Because of regularity, there exists a measurable set $V \supseteq W$ such that $\mu(V) = \mu(W)$. Observe that, since V is measurable, we have

\[
\begin{align*}
\mu(A) &= \mu(A \cap V) + \mu(A \cap V^c), \\
\mu(A^c) &= \mu(A^c \cap V) + \mu(A^c \cap V^c)
\end{align*}
\]

(2.5)

By hypothesis and by Equations (2.5),

\[
\begin{align*}
\mu(X) - \mu(A) &= \mu(A^c) - \mu(V) + \mu(V^c) \\
&= \left[\mu(A \cap V) + \mu(A^c \cap V)\right] + \left[\mu(A \cap V^c) + \mu(A^c \cap V^c)\right].
\end{align*}
\]

On the other hand

\[
\begin{align*}
\mu(A \cap V) + \mu(A^c \cap V) &\geq \mu(V), \quad \text{and} \\
\mu(A \cap V^c) + \mu(A^c \cap V^c) &\geq \mu(V^c),
\end{align*}
\]

by subadditivity. Thus

\[
\begin{align*}
\mu(A \cap V) + \mu(A^c \cap V) &= \mu(V), \quad \text{and} \\
\mu(A \cap V^c) + \mu(A^c \cap V^c) &= \mu(V^c).
\end{align*}
\]

By the choice of V, and by the preceding equations,

\[
\begin{align*}
\mu(W) &= \mu(V) - \mu(V \cap A) + \mu(V \cap A^c) \\
&\geq \mu(W \cap A) + \mu(W \cap A^c) \\
&\geq \mu(W).
\end{align*}
\]

Hence

\[
\mu(W \cap A) + \mu(W \cap A^c) = \mu(W),
\]

and A is measurable.

\section*{2.4.1 Fields, σ-Fields, and Measures Inherited by a Subset}

In Definition 3.3.1, we will see that a triplet, (X, \mathcal{A}, μ), is called a measure space, provided that X is a set, $\mathcal{A} \subseteq \mathcal{P}(X)$ is a σ-field, and μ is a countably additive measure defined on \mathcal{A}.

\textbf{Definition 2.4.2} A triplet (X, \mathcal{A}, μ), is a pre-measure space, provided that X is a set, $\mathcal{A} \subseteq \mathcal{P}(X)$ is a field, and μ is a finitely additive measure defined on \mathcal{A}.

Thus the Hopf Extension Theorem provides necessary and sufficient conditions for a pre-measure space to be extended to a full-fledged measure space. Note that there exist pre-measure spaces that cannot be extended to measure spaces.\footnote{For example, see Exercise 2.16.}
It is often useful to consider the restriction of a measure \(\mu \), given to us in either a pre-measure space or a measure space, to a subfield of the power set \(\mathcal{P}(S) \) for some set \(S \in \mathfrak{A} \). An especially important instance is the situation in which \((X, \mathfrak{A}, \mu)\) is \(\sigma \)-finite, so that \(X = \bigcup_{i \in \mathbb{N}} X_i \), with \(\mu(X_i) < \infty \), for each \(i \in \mathbb{N} \).

Definition 2.4.3 If \((X, \mathfrak{A}, \mu)\) is any pre-measure space, define the pre-measure space inherited by \(S \in \mathfrak{A} \) to be the triplet
\[
(S, \mathfrak{A}_S, \mu),
\]
where
\[
\mathfrak{A}_S = \{ A \cap S \mid A \in \mathfrak{A} \} \subseteq \mathcal{P}(S),
\]
and we retain the symbol \(\mu \) for the restriction to \(\mathfrak{A}_S \) of the given measure on \(\mathfrak{A} \).

Since \(\mathfrak{A} \) is a field, it is clear that \(\mathfrak{A}_S \subseteq \mathfrak{A} \), so that \(\mu \) is defined on \(\mathfrak{A}_S \). Moreover, it is easily checked that \(\mathfrak{A}_S \) is itself a subfield of the field \(\mathcal{P}(S) \), with the understanding that complementation in \(\mathfrak{A}_S \) will be with respect to \(S \), not with respect to \(X \). That is, for \(A \in \mathfrak{A}_S \), we define \(A^c = S \setminus A \). Again because \(\mathfrak{A} \) is a field, the set \(S^c \) also inherits a pre-measure space from \((X, \mathfrak{A}, \mu)\).

Theorem 2.4.3 If \((X, \mathfrak{A}, \mu)\) is any pre-measure space and if \(S \in \mathfrak{A} \), then an arbitrary set \(B \) belongs to \(\mathcal{B}(\mathfrak{A}) \) if and only if \(B = B_1 \cup B_2 \), where \(B_1 \in \mathcal{B}(\mathfrak{A}_S) \) and \(B_2 \in \mathcal{B}(\mathfrak{A}_{S'}) \).

We are to understand in this theorem that \(\mathcal{B}(\mathfrak{A}_S) \subseteq \mathcal{P}(S) \). That is, we treat \(S \) as the universal set in the definition of the Borel field generated by \(\mathfrak{A}_S \).

Proof: We observe that if \(\mathcal{B} \) is a \(\sigma \)-field in \(\mathcal{P}(X) \) containing \(\mathfrak{A} \), then both of the following two conditions are met: \(\mathcal{B}_S \) is a \(\sigma \)-field in \(\mathcal{P}(S) \) containing \(\mathfrak{A}_S \), and \(\mathcal{B}_{S'} \) is a \(\sigma \)-field in \(\mathcal{P}(S^c) \) containing \(\mathfrak{A}_{S'} \).

Conversely, if \(\mathcal{B}_1 \) is a \(\sigma \)-field in \(\mathcal{P}(S) \) containing \(\mathfrak{A}_S \), and if \(\mathcal{B}_2 \) is a \(\sigma \)-field in \(\mathcal{P}(S^c) \) containing \(\mathfrak{A}_{S'} \), then we define
\[
\mathcal{B} = \{ B_1 \cup B_2 \mid B_1 \in \mathcal{B}_1, \ B_2 \in \mathcal{B}_2 \}.
\]
Then it is clear that \(\mathcal{B}_S = \mathcal{B}_1 \) and \(\mathcal{B}_{S'} = \mathcal{B}_2 \), and that \(\mathcal{B} \) is a \(\sigma \)-field in \(\mathcal{P}(X) \) containing \(\mathfrak{A} \).

The conclusion follows from Definition 2.1.5, in which the Borel field generated by a given field is the intersection of all \(\sigma \)-fields containing the given field. \(\blacksquare \)

We note that the preceding theorem does not involve \(\mu \), and relates only to the pair \((X, \mathfrak{A})\), which is called a **pre-measurable space**.

Corollary 2.4.1 Suppose
\[
X = \bigcup_{i \in \mathbb{N}} X_i,
\]
with each \(X_i \in \mathfrak{A} \), a field contained in \(\mathcal{P}(X) \). Then \(B \in \mathcal{B}(\mathfrak{A}) \) if and only if
\[
B = \bigcup_{i \in \mathbb{N}} B_i, \ B_i \in \mathcal{B}(\mathfrak{A}_{X_i}) \subseteq \mathcal{P}(X_i) \forall i \in \mathbb{N}.
\]
Proof: This is a countable adaptation of the proof of Theorem 2.4.3. A set B is a σ-field containing \mathcal{A} if and only if the following condition is met for each $i \in \mathbb{N}$: $\mathcal{B}_{X_i} \supseteq \mathcal{A}_{X_i}$, with \mathcal{B}_{X_i} being a σ-field in $\mathcal{P}(X_i)$.

EXERCISE

2.21† Suppose both μ_1 and μ_2 are countably additive extensions of the measure μ from the field \mathcal{A} to $\mathcal{B}(\mathcal{A})$. Suppose that μ is countably additive on \mathcal{A}.

a) Suppose that $\mu(X) < \infty$. Prove that $\mu_1(B) = \mu_2(B)$ for all $B \in \mathcal{B}(\mathcal{A})$.

(Hint: Show that the set

$$\mathcal{B}(\mathcal{A}) - \{ B \in \mathcal{B}(\mathcal{A}) \mid \mu_1(B) - \mu_2(B) \}$$

is closed under complementation, and under taking unions of increasing sequences, making $\mathcal{B}(\mathcal{A})$ a monotone class that contains \mathcal{A}. The finiteness of $\mu(X)$ will be helpful for complementation.)

b) Now replace the hypothesis that $\mu(X) < \infty$ in part (a) with the hypothesis that μ is σ-finite on X. Prove that $\mu_1(B) = \mu_2(B)$ for all $B \in \mathcal{B}(\mathcal{A})$.

(Hint: Use Corollary 2.4.1.)