GROWTH FUNCTIONS FOR GENERALIZED FUNCTIONS
ON WHITE NOISE SPACE

HUI-HSUNG KUO

ABSTRACT. Let u be a positive continuous function on $[0, \infty)$ satisfying the conditions: (0) $\lim_{r \to \infty} r^{-1/2} \log u(r) = \infty$, (G1) u is increasing and $u(0) = 1$, (G2) $\limsup_{r \to \infty} r^{-1} \log u(r) < \infty$, (G3) $\log u(x^2)$ is convex for $x \in [0, \infty)$. Such a function u determines a Gel'fand triple $[\mathcal{E}]_u \subseteq (L^2) \subseteq [\mathcal{E}]_w^*$. In this paper we show that if w is a positive continuous function on $[0, \infty)$ satisfying the conditions (G1) (G3) and (G*2) $\liminf_{r \to \infty} r^{-1} \log w(r) > 0$. Then its dual Legendre transform $u^* = w^*$ satisfies conditions (0) (G1) (G2) (G3). The function w is often convenient to use for studying generalized functions on a white noise space.

1. INTRODUCTION

In recent papers [1] [2] [3] Asai, Kubo, and Kuo have introduced a Gel'fand triple $[\mathcal{E}]_u \subseteq (L^2) \subseteq [\mathcal{E}]_w^*$ basing on a Gel'fand triple $\mathcal{E} \subseteq \mathcal{E}_0 \subseteq \mathcal{E}'$ and a growth function u satisfying certain conditions (see Section 2.) This function u is used in [3] to characterize test functions in the space $[\mathcal{E}]_u$ and to give an intrinsic topology for $[\mathcal{E}]_w$. Moreover, its dual Legendre transform u^* is used in the characterization theorem for generalized functions in the space $[\mathcal{E}]_w^*$.

It often happens, e.g., the Bell number spaces [1] [3] and Feynman integrals [4], that the function u is given implicitly as the dual Legendre transform w^* of some function w, i.e., $u = w^*$. Thus it is desirable to specify conditions on w so that $u = w^*$ determines a Gel'fand triple $[\mathcal{E}]_u \subseteq (L^2) \subseteq [\mathcal{E}]_w^*$.

2. SPACES OF TEST AND GENERALIZED FUNCTIONS

Take a real countably-Hilbert space \mathcal{E} with a sequence $\{ \cdot, \cdot \}_p$ of norms [6]. Let \mathcal{E}_p denote the completion of \mathcal{E} with respect to the norm $\| \cdot \|_p$. Assume the following conditions:

(a) There exists $0 < p < 1$ such that $\| \cdot\|_0 \leq \rho \| \cdot\|_1 \leq \cdots \leq \rho^p \| \cdot\|_p \leq \cdots$ for all $p \geq 0$.
(b) For any $p \geq 0$, there exists $q \geq p$ such that the inclusion map $i_{q,p} : \mathcal{E}_q \hookrightarrow \mathcal{E}_p$ is a Hilbert-Schmidt operator.

Let \mathcal{E}' be the dual space of \mathcal{E}. Then we have a Gel'fand triple

$$\mathcal{E} \subseteq \mathcal{E}_0 \subseteq \mathcal{E}'$$

Apply the Minlos theorem to get the standard Gaussian measure μ on \mathcal{E}'. For simplicity, we use (L^2) to denote the complex Hilbert space $L^2(\mathcal{E}', \mu)$. By the Wiener-Itô theorem, each $\varphi \in (L^2)$ can be uniquely decomposed into an orthogonal
sum as follows:

\[
\varphi = \sum_{n=0}^{\infty} I_n(f_n) = \sum_{n=0}^{\infty} \langle \circ^n \cdot, f_n \rangle, \quad f_n \in C_{0,c}^\circ,
\]

where \(I_n \) is the multiple Wiener integral of order \(n \), \(\circ^n \cdot \) is the Wick tensor \([6]\), and the sub-index \(c \) denotes the complexification. In addition, the \((L^2) \)-norm of \(\varphi \) is given by

\[
\|\varphi\|_0 = \left(\sum_{n=0}^{\infty} n! |f_n|^2_0 \right)^{1/2}.
\]

Let \(C_{+,1/2} \) be the set of positive continuous functions \(u \) on \([0, \infty)\) such that

\[
\lim_{r \to \infty} \frac{\log u(r)}{\sqrt{r}} = \infty.
\]

We need to consider the following conditions on a function \(u \in C_{+,1/2} \):

1. (G1) \(u \) is increasing and \(u(0) = 1 \).
2. (G2) \(\limsup_{r \to \infty} r^{n-1} \log u(r) < \infty \).
3. (G3) \(\log u(x^2) \) is convex for \(x \in [0, \infty) \).

These G-conditions are stated as U-conditions in the papers \([1]\) \([2]\) \([3]\). The only difference is between conditions (G2) and (U2). Condition (U2) says that \(\lim_{r \to \infty} r^{n-1} \log u(r) < \infty \). However, it can be replaced by the weaker condition (G2) in these papers.

Let \(u \in C_{+,1/2} \). Its \textit{Legendre transform} \(\ell_u \) and \textit{dual Legendre transform} \(u^* \) are defined as in \([1]\) by

\[
\ell_u(n) = \inf_{r > 0} \frac{u(r)}{r^n}, \quad n = 0, 1, 2, \ldots , \quad (2)
\]

\[
u^*(r) = \sup_{s > 0} \frac{e^{2\sqrt{rs}}}{u(s)}, \quad r \in [0, \infty) . \quad (3)
\]

We have the following facts about Legendre and dual Legendre transforms:

Fact 1. If \(u \in C_{+,1/2} \) satisfies (G1)-(G3), then \(\lim_{n \to \infty} \ell_u(n) 1/n = 0 \).

(See Lemma 3.6 in \([1]\) or Theorem 2.3 in \([3]\).)

By this fact, the following function \(L_u \) is an entire function

\[
L_u(r) = \sum_{n=0}^{\infty} \ell_u(n) r^n . \quad (4)
\]

Fact 2. If \(u \in C_{+,1/2} \) is increasing and satisfies (G3), then \(u \) and \(L_u \) are equivalent, namely, there exist constants \(K_1, K_2, a_1, a_2 > 0 \) such that

\[
K_1 u(a_1 r) \leq L_u(r) \leq K_2 u(a_2 r), \quad \forall r \in [0, \infty) . \quad (5)
\]

(See Theorem 3.13 in \([1]\) or Theorem 2.6 in \([3]\).)

Fact 3. If \(u \in C_{+,1/2} \) satisfies (G3), then \(\lim_{n \to \infty} (\ell_u(n)(n!)^2)^{-1/n} = 0 \).

(See Lemma 3.2 in \([3]\).)

By this fact, the following function \(L^\#_u \) is an entire function

\[
L^\#_u(r) = \sum_{n=0}^{\infty} \frac{1}{\ell_u(n)(n!)^2} r^n . \quad (6)
\]
Fact 4. If \(u \in C_{+,1/2} \), then \(u^* \) belongs to \(C_{+,1/2} \) and is increasing and satisfies (G3). If in addition \(u \) satisfies (G1), then \(u^* \) also satisfies (G1).
(See Lemma 4.5 in [1] or Theorem 2.7 in [3].)

Fact 5. If \(u \in C_{+,1/2} \) satisfies (G1) (G3), then \((u^*)^* = u \) on \([0, \infty)\).
(See Theorem 4.7 in [1] or Theorem 2.9 in [3].)

Fact 6. If \(u \in C_{+,1/2} \), then \(u^* \) and \(\mathcal{L}_u^* \) are equivalent. If in addition \(u \) satisfies (G3), then \(\mathcal{L}_u^* \) and \(\mathcal{L}_u^\# \) are equivalent.
(See above Facts 2 and 4, and Theorem 4,10 in [1].)

Now, let \(u \in C_{+,1/2} \) be a fixed function satisfying conditions (G1) (G2) (G3). For each \(p \geq 0 \) and for \(\varphi \) given by Equation (1), define \(\| \varphi \|_{p,u} \) by

\[
\| \varphi \|_{p,u} = \left(\sum_{n=0}^{\infty} \frac{1}{\ell_u(n)} |f_n|_p^2 \right)^{1/2},
\]

where \(\ell_u \) is the Legendre transform of \(u \) defined by Equation (2).

Let \([\mathcal{E}]_u = \{ \varphi \in (L^2) \mid \| \varphi \|_{p,u} < \infty \} \) and let \([\mathcal{E}]_u^\ast \) be the projective limit of \(\{ [\mathcal{E}]_u \mid p \geq 0 \} \). This space \([\mathcal{E}]_u \) is the space of test functions on \(\mathcal{E} \) given by the growth function \(u \). Its dual space \([\mathcal{E}]_u^\ast \) is the space of generalized functions on \(\mathcal{E} \).

By using conditions (a) and (G2) we can show that \([\mathcal{E}]_u \subset (L^2) \) for all large \(p \) (see Section 3 in [3] for the proof.) Hence \([\mathcal{E}]_u \subset (L^2) \). Moreover, Condition (b) implies that \([\mathcal{E}]_u \) is a nuclear space. The space \((L^2) \) can be identified with its dual space and so we get a Gel’fand triple

\[
[\mathcal{E}]_u \subset (L^2) \subset [\mathcal{E}]_u^\ast.
\]

Note that this Gel’fand triple is exactly the CKS-space \([\mathcal{E}]_\alpha \subset (L^2) \subset [\mathcal{E}]_\alpha^\ast\) in [5] given by the sequence

\[
\alpha_u(n) = \frac{1}{n!\ell_u(n)}, \quad n = 0, 1, 2, \ldots
\]

Let \(\xi \in \mathcal{E}_\alpha \). The renormalized exponential function \(e^{(\cdot, \xi)} : \) is defined by

\[
e^{(\cdot, \xi)} := \sum_{n=0}^{\infty} \frac{1}{n!} I_n(\xi^\otimes_n) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle (\cdot, (\xi^\otimes_n) \rangle.
\]

Use Equations (6) and (7) to get

\[
\| e^{(\cdot, \xi)} \|_{p,u} = \left(\sum_{n=0}^{\infty} \frac{\ell_u(n)}{(\ell_u(n))^2} |\xi|_p^2 \right)^{1/2} = \mathcal{L}_u^\# (|\xi|_p^2)^{1/2}.
\]

Hence \(\| e^{(\cdot, \xi)} \|_{p,u} < \infty \) for all \(p \geq 0 \) and so \(e^{(\cdot, \xi)} \in [\mathcal{E}]_u \) for any \(\xi \in \mathcal{E}_\alpha \).

The \(S \)-transform of a generalized function \(\Phi \) in \([\mathcal{E}]_\alpha^\ast\) is the function defined by

\[
S\Phi(\xi) = \langle \Phi, e^{(\cdot, \xi)} \rangle, \quad \xi \in \mathcal{E}_\alpha,
\]

where \(\langle \cdot, \cdot \rangle \) is the bilinear pairing of \([\mathcal{E}]_u^\ast \) and \([\mathcal{E}]_u \).

Let \(\Phi \in [\mathcal{E}]_\alpha^\ast \). By the continuity of \(\Phi \) there exist constants \(K, p > 0 \) such that

\[
\| \langle \Phi, \varphi \rangle \|_{p,u} \leq K \| \varphi \|_{p,u}, \quad \forall \varphi \in [\mathcal{E}]_u.
\]

Put \(\varphi = e^{(\cdot, \xi)} \) and use Equation (9) to get

\[
|S\Phi(\xi)| \leq K \mathcal{L}_u^\# (|\xi|_p^2)^{1/2}, \quad \forall \xi \in \mathcal{E}_\alpha.
\]
But from the above Fact 6 the function L_u^p is equivalent to u^*. Hence the inequality in Equation (10) is equivalent to the existence of constants $K, a, p > 0$ such that
\[|S\Phi(\xi)| \leq K u^*(a|\xi|^2_p)^{1/2}, \quad \forall \xi \in \mathcal{E}_c. \]
This is the growth condition in the following theorem due to Asai-Kubo-Kuo (see Theorem 3.4 in [3]).

Theorem 2.1. Assume that $u \in C_{+,1/2}$ satisfies (G1) (G2) (G3). Then a function $F: \mathcal{E}_c \to \mathbb{C}$ is the S-transform of a generalized function in $[\mathcal{E}]_u$ if and only if it satisfies the conditions:

(a) For any $\xi, \eta \in \mathcal{E}_c$, the function $F(z\xi + \eta)$ is an entire function of $z \in \mathbb{C}$.

(b) There exist constants $K, a, p \geq 0$ such that
\[|F(\xi)| \leq K u^*(a|\xi|^2_p)^{1/2}, \quad \forall \xi \in \mathcal{E}_c. \]

Next consider test functions. Let $\varphi \in [\mathcal{E}]_u$ be represented as in Equation (1). Then its S-transform is given by
\[
S\varphi(\xi) = \left\langle \sum_{n=0}^{\infty} \langle \xi|^{\otimes n}, f_n \rangle, \sum_{n=0}^{\infty} \frac{1}{n!} \langle \zeta|^{\otimes n}, \xi^{\otimes n} \rangle \right\rangle \\
= \sum_{n=0}^{\infty} \frac{1}{n!} \langle f_n, \varphi(\xi) \rangle \\
= \sum_{n=0}^{\infty} \langle f_n, \xi^{\otimes n} \rangle, \quad \xi \in \mathcal{E}_c.
\]

Therefore, for any $p \geq 0$,
\[
|S\varphi(\xi)| \leq \sum_{n=0}^{\infty} |f_n|_p |\xi|_p^n \\
= \sum_{n=0}^{\infty} \left(\frac{1}{\ell_u(n)} |f_n|_p \right) \left(\sqrt{\ell_u(n)} |\xi|_p^n \right).
\]

Apply the Schwarz inequality and use Equations (4) and (7) to get
\[
|S\varphi(\xi)| \leq \left(\sum_{n=0}^{\infty} \frac{1}{\ell_u(n)} |f_n|_p^n \right)^{1/2} \left(\sum_{n=0}^{\infty} \ell_u(n) |\xi|_p^n \right)^{1/2} \\
= \|\varphi\|_{p,u} L_u(|\xi|^2_p)^{1/2}. \tag{11}
\]

But by the above Fact 2 the function L_u is equivalent to u^*. Hence the inequality in Equation (11) is equivalent to the statement: For any constants $a, p \geq 0$, there exists a constant $K \geq 0$ such that
\[|S\Phi(\xi)| \leq K u^*(a|\xi|^2_p)^{1/2}, \quad \forall \xi \in \mathcal{E}_c. \]

This is the growth condition in the next theorem due to Asai-Kubo-Kuo from Theorem 3.6 in [3].

Theorem 2.2. Assume that $u \in C_{+,1/2}$ satisfies (G1) (G2) (G3). Then a function $F: \mathcal{E}_c \to \mathbb{C}$ is the S-transform of a test function in $[\mathcal{E}]_u$ if and only if it satisfies the conditions:
(a) For any $\xi, \eta \in \mathcal{E}_c$, the function $F(z\xi + \eta)$ is an entire function of $z \in \mathbb{C}$.
(b) For any constants $a, p \geq 0$, there exists a constant $K \geq 0$ such that
\[
|F(\xi)| \leq Ku\left(a|\xi|^p\right)^{1/2}, \quad \forall \xi \in \mathcal{E}_c.
\]

We give a well-known example for Theorems 2.1 and 2.2. Let $0 \leq \beta < 1$ and consider the function
\[
u(r) = \exp \left((1 + \beta)r \right), \quad r \in [0, \infty).
\]
It is easy to check that ν belongs to $C_{+1/2}$ and satisfies conditions (G1) (G2) (G3). Moreover, the Legendre and dual Legendre transforms of ν are given by
\[
\ell_{\nu}(n) = \left(\frac{\Gamma(n+1)}{n} \right)^{(1+\beta)}, \quad n = 0, 1, 2, \ldots , \quad (12)
\]
\[
u^*(r) = \exp \left((1 - \beta)r \right), \quad r \in [0, \infty), \quad (13)
\]
where $0^0 = 1$ by convention.

We can use the Stirling formula to show that the sequence $\alpha_{\nu}(n) = (n\ell_{\nu}(n))^{-1}$ given by Equations (8) and (12) is equivalent to the sequence $\alpha(n) = (n!)^\beta$. Thus the Gel'fand triple $[\mathcal{E}] \subset (L^2) \subset [\mathcal{E}]^\ast_\beta$ is exactly the triple $(\mathcal{E})_\beta \subset (L^2) \subset (\mathcal{E})^\ast_\beta$ introduced by Kondratiev-Streit (see [6]). In this case Theorems 2.1 and 2.2 are due to Kondratiev-Streit (see Theorems 8.2 and 8.10 in [6]).

Note that when $\beta = 1$, the function $\nu(r) = e^{2\sqrt{r}}$ does not belong to $C_{+1/2}$ and so its dual Legendre transform ν^* is not defined. This fact is also evident from Equation (13).

3. GROWTH FUNCTIONS FOR GENERALIZED FUNCTIONS

Consider the Bell number spaces introduced in [5]. Let $\exp_k(r)$ be the k-th iterated exponential function, $k \geq 1$. It has the power series expansion
\[
\exp_k(r) = \sum_{n=0}^{\infty} \frac{B_k(n)}{n!} r^n.
\]
Let $b_k(n) = B_k(n)/\exp_k(0)$. The numbers in the sequence $\{b_k(n)\}_{n=0}^{\infty}$ are called Bell numbers of order k.

Put $w_k(r) = \exp_k(r)/\exp_k(0)$. Then we have
\[
w_k(r) = \sum_{n=0}^{\infty} \frac{b_k(n)}{n!} r^n. \quad (14)
\]

The Bell number space is the CKS-space $[\mathcal{E}]_{k, B} \subset (L^2) \subset [\mathcal{E}]^\ast_{k, B}$ given by the sequence $\{b_k(n)\}_{n=0}^{\infty}$. To view the Bell number space as a Gel'fand triple in Section 2, we need to find a growth function $u \in C_{+1/2}$ satisfying (G1) (G2) (G3). In order to find such a function u, note that the growth condition (b) in the characterization theorem in [5] for generalized functions in $[\mathcal{E}]^\ast_\beta$ takes the form: There exist constants $K, a, p \geq 0$ such that
\[
|F(\xi)| \leq Kw_k(a|\xi|^p)^{1/2}, \quad \forall \xi \in \mathcal{E}_c.
\]
By comparing this growth condition with the one in Theorems 2.1, we see that we may take u such that $u^* = w_k$. If we can check that u (assuming its existence) belongs to $C_{+1/2}$ and satisfies (G1) (G2) (G3), then by the above Fact 5 we get
u = (u^*)^* = u^*_w. Thus the function u is given by u = w^*_w, the dual Legendre transform of w_w. However, it is impossible to find the explicit form of w^*_w.

From the above discussion we see that it is desirable to find conditions on u^* (instead of u) so that [E]_u \subset (L^2) \subset [E]_u^* is a Gel'fand triple as given in Section 2. For this purpose we will need to consider the condition:

\[(G^*2) \lim \inf_{r \to \infty} r^{-1} \log w(r) > 0.\]

The following three lemmas can be easily checked.

Lemma 3.1. Let u \in C_{+,1/2}. Then u satisfies condition (G2) if and only if there exist constants c_1, c_2 > 0 such that u(r) \leq c_1 e^{c_2 r} for all r \geq 0.

Lemma 3.2. Let w be a positive continuous function on [0, \infty). If there exist constants c_1, c_2 > 0 such that w(r) \geq c_1 e^{c_2 r} for all r \geq 0, then w \in C_{+,1/2}.

Lemma 3.3. Let w be a positive continuous function on [0, \infty). Then w satisfies (G*2) if and only if there exist constants c_1, c_2 > 0 such that w(r) \geq c_1 e^{c_2 r} for all r \geq 0.

Now, we state and prove the main theorem in this paper.

Theorem 3.4. If u \in C_{+,1/2} satisfies (G1) (G2) (G3), then u^* satisfies (G1) (G^*2) (G3). Conversely, if w is a positive continuous function on [0, \infty) satisfying (G1) (G^*2) (G3), then w^* belongs to C_{+,1/2} and satisfies (G1) (G2) (G3).

Remark. Note that if w is a positive continuous function on [0, \infty) satisfying (G^*2), then u belongs to C_{+,1/2} by Lemmas 3.2 and 3.3. Hence the dual Legendre transform u^* is defined.

Proof. Assume that u \in C_{+,1/2} satisfies (G1) (G2) (G3). We can use Fact 4 in Section 2 to see that u^* satisfies (G1) (G3). On the other hand, by Lemma 3.1 there exist constants c_1, c_2 > 0 such that

\[u(r) \leq c_1 e^{c_2 r}, \quad \forall r \geq 0.\]

Therefore, by Equation (3),

\[u^*(r) = \sup_{s>0} \frac{e^{2\sqrt{rs}}}{u(s)} \geq \frac{1}{c_1} \sup_{s>0} c_2 (2\sqrt{rs} - c_2 s), \quad \forall r \geq 0.\]

But it is easy to check that \sup_{s>0} (2\sqrt{rs} - c_2 s) = r/c_2. Thus we get

\[u^*(r) \geq \frac{1}{c_1} e^{r/c_2}, \quad \forall r \geq 0.\]

Hence by Lemma 3.3 u^* satisfies (G^*2).

Conversely, assume that w is a positive continuous function on [0, \infty) satisfying (G1) (G^*2) (G3). By Lemmas 3.2 and 3.3 the function w belongs to C_{+,1/2}. Since w satisfies (G1) by assumption, we can use Fact 4 in Section 2 to see that w^* satisfies (G1) (G3). Moreover, by Lemma 3.3 there exist constants c_1, c_2 > 0 such that

\[w(r) \geq c_1 e^{c_2 r}, \quad \forall r \geq 0.\]
Then by Equation (3)
\[w^*(r) = \sup_{s>0} \frac{e^{2\sqrt{s}}}{w(s)} \leq \frac{1}{c_1} \sup_{s>0} e^{2\sqrt{s} - c_2 s} = \frac{1}{c_1} e^{r/c_2}, \quad \forall r \geq 0. \]

Hence by Lemma 3.1 the function \(w^* \) satisfies (G2).

As a simple example, consider the function \(w_k(r) = \exp_k(r)/\exp_k(0) \) given in Equation (14) for the Bell number spaces. Obviously, \(w_k \) is a positive continuous function on \([0, \infty)\). Moreover, it is easy to check that \(w_k \) satisfies (G1) (G*2) (G3). Thus by Theorem 3.4 \(w_k^* \) belongs to \(C_{+1/2} \) and satisfies (G1) (G2) (G3). Hence the function \(u_k = w_k^* \) determines a Gel'fand triple \([\mathcal{E}]_{u_k} \subset (L^2) \subset [\mathcal{E}]_u^* \). This Gel'fand triple turns out to be exactly the Bell number space associated with the sequence \(\{b_k(n)\}_{n=0}^\infty \) (See Example 4.3 in [7].)

An interesting example of \(w \) is given in a recent paper by Asai-Kubo-Kuo [4] on Feynman integrals. Let \(\nu \) be a complex measure on \(\mathbb{R} \) with total variation \(|\nu| \).

Assume that \(\nu \) satisfies the conditions:

1. \(|\nu|(\mathbb{R} \setminus \{0\}) > 0 \).
2. \(\int_{\mathbb{R}} e^{c|\lambda|} d|\nu|(|\lambda|) < \infty \) for any constant \(c > 0 \).

By condition (2) we can define a function \(w \) by
\[w(r) = \exp \left(\int_{\mathbb{R}} (e^{r|\lambda|} - 1) d|\nu|(|\lambda|) \right), \quad r \in [0, \infty). \]

(15)

Obviously, \(w \) is a positive continuous function on \([0, \infty)\). It is easy to see that \(w \) satisfies (G1) (G3). To check condition (G*2), note that \(e^x - 1 \geq \frac{1}{2} x^2 \) for \(x \geq 0 \) and so
\[\log w(r) \geq \frac{1}{2} r \int_{\mathbb{R}} \lambda^2 d|\nu|(|\lambda|), \quad \forall r \geq 0. \]

Hence we have the inequality
\[\liminf_{r \to \infty} \frac{\log w(r)}{r} \geq \frac{1}{2} \int_{\mathbb{R}} \lambda^2 d|\nu|(|\lambda|). \]

(16)

It follows from condition (1) that \(\int_{\mathbb{R}} \lambda^2 d|\nu|(|\lambda|) > 0 \). Hence the function \(w(r) \) satisfies condition (G*2).

Thus the function \(w(r) \) defined in Equation (15) satisfies (G1) (G*2) (G3). Then by Theorem 3.4 the function \(u = w^* \) belongs to \(C_{+1/2} \) and satisfies (G1) (G2) (G3).

With this function \(u \) we have a Gel'fand triple
\[[\mathcal{E}]_u \subset (L^2) \subset [\mathcal{E}]_u^*. \]

For such a complex measure \(\nu \) on \(\mathbb{R} \), it has been shown in [4] that the Feynman integrands associated with the following potentials
\[V(x) = \int_{\mathbb{R}} e^{i\lambda x} d\nu(|\lambda|), \quad V(x) = \int_{\mathbb{R}} e^{\lambda x} d\nu(|\lambda|) \]
are generalized functions in the space \([\mathcal{S}]_u^* \), given by \(u = w^* \) with \(w \) defined by Equation (15). Here \(\mathcal{S} \) is the Schwartz space replacing the countably-Hilbert space \(\mathcal{E} \) in Section 1.
Acknowledgements. This research was partially supported by the Academic Frontier in Science (AFS), Meijo University and the Centro Vito Volterra (CVV), Università degli Studi di Roma “Tor Vergata.” I would like to give my deepest appreciation to Professors T. Hida and K. Saitô (AFS), L. Accardi and R. Monte (CVV) for their warm hospitality during my visits March 5–13, 2000 (AFS) and May 24–July 31, 2000 (CVV).

REFERENCES

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA