
7.4 Absolutely Continuous & Singular Func-

tions

The concept of absolute continuity for a real-valued function of a real variable
is particularly important when studying the various forms of the Fundamen-
tal Theorem of Calculus for the Lebesgue integral. We present the definition
of this concept below, following a review of two more elementary concepts of
continuity.

Definition 7.4.1. Let f : [a, b] → R. Then we have the following definitions
regarding f .

i. f is continuous at x0 ∈ [a, b] if and only if for each ǫ > 0 there exists
δ > 0 such that x ∈ [a, b] and |x−x0| < δ implies that |f(x)−f(x0)| < ǫ.

ii. f is uniformly continuous on [a, b] if and only if for each ǫ > 0 there
exists δ > 0 such that x and y in [a, b] and |x − y| < δ implies that
|f(x) − f(y)| < ǫ.

iii. f is absolutely continuous on [a, b] if and only if for each ǫ > 0 there
exists a δ > 0 such that for each n ∈ N

a ≤ x1 < y1 ≤ x2 < y2 ≤ . . . ≤ xn < yn ≤ b with
n∑

1

(yi − xi) < δ

implies that
n∑

1

|f(yi) − f(xi)| < ǫ.

The reader should take note that continuity at a point is a local concept,
and the δ > 0 that works in collaboration with a given ǫ > 0 may depend
upon where in [a, b] the point x0 is located. Uniform continuity requires
that there exist a suitable δ corresponding to ǫ, regardless of where in [a, b]
the points x and y are located, provided they are within δ of one another.
Absolute continuity demands even more, because δ > 0 is required to be
independent of both the location within [a, b] of the 2n points x1, y1, . . . , xn, yn
and also the number n ∈ N provided only that

∑n
1 |yi − xi| < δ.
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If we denote E =
⋃n

1 [xi, yi] in the definition of absolute continuity, then
E is easily Lebesgue measurable and we are requiring that l(E) < δ imply∑n

1 |f(yi)−f(xi)| < ǫ. Thus the absolute continuity of f is commonly denoted
as f ≺ l which is read as f is absolutely continuous with respect to Lebesgue
measure.

Exercise 7.4.1. Let

f(x) =

{
xn sin 2π

x
if x ∈ (0, 1]

0 if x = 0

where n ∈ N. Prove the following conclusions.

a. f is continuous at each point of [0, 1].

b. f is uniformly continuous on [0, 1].

c. f is not absolutely continuous on [0, 1] if n = 1 but f is absolutely
continuous provided n > 1. (Hint: Compare with Exercise 7.1.4.)

Exercise 7.4.2. Show that the product of two absolutely continuous func-
tions on a closed finite interval [a, b] is absolutely continuous.

Definition 7.4.2. A continuous monotone function f is said to be singular
with respect to Lebesgue measure (written f ⊥ l) provided that f is non-
constant yet f ′(x) = 0 almost everywhere.

Example 7.4.1. We will construct a singular function f , called the Cantor
function, on [0, 1]. Each number x ∈ [0, 1] can be expressed in a ternary
expansion:

x =
∞∑

0

an
3n

= a0.a1a2 . . . an . . . (7.3)

where each coefficient an ∈ {0, 1, 2}. The coefficients an are not unique
without some further restriction. For example, if we allow infinite tails of 2’s
and also allow 1’s, this would render ternary expansions of x in a non-unique
manner, since

∞∑

p

2

3n
=

1

3p−1
.

For example, if a0 = 0 and if an = 2 for all n ≥ 1 then x = 1 and we could
have used a0 = 1 and an = 0 for all n ≥ 1. The Cantor set, C, defined in
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Exercise 3.3.2, can be described arithmetically by prohibiting the use of the
ternary digit 1, but allowing infinite tails of 2’s. The effect is the removal of
open middle thirds that results in the Cantor set. Thus

C = {x ∈ [0, 1] | ∀n, an 6= 1}.

The complement of the Cantor set can be pictured as follows. Delete from
[0, 1] the open middle-third, which is

(
1
3
, 2

3

)
. This deletion eliminates all x

with ternary expansions having a1 = 1 and leaves two closed intervals of
length 1

3
each. Delete the open middle-third from each of the two remaining

pieces, which eliminates all x for which the ternary expansion has a2 = 1.
Continue an infinite sequence of such deletions of open middle-thirds.

Let each x ∈ [0, 1] be expressed as in Equation 7.3. We will define the
Cantor function f first on the Cantor set C by the following equation. If x
is expanded in a ternary manner as in Equation 7.3, we define f(x) by means
of the binary expansion

f(x) =
1

2

∞∑

0

an
2n

∀x ∈ C

One can see from this definition that f is monotone increasing on C. On each
of the missing open middle-thirds, we define f to be locally constant. In fact,
if the missing open middle third (aN , bN) is defined by the requirement aN 6= 1
on the N th digit, one can show that f(aN) = f(bN). For example, on the
first deleted middle-third f will be constantly equal to 1

2
, and on the next

two deleted thirds f will be 1
4

and 3
4

respectively.
A computer rendering of the Cantor function is shown in Figure 7.5. The

computer was set to connect the plotted points. This is appropriate in the
sense that the reader will prove in Exercise 7.4.3 that the Cantor function is
continuous. However, the picture can be misleading as well, since it appears
as though there were places on the graph with a slope different from zero.
Actually, the derivative is zero wherever it is defined. If the picture were
perfect, and if one could magnify it to an arbitrary degree, the seemingly
upward-sloped parts of the graph would look just like the large-scale features,
consisting of horizontal segments except on the null-set that is the Cantor
set.

Exercise 7.4.3. † Show that the Cantor function defined in Example 7.4.1
maps the interval [0, 1] continuously onto itself and is a monotone increasing
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Figure 7.5: Cantor function.

function for which f ′(x) exists and equals zero almost everywhere, and such
that f(0) = 0 and f(1) = 1.

Exercise 7.4.4. Let f be the Cantor function and define φ(x) = f(x) + x
for all x ∈ [0, 1]. Let C denote the middle-thirds Cantor set.

a. Prove that φ : [0, 1] → [0, 2] is a homeomorphism. That is, prove that
φ is injective, surjective, and bi-continuous.

b. Prove that l(φ([0, 2] \ C)) = 1 and that l(φ(C)) = 1.

c. Let P be any non-measurable subset of φ(C). (See Exercise 3.4.4 for
the existence of P .) Prove that φ−1(P ) is a Lebesgue measurable set
but not a Borel set.

Exercise 7.4.5.

a. Provide an example of a function on [0, 1] that is not absolutely con-
tinuous but is of bounded variation.

b. Provide examples of two different continuous functions on [0, 1] that
have the same derivative a.e. and that are both equal to zero at 0.
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Theorem 7.4.1. Let f be a monotone increasing real-valued function on
[a, b]. Then f ′ exists almost everywhere on [a, b], and

i. f(x) − f(a) ≥
∫ x
a
f ′(t) dl(t) for all x ∈ [a, b]

ii. Equality holds in the inequality above if and only if f is absolutely
continuous.

Proof. The existence of f ′ almost everywhere follows from Theorem 7.3.1.
We need to prove the two parts concerning the inequality.

i. For almost all t,

f ′(t) = lim
h→0

f(t+ h) − f(t)

h
.

Thus we can pick a sequence hn → 0+, and for each t at which f ′(t)
exists, we have

f ′(t) = lim
n→∞

f(t+ hn) − f(t)

hn
.

It follows that f ′ is equal almost everywhere to the limit of a sequence
of measurable functions, which implies that f ′ is measurable.

Note that the function

gn(t) =
f(t+ hn) − f(t)

hn

is non-negative. Next we apply Fatou’s theorem (5.4.3) as follows. For
each [c, d] ⊂ (a, b) we have

∫ d

c

f ′(t) dl(t) =

∫ d

c

lim
n→∞

f(t+ hn) − f(t)

hn
dl(t)

≤ lim inf
n→∞

∫ d

c

f(t+ hn) − f(t)

hn
dl(t)

= lim
n→∞

1

hn

(∫ d+hn

d

f(t) dl(t) −
∫ c+hn

c

f(t) dl(t)

)
= f(d) − f(c)

for almost all c and d since f is differentiable (and hence continuous)
almost everywhere. In the theorem, limc→a+ f(c) ≥ f(a) because f is
monotone increasing. If f is not continuous at a the inequality is true
a fortiori.
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ii. Suppose first that equality holds in the inequality of part (i). The
reader will prove that f is absolutely continuous in Exercise 7.4.6.

Suppose for the opposite direction of implication that f ≺ l, meaning
that f is absolutely continuous with respect to Lebesgue measure. We
need to prove that equality holds in Theorem 7.4.1. Define

g(x) =

∫ x

a

f ′(t) dl(t)

so that g ≺ l also. Now let h = f − g, and we have

h′(x) = f ′(x) − g′(x) = 0

almost everywhere. Also, it is easy to check that

h = f − g ≺ l

as well. The key to the proof is to show now that an absolutely con-
tinuous function with derivative equal to zero almost everywhere must
be constant, and in the present case, f(a). Note that because h′ = 0
almost everywhere, h would be singular if it were not constant. Thus
we are about to show that an absolutely continuous function with zero
derivative almost everywhere cannot be singular.

Since h ≺ l, if ǫ > 0 there exists δ > 0 such that

n∑

1

(bk − ak) < δ =⇒
n∑

1

|h(bk) − h(ak)| <
ǫ

2
.

We claim that h must be constant. Let

I =

{
I = [c, d] ⊆ [a, b]

∣∣∣h(I) = h(d) − h(c) <
ǫ

2(b− a)
|I|
}
.

Then I covers E = {x ∈ [a, b] | h′(x) = 0} in the sense of Vitali. Hence
there exists a disjoint sequence In ∈ I such that

E
◦
⊆

∞⋃

1

In.

Thus ∞∑

1

h(In) <
ǫ

2(b− a)

∞∑

1

|In| <
ǫ

2
.
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Since [a, b] \⋃∞
1 In is a null-set, there exists a disjoint union of closed

intervals Jn such that

[a, b] \
∞⋃

1

In ⊆
∞⋃

1

Jn

and such that
∑∞

1 |Jn| < δ. Because h ≺ l we know that

∞∑

1

h(Jn) ≤
ǫ

2
.

Because h is monotone increasing,

h(b) − h(a) ≤
∞∑

1

(h(In) + h(Jn)) < ǫ

for all ǫ > 0. Thus h must be a constant function. But then

f(x) − g(x) = h(x) ≡ h(a) = f(a) − g(a)

= f(a) −
∫ a

a

f ′(t) dl(t) = f(a).

Hence

f(x) − f(a) = g(x) =

∫ x

a

f ′(t) dl(t).

Exercise 7.4.6. † Let f ∈ L1(R).

a. If ǫ > 0 prove that there exists δ > 0 such that if E is Lebesgue
measurable and if l(E) < δ then

∫
E
f dl < ǫ. (Hint: Use Definition

5.2.3.)

b. Prove that equality holds in Theorem 7.4.1 then f is absolutely con-
tinuous.

Exercise 7.4.7. Prove that, if f is absolutely continuous on [0, 1], then the

total variation of f on [0, 1] is equal to
∫ 1

0
|f ′| dl.
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Definition 7.4.3. A real-valued function f on a measure space (X,A, µ)
is called essentially bounded if and only if there exists M ∈ R such that
|f(x)| ≤M for almost all x.

We denote the set of all essentially bounded functions as

L∞(X,A, µ)

and we define the essential supremum of f by

‖f‖∞ = inf{M | |f | ≤M ae}.

Exercise 7.4.8. A real-valued function f on an interval I for which there
exists a constant C such that

|f(x) − f(y)| ≤ C|x− y|

for all x and y in I is called a Lipschitz function.

a. Show that a Lipschitz function is absolutely continuous.

b. Show that an absolutely continuous function f on an interval is Lips-
chitz if and only if f ′ is essentially bounded.

c. Give an example of a Lipschitz function that does not satisfy the Mean
Value Theorem for derivatives.

Exercise 7.4.9.

a. Provide an example of a function of unbounded variation on [0, 1] that
has a derivative equal to zero at almost all x ∈ [0, 1].

b. Provide an example of a function that is absolutely continuous on [0, 1]
but has an unbounded derivative.

We know already that if f ∈ L1[a, b] and if F (x) =
∫ x
a
f(t) dl(t) then

F ′(x) exists and F ′(x) = f(x) almost everywhere. Thus

lim
h→0

∫ x+h

x

f(t) − f(x)

h
dl(t) = 0

for almost all x. We have the following stronger theorem.

127



Theorem 7.4.2. (Lebesgue) Let f ∈ L1[a, b]. Then

lim
h→0

∫ x+h

x

|f(t) − f(x)|
h

dl(t) = 0

for almost all x.

Proof. Suppose α is a given constant. We define the set Nα to be the set
such that x ∈ [a, b] \Nα implies that

lim
h→0

1

h

∫ x+h

x

|f(t) − α| dl(t) = |f(x) − α|.

We know that Nα is a Lebesgue null-set because of Theorem 7.2.1. We will
show that we can choose the sets Nα independent of α. Write the set of all
rational numbers as Q = {αi | i ∈ N} and let N =

⋃
i∈N Nαi

, which is a
null-set.

Now let β be an arbitrary real number and pick α ∈ Q such that

|β − α| < ǫ.

We apply the triangle inequality as follows.

∣∣∣∣
1

h

∫ x+h

x

|f(t) − β| dl(t) − |f(x) − β|
∣∣∣∣

≤
∣∣∣∣
1

h

∫ x+h

x

|f(t) − β| dl(t) − 1

h

∫ x+h

x

|f(t) − α| dl(t)
∣∣∣∣

+

∣∣∣∣
1

h

∫ x+h

x

|f(t) − α| dl(t) − |f(x) − α|
∣∣∣∣+
∣∣∣|f(x) − α| − |f(x) − β|

∣∣∣

< 2ǫ+

∣∣∣∣
1

h

∫ x+h

x

|f(t) − α| dl(t) − |f(x) − α|
∣∣∣∣→ 2ǫ

for all x ∈ [a, b] \N .
Next we consider an application.

Definition 7.4.4. Let A be a Lebesgue measurable subset of R. A point
x ∈ R is called a density point of A if and only if

lim
h→0+

l(A ∩ [x− h, x+ h])

2h

exists and equals 1.
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A density point of A need not belong to A.

Exercise 7.4.10. Let A be a Lebesgue measurable subset of R of positive
measure.

a. Apply Theorem 7.4.2 to the function f = 1A, the indicator function of
A in order to prove that almost every point x ∈ A is a density point of
A.

b. Prove that A and B are two sets of positive measure in R. Apply the
preceding part to prove that there exists a translation by some a ∈ R
such that l((A + h) ∩ B) > 0. (Hint: Consider two density points.)

The following surprising congruence theorem is a fairly simple conse-
quence of Exercise 7.4.10.

Theorem 7.4.3. (Steinhaus) Let A and B be any two subsets of R having
identical, finite positive measure: l(A) = l(B) = α and 0 < α < ∞. Then
there exist two sequences of mutually disjoint measurable sets An and Bn

and null sets N and M such that

A =
⋃̇∞

1
An ∪N

B =
⋃̇∞

1
Bn ∪M

and there exist constants an such that An + an = Bn for all n ∈ N.

Proof. The function f(x) = l((A+x)∩B) is a continuous function of x which
approaches zero as |x| → ∞ and which achieves strictly positive values at
least for some x. Thus there exists a number x = a1 which maximizes the
value of f . Let B1 = B∩ (A+a1), and let A1 = B1 −a1. Define B1 = B \B1

and A1 = A \ A1. If B1 and A1 happen to be null sets, we are done.
If not, pick a2 which maximizes l((A1 + x) ∩ B1) and define A2, B2, A

2

and B2 in the same manner as in the first step. We proceed until the process
terminates (in which case we are done) or else we generate in this way two
infinite sequences of sets and translation numbers. In the latter case, observe
that l(An) = l(Bn) → 0 as n→ ∞. Let

N = A \
⋃̇∞

1
An
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and let

M = B \
⋃̇∞

1
Bn.

It will suffice to prove that N and M , which must have the same measure,
are null sets.

Suppose this conclusion were false. Then there exists a ∈ R such that

l((N + a) ∩M) > 0.

But then there exists n such that

l(An) = l(Bn) < l((N + a) ∩M).

This violates the maximality property in the choice of an.
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