Packing Cycles in Graphs

Guoli Ding *
Mathematics Department, Louisiana State University
Baton Rouge, Louisiana, USA

Wenan Zang †
Department of Mathematics, The University of Hong Kong
Hong Kong, P. R. China

September 15, 1999

*Research partially supported by NSF grant DMS-9970329.
†Supported in part by RGC grant 338/024/0009.
Abstract

A graph G is called cycle Mengerian (CM) if for any nonnegative integral function w defined on $V(G)$, the maximum number of cycles in G such that each vertex v is used at most $w(v)$ times is equal to the minimum of $\sum\{w(v) : v \in S\}$, where the minimum is taken over all $S \subseteq V(G)$ such that deleting S from G results a forest. The purpose of this paper is to characterize all CM graphs in terms of forbidden structures.
1 Introduction

Graphs considered in this paper are finite, simple, and undirected. Let $G = (V,E)$ be a graph with nonnegative integral weight $w(v)$ on each $v \in V$. A collection \mathcal{C} of cycles of G is called a cycle packing if each vertex v of G is used at most $w(v)$ times by members of \mathcal{C}; a set X of vertices in G is called a feedback set if deleting X from G results a forest. The cycle packing problem is to find a cycle packing with maximum size, and the feedback set problem is to find a feedback set with minimum total weight; both problems are NP-hard [4] and the latter arises in a variety of applications. It is clear that

$$\max\{|\mathcal{C}|: \mathcal{C} \text{ is a cycle packing}\} \leq \min\{\sum_{v \in X} w(v) : X \text{ is a feedback set}\}.$$

However, the minimax equality need not hold in general; in fact, the ratio of the two sides can be arbitrarily large even when $w(v) = 1$ for all vertices $v \in V$, as shown by Erdős and Pósa [3]. We shall call G cycle Mengerian (CM) if the above inequality holds with equality for all w. The purpose of this paper is to characterize all CM graphs in terms of forbidden structures.

Let us define some graphs before presenting our theorem. A Θ-graph is a subdivision of $K_{2,3}$. A wheel is obtained from a cycle by adding a new vertex and making it adjacent to all vertices of the cycle. A W-graph is a subdivision of a wheel. An odd ring is a graph obtained from an odd cycle by replacing each edge $e = xy$ with either a cycle containing e or two triangles xab, yed together with two vertex-disjoint paths between $\{a,b\}$ and $\{c,d\}$.

![Figure 1. An odd ring, where the thin edges could be subdivided.](attachment:image.png)

For convenience, we shall simply say that a graph G has a graph H if H is isomorphic to an induced subgraph of G.

Theorem 1.1. A graph is CM if and only if it has no Θ-graphs, nor W-graphs, nor odd rings.
Notice that some W-graphs may have Θ-graphs or other W-graphs. We present Theorem 1.1 in the current form so as to make the statement cleaner. It is not difficult to verify that the minimal none-CM W-graphs are those obtained from a wheel by subdividing the rim edges, and those obtained from K_4 by subdividing each of the three edges in a star at least once.

To prove the theorem, we introduce a partition property in section 2, which is sufficient for a graph to be CM. We prove that, when piecing together graphs with this partition property, the resulting graph also has the property. In section 3, we derive a structural theorem, which asserts that if a graph has no forbidden structures, then it can be expressed as “sums” of some prime graphs. In section 4, we show that every prime graph enjoys the partition property, which, together with the results established in section 2, yields our main theorem.

2 Sums of hypergraphs

As outlined in the last section, the basic idea underlying our proof is to express CM graphs as sums of some prime graphs. The purpose of this section is to derive some results concerning summing operations. We shall state these results in terms of hypergraphs, since the more general form may have potential applications elsewhere and since the proofs are easier to describe in this way.

A hypergraph is simply a collection Γ of subsets of a finite set V. Members of V and Γ are called vertices and hyperedges, respectively. For a nonnegative integral function w on V, a w-matching of Γ is a collection M of hyperedges (repetition is allowed) such that each vertex x in V is used at most $w(x)$ times by members of M. The maximum of $|M|$, over all w-matchings of Γ, is denoted by $\nu_w(\Gamma)$. A transversal of Γ is a minimal (under inclusion) set T of vertices such that $T \cap A \neq \emptyset$ for all members A of Γ. We denote by $\tau_w(\Gamma)$ the minimum of $\sum\{w(x) : x \in T\}$, where the minimum is taken over all transversals T of Γ. Clearly,

$$\nu_w(\Gamma) \leq \tau_w(\Gamma)$$

for all Γ and w. If Γ is a hypergraph such that the above inequality holds with equality for all w, then Γ is called Mengerian [8]. With this terminology, we can see that a graph G is CM if and only if Γ_G is Mengerian, where Γ_G is the cycle hypergraph of G which consists of the vertex-sets of all cycles of G.

People familiar with integer programming may like the following equivalent definition of Mengerian hypergraphs. Let M be the hyperedge-vertex incidence matrix of Γ. Then Γ is Mengerian if and only if the linear system \{$Mx \geq e, x \geq 0$\} is TDI [2, 7], where e is the all-one vector. This, by the Edmonds-Giles theorem [2, 7], amounts to that both of the following two
problems

\[
\begin{align*}
\max & \quad y^T e \\
\text{s.t.} & \quad y^T M \leq w^T \\
\min & \quad w^T x \\
\text{s.t.} & \quad M x \geq e \\
y & \geq 0 \\
x & \geq 0
\end{align*}
\]

have integral optimal solutions, for all nonnegative integral vectors \(w \).

Usually it is very difficult to recognize Mengerian hypergraphs by using the above definitions. In the following, we introduce a property, which is sufficient for a hypergraph to be Mengerian and is much easier to work with. Let \(\Gamma \) be a hypergraph with vertex set \(V \). For any collection \(\Lambda \) of members of \(\Gamma \), we shall let \(d_\Lambda(x) \) denote the number of hyperedges in \(\Lambda \) that contain \(x \). For any \textbf{subset} \(\Lambda \) of \(\Gamma \), a \textbf{subpartition} of \(\Lambda \) consists of two collections \(\Lambda_1 \) and \(\Lambda_2 \) of members of \(\Gamma \) (which are not necessarily in \(\Lambda \)) such that

(i) \(|\Lambda_1| + |\Lambda_2| = |\Lambda| \),
(ii) \(d_{\Lambda_1}(x) + d_{\Lambda_2}(x) \leq d_\Lambda(x) \) for all \(x \) in \(V \), and
(iii) Each member of \(\Lambda \) with size 3 is contained in \(\Lambda_1 \cup \Lambda_2 \).

We remark here that repetition is allowed in both \(\Lambda_1 \) and \(\Lambda_2 \), but not allowed in \(\Lambda \). The subpartition \(\Lambda_1, \Lambda_2 \) is called \textbf{equitable} if \(\max\{d_{\Lambda_1}(x), d_{\Lambda_2}(x)\} \leq \lfloor d_\Lambda(x)/2 \rfloor \) for all \(x \) in \(V \). The hypergraph \(\Gamma \) is called \textbf{equitably subpartitionable} (ESP) if every subset \(\Lambda \) of \(\Gamma \) admits an equitable subpartition.

Theorem 2.1. Every ESP hypergraph is Mengerian.

To prove this theorem, we need the following result of Lovász [5, 6].

Lovász’ Theorem. A hypergraph \(\Gamma \) is Mengerian if and only if \(\nu_{2w}(\Gamma) \leq 2\nu_w(\Gamma) \) for all nonnegative integral functions \(w \).

Proof of Theorem 2.1. Let \(\Gamma \) be an ESP hypergraph on \(V \). To show that \(\Gamma \) is Mengerian, by Lovász’ theorem, we may turn to verify that \(\nu_{2w}(\Gamma) \leq 2\nu_w(\Gamma) \) for any nonnegative integral function \(w \) defined on \(V \). We prove this by finding a \(w \)-matching of size at least \(\nu_{2w}(\Gamma)/2 \).

Let \(M \) be a \(2w \)-matching of \(\Gamma \) of size \(\nu_{2w}(\Gamma) \) and, for each hyperedge \(A \) of \(\Gamma \), let \(M(A) \) be the number of times that \(A \) appears in \(M \). Let \(\Lambda \) be the set of hyperedges \(A \) with \(M(A) \) odd. Since \(\Gamma \) is ESP, \(\Lambda \) admits an equitable subpartition \((\Lambda_1, \Lambda_2) \). Let \(M_0 \) be a collection of hyperedges such that each \(A \) appears \(\lfloor M(A)/2 \rfloor \) times. Set \(M_i = M_0 \cup \Lambda_i \) \((i = 1, 2)\). Clearly \(|M_1| + |M_2| = |M| = \nu_{2w}(\Gamma) \), and both \(M_1 \) and \(M_2 \) are \(w \)-matchings. It follows that at least one of these \(w \)-matchings has size at least \(\nu_{2w}(\Gamma)/2 \). \(\square \)

A graph \(G \) is called \textbf{ESP} if its cycle hypergraph \(\Gamma_G \) is ESP. The next corollary follows obviously from Theorem 2.1. We point out that all corollaries in this section can be deduced easily from the corresponding theorems by considering the cycle hypergraph.
Corollary 2.1. Every ESP graph is CM.

It was proved by Seymour [8] that all “minors” of a Mengerian hypergraph are Mengerian. We do not need this fact in our paper, but we do need a weaker version of it. Let \(\Gamma \) be a hypergraph on \(V \) and let \(U \subseteq V \). Then \(\Gamma \setminus U \) is the hypergraph on \(V \setminus U \) with hyperedges all \(A \in \Gamma \) for which \(A \cap U = \emptyset \). If \(U \) consists of a single vertex \(u \), we shall write \(\Gamma \setminus u \) instead of \(\Gamma \setminus \{u\} \). The next proposition says that being Mengerian is preserved under deleting vertices.

Theorem 2.2. If \(\Gamma \) is a Mengerian hypergraph on \(V \) and \(U \subseteq V \), then \(\Gamma \setminus U \) is also Mengerian.

Proof. For any nonnegative integral function \(w \) on \(V \setminus U \), let us define \(w^+ \) on \(V \) with \(w^+(x) = 0 \) for all \(x \in U \) and \(w^+(x) = w(x) \) for all \(x \in V \setminus U \). Then it is straightforward to verify that
\[
\nu_w(\Gamma \setminus U) = \nu_{w^+}(\Gamma) = \tau_{w^+}(\Gamma) = \tau_w(\Gamma \setminus U).
\]

Throughout this paper, for any vertex-set or edge-set \(Z \) of a graph \(G \), we denote by \(G \setminus Z \) the graph obtained from \(G \) by deleting \(Z \); when \(Z \) is a singleton \(\{z\} \), we write \(G \setminus z \) for short.

Corollary 2.2. If \(G \) is CM and \(U \subseteq V(G) \), then \(G \setminus U \) is also CM.

Theorem 2.3. Suppose \(\Gamma \) is obtained by identifying \(k \) vertices of \(\Gamma_1 \) with \(k \) vertices of \(\Gamma_2 \) \((k = 0, 1)\). If both \(\Gamma_1 \) and \(\Gamma_2 \) are ESP, then so is \(\Gamma \).

Proof. Let \(\Lambda \) be a subset of \(\Gamma \), let \(\Lambda_1 = \Lambda \cap \Gamma_1 \), and let \(\Lambda_2 = \Lambda - \Lambda_1 \). Since each \(\Gamma_i \) is ESP, \(\Lambda_i \) has an equitable subpartition \((\Lambda_1^1, \Lambda_1^2)\). Clearly, \(S = (\Lambda_1^1 \cup \Lambda_2^2, \Lambda_1^2 \cup \Lambda_2^1) \) is a subpartition of \(\Lambda \). Moreover, when \(k = 0 \), it is also clear that \(S \) is equitable. When \(k = 1 \), let \(x \) be the common vertex of \(\Gamma_1 \) and \(\Gamma_2 \). Without loss of generality, let \(d_{\Lambda_1^1}(x) \leq d_{\Lambda_1^2}(x) \) for \(i = 1, 2 \). Then it is easy to see that \(S \) is equitable.

Let \(G_1 \) and \(G_2 \) be two graphs. The \(0 \)-sum of \(G_1 \) and \(G_2 \) is obtained by taking the disjoint union of \(G_1 \) and \(G_2 \); the \(1 \)-sum is obtained by identifying a vertex of \(G_1 \) with a vertex of \(G_2 \). The following corollary follows instantly from Theorem 2.3.

Corollary 2.3. Suppose \(G \) is the \(0 \)- or \(1 \)-sum of \(G_1 \) and \(G_2 \). If both \(G_1 \) and \(G_2 \) are ESP, then so is \(G \).

Theorem 2.4. Let \(\Gamma \) be obtained by identifying vertices \(x_1, y_1 \) of \(\Gamma_1 \) with vertices \(x_2, y_2 \) of \(\Gamma_2 \). For \(i = 1, 2 \), let \(\Gamma'_i \) be obtained from \(\Gamma_i \) by adding a new vertex \(z_i \) and a new edge \(\{x_i, y_i, z_i\} \). If both \(\Gamma'_1 \) and \(\Gamma'_2 \) are ESP, then so is \(\Gamma \).

Proof. Let \(\Lambda \) be a set of hyperedges of \(\Gamma \). We need to find an equitable subpartition of \(\Lambda \). Set \(\Lambda_1 = \Lambda \cap \Gamma_1 \) and \(\Lambda_2 = \Lambda - \Lambda_1 \). We consider the following two cases.

Case 1. At least one of \(d_{\Lambda_1}(v_i) \), for \(v_i \in \{x_i, y_i\} \) and \(i \in \{1, 2\} \), is even. Let us assume that
$d_{\lambda_i}(x_1)$ is even. Since each Γ'_i is ESP, Λ_i has an equitable subpartition (Λ_1^1, Λ_2^2). Without loss of generality, for $i = 1, 2$, let us assume that $d_{\lambda_i'}(y_i) \leq d_{\lambda_2}(y_i)$. Then it is straightforward to verify that $(\Lambda_1^1 \cup \Lambda_2^2, \Lambda_1^2 \cup \Lambda_2^2)$ is an equitable subpartition of Λ.

Case 2. $d_{\lambda_i}(v_i)$ is odd, for all $v_i \in \{x_i, y_i\}$ and $i \in \{1, 2\}$. Let $A_i = \{x_i, y_i, z_i\}$. Since each Γ'_i is ESP, $A_i \cup \{A_i\}$ admits an equitable subpartition. As $|A_i| = 3$ and $d_{\lambda_i(\{A_i\})}(z_i) = 1$, from definition we conclude that A_i appears precisely once in this subpartition. Let $(\Lambda_1^1 \cup \{A_i\}, \Lambda_2^2)$ denote this subpartition. Since A_i is the only hyperedge containing z_i in Γ'_i, each member of $\Lambda_1^1 \cup \Lambda_2^2$ is in Γ_i. Now it is straightforward to verify that $(\Lambda_1^1 \cup \Lambda_2^2, \Lambda_1^2 \cup \Lambda_2^2)$ is an equitable subpartition of Λ.

The 2-sum of two graphs G_1 and G_2 is obtained by first choosing a triangle x_i,y_i,z_i from G_i ($i = 1, 2$) such that z_i has degree two in G_i, then deleting z_i from G_i ($i = 1, 2$), and finally, identifying x_1y_1 with x_2y_2. As a corollary of Theorem 2.4, we have the following statement on 2-sum operation.

Corollary 2.4. Suppose G is a 2-sum of G_1 and G_2. If both G_1 and G_2 are ESP, then so is G.

Theorem 2.5. Let $B_i = \{x_{i1}, x_{i2}, x_{i3}\}$ ($i = 1, 2$) be an edge of Γ_i and let Γ be obtained by identifying x_{ij} with x_{2j} ($j = 1, 2, 3$). For $i = 1, 2$ and $1 \leq j < k \leq 3$, let Γ_{ijk} be obtained from Γ_i by adding a new vertex x_{ijk} and a new edge $A_{ijk} = \{x_{ijk}, x_{ij}, x_{ik}\}$. If all Γ_{ijk} are ESP, then so is Γ.

Proof. Let Λ be a set of hyperedges of Γ. We need to find an equitable subpartition of Λ. Set $\Lambda_1 = \Lambda \cap \Gamma_1$ and $\Lambda_2 = \Lambda - \Lambda_1$. We consider the following three cases.

Case 1. At least two of the three sets $\{d_{\lambda_1}(x_{1j}), d_{\lambda_2}(x_{2j})\}$, for $j = 1, 2, 3$, contain even numbers. Let us assume that $\{d_{\lambda_1}(x_{11}), d_{\lambda_2}(x_{21})\}$ and $\{d_{\lambda_1}(x_{12}), d_{\lambda_2}(x_{22})\}$ contain even numbers. Since each Γ_{i12} is ESP, Λ_i has an equitable subpartition (Λ_1^1, Λ_2^2). Without loss of generality, for $i = 1, 2$, let us assume that $d_{\lambda_i^1}(x_{i3}) \leq d_{\lambda_i^2}(x_{i3})$. Then it is straightforward to verify that $(\Lambda_1^1 \cup \Lambda_2^2, \Lambda_1^2 \cup \Lambda_2^2)$ is an equitable subpartition of Λ.

Case 2. Exactly one of the three sets $\{d_{\lambda_1}(x_{1j}), d_{\lambda_2}(x_{2j})\}$ ($j = 1, 2, 3$), say $j = 3$, contains even numbers. Since each Γ_{i12} is ESP, like in Case 2 of the proof of Theorem 2.4, $\Lambda_i \cup \{A_{i12}\}$ has an equitable subpartition ($\Lambda_1^1 \cup \{A_{i12}\}, \Lambda_2^2$). Then it is straightforward to verify that $(\Lambda_1^1 \cup \Lambda_2^2, \Lambda_1^2 \cup \Lambda_2^2)$ is an equitable subpartition of Λ.

Case 3. $d_{\lambda_i}(x_{ij})$ is odd for all i and j. If $B_1 \in \Lambda_1$, then $B_2 \notin \Lambda_2$ by the definition of Λ_i ($i = 1, 2$). In this case we can replace the pair Λ_1, Λ_2 by $\Lambda_1 - \{B_1\}, \Lambda_2 \cup \{B_2\}$, and the result follows from the proof in Case 1. Therefore, we may assume that $B_i \notin \Lambda_i$ for $i = 1, 2$. Since each Γ_{i12} is ESP, $\Lambda_i \cup \{B_i\}$ has an equitable subpartition ($\Lambda_1^1 \cup \{B_i\}, \Lambda_2^2$). Then it is straightforward to verify that $(\Lambda_1^1 \cup \Lambda_2^2, \Lambda_1^2 \cup \Lambda_2^2)$ is an equitable subpartition of Λ.

Let G be a graph. A triangle T of G is called stable if $G \setminus V(T)$ is connected and every vertex of T has degree at least three in G. The 3-sum of two graphs G_1 and G_2 is obtained by
identifying a stable triangle of G_1 with a stable triangle of G_2.

Corollary 2.5. Let G be the 3-sum of G_1 and G_2 over a triangle $x_1x_2x_3$. For $i = 1, 2$ and $1 \leq j < k \leq 3$, let G_{ijk} be obtained from G_i by adding a new vertex x_{ijk} and two new edges $x_{ijk}x_j$ and $x_{ijk}x_k$. If all G_{ijk} are ESP, then so is G.

3 A decomposition of CM graphs

Let a Δ-graph be obtained from a triangle xyz by adding three internally vertex disjoint paths, one from x to y, one from y to z, and one from z to x. Notice that a Δ-graph is a special odd ring. A rooted graph consists of a graph G and a specified set F of edges such that each $f \in F$ belongs to a triangle and each triangle in G contains at most one edge from F. By adding pendent triangles to the rooted graph G we mean the following operation: to each edge $f = xy$ in F, we introduce a new vertex z_f and two new edges xz_f and yz_f. The following is the main result of this section.

Theorem 3.1. For any graph G, at least one of the following holds.

(i) G is the k-sum of two smaller graphs, for some $k = 0, 1, 2, 3$;
(ii) G has a Θ-graph, a W-graph, or a Δ-graph;
(iii) G is obtained from a rooted 2-connected line graph by adding pendent triangles.

We break the proof of this result into several lemmas. A path with end-vertices x and y is called an xy-path.

Lemma 3.1. Let H be a subdivision of K_4 and let a and b be two of the four degree-three vertices. Let G be obtained from H by adding edges such that all these edges are incident with either a or b. Then G has a W-graph.

Proof. Let c and d be the other two vertices of H of degree three. For distinct vertices x, y in $\{a, b, c, d\}$, we denote by P_{xy} the path obtained by subdividing the edge xy of K_4. Without loss of generality, we assume that all these paths are induced. Therefore, edges not in any of these paths must be between $\{a, b\}$ and $V(P_{cd}) - \{c, d\}$. If all these edges are incident with only one of a and b, then it is easy to see that G is a W-graph. Thus we may assume that both a and b have neighbors in $V(P_{cd}) - \{c, d\}$. For each vertex x in $V(P_{cd})$, let P_{cx} be the unique cx-path of P_{cd}. We choose x in $V(P_{cd})$, with $V(P_{cx})$ minimal, such that $V(P_{cx} - \{c\})$ contains both neighbors of a and b. Then it is straightforward to verify that $G\backslash(V(P_{cd}) - V(P_{cx}))$ is a W-graph.

Lemma 3.2. Let G be a graph with at least six vertices and let xy be an edge of G such that $G\backslash\{x, y\}$ is disconnected. Then G is the 2-sum of two smaller graphs over xy, unless $G\backslash\{x, y\}$
has only two components with one being a single vertex.

Proof. If all components of $G \setminus \{x, y\}$ are single vertices, let G'_1 consist of two of these vertices. If $G \setminus \{x, y\}$ has a component with two or more vertices, let G'_1 be such a component. Let $G'_2 = G \setminus (V(G'_1) \cup \{x, y\})$. Clearly, each G'_i has at least two vertices, unless $G \setminus \{x, y\}$ has only two components with one being a single vertex. For $i = 1, 2$, let G_i be obtained from $G \setminus V(G'_i)$ by adding a new vertex z_i and two new edges z_ix and z_iy. Then both G_1 and G_2 have fewer vertices than G and it is straightforward to verify that G is the 2-sum of G_1 and G_2. ■

A diamond is a graph obtained from K_4 by deleting an edge. The following is a corollary of the last two lemmas.

Lemma 3.3. If a graph G has a diamond D, then at least one of the following holds.
(i) D has a vertex of degree two in G;
(ii) G can be expressed as the 2-sum of two smaller graphs, and the two triangles of D are contained in different parts;
(iii) G has a W-graph.

Proof. Let $V(D) = \{a, b, c, d\}$ and let a and b have degree three in D. If c and d are contained in the same component of $G \setminus \{a, b\}$, then $G \setminus \{a, b\}$ has an induced cd-path P. By applying Lemma 3.1 to $D \cup P$ we deduce that (iii) holds. Therefore, we may assume that c and d are contained in different components G_c and G_d of $G \setminus \{a, b\}$. It is clear that (i) holds if G_c or G_d consists of only one vertex. On the other hand, if both G_c and G_d contain two or more vertices, then we deduce from the proof of Lemma 3.2 that (ii) holds.

An edge $e = xy$ is called a chord of a cycle C if $e \notin E(C)$ yet both x and y are in $V(C)$. A Θ_1-graph is obtained from a cycle of length at least six by adding precisely one chord such that no triangle is created. A Θ_2-graph is obtained from a cycle of length at least six by adding precisely two chords xy and xz such that yz is an edge of the cycle; we shall call xyz the inscribed triangle of the Θ_2-graph.

Lemma 3.4. If a graph G has a Θ_1-graph H with chord e, then at least one of the following holds.
(i) G has a Θ_2-graph whose inscribed triangle contains e;
(ii) G can be expressed as the 2-sum of two smaller graphs over e;
(iii) G has a W-graph.

Proof. Let $a, b \in V(H)$ be the two ends of e and let P_1 and P_2 be the two components of $H \setminus \{a, b\}$. If P_1 and P_2 are contained in different components of $G \setminus \{a, b\}$, then we deduce from Lemma 3.2 that (ii) holds. Next we consider the case when $G \setminus \{a, b\}$ has a component that contains both paths P_1 and P_2. In this component, we choose a shortest path P between
P_1 and P_2. Then P is an induced path. Let $x_0, x_1, \ldots, x_p, x_{p+1}$ be the vertices of P such that $x_0 \in V(P_1)$, $x_{p+1} \in V(P_2)$, and they are ordered as in P. From the minimality of P, no x_i $(i > 1)$ has a neighbor in P_1 and no x_i $(i < p)$ has a neighbor in P_2. Let us now distinguish among three cases.

Case 1. x_1 has three or more neighbors in P_1. In this case, $V(P_1) \cup \{a, b, x_1\}$ induces a W-graph and thus (iii) holds. By symmetry, (iii) also holds if x_p has three or more neighbors in P_2.

Case 2. x_1 has precisely one neighbor in P_1 and x_p has precisely one neighbor in P_2. In this case, we deduce from Lemma 3.1 that (iii) holds.

Case 3. If none of the previous cases happens, then, by symmetry, we may assume that x_1 has precisely two neighbors in P_1. It is easy to see that (iii) holds if no x_i $(1 \leq i \leq p)$ is adjacent to any of a and b. So we can choose the smallest i in $\{1, 2, \ldots, p\}$ such that x_i is adjacent to a or b, say a. If x_i is not adjacent to b, then (iii) holds since $V(P_1) \cup \{a, b, x_1, \ldots, x_i\}$ induces a subdivision of K_4. Thus we can assume that x_i is also adjacent to b. If i is 1 or p, then it is not difficult to see that (iii) holds again. If $1 < i < p$, then (ii) holds since the subgraph induced by $V(P'_1) \cup V(P_2) \cup \{a, b, x_1, \ldots, x_i\}$ is a Θ_2-graph with inscribed triangle abx_i, where P'_1 is the part of P_1 from x_0 to $\{a, b\}$ that avoids the other neighbor of x_1 in P_1.

If T is a triangle of a graph G for which $G \setminus V(T)$ has more components than G, then T is called a separating triangle.

Lemma 3.5. If a graph G has a Θ_2-graph H with inscribed triangle xyz, then either G has a W-graph, or xyz is a separating triangle of G such that $H \setminus \{x, y, z\}$ is not entirely contained in any component of $G \setminus \{x, y, z\}$.

Proof. Rename the vertices if necessary, we may assume xy and xz are two chords of H. Let P_1, P_2 be the two path of $H \setminus \{x, y, z\}$ such that y is adjacent to an end of P_1. Suppose $H \setminus \{x, y, z\}$ is contained in a component of $G \setminus \{x, y, z\}$. Then $G \setminus \{x, y, z\}$ has a path P between P_1 and P_2. Let us choose P as short as possible. It follows that P is an induced path. Let $x_0, x_1, \ldots, x_p, x_{p+1}$ be the vertices of P such that $x_0 \in V(P_1)$, $x_{p+1} \in V(P_2)$, and they are ordered as in P. From the minimality of P, no x_i $(i > 1)$ has a neighbor in P_1 and no x_i $(i < p)$ has a neighbor in P_2. We now prove that G has a W-graph.

Case 1. x_1 has three or more neighbors in P_1. In this case, $V(P_1) \cup \{x, y, x_1\}$ induces a W-graph. By symmetry, G also has a W-graph if x_p has three or more neighbors in P_2.

Case 2. x_1 has precisely one neighbor in P_1 and x_p has precisely one neighbor in P_2. If no x_i $(1 \leq i \leq p)$ is adjacent to any of y and z, then $V(H) \cup V(P)$ induces a W-graph. On the other hand, if some x_i is adjacent to y or z, say z, then, by applying Lemma 3.1 to the subgraph induced by $V(P_1) \cup \{x, y, z, x_1, \ldots, x_i\}$, where $i \geq 1$ is minimum for which x_iz is an edge, we deduce that G has a W-graph.

Case 3. If none of the previous cases occurs, then, by symmetry, we may assume that x_1
has precisely two neighbors in P_1. We may also assume that each x_i is adjacent to at most one of x and y, since otherwise $\{x,y,z,x_i\}$ induces either a K_4, which is a W-graph, or a diamond, in which cases we deduce from Lemma 3.3 that G has a W-graph. It follows that $V(P) \cup V(P_2) \cup \{x\}$ contains an induced path P' from x_1 to $\{x, y\}$. Therefore, $V(P_1) \cup V(P') \cup \{x, y\}$ induces a subdivision of K_1 and the proof is complete.

To state the next lemma, we need to define several more graphs. F_5 is obtained from a path on five vertices by adding a new vertex and making it adjacent to all vertices in the path. F_5^+ is obtained from F_5 by adding an edge between the two nonadjacent vertices of degree three. A Θ_3-graph is obtained from $K_{2,3}$ by subdividing an edge an arbitrary number of times and then adding an edge between the two vertices of degree three. A K_4^+-graph is obtained from K_4 by subdividing at least two of the three edges from some star. A $K_4^+\gamma$-graph is obtained from a K_4 with vertex set $\{a, b, c, d\}$ by subdividing ab at least once and then adding new vertex x and two new edges xa and xc. We shall call an induced $K_{1,3}$ a claw.

Lemma 3.6. A 2-connected graph has a claw if and only if it has an induced subgraph that is isomorphic to F_5, F_5^+, a Θ-graph, a Θ_i-graph $(i = 1, 2, 3)$, a K_4^+-graph, or a $K_4^+\gamma$-graph.

Proof. The “if” part is obvious since all the listed graphs have claws. To prove the “only if” part, let G be a 2-connected graph with a claw. Clearly, we may assume that G is minimal with this property, that is, every proper induced subgraph of G is either not 2-connected or claw-free. In particular, for every vertex z of G, every block of $G \setminus z$ is claw-free. Let edges $xa_1, xa_2,$ and xa_3 form a claw. Then we deduce that, for each vertex $z \notin \{x, a_1, a_2, a_3\}$, x is a cut-vertex of $G \setminus z$ that separates some a_i from some other a_j. Equivalently, for every vertex $z \notin \{x, a_1, a_2, a_3\}$, the set $\{x, z\}$ is a vertex-cut of G that separates some a_i from some other a_j.

Since G is 2-connected and x has degree at least three, there must exist a vertex y other than x such that the degree of y is at least 3. Now the 2-connectivity of G guarantees the existence of a path in G from a_i to y which avoids x; by taking an appropriate section of this path, we see that for $i = 1, 2, 3$, there is a vertex $b_i \neq x$ and a path P_i from x to b_i such that a_i is in P_i, b_i has degree at least three, and all interior vertices of P_i have degree two in G (possibly $b_i = a_i$). We claim that $V(P_1 \cup P_2 \cup P_3) = V(G)$. Suppose, on the contrary, that some vertex z of G is not in $V(P_1 \cup P_2 \cup P_3)$. Then, without loss of generality, we may assume that a_1 and a_2 are separated from a_3 by $\{x, z\}$. Let G_3 be the component of $G \setminus \{x, z\}$ that contains a_3. Then b_3 is also contained in G_3. Let G'_3 be the subgraph of G induced by $V(G_3) \cup \{x, z\}$. Since G is 2-connected, G'_3 must have an xz-path P with at least one interior vertex. Choose such a path P as short as possible. Then P is an induced path, except for a possible edge xz. It follows that $V(G'_3) - V(P) \neq \emptyset$ since all vertices in $G'_3 \setminus (V(G_3) - V(P))$ have degree at most two while b_3 is a vertex in G'_3 of degree at least three. Therefore, $G \setminus (V(G'_3) - V(P))$ is a proper induced subgraph and thus it should be either claw-free or not 2-connected. However, this graph has a claw $\{xa_1, xa_2, xa\}$, where a is the neighbor of x in P, and it is also 2-connected since it is
obtained from a 2-connected graph G by replacing a part of a 2-separation with a path. This contradiction completes the proof of our claim.

Depending on the relationship between b_i‘s, we distinguish among the following three cases.

Case 1. $b_1 = b_2 = b_3$. In this case, there are two subcases. If xb_1 is not an edge, then G is a Θ-graph. If xb_1 is an edge, then G is either a Θ_1-graph or a Θ_3-graph.

Case 2. $b_1 = b_2 \neq b_3$. In this case, the above claim implies that b_3 must be adjacent to b_1 and x. It follows that $b_i = a_i$ for some $i = 1, 2$, for otherwise, G has a subdivision of $K_{2,3}$ as a proper induced subgraph, which is impossible. Therefore, G is a Θ_2-graph.

Case 3. b_1, b_2 and b_3 are all distinct. In this case, by the above claim each b_i is adjacent to at least one other b_j. It follows that there are at least two edges between b_1, b_2 and b_3. We first consider the case when some two of b_1, b_2 and b_3, say b_1 and b_3, are not adjacent. Since each b_i has degree at least three, for $i = 1, 3$, xb_i must be an edge not in P_i. From the minimality of G we deduce that, for $i = 1, 3$, a_i is the only interior vertex of P_i, and in addition, $a_2 = b_2$. Thus $G = F_5$. Next, we assume that $b_1b_2b_3$ is a triangle. If there are no other edges, then G is a K^+_4-graph. Thus we may assume that xb_1 is an edge not in P_i for some i, say $i = 1$. From the minimality of G it is not difficult to see that $a_i = b_i$ for some i, say $i = 2$. Then $a_3 \neq b_3$, as b_2b_3 is an edge while a_2a_3 is not. Also from minimality of G we deduce that a_1 is the only interior vertex of P_1. Now it is straightforward to verify that G is either F^+_5 when xb_3 is an edge, or a K^+_4-graph when xb_3 is not an edge. ■

Lemma 3.7. Let T be a separating triangle of a 2-connected graph G. Then at least one of the following holds.

(i) G is the k-sum of two smaller graphs, for some $k = 2, 3$;

(ii) G has a Δ-graph or a W-graph;

(iii) $G \setminus V(T)$ has precisely two components, one of which is a single vertex x of degree two.

Proof. Let $V(T) = \{x_1, x_2, x_3\}$ and let us assume that (i) does not hold. We need to show that either (ii) or (iii) holds. We first consider the case when $G \setminus V(T)$ has exactly two components G_1 and G_2. Since G is not the 3-sum of two other graphs, for some x_i and G_j, say $i = j = 1$, x_1 has no neighbors in G_1. It follows that G_1 is a component of $G \setminus \{x_2, x_3\}$. But G is not the 2-sum of two smaller graphs, we conclude from Lemma 3.2 that G_1 is a single vertex of degree two and thus (iii) holds. Next, we consider the case when $G \setminus V(T)$ has more than two components. For each component H of $G \setminus V(T)$, let $T(H)$ be the set of vertices in T that have neighbors in H. Let G_1, G_2, and G_3 be components of $G \setminus V(T)$ such that $|T(G_1)| \leq |T(G_2)| \leq |T(G_3)|$. From Lemma 3.2 we deduce that, for each $i \neq j$, $G \setminus \{x_i, x_j\}$ has at most two components. It follows that, by renaming the vertices of T if necessary, we have $T(G_1) \supseteq \{x_2, x_3\}$, $T(G_2) \supseteq \{x_1, x_3\}$, and $T(G_3) \supseteq \{x_1, x_2\}$. Let i, j, k be a permutation of 1, 2, 3. It is clear that we can find an x_ix_k-path P_{jk} such that the path has at least one interior vertex and all its interior vertices are in G_i. Let us choose such P_{jk} as short as possible. Then $V(P_{jk})$ induces a cycle. Now it is easy.
to see that (ii) holds since either the subgraph induced by $V(P_{12} \cup P_{23} \cup P_{31})$ is a Δ-graph or some x_i, say x_1, has a neighbor in $P_{23}\{x_2,x_3\}$, which implies that the subgraph induced by $V(P_{23}) \cup \{x_1\}$ is a W-graph.

Lemma 3.8. Let X be a set of degree-two vertices in a 2-connected graph G such that each vertex in X is in a triangle. If $G \setminus X$ is a 2- or 3-sum of two smaller graphs, then either G is a 2- or 3-sum of two smaller graph, or G has a Δ- or W-graph.

Proof. If X contains two adjacent vertices, then it is easy to see that $G = K_3$ and thus the result holds trivially. Therefore, we may assume that no two vertices in X are adjacent. Suppose $G \setminus X$ is the 2-sum of two smaller graphs G'_1 and G'_2. It is clear that X can be partitioned into X_1 and X_2 such that for each x in X_i (i = 1, 2), the two neighbors of x are both in G'_i. For $i = 1, 2$, let G_i be obtained from G'_i by putting the vertices in X_i back. Then it is easy to verify that G is the 2-sum of G_1 and G_2, both are smaller than G. Next, suppose $G' \setminus X$ is a 3-sum of two smaller graphs over a triangle T. If each x in X has at most one neighbor in T, then, similar to the previous case, G is a 3-sum of two smaller graphs. If some x in X has both neighbors in T, then $G \setminus V(T)$ has three or more components. It follows from Lemma 3.7 that either G is a 2- or 3-sum of two smaller graphs, or G has a Δ- or W-graph.

We also need the following characterization of line graphs [1].

Beineke’s Theorem. A graph is a line graph if and only if it does not have any of the nine graphs below as an induced subgraph.

![Figure 2. The nine forbidden induced subgraphs.](image)

Proof of Theorem 3.1. Let G be a graph for which neither (i) nor (ii) holds. We need to
show that (iii) must hold. Clearly, \(G \) is 2-connected. Let us also assume that \(G \) is not a line graph.

We first consider the case when \(G \) has at most five vertices. Since \(G \) is not a line graph and it does not have \(W \)-graphs, we conclude from Beineke’s Theorem that \(G \) has a claw. Then, since \(G \) has no \(\Theta \)-graphs, we deduce from Lemma 3.6 that \(G \) is the graph obtained from \(K_{2,3} \) by adding an edge between the two vertices of degree three. Clearly, (iii) holds in this case.

Next, we assume that \(G \) has at least six vertices. Let \(X \) be the set of vertices \(x \) for which there is a separating triangle \(T_x \) such that \(x \) is a component of \(G \setminus V(T_x) \). Since \(G \) is 2-connected and has no \(W \)-graphs, each \(x \) in \(X \) must have degree two. Then we conclude from Lemma 3.7 and the fact \(|V(G)| \geq 6\) that \(T_y \neq T_z \) whenever \(y, z \in X \) with \(y \neq z \). In addition, we prove that \(V(T_x) \cap X = \emptyset \) for all \(x \in X \). Suppose on the contrary, there exist \(x \in X \) and \(y \in V(T_x) \cap X \). Let \(z_1, z_2 \) be the other two vertices of \(T_x \). Then it is clear that \(G \setminus \{z_1, z_2\} \) has at least three components. Thus, by Lemma 3.2, \(G \) is a 2-sum of two smaller graphs, a contradiction. In conclusion, if \(u_x, v_x \) are the two neighbors of each \(x \in X \), then \(G_X = G \setminus X \) is a rooted graph with the set of root edges \(F = \{u_xv_x : x \in X\} \). Clearly, \(G_X \) is 2-connected and \(G \) is obtained from \(G_X \) by adding pendent triangles.

It remains to prove that \(G_X \) is a line graph. Suppose it is not. We first observe from Beineke’s Theorem and Lemma 3.6 that \(G_X \) has at least five vertices. Then we claim that, in \(G_X \), every vertex in a diamond must have degree greater than two. Suppose \(u \) has degree two and is in a diamond (one of its triangles is \(uvw \)). Since \(u \) is not included in \(X \), it must have degree three or more in \(G \) and thus must have a neighbor \(x \) in \(X \). It follows that \(T_x \) is the triangle \(uvw \). Let \(G' = G \setminus \{x \} \), the graph obtained from \(G_X \) by putting \(x \) back. Then we see that the edge \(xu \) is a component of \(G' \setminus \{v, w\} \). Therefore, from Lemma 3.2 and Lemma 3.8 we conclude that either (i) or (ii) holds for \(G \), a contradiction and thus the claim is proved. It follows from this claim, Lemma 3.3, and Lemma 3.8 that \(G_X \) has no diamonds.

Since \(G_X \) is not a line graph and it has no diamonds, by Beineke’s Theorem, \(G_X \) has a claw. Since \(G_X \) has no \(\Theta \)-graphs and \(W \)-graphs either, we deduce from Lemma 3.6 that \(G_X \) has a \(\Theta_i \)-graph for \(i = 1 \) or \(2 \). Then, by Lemma 3.4 and Lemma 3.8 we deduce that \(i = 2 \). Let \(T \) be the inscribed triangle of this \(\Theta_2 \)-graph. By Lemma 3.5, Lemma 3.7, and Lemma 3.8, we deduce that \(G_X \setminus T \) has a component which is a vertex of degree two; this vertex together with \(T \) induce a diamond in \(G_X \), a contradiction.

4 A proof of Theorem 1.1.

Let \(\mathcal{L} \) be the class of graphs that do not have \(\Theta \)-graphs, \(W \)-graphs, and odd rings. The next is the main result of this section, which clearly includes Theorem 1.1.
Theorem 4.1. The following are equivalent for a graph G.

(i) G is CM;
(ii) G is ESP;
(iii) G is in \mathcal{L}.

Again, we prove the theorem by proving a sequence of lemmas.

Lemma 4.1. If G is a Θ-graph, a W-graph, or an odd ring, then G is not a CM graph.

Proof. Let G be a Θ-graph. To justify the statement, we consider the following weight function w on $V(G)$: $w(v) = 1$ if v is of degree two and 2 otherwise. Then it is a routine matter to check that the size of a maximum cycle packing in G is 1, while the size of a minimum feedback set is 2. Hence, by definition, G is not a CM graph.

Let G be a W-graph with weight $w(v) = 1$ on each vertex v. Then it is easy to see that the size of a maximum cycle packing in G is 1, while the size of a minimum feedback set is 2. So G is not a CM graph according to the definition.

Let G be an odd ring with weight $w(v) = 1$ on each vertex v and let M be the cycle-vertex incidence matrix of G. In view of the equivalent definition of Mengerian hypergraph in terms of a TDI system, to verify the statement, we may turn to prove that at least one of

$$\begin{align*}
\max & \quad y^T e \\
\text{s.t.} & \quad y^T M \leq e^T \\
\min & \quad e^T x \\
\text{s.t.} & \quad Mx \geq e \\
y & \geq 0 \\
x & \geq 0
\end{align*}$$

has no integral optimal solution. To this end, it suffices to show that the optimal objective value of the above linear programs is not integral.

Recall that G is a graph obtained from an odd cycle by replacing each edge $e = uv$ with either a cycle C_e containing e or two triangles uab, vcd together with two vertex-disjoint paths P_{ab} and P_{cd} between $\{a, b\}$ and $\{c, d\}$. In the former case, define $x(u) = x(v) = 1/2$ and $y(C_e) = 1/2$; in the latter case, define $x(u) = x(a) = x(c) = x(v) = 1/2$ and $y(C) = 1/2$ for each C of the following three cycles: uab, $vedv$ and $abP_{ab}dcP_{ac}$. For all the remaining vertices v and all the remaining cycles C, we define $x(v) = 0$ and $y(C) = 0$. Clearly, x and y are both well defined. Moreover, y is a feasible solution to the primal program and x is a feasible solution to the dual. Now let t denote the number of vertices v with $x(v) = 1/2$. Then the construction of G implies that t is odd. Since $y^T e = e^T x = t/2$, by the duality theory of linear programming [7] y and x are optimal solutions to the above programs, respectively, and hence neither of the programs has an integral optimal solution, completing the proof. \blacksquare

Lemma 4.2. If $G \in \mathcal{L}$ is the 0- or 1-sum of G_1 and G_2, then both G_1 and G_2 are in \mathcal{L}.

Proof. This is clear from the definition of \mathcal{L} since both G_1 and G_2 are induced subgraphs
of G.

Lemma 4.3. If a 2-connected graph $G \in \mathcal{L}$ is the 2-sum of two smaller graphs G_1 and G_2, then both G_1 and G_2 are in \mathcal{L}.

Proof. Suppose some G_i, say G_1, has an induced subgraph H which is a Θ-graph, a W-graph, or an odd ring. We need to show that G has a Θ-graph, a W-graph, or an odd ring. Let x, y be the common vertices of G_1 and G_2, and let z_1 be the only vertex in $G_1 \setminus V(G)$. If $z_1 \not\in V(H)$, then we are done since H is an induced subgraph of G. If $z_1 \in V(H)$, then both x and y are in H since H has minimum degree at least two. Notice that Θ-graphs do not have triangles and triangles in W-graphs only contain vertices of degree greater than two. Thus H can only be an odd ring. It follows from the 2-connectivity of G that G_2, and hence $G_2 \setminus z_2$, is also 2-connected. Therefore, xy is contained in an induced cycle C of $G_2 \setminus z_2$. Now it is clear that $V(H \setminus z_1) \cup V(C)$ induces an odd ring in G, as required.

Lemma 4.4. Let $G \in \mathcal{L}$ be the 3-sum of G_1 and G_2 over a triangle $x_1x_2x_3$. For $i = 1, 2$, and $1 \leq j < k \leq 3$, let G_{ijk} be obtained from G_i by adding a new vertex x_{ijk} and two new edges $x_{ijk}x_j$ and $x_{ijk}x_k$. Then all G_{ijk} are in \mathcal{L}.

Proof. Suppose to the contrary that some G_{ijk}, say G_{112}, has an induced subgraph H which is a Θ-graph, a W-graph, or an odd ring. We aim to show that G has a Θ-graph, a W-graph, or an odd ring. Like in the proof of the last lemma, we may assume that x_{112} is in H and H is an odd ring which contains the entire triangle $x_{112}x_1x_2$. As $x_1x_2x_3$ is a stable triangle in G_2, by definition there is a path, other than x_1x_2, in G_2 from x_1 to x_2 which avoids x_3; let P be such a path with the minimum length. Then P is an induced path in G_2. Observe that x_3 is adjacent to no vertex in $P - \{x_1, x_2\}$, for otherwise $P \cup \{x\}$ induces a W-graph in G, a contradiction. Hence no vertex in $P - \{x_1, x_2\}$ is adjacent to any vertex in $H - \{x_{112}, x_1, x_2\}$ for G is the 3-sum of G_1 and G_2 over $x_1x_2x_3$. It follows that the graph obtained from H by replacing the path $x_1x_{112}x_2$ with P is an odd ring of G, a contradiction.

Lemma 4.5. Let G' be the graph obtained from a graph G by subdividing an edge yz with a vertex x. If yz is contained in no triangle of G, then G is ESP provided G' is ESP.

Proof. We first make the natural correspondence between cycles in G' and G more precise. For each cycle C in G', let $\phi(C)$ be the cycle in G such that, if x is not in C then $\phi(C) = C$, and if x is in C then $\phi(C)$ is obtained from $C \setminus x$ by adding the new edge yz. It is not difficult to see that ϕ is a 1-1 mapping. Let \mathcal{C} be a set of cycles in G. Define $\mathcal{C}' = \{\phi^{-1}(C) : C \in \mathcal{C}\}$. Since G' is ESP, \mathcal{C}' has an equitable subpartition $(\mathcal{C}_1', \mathcal{C}_2')$. Now, for $i = 1, 2$, let $\mathcal{C}_i = \{\phi(C) : C \in \mathcal{C}_i'\}$. Then it is straightforward to verify that $(\mathcal{C}_1, \mathcal{C}_2)$ is an equitable subpartition of \mathcal{C}.

Two edges in a graph are in *series* if they form a minimal edge cut. It is not difficult to see
that being in series is an equivalence relation. We call each equivalence class a *series family*. A series family is *trivial* if it has only one edge. A graph is *subcubic* if it has maximum degree at most three. If a vertex x has degree three, then the subgraph formed by the three edges incident with x is called a *triad* with center x. We shall follow convention and let $L(H)$ stand for the line graph of a graph H.

Lemma 4.6. Let G be obtained from a rooted 2-connected line graph $L(H)$ by adding pendent triangles. Suppose H is subcubic and none of its cycles has chords. Then G is ESP if it has no odd rings.

Proof. Clearly, we may assume that H has no isolated vertices. Let us make some further observations about H.

(1) H is connected and its only cut edges are the pendent edges.

This follows from our assumption that $L(H)$ is 2-connected.

(2) Every non-pendent edge of H is contained in a nontrivial series family of H.

Assume the contrary: there exists a non-pendent edge $e = xy$ for which $\{e\}$ is a series family. It follows that $H \setminus e$ has no cut edge that separates x from y. By (1), $H \setminus e$ is connected and thus $H \setminus e$ has two edge-disjoint xy-paths. In fact, these two paths are internally vertex-disjoint because H is subcubic. Thus e is a chord of the cycle formed by these two paths, a contradiction.

(3) If F is a nontrivial series family of H with $|F| = k$ odd, then F has two incident edges xy and xz such that they are the only two edges of H that are incident with x.

To prove (3), notice that $G \setminus F$ has exactly k components. These components can be cyclically ordered, say G_1, G_2, \ldots, G_k, such that, for each i, there is an edge $e_i = x_iy_i$ of F with $x_i \in V(G_i)$ and $y_i \in V(G_{i+1})$, where the subscript is taken modulo k. Let I_i, where $t = 1, 2$, be the set of indices i for which G_i has t vertices, and let I_3 be the remaining indices. For each $i \in I_2$, it is clear that the only edge f_i of G_i shares a common end with e_{i-1} and e_i. For each $i \in I_3$, it can be seen from (1) that $y_{i-1} \neq x_i$. From the definition of a series family, we deduce that G_i has no cut edge that separates y_{i-1} from x_i. Hence G_i has a cycle C_i which contains y_{i-1} and x_i in G_i (recall the proof of (2)). Assume $I_1 = \emptyset$. Let R be the subgraph of H induced by the union of $\{e_i : 1 \leq i \leq k\}$, $\{f_i : i \in I_2\}$, and $E(C_i)$, for all $i \in I_3$. Since no cycle of H contains chords, each of the two sections of C_i, for any $i \in I_3$, between y_{i-1} and x_i has length at least two. Now it is not difficult to check that $L(R)$ is an odd ring, which is a contradiction. It follows that $I_1 \neq \emptyset$ and thus (3) is proved.

(4) We may assume that H has no triangles.

Let $K_4 \setminus e$ be obtained from K_4 by deleting an edge, $K_{2,3}^+$ be obtained from $K_{2,3}$ by adding an edge between the two vertices of degree three, and F_4 be obtained from a path on four vertices by adding a new vertex of degree four. Suppose T is a triangle of H. Since no cycle of H has a
chord, the only paths between any two vertices of T are the two in T. It follows from (1) and (3) that H is obtained from T by adding at most two pendent edges. Thus $L(H)$ can only be $K_3, K_4\setminus e$ or F_4. Since G contains no odd ring, it is straightforward to verify that either G is in \{ $K_3, K_4\setminus e, F_4, K_{2,3}^+$ \} or G can be constructed from graphs in \{ $K_3, K_4\setminus e, F_4, K_{2,3}^+$ \} by 2-sums. Observe that all graphs in \{ $K_3, K_4\setminus e, F_4, K_{2,3}^+$ \} are ESP, so (4) follows from Corollary 2.4.

(5) We may assume that each nontrivial series family of H contains an even number of edges.

For each nontrivial series family F with $|F|$ odd, let e_1^F and e_2^F be two edges as described in (3) and let H' be obtained from H by subdividing each e_i^F exactly once. Clearly, all series family of H' are even and $L(H')$ can be considered as obtained from $L(H)$ by subdividing each edge $e^F = e_1^F e_2^F$ exactly once. Since, by (4), H has no triangle, e^F is contained in no triangle in G. Thus G', the graph obtained from G by subdividing each e^F exactly once, can also be obtained from $L(H')$ by adding pendent triangles (in the same way as getting G from $L(H)$). Since subdividing edges does not introduce odd rings, G' has no odd rings. In addition, by Lemma 4.5, G is ESP if G' is. Therefore, we can replace G and H by G' and H', respectively, and so (5) is proved.

Now let \mathcal{C} be an arbitrary set of cycles of G. We prove in the following that \mathcal{C} admits an equitable subpartition. We prove by induction on $k = |\mathcal{C}|$. The result is obvious if $k = 1$, so we assume that $k > 1$. Without loss of generality, we also assume that all cycles in \mathcal{C} are chordless. Then we observe that there are three types of cycles in \mathcal{C}. The first type are cycles of length four or more which correspond to cycles of H, the second type are triangles of $L(H)$ which correspond to triads of H, and the third type are pendent triangles which correspond to pairs of edges xy, xz of H for which x, called the center of the pair, has degree three in H. Let \mathcal{D}_1 be the set of cycles C of H for which $L(C) \in \mathcal{C}$, let \mathcal{D}_2 be the set of triads T of H for which $L(T) \in \mathcal{C}$, and let \mathcal{D}_3 be the set of pairs $P = \{e, f\}$ of edges of H for which there is a vertex p of G of degree two such that $P^* = \{p, e, f\}$ induces a pendent triangle of \mathcal{C}.

(6) For each $P = \{e_1, e_2\} \in \mathcal{D}_3$, we may assume that the triad $T = \{e_1, e_2, e_3\} \notin \mathcal{D}_2$.

Suppose we have both $P \in \mathcal{D}_3$ and $T \in \mathcal{D}_2$. Then we apply the induction hypothesis to $\mathcal{C} - \{P^*, L(T)\}$, which implies the existence of an equitable subpartition (C_1, C_2) of $\mathcal{C} - \{P^*, L(T)\}$. Without loss of generality, let us assume that $d_{C_1}(e_3) \leq d_{C_2}(e_3)$. Then it is easy to verify that $(C_1 \cup \{L(T)\}, C_2 \cup \{P^*\})$ is an equitable subpartition of \mathcal{C}.

(7) We may assume that cycles in \mathcal{D}_1 are pairwise vertex-disjoint.

Suppose some C_1 and C_2 in \mathcal{D}_1 have a vertex in common. Then they must have an edge in common, as H is subcubic. Since $C_1 \neq C_2$, we can find a maximal common path R of these two cycles. Let x_1, x_2 be the ends of R and let T_i be the triad with center x_i ($i = 1, 2$). Let $\mathcal{C}' = (\mathcal{C} - \{L(C_1), L(C_2)\}) \cup \{L(T_1), L(T_2)\}$. Then, using the fact that each C_i is chordless, it is not difficult to see that $d_{\mathcal{C}'}(x) \leq d_{\mathcal{C}}(x)$ for all $x \in V(G)$. If each $L(T_i)$ appears precisely once in
\mathcal{C}', then we can replace \mathcal{C} by \mathcal{C}' and (7) follows since both $L(C_1)$ and $L(C_2)$ are cycles of length at least 4 in G; else, let $\tilde{\mathcal{C}}$ be obtained from \mathcal{C}' by removing each $L(T_i)$ with multiplicity 2, for $i = 1, 2$. Then the induction hypothesis guarantees the existence of an equitable subpartition of $\tilde{\mathcal{C}}$ by introducing the corresponding $L(T_i)$ precisely once to each part of this subpartition, we get an equitable subpartition of \mathcal{C}. So we are done.

(8) *Every cycle in H is a disjoint union of nontrivial series families.*

To justify (8), note that for any series family F and any cycle C of H, if C contains some edge in F, then C contains all the edges in F. Indeed, if there exist two edges e and f in F such that $e \in C$ while $f \notin C$, then e is a cut edge of $H \setminus f$ and C is a cycle in $H \setminus f$ that contains the cut edge e, which is impossible. Now statement (8) follows instantly from this observation and (2).

Let us contract each C in \mathcal{D}_1 into a vertex. Then from (5), (7) and (8), it follows that the resulting graph H' is bipartite. Let X_1, X_2 be the two color classes of H'. Then \mathcal{D}_1 is naturally partitioned into \mathcal{D}_1^1 and \mathcal{D}_1^2 such that each \mathcal{D}_1^i contains those cycles in \mathcal{D}_1 that are contracted to a vertex in X_i. The partition (X_1, X_2) also induces a partition (V_1, V_2) of $V(H)$ such that each V_i contains vertices x for which either $x \in X_i$ or x is in some $C \in \mathcal{D}_1^i$. Then we partition \mathcal{C} into \mathcal{C}_1 and \mathcal{C}_2 as follows. For each $C \in \mathcal{D}_1$, we put $L(C)$ in \mathcal{C}_i if C is not in \mathcal{D}_1^i. For each $T \in \mathcal{D}_2$, we put $L(T)$ in \mathcal{C}_i if the center of T is in V_i. For each $P \in \mathcal{D}_3$, we put P^* in \mathcal{C}_i if the center of P is in V_i.

We prove that $(\mathcal{C}_1, \mathcal{C}_2)$ is an equitable subpartition of \mathcal{C}. Since $(\mathcal{C}_1, \mathcal{C}_2)$ is a partition of \mathcal{C}, it is clear that we only need to verify $\max\{d_{\mathcal{C}_1}(x), d_{\mathcal{C}_2}(x)\} \leq \lfloor d_{\mathcal{C}}(x)/2 \rfloor$ for all $x \in V(G)$. It follows from (6) and (7) that $d_{\mathcal{C}}(x) \leq 3$ for all $x \in V(G)$. Thus we only need to show that, if $d_{\mathcal{C}}(x) \geq 2$ then $d_{\mathcal{C}_i}(x) > 0$ for $i = 1, 2$. Observe that if a vertex of G is contained in two or more cycles of \mathcal{C}, this vertex must be an edge e of H. Also observe that there are only two kinds of edges in H: those between V_1 and V_2, and those with both ends in some V_i which are precisely those in some $C \in \mathcal{D}_1$. Then the result follows from (6) and the definition of \mathcal{C}_1 and \mathcal{C}_2.

Proof of Theorem 4.1. The implication $(ii) \Rightarrow (i)$ is given by Corollary 2.1. The implication $(i) \Rightarrow (iii)$ follows from Corollary 2.2 and Lemma 4.1. It remains to prove the implication $(iii) \Rightarrow (ii)$: we apply induction on $|V(G)|$. The case $|V(G)| = 1$ is trivial, so we proceed to the induction step. By Lemmas 4.2–4.4 and Corollaries 2.3–2.5, we may assume that G cannot be represented as the k-sum $(k = 0, 1, 2, 3)$ of two smaller graphs (otherwise we are done). Then we conclude from Theorem 3.1 that G is obtained from a rooted 2-connected line graph $L(H)$ by adding pendent triangles. Since G contains no K_4, H is subcubic. Also notice that H contains no cycle with chords, for otherwise a cycle together with a chord in H would correspond to a W-graph (which is a subdivision of a wheel with four spokes) in G, a contradiction. Now we deduce from Lemma 4.6 that G is ESP.
References

