Much Improved Version of Sec. 1.5 / Exercise 5: Use the following steps to prove that *every* sequence x_n of real numbers has a monotone subsequence. Denote the n^{th} tail of the sequence by $T_n = \{x_j \mid j \geq n\}$.

- (a) Suppose the following special condition is satisfied: For each $n \in \mathbb{N}$, T_n has a smallest element. Prove that there exists an increasing subsequence x_{n_j}.

- (b) Suppose the condition above fails, so that there exists $N \in \mathbb{N}$ such that T_N has no smallest element. Prove that there exists a decreasing subsequence x_{n_j}.