FOCK SPACES CORRESPONDING TO POSITIVE DEFINITE LINEAR TRANSFORMATIONS

R. FABEC, G. ÓLAFSSON, AND A. N. SENGUPTA

Abstract. Suppose \(A \) is a positive real linear transformation on a finite dimensional complex inner product space \(V \). The reproducing kernel for the Fock space of square integrable holomorphic functions on \(V \) relative to the Gaussian measure \(d\mu_A(z) = \sqrt{\det A} \cdot \text{Re}(A(z \, z)) \, dz \) is described in terms of the holomorphic–antiholomorphic decomposition of the linear operator \(A \). Moreover, if \(A \) commutes with a conjugation on \(V \), then a restriction mapping to the real vectors in \(V \) is polarized to obtain a Segal–Bargmann transform, which we also study in the Gaussian-measure setting.

INTRODUCTION

The classical Segal–Bargmann transform is an integral transform which defines a unitary isomorphism of \(L^2(\mathbb{R}^n) \) onto the Hilbert space \(F(\mathbb{C}^n) \) of entire functions on \(\mathbb{C}^n \) which are square integrable with respect to the Gaussian measure \(\mu = \pi^{-n}e^{-|z|^2} \, dx \, dy \), where \(dx \, dy \) stands for the Lebesgue measure on \(\mathbb{R}^{2n} \simeq \mathbb{C}^n \), see [1, 3, 4, 5, 10, 11]. There have been several generalizations of this transform, based on the heat equation or the representation theory of Lie groups [6, 9, 12]. In particular, it was shown in [9] that the Segal–Bargmann transform is a special case of the restriction principle, i.e., construction of unitary isomorphisms based on the polarization of a restriction map. This principle was first introduced in [9], see also [8], where several examples were explained from that point of view, In short the restriction principle can be explained in the following way. Let \(M_C \) be a complex manifold and let \(M \subset M_C \) be a totally real submanifold. Let \(F = F(M_C) \) be a Hilbert space of holomorphic functions on \(M_C \) such that the evaluation maps \(F \ni F \mapsto F(z) \in \mathbb{C} \) are continuous for all \(z \in M_C \), i.e., \(F \) is a reproducing Hilbert space. There exists a function \(K : M_C \times M_C \to \mathbb{C} \) holomorphic in the first variable, anti-holomorphic in the second variable, and such that the following hold:

(a) \(K(z, w) = \overline{K(w, z)} \) for all \(z, w \in M_C \);
(b) If \(K_w(z) := K(z, w) \) then \(K_w \in F \) and

\[F(w) = (F, K_w), \quad \forall F \in F, z \in M_C. \]

The function \(K \) is the reproducing kernel for the Hilbert space, Let \(D : M \to \mathbb{C}^* \) be measurable. Then the restriction map \(RF := DF \mid_M \) is injective. Assume that there is a measure \(\mu \) on \(M \) such that \(RF \in L^2(M, \mu) \) for all \(F \) in a dense subset of

\(2000 \) Mathematics Subject Classification. Primary 46E22; Secondary 81S10.

Key words and phrases. Fock space, Segal–Bargmann transform, Reproducing kernel.

The research of G. Ólafsson was supported by DMS-0070067 and DMS-0139473.
The research of A. Sengupta was supported by DMS-0201683.
F. Provided R is closeable, polarizing R^* we can write

$$R^* = U|R^*|$$

where $U : L^2(M, \mu) \to F$ is a unitary isomorphism. Using that F is a reproducing Hilbert space we get that

$$U f(z) = (U f, K_z) = (f, U^* K_z) = \int_M f(m)(U^* K_z)(m) \, d\mu(m).$$

Thus $U f$ is always an integral operator. We notice also that the formula for U shows that the important object in this analysis is the reproducing kernel $K(z, w)$. The reproducing kernel for the classical Fock space is given by $K(z, w) = e^{z\bar{w}}$. By taking $D(x) := (2\pi)^{-n/4}e^{-|x|^2}$, which is closely related to the heat kernel, we arrive at the classical Segal–Bargmann transform

$$U g(x) = (2/\pi)^{n/4} e^{(x,x)/2} \int g(y) e^{-(x-y,y-x)} \, dy.$$

The same principle can be used to construct the Hall–transform for compact Lie groups, [6]. In [2], Driver and Hall, motivated by application to quantum Yang–Mills theory, introduced a Fock space and Segal–Bargmann transform depending on two parameters $r, s > 0$, giving different weights to the x and y directions, where $z = x + iy \in \mathbb{C}^n$ (this was also studied in [12]). Thus F is now the space of holomorphic functions $F(z)$ on \mathbb{C}^n which are square-integrable with respect to the Gaussian measure $dM_{r,s}(z) = \frac{1}{(\pi)^{n/2}(2\pi)^{n/4}} e^{-\frac{x^2}{r} - \frac{y^2}{s}}$. In [12] the reproducing kernel and the Segal–Bargmann transform for this space is worked out. This construction has a natural generalization by viewing r^{-1} and s^{-1} as the diagonal elements in a positive definite matrix $A = d(r^{-1}I_n, s^{-1}I_n)$. The measure is then simply

(0.1) $$dM_{r,s}(z) = \sqrt{\det(A)} \frac{1}{\pi^n} e^{-(Az, z)} \, dx \, dy$$

and this has meaning for any positive definite matrix A.

In this paper we show that (0.1) gives rise to a Fock space F_A for arbitrary positive matrices A. We find an expression for the reproducing kernel $K_A(z, w)$. We use the restriction principle to construct a natural generalization of the Segal–Bargmann transform for this space, with a certain natural restriction on A. We study this also in the Gaussian setting, and indicate a generalization to infinite dimensions.

1. **The Fock Space and the Restriction Principle**

In this section we recall some standard facts about the classical Fock space of holomorphic functions on \mathbb{C}^n. We refer to [5] for details and further information. Let μ be the measure $d\mu = \pi^{-n} e^{-\|z\|^2} \, dx \, dy$ and let F be the classical Fock-space of holomorphic functions $F : \mathbb{C}^n \to \mathbb{C}$ such that

$$||F||^2 := \int |F(z)|^2 \, d\mu(z) < \infty.$$ (Note that the term “Fock space” is also used for the completed symmetric tensor algebra over a Hilbert space, but that is not our usage here.) The space F is a reproducing Hilbert space with inner product

$$(F, G) = \int F(z)\overline{G(z)} \, d\mu$$
and reproducing kernel $K(z, w) = e^{(z, w)}$, where $(z, w) = z \overline{w} = z_1 \overline{w}_1 + \cdots + z_n \overline{w}_n$. Thus

$$F(w) = \int F(z) \overline{K(z, w)} \, d\mu = (F, K_w)$$

where $K_w(z) = K(z, w)$. The function $K(z, w)$ is holomorphic in the first variable, anti-holomorphic in the second variable, and $K(z, w) = \overline{K(w, z)}$. Notice that $K(z, z) = (K_z, K_z)$. Hence $||K_z|| = e^{1/2}$. Finally the linear space of finite linear combinations $\sum c_j K_j, z_j \in \mathbb{C}^n, c_j \in \mathbb{C}$, is dense in \mathbf{F}. An orthonormal system in \mathbf{F} is given by the monomials $e_\alpha(z) = z_1^{\alpha_1} \cdots z_n^{\alpha_n}/\sqrt{\alpha_1! \cdots \alpha_n!}, \alpha \in \mathbb{N}_0^n$.

View $\mathbb{R}^n \subset \mathbb{C}^n$ as a totally real submanifold of \mathbb{C}^n. We will now recall the construction of the classical Segal-Bargmann transform using the restriction principle, see [8, 9]. For constructing a restriction map as explained in the introduction we need to choose the function $D(x)$. One motivation for the choice of D is the heat kernel, but another one, more closely related to representation theory, is that the restriction map should commute with the action of \mathbb{R}^n on the Fock space and $L^2(\mathbb{R}^n)$. Indeed, take

$$T(x)F(z) = m(x, z)F(z - x)$$

for F in \mathbf{F} where $m(x, z)$ has properties sufficient to make $x \mapsto T(x)$ a unitary representation of \mathbb{R}^n on \mathbf{F}. Namely, m is a multiplier, i.e., $m(x, z)m(y, z - x) = m(x + y, z); z \mapsto m(x, z)$ is holomorphic in z for each x; and $|m(x, z)| = \left(\frac{dy(z - x)}{dy(z)} \right)^{1/2} = e^{(1/2)\|x\|^2}$. Note $m(x, z) := e^{x - \|x\|^2} \frac{1}{2}$ has these properties. Set $D(x) = (2\pi)^{-n/4}m(0, x) = (2\pi)^{-n/4}e^{-\|x\|^2/2}$ and define $R : \mathbf{F} \to C^\infty(\mathbb{R}^n)$ by

$$RF(x) := D(x)F(x) = (2\pi)^{-n/4}e^{-\|x\|^2/2}F(x).$$

Then

$$RT(y)F(x) = (2\pi)^{-n/4}e^{-\|x\|^2/2}T(y)F(x)$$

$$= (2\pi)^{-n/4}e^{-\|x\|^2/2}e^{x - y - \|y\|^2/2}F(x - y)$$

$$= (2\pi)^{-n/4}e^{-\|x - y\|^2/2}F(x - y)$$

$$= RF(x - y).$$

As \mathbb{R}^n is a totally real submanifold of \mathbb{C}^n, it follows that R is injective. Furthermore the holomorphic polynomials $p(z) = \sum a_\alpha z^\alpha$ are dense in \mathbf{F} and obviously $Rp \in L^2(\mathbb{R}^n)$. Hence all the Hermite functions $h_\alpha(x) = (-1)^{\|\alpha\|} \left(D^\alpha e^{-\|x\|^2} \right) e^{\|x\|^2/2}$ are in the image of R; so $\text{Im}(R)$ is dense in $L^2(\mathbb{R}^n)$ and R is a densely defined operator from \mathbf{F} into $L^2(\mathbb{R}^n)$. It follows easily from the fact that the maps $F \mapsto F(z)$ are continuous, that R is a closed operator. Hence R has an adjoint $R^* : L^2(\mathbb{R}^n) \to \mathbf{F}$. For $z, w \in \mathbb{C}^n$, let $(z, w) = \sum z_j w_j$. Then:

$$R^*g(z) = (R^*g, K_z) = (g, RK_z)$$

$$= (2\pi)^{-n/4} \int g(y) e^{-\|y\|^2/2} e^{z \cdot y} \, dy$$

$$= (2\pi)^{-n/4} e^{(z, z)/2} \int g(y) e^{-(y - z, z - y)/2} \, dy$$

$$= (2\pi)^{n/4} e^{(z, z)/2} g \ast p(z)$$
where \(p(z) = (2\pi)^{-n/2}e^{-|z|^2/2} \) is holomorphic. Hence
\[
R R^* g(x) = g * p(x).
\]
(1.1)
As \(p \in L^1(\mathbb{R}^n) \), it follows that \(\|R R^*\| \leq |p|_1 \); so \(R R^* \) is continuous.
\[
(R^* g, R^* g) = (R R^* g, g) \leq \|R R^*\| \|g\|_2.
\]
Thus

Lemma 1.1. The maps \(R \) and \(R^* \) are continuous.

Let \(p_t(x) = (2\pi t)^{-n/2}e^{-|x_t|^2/2t} \) be the heat kernel on \(\mathbb{R}^n \). Then \((p_t)_t \geq 0 \) is a convolution semigroup and \(p = p_1 \). Hence \(\sqrt{R R^*} = p_{1/2} \) or
\[
R U g(x) = |R^*| g(x) = p_{1/2} * g(x) = \pi^{-n/2} \int g(y)e^{-|x-y|^2} dy.
\]
It follows that
\[
U g(x) = (2/\pi)^{n/4} \int g(y)e^{-|z-y|^2} dy
\]
for \(x \in \mathbb{R}^n \). But the function on the right hand side is holomorphic in \(x \). Analytic continuation gives the following theorem.

Theorem 1.2. The map \(U : L^2(\mathbb{R}^n) \to F \) given by
\[
U g(z) = (2/\pi)^{n/4} \int g(y) \exp(-|y|^2 + 2y(z)) dy
\]
is a unitary isomorphism. \(U \) is called the Segal–Bargmann transform.

2. **Twisted Fock Spaces**

Let \(V \cong \mathbb{C}^n \) be a finite dimensional complex vector space of complex dimension \(n \) and let \(\langle \cdot, \cdot \rangle \) be a complex inner product. As before we will sometimes write \(\langle z, w \rangle = z \cdot w \). We will also consider \(V \) as a real vector space with real inner product defined by \(\langle z, w \rangle = \text{Re}(z, w) \). Notice that \(\langle z, z \rangle = \langle z, z \rangle \) for all \(z \in \mathbb{C}^n \). Let \(J \) be the real linear transformation of \(V \) given by \(Jz = iz \). Note that \(J^* = -J = J^{-1} \) and thus \(J \) is a skew symmetric real linear transformation. Fix a real linear transformation \(A \). Then \(A = H + K \) where
\[
H := \frac{A + J^{-1}AJ}{2} \quad \text{and} \quad K := \frac{A - J^{-1}AJ}{2}.
\]
Note that \(HJ = \frac{1}{2}(AJ - J^{-1}A) = \frac{1}{2}J(J^{-1}AJ + A) = JH \) and \(KJ = \frac{1}{2}(AJ + J^{-1}A) = \frac{1}{2}J(J^{-1}AJ - A) = -JK \). Furthermore \(H \) is complex linear and \(K \) is conjugate linear. We assume that \(A \) is symmetric and positive definite.

Lemma 2.1. The complex linear transformation \(H \) is self adjoint, positive with respect to the inner product \(\langle \cdot, \cdot \rangle \), and invertible.

Proof. Since \(A \) is positive and invertible as a real linear transformation, we have \((Az, z) > 0 \) for all \(z \neq 0 \). But \(J \) is real linear and skew symmetric. Hence \((JAJ^{-1}z, z) > 0 \) for all \(z \neq 0 \). In particular \(H = \frac{1}{2}(A + JAJ^{-1}) \) is complex linear, symmetric with respect to the real inner product \(\langle \cdot, \cdot \rangle \), and positive. We know \((Hv, w) = (v, Hw) \). Thus \(\text{Re}(Hv, w) = \text{Re}(v, Hw) \). From this we obtain
\[
\text{Re}(Hv, w) = \text{Re}(iv, Hw).
\]
This implies $\text{Im}(Hv, w) = \text{Im}(v, Hw)$. Putting these together gives $\langle Hv, w \rangle = \langle v, Hw \rangle$. Hence H is complex self-adjoint and $\langle Hz, z \rangle > 0$ for $z \neq 0$. □

Lemma 2.2. Let $w \in V$. Then $\langle Aw, w \rangle = \langle Aw, w \rangle + \text{Im}(Kw, w)$ and $\langle Aw, w \rangle = (Hw, w) + (Kw, w)$.

Proof. Let $w \in V$. Then

$$\langle Aw, w \rangle = \langle Hw, w \rangle + \langle Kw, w \rangle = \langle Hw, w \rangle + \text{Im}(Kw, w)$$

This implies the first statement. Taking the real part in the second line gives the second claim, which also follows directly from bilinearity of (\cdot, \cdot).

Denote by \det_V the determinant of a \mathbb{R}-linear map on $\mathbb{C}^n \simeq \mathbb{R}^{2n}$. Let $d\mu_A(z) = \pi^{-n} \sqrt{\det_V A} e^{-(A_z, z)} dxdy$ and let F_A be the space of holomorphic functions $F : \mathbb{C}^n \to \mathbb{C}$ such that

$$||F||_A^2 := \int |F(z)|^2 d\mu_A < \infty.$$

Our normalization of $d\mu$ is chosen so that $||1||_A = 1$. Just as in the classical case one can show that F_A is a reproducing Hilbert space, but this will also follow from the following Lemma. We notice that all the holomorphic polynomials $p(z)$ are in F. To simplify the notation, we let $T_1 = H^{-1/2}$. Then T_1 is symmetric, positive definite and complex linear. Let $c_A = \sqrt{\det_V (A^{1/2} T_1)} = (\det_V (A)/\det_V (H))^{1/4}$.

Lemma 2.3. Let $F : V \to \mathbb{C}$ be holomorphic. Then $F \in F_A$ if and only if $F \circ T_1 \in F$ and the map $\Psi : F \to F_A$ given by

$$\Psi(F)(w) := c_A \exp \left(-\frac{(KT_1 w, T_1 w)}{2}\right) F(T_1 w)$$

is a unitary isomorphism. In particular

$$\Psi^* F(w) = \Psi^{-1} F(w) = c_A^{-1} \exp \left(\frac{(Kw, w)}{2}\right) F(\sqrt{F} w).$$

Proof. Let $F : V \to \mathbb{C}$. Then F is holomorphic if and only if $F \circ T_1$ is holomorphic as T_1 is complex linear and invertible. Moreover, we also have:

$$||\Psi F||^2 = \pi^{-n} \int |\Psi F(w)|^2 e^{-(w, w)} dw$$

$$= \pi^{-n} \sqrt{\det_V A} \int |F(w)|^2 e^{-(Kw, w)} e^{-((\sqrt{F} w, \sqrt{F} w))} dw$$

$$= \pi^{-n} \sqrt{\det_V A} \int |F(w)|^2 e^{-(Kw, w)} e^{-((H+K)w, w)} dw$$

$$= \pi^{-n} \sqrt{\det_V A} \int |F(w)|^2 e^{-(Aw, w)} dw$$

$$= ||F||_A^2$$

and thus, by polarization, Ψ is unitary. □
Theorem 2.4. The space \(\mathbf{F}_A \) is a reproducing Hilbert space with reproducing kernel

\[
K_A(z, w) = c_A^{-2} e^{i(K(z,z) - (Hz, w))} e^{rac{1}{2} (K(w, w))}.
\]

Proof. By Lemma 2.3 we get

\[
c_A \exp(-\langle K \hat{T}_1 w, \hat{T}_1 w \rangle / 2) F(T_1 w) = \Psi(F)(w) = (\Psi(F), K)_{\mathbf{F}_A} = (K, \Psi^*(w))_F.
\]

Hence

\[
K_A(z, w) = c_A^{-1} \exp(\langle K w, w \rangle / 2) \Psi^*(K \sqrt{\mathbb{V}}_w) = c_A^{-2} e^{i(K(z,z) - (Hz, w))} e^{rac{1}{2} (K(w, w))}.
\]

\[\square\]

3. The Restriction Map

We assume as before that \(A > 0 \). We notice that Lemma 2.3 gives a unitary isomorphism \(\Psi U : L^2(\mathbb{R}^n) \to \mathbf{F}_A \), where \(U \) is the classical Segal-Bargmann transform. But this is not the natural transform that we are looking for. As \(H \) is positive definite there is an orthonormal basis \(e_1, \ldots, e_n \) of \(V \) and positive numbers \(\lambda_j > 0 \) such that \(He_j = \lambda_j e_j \). Let \(V_\mathbb{R} := \sum \mathbb{R} e_k \). Set \(\sigma(\sum a_i e_i) = \sum \bar{a}_i e_i \). Then \(\sigma \) is a conjugation with \(V_\mathbb{R} = \{ z : \sigma z = \bar{z} \} \). We say that a vector is real if it belongs to \(V_\mathbb{R} \). As \(He_j = \lambda_j e_j \) with \(\lambda_j \in \mathbb{R} \) it follows that \(HV_\mathbb{R} \subseteq V_\mathbb{R} \). We denote by det the determinant of a \(\mathbb{R} \)-linear map of \(V_\mathbb{R} \).

Lemma 3.1. \(\langle K z, w \rangle = \langle K w, z \rangle \).

Proof. Note that \(\sigma K \) is complex linear. Since \(J^* = -J, K = \frac{1}{2}(A - JA_J^{-1}) \) is real symmetric, Thus \(\langle K w, z \rangle = \langle w, K z \rangle = \langle K z, w \rangle \). Also note \(\langle i K z, w \rangle = \langle J K z, w \rangle = \langle K J z, w \rangle = \langle J z, K w \rangle = -\langle i z, K w \rangle \). Hence \(\text{Re}(i K z, w) = -\text{Re}(i z, K w) \). So \(-\text{Im}(K z, w) = \text{Im}(z, K w) \). This gives \(\text{Im}(K w, z) = \text{Im}(K z, w) \). Hence \(\langle K z, w \rangle = \langle K w, z \rangle \). \[\square\]

Lemma 3.2. \((\sigma K)^* = K \sigma \).

Proof. We have \(\langle \sigma z, \sigma w \rangle = \langle w, z \rangle \). Hence

\[
\langle \sigma K z, w \rangle = \langle \sigma w, \sigma^2 K z \rangle = \langle \sigma w, K z \rangle = \langle z, K \sigma w \rangle.
\]

\[\square\]

Corollary 3.3. If \(x, y \in V_\mathbb{R} \), then \(\langle H x, y \rangle \) is real and \(\langle A x, y \rangle = \langle A y, x \rangle \).

Proof. Clearly \(\langle - \rangle \) is real on \(V_\mathbb{R} \times V_\mathbb{R} \). Since \(HV_\mathbb{R} \subseteq V_\mathbb{R} \), we see that \(\langle H x, y \rangle \) is real. Next, \(\langle A x, y \rangle = \langle H x, y \rangle + \langle K x, y \rangle \). The term \(\langle H x, y \rangle \) equals \(\langle H y, x \rangle \) because \(\langle H x, y \rangle \) is real and \(H \) is self-adjoint. On the other hand, \(\langle K x, y \rangle = \langle K y, x \rangle \) by Lemma 3.1. So \(\langle A x, y \rangle = \langle A y, x \rangle \). \[\square\]

Lemma 3.4. Define \(m : V_\mathbb{R} \times V \to \mathbb{C} \) by \(m(x, z) = e^{i(H x, x)} e^{i(K z, z)} e^{-(A x, x)/2} \). Then \(m \) is a multiplier. Moreover, if \(T_x F(z) := m(x, z) F(z - x) \), then \(x \mapsto T_x \) is a representation of the abelian group \(V_\mathbb{R} \) on \(\mathbf{F}_A \). It is unitary if \(KV_\mathbb{R} \subseteq V_\mathbb{R} \).
Proof. We first show m is a multiplier:

$$m(x, z) m(y, z - x) = e^{i(\mathcal{H}z, x)} e^{\langle A x, x \rangle / 2} e^{i(\mathcal{H}(z - x), y)} e^{\langle K(z - x), y \rangle} e^{-\langle A y, y \rangle / 2}$$

$$= e^{i(\mathcal{H}z, x + y)} e^{\langle K z, x + y \rangle} e^{-\langle A y, y \rangle} e^{\langle A z, x \rangle / 2} e^{-\langle A y, y \rangle / 2}$$

$$= e^{i(\mathcal{H}z, x + y)} e^{\langle K z, x + y \rangle} e^{-\langle A(x + y), x + y \rangle / 2}$$

$$= m(x + y, z).$$

Since m is a multiplier, we have $T_x T_y = T_{x+y}$. For each T_x to be unitary, we need $|m(x, z)| = e^{\langle A z, x \rangle - \langle A x, x \rangle / 2}$. But

$$|m(x, z)| = e^{i(\mathcal{H}z, x)} e^{\langle K z, x \rangle} e^{-\langle A x, x \rangle / 2} = e^{\langle A z, x \rangle - \langle A x, x \rangle / 2} e^{i(\mathcal{H}z, x - K z, x)}.$$

Thus T_x is unitary for all x if and only if the real part of every vector $K \mathcal{Z} - K z$ is 0. Since $\mathcal{Z} - z$ runs over $iV_\mathcal{R}$ as z runs over V, T_x is unitary for all x if and only if $K'(iV_\mathcal{R}) \subset iV_\mathcal{R}$, which is equivalent to $K(V_\mathcal{R}) \subset V_\mathcal{R}$.

Notice that $\det V H = (\det H)^2$. To simplify some calculations later on we define $c := (2\pi)^{-n/4} (\frac{\det V A}{\det H})^{1/4}$. We remark for further reference:

Lemma 3.5. $c^{-2} \mathcal{C}^2 = \sqrt{\frac{\det H}{(2\pi)^{n/2}}} \text{ and } c^{-1} \frac{\sqrt{\det H}}{(2\pi)^{n/4}} = \left(\frac{2}{\pi}\right)^{n/4} \frac{(\det H)^{3/4}}{(\det V A)^{1/4}}$.

Let $D(x) = cm(x, 0) = c e^{\langle A x, x \rangle / 2}$ and define $R : F_A \rightarrow C^\infty(V_\mathcal{R})$ by $RF(x) := D(x)F(x)$. Extending the bilinear form $x \mapsto \langle A x, x \rangle$ to a complex bilinear form $\langle x, z \rangle_A$ on V shows that D has a holomorphic extension to V.

Lemma 3.6. The restriction map R intertwines the action of $V_\mathcal{R}$ on F_A and the left regular action L on functions on $V_\mathcal{R}$.

Proof. We have

$$R(T_y F)(x) = cm(x, 0) T_y F(x)$$

$$= cm(x, 0) m(y, x) F(x - y)$$

$$= cm(x, 0) m(-y, -x) F(x - y)$$

$$= cm(x - y, 0) F(x - y)$$

$$= Ly RF(x).$$

\[\square \]

4. The Generalized Segal–Bargmann Transform

As for the classical space, R is a densely defined, closed operator. It also has dense image in $L^2(V_\mathcal{R})$. To see this, let $\{h_\alpha\}_\alpha$ be the orthonormal basis of $L^2(V_\mathcal{R})$ given by the Hermite functions. Then $\{\det(A)^{1/2} h_\alpha(\sqrt{A} x)\}_\alpha$ is an orthonormal basis of $L^2(V_\mathcal{R})$ which is contained in the image of R. It follows again that R has an adjoint and

$$R^* h(z) = (R^* h, K_{A, z}) = (h, R K_{A, z})$$
where $K_{A,z}(w) = K_A(w, z) = c_A^2 e^{\frac{i}{2} (K(w, w) - (H w, z))} e^{\frac{i}{2} (K z, z)}$. Thus

$$R^* h(z) = c \int h(x) e^{-(Ax,x)/2} K_A(x, z) dx$$

$$= c_A^{-2} e \int h(x) e^{-(Ax,x)/2} e^{\frac{i}{2} (K z, x)} e^{\frac{i}{2} (K x, z)} dx$$

$$= c_A^{-2} e e^{\frac{i}{2} (K z, z)} \int h(x) e^{-(Ax,x)/2} e^{-(H x, x)/2} e^{\frac{i}{2} (K x, z)} dx$$

$$= c_A^{-1} e^{\frac{i}{2} (K z, z)} \int h(x) e^{-(Ax,x)/2} e^{(z, H x)/2} dx$$

$$= c_A^{-2} e^{\frac{i}{2} (K z, z)} e^{\frac{i}{2} (z, H x)} \int h(x) e^{-(Ax,x)/2} e^{-(H x, H x)/2} dx$$

for $(z, H x) = (H x, z) = (x, H z)$ and $(x, H x) = (z, H z)$. Thus we finally arrive at

$$R^* h(z) = c_A^{-2} e^{\frac{i}{2} (z, H x + K z)} e^{\frac{i}{2} (z, H x)} h(z).$$

Let $P : V_{\mathbb{R}} \to V_{\mathbb{R}}$ be positive. Define $\phi_P(x) = \sqrt{\det(P)}/(2\pi)^{-n/2} e^{-\||P x||^2/2}$. For $t > 0$, let $P(t) = P/t$.

Lemma 4.1. Let the notation be as above. Then $0 < t \mapsto \phi_P(t)$ is a convolution semigroup, i.e., $\phi_P(t+s) = \phi_P(t) * \phi_P(s)$.

Proof. This follows by change of parameters $y = \sqrt{P} x$ from the fact that $\phi_{(I+t)P}(x) = (2\pi t)^{-n/2} e^{-\||P x||^2/2t}$ is a convolution semigroup. \qed

We define a unitary operator W on $L^2(V_{\mathbb{R}})$ by

$$W f(x) = e^{i \text{Im}(x, K x)} f(x) = e^{i \text{Im}(x, A x)} f(x).$$

We know $W = I$ if $K V_{\mathbb{R}} \subseteq V_{\mathbb{R}}$ and this occurs if A leaves $V_{\mathbb{R}}$ invariant.

Lemma 4.2. Let h be in the domain of definition of R^*. Then $RR^* h = W(\phi_H * h)$.

Proof. We notice first that $c_A^{-2} e^{2} = (2\pi)^{-n/2} \sqrt{H}$ by Lemma 3.5. From (4.1) we then get

$$RR^* h(x) = c e^{-\frac{i}{2} (Ax,x)} R^* h(x)$$

$$= c_A^{-2} e^{-\frac{i}{2} (Ax,x)} e^{\frac{i}{2} (x, H x + K x)} e^{-\frac{i}{2} (y, H y)} * h(x)$$

$$= (2\pi)^{-n/2} \sqrt{\det(H)} e^{-\frac{i}{2} (Ax,x)} e^{\frac{i}{2} (x, A x)} e^{-\frac{i}{2} (y, H y)} * h(x)$$

$$= (2\pi)^{-n/2} \sqrt{\det(H)} e^{i \text{Im}(x, A x)} \int e^{-\frac{i}{2} (y, H y)} h(x - y) dy$$

$$= (2\pi)^{-n/2} \sqrt{\det(H)} e^{i \text{Im}(x, A x)} \int e^{-\frac{i}{2} ||x||^2} h(x - y) y$$

$$= W(\phi_H * h)(x)$$

\qed

Lemma 4.1 and Lemma 4.2 leads to the following corollary:
Corollary 4.3. Suppose $AV_\mathbb{R} \subseteq V_\mathbb{R}$. Then

$$|R^*| h(x) = \phi_{H(1/2)} * h(x) = \frac{\sqrt{\det(H)}}{\pi^{n/2}} \int_{V_\mathbb{R}} e^{-||\sqrt{\Pi y}||^2} h(x - y) \, dy.$$

Theorem 4.4 (The Segal–Bargmann Transform). Suppose A leaves $V_\mathbb{R}$ invariant. Then the operator $U_A : L^2(V_\mathbb{R}) \to F_A$ defined by

$$U_A f(z) = \left(\frac{2}{\pi} \right)^{n/4} \frac{\det H)^{3/4}}{\det A} \frac{1}{4} e^{\frac{1}{2}(\langle Hz, \sigma \rangle + \langle z, Kz \rangle)} \int e^{i(H(z - y), \sigma - y)} f(y) \, dy.$$

is a unitary isomorphism. The map U_A is called the generalized Segal–Bargmann transform.

Proof. By polarization we can write $R^* = U |R^*|$ where $U : L^2(V_\mathbb{R}) \to F_A$ is a unitary isomorphism. Taking adjoints gives $|R^*| U^* = R$. Hence $RU = |R^*|$. Hence

$$cm(x) Uh(x) = RU h(x)$$

$$= |R^*| h(x)$$

$$= \frac{\sqrt{\det(H)}}{\pi^{n/2}} \int_{V_\mathbb{R}} e^{-||\sqrt{\Pi y}||^2} h(x - y) \, dy.$$

Since $m(x) = e^{-\frac{1}{2}(\langle x, Hx \rangle + \langle x, Kx \rangle)}$, we have using Lemma 3.5:

$$U f(z) = \left(\frac{2}{\pi} \right)^{n/4} \frac{\det H)^{3/4}}{\det A} \frac{1}{4} e^{\frac{1}{2}(\langle Hz, \sigma \rangle + \langle z, Kz \rangle)} \int e^{i(H(z - y), \sigma - y)} f(y) \, dy.$$

By holomorphicity, this implies

$$U f(z) = \left(\frac{2}{\pi} \right)^{n/4} \frac{\det H)^{3/4}}{\det A} \frac{1}{4} e^{\frac{1}{2}(\langle Hz, \sigma \rangle + \langle z, Kz \rangle)} \int e^{i(H(z - y), \sigma - y)} f(y) \, dy$$

is the Bargmann–Segal transform. \hfill \Box

5. The Gaussian Formulation

In infinite dimensions, there is no useful notion of Lebesgue measure but Gaussian measure does make sense. So, with a view to extension to infinite dimensions, we will recast our generalized Segal–Bargmann transform using Gaussian measure instead of Lebesgue measure as the background measure on $V_\mathbb{R}$. Of course, we have already defined the Fock space F_A using Gaussian measure.

As before, V is a finite-dimensional complex vector space with Hermitian inner-product $\langle \cdot, \cdot \rangle$, and $A : V \to V$ is a real-linear map which is symmetric, positive-definite with respect to the real inner-product $\langle \cdot, \cdot \rangle = \text{Re}(\langle \cdot, \cdot \rangle)$, i.e. $(Az, z) > 0$ for all $z \in V$ except $z = 0$. We assume, furthermore, that there is a real subspace $V_\mathbb{R}$ for which $V = V_\mathbb{R} + iV_\mathbb{R}$, the inner-product $\langle \cdot, \cdot \rangle$ is real-valued on $V_\mathbb{R}$ and $A(V_\mathbb{R}) \subset V_\mathbb{R}$. As usual, A is the sum

$$A = H + K$$

where $H = (A - iAi)/2$ is complex-linear on V and $K = (A + iAi)/2$ is complex-conjugate-linear. The real subspaces $V_\mathbb{R}$ and $iV_\mathbb{R}$ are $\langle \cdot, \cdot \rangle$-orthogonal because for any $x, y \in V_\mathbb{R}$ we have $(x, iy) = \text{Re}(x, iy) = -\text{Re}(i(x, y))$, since (x, y) is real, by...
hypothesis. Since A preserves $V_{\mathbb{R}}$ and is symmetric, it also preserves the orthogonal complement $iV_{\mathbb{R}}$. Thus A has the block diagonal form
\begin{equation}
A = \begin{bmatrix} R & 0 \\ 0 & T \end{bmatrix} = d(X, Y)
\end{equation}

Here, and henceforth, we use the notation $d(X, Y)$ to mean the real-linear map $V \to V$ given by $a \mapsto Xa$ and $ia \mapsto iYa$ for all $a \in V_{\mathbb{R}}$, where X, Y are real-linear operators on $V_{\mathbb{R}}$. Note that $d(X, Y)$ is complex-linear if and only if $Y = -X$. The operator $d(X, Y)$ is the unique complex-linear map $V \to V$ which restricts to X on $V_{\mathbb{R}}$, and we will denote it by X_V:
\begin{equation}
X_V = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix}
\end{equation}

The hypothesis that A is symmetric and positive-definite (by which we mean $A > 0$, not just $A \geq 0$) means that R and T are symmetric, positive definite on $V_{\mathbb{R}}$. Consequently, the real-linear operator S on $V_{\mathbb{R}}$ given by
\begin{equation}
S = 2(R^{-1} + T^{-1})^{-1}
\end{equation}
is also symmetric, positive-definite.

The operators H and K on V are given by
\begin{equation}
H = \frac{1}{2}(R_V + T_V), \quad K = d \left(\frac{1}{2}(R - T), \frac{1}{2}(T - R) \right)
\end{equation}
Using the conjugation map
\[\sigma : V \to V : a + ib \mapsto a - ib \quad \text{for } a, b \in V_{\mathbb{R}} \]
we can also write K as
\begin{equation}
K = \frac{1}{2}(R_V - T_V)\sigma
\end{equation}
Now consider the holomorphic functions ρ_T and ρ_S on V given by
\begin{equation}
\rho_T(z) = \frac{(\det T)^{1/2}}{(2\pi)^{n/2}} e^{-\frac{1}{2}(T_{Vz}, z)}
\end{equation}
\begin{equation}
\rho_S(z) = \frac{(\det S)^{1/2}}{(2\pi)^{n/2}} e^{-\frac{1}{2}(S_{Vz}, z)}
\end{equation}
where $n = \dim V_{\mathbb{R}}$. Restricted to $V_{\mathbb{R}}$, these are density functions for Gaussian probability measures.

The Segal-Bargmann transform in this setting is given by the map
\begin{equation}
S_A : L^2(V_{\mathbb{R}}, \rho_S(x)dx) \to F_A : f \mapsto S_A f
\end{equation}
where
\begin{equation}
S_A f(z) = \int_{V_{\mathbb{R}}} f(x) \rho_T(z - x) \, dx = \int_{V_{\mathbb{R}}} f(x) c(x, z) \rho_S(x) \, dx
\end{equation}
where the generalized “coherent state” function c is specified, for $x \in V_{\mathbb{R}}$ and $z \in V$, by
\begin{equation}
c(x, z) = \frac{\rho_T(x - z)}{\rho_S(x)}
\end{equation}
It is possible to take (5.9) as the starting point, with $f \in L^2(V_\mathbb{R}, \rho_S(x)dx)$ and prove that: (i) $S_A f(z)$ is well-defined, (ii) $S_A f$ is in F_A, (iii) S_A is a unitary isomorphism onto F_A. However, we shall not work out everything in this approach since we have essentially proven all this in the preceding sections. Full details of a direct approach would be obtained by generalizing the procedure used in [12]. In the present discussion we shall work out only some of the properties of S_A.

Lemma 5.1. Let $w, z \in V$. Then:

(i) The function $x \mapsto c(x, z)$ belongs to $L^2(V_\mathbb{R}, \rho_S(x)dx)$, thereby ensuring that the integral (5.9) defining $S_A f(z)$ is well-defined;

(ii) The S_A-transform of $c(\cdot, w)$ is $K_A(\cdot, \overline{w})$:

\begin{equation}
[S_A c(\cdot, w)](z) = K_A(z, \overline{w})
\end{equation}

and so, in particular,

\begin{equation}
K_A(z, w) = \int_{V_\mathbb{R}} \frac{\rho_T(x-z)\rho_T(x-w)}{\rho_S(x)} \, dx
\end{equation}

(iii) The transform S_A preserves inner-products on the linear span of the functions $c(\cdot, w)$:

$$
\langle c(\gamma, w), c(\gamma, z) \rangle_{L^2(V_\mathbb{R}, \rho_S(x)dx)} = K_A(w, z) = \langle K_A(\gamma, \overline{w}), K_A(\gamma, \overline{z}) \rangle_{F_A}
$$

Proof. (i) is equivalent to finiteness of $\int_{V_\mathbb{R}} \frac{|c(x, z)|^2}{\rho_S(x)} \, dx$, which is equivalent to positivity of the operator $2T - S$. To see that $2T - S$ is positive observe that

\begin{align*}
2T - S &= 2T[(R^{-1} + T^{-1}) - T^{-1}](R^{-1} + T^{-1})^{-1} \\
&= 2T R^{-1} (R^{-1} + T^{-1})^{-1} = T R^{-1} S \\
&= 2(T^{-1} + T^{-1} R T^{-1})^{-1}
\end{align*}

and in this last line $T^{-1} > 0$ (being the inverse of $T > 0$) and $(T^{-1} R T^{-1} x, x) = (R T^{-1} x, T^{-1} x) \geq 0$ by positivity of R. Thus $2T - S$ is positive, being twice the inverse of the positive operator $T^{-1} + T^{-1} R T^{-1}$.

(ii) is the result of a lengthy calculation which, despite an unpromising start, leads from complicated expressions to simple ones. To avoid writing a lot of complex conjugates we shall use the symmetric complex bilinear pairing $v \cdot w = \langle v, \overline{w} \rangle$ for $v, w \in V$, writing v^2 for vv. More seriously, we shall denote the complex-linear operator $T v$ which restricts to T on $V_\mathbb{R}$ simply by T. It is readily checked that T continues to be symmetric in the sense that $T v \cdot w = v \cdot T w$ for all $v, w \in V$. We start with

\begin{align*}
a &\overset{\text{def}}{=} [S_A c(\cdot, w)](z) \\
&= \int_{V_\mathbb{R}} \frac{\rho_T(x-w)\rho_T(z-x)}{\rho_S(x)} \, dx \\
&= (2\pi)^{-n/2} \frac{\det T}{(\det S)^{1/2}} \int_{V_\mathbb{R}} e^{-\frac{i}{4}[2T(x-w) \cdot (x-z) + T(x-z)(x-z) - S(x^2)]} \, dx \\
&= (2\pi)^{-n/2} \frac{\det T}{(\det S)^{1/2}} \int_{V_\mathbb{R}} e^{-\frac{i}{4}(2T-S)x \cdot x - 2T(x-w) \cdot (x+z) + T w \cdot w + T z \cdot z)} \, dx
\end{align*}
Recall from the proof of (i) that \(2T - S > 0\). For notational simplicity let \(L = (2T - S)^{1/2}\) and \(M = L^{-1}T\). Then

\[
a = (2\pi)^{-n/2} \frac{\det T}{(\det S)^{1/2}(\det L)} \int_{V_0} e^{-\frac{1}{2}(Mx - M(w + z))^2} dx e^{-\frac{1}{4}[Tw \cdot w + Tz \cdot z - M(w + z) \cdot M(w + z)]} e^{-\frac{1}{4}[Tw + Tz - M(w + z) \cdot M(w + z)]}
\]

To simplify the last exponent observe that

\[
Tw \cdot w - Mw \cdot Mw = Tw \cdot w - T(w \cdot L^{-2}T)w
\]

\[
= Tw \cdot w - T \cdot (2T - S)^{-1}Tw
\]

\[
= Tw \cdot w - \frac{1}{2}Tw \cdot (T^{-1} + T^{-1}RT^{-1})Tw \quad \text{using (5.13)}
\]

\[
= Tw \cdot w - \frac{1}{2}Tw \cdot (w + T^{-1}Rw)
\]

\[
= \frac{1}{2}(Tw \cdot w - Rw \cdot w)
\]

\[
= -\langle K\vartheta, \vartheta \rangle \quad \text{by (5.5)}
\]

The same holds with \(z\) in place of \(w\). For the “cross term” we have

\[
Mw \cdot Mz = Tw \cdot L^{-2}Tz
\]

\[
= Tw \cdot (2T - S)^{-1}Tz
\]

\[
= \frac{1}{2}Tw \cdot (T^{-1} + T^{-1}RT^{-1})Tz
\]

\[
= \frac{1}{2}(Tw \cdot z + w \cdot Rz)
\]

\[
= 2w \cdot Hz
\]

Putting everything together we have

\[
[S_{AC}(\cdot, w)](z) = \frac{\det T}{(\det S)^{1/2}(\det L)} e^{-\frac{1}{2}(Kw, w)} e^{-\frac{1}{2}(Hz, w)} e^{-\frac{1}{2}(Kz, z)}
\]

In Lemma 6.2 below we prove that

\[
\frac{\det T}{(\det S)^{1/2}(\det L)} = \left(\frac{\det V(A)}{\det V(H)}\right)^{-1/2} = c_A^{-2}
\]

So

\[
[S_{AC}(\cdot, w)](z) = K_A(w, z)
\]

For (iii), we have first:

\[
\langle c(\cdot, w), c(\cdot, z) \rangle_{L^2(\rho_d(\cdot)dx)} = [S_{AC}(\cdot, w)](z) = K_A(z, \vartheta) = K_A(w, z)
\]

The second equality in (iii) follows from the fact that \(K_A\) is a reproducing kernel.

\[
\square
\]

6. The Evaluation Map and Determinant Relations

Recall the reproducing kernel

\[
K_A(z, w) = c_A^{-2} e^{-\frac{1}{2}(z, Kz) + \frac{1}{2}(Kw, w) + (Hz, w)}
\]
where
\[c_A^{-2} = \left(\frac{\det_V H}{\det_V A} \right)^2 \]

Being a reproducing kernel for \(F_A \) means
\[
f(w) = (f, K_A(\cdot, w)) = \pi^{-n}(\det A)^{1/2} \int_V f(z) K_A(w, z) \, |dz|
\]
where \(|dz| = dx\,dy \) signifies integration with respect to Lebesgue measure on the real inner-product space \(V \). Thus we have

Proposition 6.1. For any \(z \in V \), evaluation map
\[
\delta_z : F_A \to \mathbb{C} : f \mapsto f(z)
\]
is bounded linear functional with norm
\[
\|\delta_z\| = K_A(z, z)^{1/2} = c_A^{-1} e^{(A_z, z)}
\]

Proof. We have
\[
|\delta_z f| = |f(z)| = |(f, K_A(\cdot, z))| \leq \|f\|_{F_A} K_A(z, z)^{1/2}
\]
because, again by the reproducing kernel property we have
\[
\|K_A(\cdot, z)\|_{F_A}^2 = (K_A(\cdot, z), K_A(\cdot, z))_{F_A} = K_A(z, z)
\]
This last calculation also shows that the inequality in (6.3) is an equality of \(f = K_A(\cdot, z) \) and thereby shows that \(\|\delta_z\| \) is actually equal to \(K_A(z, z)^{1/2} \). The latter is readily checked to be equal to \(c_A^{-1} e^{(A_z, z)} \). \(\square \)

Next we make two observations about the constant \(c_A \), the first of which has already been used.

Lemma 6.2. For the constant \(c_A \) we have
\[
c_A^{-2} = \left(\frac{\det_V H}{\det_V A} \right)^2 = \frac{\det T}{(\det S)^{1/2} \det L}
\]
where, as before, \(L = (2T - S)^{1/2} \) and \(S = 2(R^{-1} + T^{-1})^{-1} \).

Proof. Recall from (5.13) that \(2T - S = TR^{-1}S \). Note also that
\[
S^{-1} = \frac{1}{2}(R^{-1} + T^{-1}) = R^{-1} \frac{R + T}{2} T^{-1} = R^{-1}(H_{V_R} T^{-1}
\]
So
\[
\left(\frac{\det_V A}{\det_V H} \right)^{1/2} \frac{\det T}{(\det S)^{1/2} \det L} = \frac{(\det R)^{1/2} (\det T)^{1/2}}{(\det S)^{1/2} \det T} \frac{\det T}{\det S^{-1} \det R \det T (\det S)^{1/2} \det T^{1/2} \det R^{-1/2} \det S^{1/2}} = 1
\]
which implies the desired result. \(\square \)

Next we prove a determinant relation which implies \(c_A \geq 1 \):

Lemma 6.3. If \(R \) and \(T \) are positive definite \(n \times n \) matrices (symmetric if real) then
\[
\sqrt{\det R} \det T \leq \det \left(\frac{R + T}{2} \right)
\]
with equality if and only if \(R = T \).
Proof. Note first that the matrix
\begin{equation}
D \overset{\text{def}}{=} R^{-1/2}TR^{-1/2}
\end{equation}
is positive definite because \((R^{-1/2}TR^{-1/2}x, x) = (TR^{-1/2}x, R^{-1/2}x) \geq 0\) since
\(T > 0\), with equality if and only if \(R^{1/2}x = 0\) if and only if \(x = 0\). So \(D = (R^{-1/2}TR^{-1/2})^1/4\) makes sense and is also positive definite (and is symmetric if we
are working with reals). We have then
\[
\frac{\det R \det T}{(\det \frac{R+T}{2})^2} = \frac{\det R \det (R^{1/2}D^4R^{1/2})}{[\det R^{1/2}(\frac{1}{2}D^2) R^{1/2}]^2} \\
= \left[\det \left(\frac{D^2 + D^{-2}}{2} \right) \right]^{-2} \\
= \left[\det \left(I + \left(\frac{1}{\sqrt{2}}D - \frac{1}{\sqrt{2}}D^{-1} \right)^2 \right) \right]^{-2}
\]
To summarize:
\begin{equation}
\frac{\det R \det T}{(\det \frac{R+T}{2})^2} = \left[\det \left(I + \left(\frac{1}{\sqrt{2}}D - \frac{1}{\sqrt{2}}D^{-1} \right)^2 \right) \right]^{-2}
\end{equation}
where \(D = (R^{-1/2}TR^{-1/2})^1/4\). Diagonalizing \(D\) makes it apparent that this last
term is \(< 1\) with equality if and only if \(D = D^{-1}\), which is equivalent to \(D^4 = I\)
which holds if and only if \(R = T\). \(\square\)

As consequence we have for \(c_A\):
\[
c_A = \left(\frac{\det V A}{\det V H} \right)^{1/4} = \left(\frac{\det R \det T}{(\det \frac{R+T}{2})^2} \right)^{1/4} = \left(\frac{\sqrt{\det R \det T}}{\det \frac{R+T}{2}} \right)^{1/2}
\]
and so
\begin{equation}
c_A^{-2} = \frac{\det \frac{R+T}{2}}{\sqrt{\det R \det T}} \geq 1
\end{equation}
with equality if and only if \(R = T\).

When extending this theory to infinite-dimensional we have to note that in order
to retain a meaningful notion of evaluation \(\delta_z : f \rightarrow f(z)\), the constant \(c_A^{-1}\) which
appears in the norm \(||\delta_z||\) given in (6.2) must be finite. The expression for \(c_A^{-2}\)
 obtained from (6.6) gives a more explicit condition on \(R\) and \(T\) for this finiteness
to hold.

If \(R\) and \(T\) are both scalar operators, say \(R = rf\) and \(T = rT\), then (6.7) shows
that \(c_A^{-1}\) equals \(|(r + t)/(2\sqrt{r}t)|^{n/2}\) which is bounded as \(n \rightarrow \infty\) if and only if \(r = t\).
This observation was made in [12].

7. REMARKS ON EXTENSION TO INFINITE DIMENSIONS

The Gaussian formulation permits extension to the infinite-dimensional situation,
at least with some conditions placed on \(A\) so as to make such an extension
reasonable. Suppose then that \(V\) is an infinite-dimensional separable complex
Hilbert space, \(V_R\) a real subspace on which the inner-product is real-valued, and
\(A : V \rightarrow V\) a bounded symmetric, positive-definite real-linear operator carrying \(V_R\)
into itself. The operators \(R, T, S, H\) and \(K\) are defined as before. Assume that \(R\)
and T commute and that there is an orthonormal basis e_1, e_2, \ldots of $V_\mathbb{R}$ consisting of simultaneous eigenvectors of R and T (greater generality may be possible but we discuss only this case). Let V_n be the complex linear span of e_1, \ldots, e_n, and $V_{n,\mathbb{R}}$ the real linear span of e_1, \ldots, e_n. Then A restricts to an operator A_n on V_n, and we have similarly restrictions H_n, K_n on V_n and R_n, T_n, S_n on $V_{n,\mathbb{R}}$. The unitary transform S_A may be obtained as a limit of the finite-dimensional transforms S_{A_n}.

The Gaussian kernels ρ_S and ρ_T do not make sense anymore, and nor does the coherent state c, but the Gaussian measures $d\gamma_S(x) = \rho_S(x)dx$ and μ_A do have meaningful analogs. There is a probability space $V'_{\mathbb{R}}$, with a σ-algebra \mathcal{F} on which there is a measure γ_S, and there is a linear map $V_{\mathbb{R}} \to L^2(V'_{\mathbb{R}}, \gamma_A) : x \mapsto G(x) = (x, \cdot)$, such that the σ-algebra \mathcal{F} is generated by the random variables $G(x)$, and each $G(x)$ is (real) Gaussian with mean 0 and variance $S^{-1}x, x$). Similarly, there is probability space $V', \overline{V'}$, with a σ-algebra \mathcal{F}_1 on which there is a measure μ_A, and there is a real-linear map $V \to L^2(V', \mu_A) : z \mapsto G_1(z) = (z, \cdot)$. Then for each $z \in V$, written as $z = a + ib$ with $a, b \in V_{\mathbb{R}}$, we have the complex-valued random variable on V' given by

$$\hat{z} = G_1(a) + iG_1(b)$$

Suppose g is a holomorphic function of n complex variables such that

$$\int_V |g(\bar{e}_1, \ldots, \bar{e}_n)|^2 d\mu_A < \infty.$$

Define F_A to be the closed linear span of all functions of the type $g(\bar{e}_1, \ldots, \bar{e}_n)$ in $L^2(\mu_A)$ for all $n \geq 1$. We may then define S_A of a function $f \in L^2(\mu_A)$ to be $(S_A f)(\bar{e}_1, \ldots, \bar{e}_n)$, and then extend S_A be continuity to all of $L^2(\gamma_S)$. In writing $(S_A f)$ we have identified V_n with \mathbb{C}^n and $V_{n, \mathbb{R}}$ with \mathbb{R}^n using the basis e_1, \ldots, e_n.

A potentially significant application of the infinite-dimensional case would be to situations where $V_{\mathbb{R}}$ is a path space and A is arises from a suitable differential operator. For the “classical case” where $R = T = t\mathcal{H}$ for some $t > 0$, this leads to the Hall transform [6] for Lie groups as well as the path-space version on Lie groups considered in [7].

References

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803
E-mail address: fabec@math.lsu.edu
URL: http://www.math.lsu.edu/~fabec
E-mail address: olafsson@math.lsu.edu
URL: http://www.math.lsu.edu/~olafsson
E-mail address: sengupta@math.lsu.edu
URL: http://www.math.lsu.edu/~sengupta