1 \[\|P_n\|: \text{The Norm of the } n\text{th Legendre Polynomial} \]

We will prove that \(\|P_n\| = \sqrt{\frac{2}{2n + 1}} \) for each nonnegative integer \(n \), leaving numerous details for the reader to check.

We will use Rodriguez’s Formula\(^1\), established in class: \(P_n(x) = \frac{1}{2^n n!} \frac{d^n u}{dx^n} \), where \(u = (x^2 - 1)^n \).

We will apply integration by parts repeatedly.

\[
(2n)!^2 \int_{-1}^{1} P_n^2 dx = \int_{-1}^{1} u^{(n)} u^{(n)} dx = u^{(n)} u^{(n-1)} \bigg|_{-1}^{1} - \int_{-1}^{1} u^{(n+1)} u^{(n-1)} dx = \int_{-1}^{1} u^{(n+1)} u^{(n-1)} dx
\]

\[
= \ldots = (-1)^n (2n)! \int_{-1}^{1} (x^2 - 1)^n dx = (2n)! \int_{-1}^{1} (1 - x^2)^n dx
\]

\[
= (A) (2n)! \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta \overset{(B)}{=} (2n)! \frac{(2^n n!)^2}{(2n + 1)!}
\]

where step (A) is a trigonometric substitution, and step (B) is explained as follows.

We prove by induction that \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta = 2 \int_{0}^{\frac{\pi}{2}} \cos^{2n+1} \theta d\theta = \frac{(2^n n!)^2}{(2n + 1)!} \). The case \(n = 0 \) is easy and is left as an exercise. Now assume that the formula is true for \(n - 1 \) and use integration by parts to prove the validity of the formula for \(n \).

Finally, the steps above establish the claimed norm for \(P_n \).

2 \text{ Zeros of the Bessel Functions: Heuristic Explanation} \]

Consider the Bessel equation for any \(\nu \geq 0 \):

\[x^2 y'' + xy' + (x^2 - \nu^2) y = 0. \]

Make the substitution \(y = \frac{u}{\sqrt{x}} \), where \(u \) will be the new dependent variable, replacing \(y \), and \(x \) remains the independent variable. Show that this transforms the general Bessel equation into

\[u'' + \left(1 + \frac{1 + \nu^2}{x^2}\right) u = 0. \]

Observe that if \(x \gg 0 \), which is read as \(x \) is very much bigger than zero, then this equation is quite similar to \(u'' + u = 0 \). The latter equation is solved by \(\cos x \) and by \(\sin x \), which are functions that oscillate endlessly between positive and negative values. In fact, the equation tells us that \(u \) accelerates toward negative values whenever \(u \) is positive, and vice versa. This suggests strongly that \(u \), and also \(y \), must cross the \(x \)-axis infinitely often. Details of a rigorous argument can be found in Watson’s book.

3 \text{ Norm of the Bessel Function } J_n, \ n \geq 0\]

Note that \(n \) does not need to be an integer in this section. We will prove that

\[\|J_n(\lambda_{mn} x)\|^2 = \frac{R^2}{2} J_{n+1}^2(\lambda_{mn} R). \]

\(^1\)These and other topics can be studied further in Watson’s classic treatise, \textit{Bessel Functions}.
Here $\lambda_{mn}R = a_{mn}$, the mth zero of J_n, and $||J_n(\lambda_{mn}x)||^2 = \int_0^R J_n^2(\lambda_{mn}x)\,dx$.

Denote $\phi_n(x) = J_n(\lambda x)$ for general $\lambda \in \mathbb{R}$. It follows that

$$[x\phi_n'(x)]' + \left(\frac{-n^2}{x} + \lambda^2 x \right) \phi_n(x) = 0.$$

Now multiply by $2x\phi_n'(x)$:

$$\left([x\phi_n'(x)]^2\right)' + (\lambda^2 x^2 - n^2) [\phi_n(x)]' = 0.$$

Next integrate both sides:

$$[x\phi_n'(x)] \bigg|_0^R = -\int_0^R (\lambda^2 x^2 - n^2) [\phi_n(x)]' \,dx.$$

Recall the identity

$$[x^{-n}J_n(x)]' = -x^{-n}J_{n+1}(x)$$ and proceed as follows.

$$-nx^{-n-1}J_n(x) + x^{-n}J_n'(x) = -x^{-n}J_{n+1}(x)$$

$$-nJ_n(x) + xJ_n'(x) = -xJ_{n+1}(x).$$

Next replace x by λx:

$$\lambda x \frac{\phi_n'(x)}{\lambda} = n\phi_n(x) - \lambda x\phi_{n+1}(x).$$

Combining the latter calculations we find from the left side of Equation (*) that

$$[x\phi_n'(x)]^2 \bigg|_0^R = [n\phi_n(x) - \lambda x\phi_{n+1}(x)]^2 \bigg|_0^R$$

$$(\text{Now set } \lambda = \lambda_{mn})$$

$$= \lambda_{mn}^2 R^2 J_{n+1}^2(\lambda_{mn}R) \text{ since } J_n(\lambda_{mn}R) = 0 \text{ if } n \geq 1.$$

Integrate (*) on the right by parts:

$$= -\left(\lambda_{mn}^2 x^2 - n^2\right) J_n^2(\lambda_{mn}x) \bigg|_0^R + 2\lambda_{mn}^2 \int_0^R xJ_n^2(\lambda_{mn}x) \,dx.$$

It follows that $\int_0^R J_n^2(\lambda_{mn}x)\,dx = \frac{R^2}{2} J_{n+1}^2(\lambda_{mn}R)$, which concludes the proof.