CHARACTERISTIC VARIETIES OF ARRANGEMENTS

DANIEL C. COHEN1 AND ALEXANDER I. SUCIU2

Abstract. The kth Fitting ideal of the Alexander invariant B of an arrangement A of n complex hyperplanes defines a characteristic subvariety, $V_k(A)$, of the algebraic torus $(\mathbb{C}^n)^n$. In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of $V_k(A)$. For any arrangement A, we show that the tangent cone at the identity of this variety coincides with $R^1_k(A)$, one of the cohomology support loci of the Orlik-Solomon algebra. Using work of Arapura, we conclude that all irreducible components of $V_k(A)$ which pass through the identity element of $(\mathbb{C}^n)^n$ are combinatorially determined, and that $R^1_k(A)$ is the union of a subspace arrangement in \mathbb{C}^n, thereby resolving a conjecture of Falk. We use these results to study the reflection arrangements associated to monomial groups.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803

E-mail address: cohen@math.lsu.edu
URL: http://math.lsu.edu/~cohen

Department of Mathematics, Northeastern University, Boston, MA 02115

E-mail address: alexsuciu@neu.edu
URL: http://www.math.neu.edu/~suciu

1991 Mathematics Subject Classification. Primary 14M12, 52B30; Secondary 14H30, 20F36, 57M05.

Key words and phrases. hyperplane arrangement, characteristic variety, Alexander invariant, local system, cohomology support locus, Orlik-Solomon algebra.

1 Partially supported by grant LEQSF(1996-99)-RD-A-04 from the Louisiana Board of Regents.

2 Partially supported by NSF grant DMS-9501833.