
Remark 4.3.1. We defined the concept of Baire function in Definition 4.1.2.
There is an alternative, equivalent definition. The Baire class B0 is the class
of continuous functions. B1 is the class of all pointwise limits of functions in
B0. For each α < Ω, the smallest uncountable ordinal number, we can define
Bα to be the set of all pointwise limits of functions belonging to lower Baire
classes. The family of all Baire functions as defined in Definition 4.1.2 can
be shown to be ⋃

α<Ω

Bα.

The detailed explanation can be found in the book [3] by Casper Goffman.
One part of the significance of the preceding theorem is that there are func-
tions of Baire class B2 that are not of class B1. Thus almost-everywhere
convergence is the best that can be expected in the theorem.

4.3.2 Convergence in Measure

There is a concept called convergence in measure for sequences of measurable
functions fn → f that is especially useful in the theory of probability. In
that context, it is useful to to know that the probability of a random variable
fn differing from the random variable f by more than ǫ is very small.

Definition 4.3.2. A sequence of measurable functions fn on a measure space
(X,A, µ) is said to converge in measure to a measurable function f provided
that for each ǫ > 0 there exists N ∈ N such that n ≥ N implies that

µ{x | |fn(x) − f(x)| ≥ ǫ} < ǫ.

It follows readily from the definition that fn → f in measure if and only
if for each ǫ > 0 and each η > 0 there exists N ∈ N such that n ≥ N implies

µ{x | |fn(x) − f(x)| ≥ η} < ǫ.

Thus the definition is phrased as it is for simplicity. One gains nothing that
is not already there if one uses two criteria, ǫ and η.

Exercise 4.3.2. Let (X,A, µ) be a measure space for which µ(X) < ∞.
Suppose fn is a sequence of measurable functions such that fn → f almost
everywhere. Prove that fn → f in measure. (You may assume that f is
measurable, or you may assume the measure space is complete, explaining
why this has the same effect.)
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Exercise 4.3.3. Given an example of a sequence of Lebesgue measurable
functions fn → 0 in measure on [0, 1], yet the sequence of numbers fn(x)
fails to converge to zero for any x ∈ [0, 1].

Exercise 4.3.3 adds to the significance of the theorem below. The exer-
cise explains why, in the following theorem, we will need need to pass to
a subsequence that is sufficiently rapidly convergent in measure in order to
guarantee pointwise convergence almost everywhere.

Theorem 4.3.4. Suppose f and fn are measurable on a finite measure space
(X,A, µ) for all n, and that fn → f in measure. Then there exists a subse-
quence fnν

→ f almost everywhere as ν → ∞.

Proof. By hypothesis, for each ν ∈ N there exists nν ∈ N such that n ≥ nν
implies that

µ

{
x
∣∣∣ |fn(x) − f(x)| ≥ 1

2ν

}
<

1

2ν
.

The difficulty in establishing convergence pointwise almost everywhere is that
these sets can slide around and cover a big region as we vary n ≥ nν . Thus
we define the set

Eν =

{
x
∣∣∣ |fnν

(x) − f(x)| ≥ 1

2ν

}

for the single function fnν
. Define

S = lim supEν =

∞⋂

k=1

∞⋃

ν=k

Eν .

It is easy to check that S is a null set. Moreover, x /∈ S if and only if x lies in
only finitely many of the sets Eν . Thus if x /∈ S we know that for sufficiently
big values of ν we have x /∈ Eν . This implies that

∣∣fnν
(x) − f(x)

∣∣ < 1

2ν

It follows that for x /∈ S the sequence fnν
(x) → f(x) as ν → ∞.

4.4 Lusin’s Theorem

Lusin’s theorem is paraphrased often as stating that a measurable function
on Rn is almost a continuous function. Such phrasings can be useful as
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reminders of theorems that could help us in certain situations. But it is very
important to remember to interpret the paraphrasing of Lusin’s theorem as
meaning exactly what the theorem states.

Theorem 4.4.1. (Lusin) Let f : X → R be a measurable function defined
on a Lebesgue measurable set X ⊂ Rp for which the Lebesgue measure l(X)
is finite. Then for each η > 0 there exists a compact subset K ⊆ X such
that l(X \K) < η and f is continuous on K.

Proof. We will undertake four restrictions of domain in order to reach a
compact set on which f is continuous.

i. We wish to restrict f to a bounded subset of X so that the closed
approximations of measurable sets from within will be compact. We
can do this as follows. Since

l(X) = lim
k→∞

l
(
X ∩ [−k, k]×p

)

there exists a closed cube Q = [−K,K]×p ⊂ Rp large enough so that

l(X) ≥ l(Q ∩X) > l(X) − η

8
.

ii. We know from Exercise 4.3.1 that f is the pointwise limit of functions
fn ∈ S, the class of simple Lebesgue measurable functions. Write

fn =

pn∑

i=1

αni 1An
i

a linear combination of indicator functions of disjoint measurable sets
Ani . (The superscripts are labels only - not exponents.) By Exercise
3.2.2, for each i and n there exists a compact set Kn

i ⊆ Q ∩ Ani such
that

l((Q ∩ Ani ) \Kn
i ) <

η

pn2n+1
.

Each function fn is continuous on Kn
i because it is constant there.

Note also that the cluster points of Kn
i and those of Kn

j for j 6= i must
be distinct, since both sets are respectively closed subsets of disjoint
measurable sets. Thus fn is continuous also on

Kn =

pn⋃

i=1

Kn
i .
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Moreover

l(X \Kn) <
η

8
+

pn∑

i=1

η

pn2n+1
=
η

8
+

η

2n+1
.

iii. Define another compact set

K∗ =

∞⋂

n=1

Kn

so that

l(X \K∗) <
η

8
+
η

2
=

5η

8
.

The functions fn are continuous on K∗ and the sequence fn → f point-
wise on K∗.

iv. By Egoroff’s theorem there exists a measurable set B ⊆ K∗ with l(B) <
η

4
and fn → f uniformly on K∗\B. Since the set K∗ \B is measurable,

there exists a compact set K ⊆ K∗ \B such that

l((K∗ \B) \K) <
η

8

which implies that l(X \K) < η and f is continuous on K.

Lusin’s theorem tells us that the restriction f
∣∣∣
K

is a continuous function.

That is, f ∈ C(K,R). In other words, f is continuous as a function defined
only on the restricted domain, K. But f need not be continuous at any
k ∈ K as a function defined on X. This is relevant to Exercise 4.4.1.

Exercise 4.4.1. Let f be the indicator function of the set of all irrational
numbers in the interval X = [0, 1].

a. Show that f is nowhere continuous on [0, 1].

b. Let η > 0 and find a set B of measure less than η such that f is
continuous on K = X \B and such that K is compact.

Exercise 4.4.2. Let f : [a, b] → R be a measurable function. Let η > 0 and
ǫ > 0. Prove that there exists a measurable set B such that l(B) < η and a
polynomial p such that sup{|f(x) − p(x)| | x ∈ [0, 1] \B} < ǫ. (Hint: Apply
the Tietze Extension theorem and the Weierstrass Approximation theorem.)
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