L_2\}$, and $z \neq y_u$ since, by (5), f_n and g_n are in different parts of $\{L_1', L_2'\}$; a contradiction. Thus we may assume that a cycle C is contained in one of L_1' and L_2'. Since neither L_1 nor L_2 has cycles, C contains f_i for some $i \in \{0, 1, \ldots, n\}$. But then $i = n$ since otherwise one of the endvertices of f_i is incident with g_i and f_{i+1}, neither of which, by (4) and (5), is in the same part of $\{L_1', L_2'\}$ as f_i. It follows that $T_u \subseteq C$ since, by (5), f_n and g_n are in different parts of $\{L_1', L_2'\}$. Let t denote the endvertex of T_u other than y_u. By (3), t does not lie on F_u, and, by (2) $t \neq v$. Hence the degree of t in C is one: a contradiction, which proves (6).

It remains to show that (7) holds. Let T'_u denote the element of $\mathcal{C}(L_1') \cup \mathcal{C}(L_2')$ containing the edge incident with v but not contained in S. For every $i \in \{0, 1, \ldots, n\}$, let G_i denote the element of $\mathcal{C}(L_1) \cup \mathcal{C}(L_2)$ that contains g_i, and let G'_i denote the element of $\mathcal{C}(L_1') \cup \mathcal{C}(L_2')$ that contains g_i. Let H'_0 be the element of $\mathcal{C}(L_1') \cup \mathcal{C}(L_2')$ that contains h_0. Clearly, T_u is contained in some element of $\mathcal{C}(L_1') \cup \mathcal{C}(L_2')$. Denote this element by T'_u. Let T'_v denote the element of $\mathcal{C}(L_1') \cup \mathcal{C}(L_2')$ that contains the edge of T_u incident with v.

Let \mathcal{L} denote the set of elements of $\mathcal{C}(L_1) \cup \mathcal{C}(L_2)$ that contain a vertex incident with an element of $\{f_0, f_1, \ldots, f_n\}$, and, similarly, let \mathcal{L}' denote the set of elements of $\mathcal{C}(L_1') \cup \mathcal{C}(L_2')$ that contain a vertex incident with an element of $\{f_0, f_1, \ldots, f_n\}$. Then $\mathcal{L} = \{T_u, T'_v, G_0, G_1, \ldots, G_n\}$, and $\mathcal{L}' = \{T'_u, T'_v, H'_0, G'_0, G'_1, \ldots, G'_n\}$. Note that the elements of \mathcal{L} and of \mathcal{L}' listed here need not be distinct.

Now observe that

(8) \[(\mathcal{C}(L_1) \cup \mathcal{C}(L_2)) \setminus \mathcal{L} = (\mathcal{C}(L_1') \cup \mathcal{C}(L_2')) \setminus \mathcal{L}'. \]

Thus, to show (7), it suffices to prove that

(9) \[w(\mathcal{L}') < w(\mathcal{L}). \]

Let $I = \{i : 1 \leq i \leq n - 2 \}$ and $G_i \not\subseteq \{S, T_v\}$. Let $M = \{G_i : i \in I\}$ and let $M' = \{G'_i : i \in I\}$. For each $i \in I$, let $\sigma(i) = i$ if $|G_i \cap F_u| = 1$; otherwise let $\sigma(i) = j$ where $f_j \in G_i$ and $i \neq j$. Note that, for all $i \in I$, $G_i = G_j$ if and only if
$j \in \{i, \sigma(i)\}$, which holds if and only if $G'_i = G'_j$. Also, for all $i \in I$, $|G_i| = |G'_i|$ since G'_i is obtained from G_i by removing \{f_i, f_{\sigma(i)}\} and adding \{f_{i+1}, f_{\sigma(i+1)}\}. Thus

(10) the map $G_i \mapsto G'_i$ is a bijection from M to M', and $|G_i| = |G'_i|$ for all $i \in I$.

Let $N = \mathcal{L} \setminus M = \{T_u, T_v, G_0, G_{n-1}, G_n\}$ and, similarly, let $N' = \mathcal{L}' \setminus M' = \{T'_u, T'_v, H_0, G'_0, G'_{n-1}, G'_n\}$ keeping in mind that the elements of N and of N' listed above need not be distinct, and G_{n-1} and G'_{n-1} do not exist if $n = 0$. From (10) we conclude that, to show (9), it suffices to show that

(11) $w(N') < w(N)$.

To achieve this, we need to consider the cardinalities of, and the identifications between, the paths listed above in N and N'. Let S_1 (respectively S_2) be the component of $S \setminus f_0$ that contains g_0 (respectively h_0). By the choice of v,

(12) S_1 has at least three elements, and S_2 has at least four elements.

Also, as shown earlier,

(13) T_u has one or two edges.

Suppose first that $n = 0$. In this case, $H'_0 = S_2, G'_0 = G'_1 = S_1, T'_u = T'_v = T_u \cup T_v \cup \{f_0\}$ and G'_{n-1} does not exist. Therefore all paths in N' have at least three edges, whereas, by (13), T_u has at most two edges, and, consequently, (11) holds.

Suppose now that n is a positive integer. For a subgraph A of G, let $\delta(A) = |E(A) \cap \{f_i\}|$. Note that f_i is in at most one of S_1, S_2, and T_v. Also, f_n is an edge of G_n, but not of $T_u \cup G_n$. Considering all ways in which the paths listed in the definition of N and of N' and path f_n can coincide or intersect, we conclude that

\[
\begin{align*}
|E(G'_0)| &= |E(S_1)| + 1 - \delta(S_1) \\
|E(H'_0)| &= |E(S_2)| - \delta(S_2) \\
|E(T'_u)| &= |E(T_u)| + 1 - \delta(T_u).
\end{align*}
\]

(14)

Now, $T'_u = G'_{n-1}$ and, whether or not $G'_{n-1} = S$,

(15) each of T'_u and G'_{n-1} has at least four edges.

From (12)–(15) we conclude that T_u has a most two edges, T'_v has as least as many edges as T_v, and each of G'_0, H'_0, T'_u, and G'_{n-1} has at least three edges. Thus (11) can fail only if G'_n has fewer than three edges. In this case $G_n \notin \{S, T_v\}$ and $\delta(S_1) = \delta(S_2) = \delta(T_v) = 0$ so that each of H'_0 and G'_0 has at least four edges, G_n has exactly three edges, and T'_v has more edges than T_v. It follows easily that (11) holds. This also completes the proof of (9), and, thus, the proof of (7), and, consequently, the proof of Theorem 4.5.

An easy counting argument shows that if \{L_1, L_2\} is an edge partition of a cubic graph G such that $\mathcal{C}(L_1) \cup \mathcal{C}(L_2)$ is a set of paths, then the average number of edges in these paths is three. If every path in $\mathcal{C}(L_1) \cup \mathcal{C}(L_2)$ has length exactly three, then by coloring the endedges of elements in $\mathcal{C}(L_1)$ red, coloring all endedges of elements in $\mathcal{C}(L_2)$ blue, and coloring all remaining edges green, we obtain a proper coloring of edges of G. Since not all cubic graphs admit such a coloring (e.g. the Petersen graph), the bound of seven in Theorem 4.5 cannot be reduced to three. This gives rise to the following:
Question 4.6. For $k \in \{4, 5, 6\}$, does every cubic graph G have an edge partition
$\{L_1, L_2\}$ such that each element of $C(L_1) \cup C(L_2)$ is a path with at most k edges?

We have shown in Theorem 4.5 that every graph with maximum degree less than
four has a vertex partition and an edge partition into two graphs, each of which has
only small components. In Theorem 4.1, we have shown that, the existence of such
decompositions cannot be guaranteed for graphs whose maximum degree exceeds
five. These results leave the following question, which we cannot answer.

Question 4.7. Is there a number n, such that every graph with maximum degree
4 or 5 has a vertex partition and an edge partition into two graphs such that each
part has only components with at most n vertices?

REFERENCES

58.
[4] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Surfaces, tree-width, clique-minors,
and partitions, submitted.
[5] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Partitioning graphs of bounded tree-
width, Combinatorica, to appear.
[9] V.G. Vizing, Об оценке хроматического класса r-графа, Diskret. Analiz. 3 (1964), pp. 25-
30.

Guoli Ding, Bogdan Oporowski, and Dirk Vertigan) DEPARTMENT OF MATHEMATICS, LOUISIANA
STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803-4918, USA

E-mail address: [ding, bogdan, vertigan]@math.lsu.edu

(Daniel P. Sanders) DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ
08544, USA

E-mail address: sanders@math.princeton.edu