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Abstract
Given any nontrivial alternating tri-character f on a finite abelian group G, one can
construct a finite dimensional non-commutative and non-cocommutative semisimple
Hopf algepra H. The group of group-like elements of H is an abelian central extension

of B by G where B is the radical of f.

1 Introduction

In this exposition, we will discuss the Hopf algebra structure of the twisted quantum double
D¥(@G), constructed from a finite abelian group G and a normalized 3-cocycle w of G [DPR92]
(Section 2). These Hopf algebras are semisimple and self-dual [MNO1]. Moreover, D¥(G),
is non-commutative and non-cocommutative if there exist x,y,x € G such that

w(z,y, 2)w(y, z, z)w(z, z,y) 41 (1)
w(y, ©, 2)w(z,y, v)w(r, 2, y)
The formula on the left hand side of equation (1) actually defines an alternating tri-character
of G. If we write ¥*([w])(x,y, ) for the left hand side of equation (1), then [w] — ¥*(w)
defines a split epimorphism from H?3(G, C*) onto Hom(A® G, C*), where [w] denotes the co-
homology class of w. Moreover, D*((G) is commutative if, and only if, [w] € ker ¢* (Section 4).

Let f be non-trivial alternating tri-character of G and w a normalized 3-cocycle of G such
that ¢*(w) = f. We define the radical B of f by

B ={x€G|f(z,y,z) =1 for any y, z € G}.

Then, the group of all the group-like elements of D“(G)q, denoted by I'“’| is an abelian central
extension of B by G (Section 3). In addition, T lies in the center of D¥(G)o. If [w] € ker ¢*,
then B = G. The map A : kery*— H?*(G, @), A : [w] — b, is a group homomorphism,
where b,, is the cohomology class associated to the extension

1—G—IY—G—1.
Though we defined the map A in terms of quantum doubles, it turns out that A has an

purely homological interpretation using the Eilenberg-MacLane cohomology (Section 5).
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2 Twisted Quantum Double of a Finite Group

Let G be a finite group and let w : G x G x G—C* be a normalized 3-cocycle; that is a
function such that w(x,y, z) = 1 whenever one of x,y or z is equal to the identity element 1
of G and it satisfies the functional equation

w(g, z, y)w(g, zy, z)w(z,y, 2) = w(gr,y, z)w(g,z,yz) forany g,z,y,2z € G.

We will denote the group of all normalized 3-cocycles on G by Z3(G,C*). For any g € G,
one can define the functions 0,7, : G x G—C* as follows:

(@) = (fﬂ,y,g)w( 99 "'x9,9"'yg9) )

w(z, 9,97 'yg)

Let {e(g)|g € G} is the dual basis of the canonical basis of C[G]. The twisted quantum double
D*(G) of G with respect to w is the quasi-triangular quasi-Hopf algebra with underlying
vector space C[G]* ® C[G]. The multiplication, comultiplication, and associator are given,
respectively, by

(e(9) @ x)(e(h) @ y) = O,(z,y)e(g)e(zha™) @ 2y, (4)

=Y whkeh) @z @elk) @, ()

O= > wlghk) le(g)@loeh)@l@e(k) 1. (6)
9.hkeG

The counit and antipode are given by

cle(g) ®2) =dy1 and  S(e(g) @ x) =Og1(z,27") (g, g) el g ) @27

where 0, is the Kronecker delta. The universal R-matrix is given by

R=) elg@l®eh)®yg. (7)
g,heG
The corresponding elements « and 3 are 1pe(g) and > w(g, 97", g)e(g) ® 1 respectively (cf.
geG

[DPR92]). For the definition and details about quasi-Hopf algebras, the readers are referred
to see [Dri90], [Kas95] or [CP95]. Verification of the details involves the following identities,
which result from the 3-cocycle identity for w:

0.(a,b)0,(ab,c) = 0,-1.4(b, ¢)0.(a,bc), (8)
0y(a,0)0-(a,0)va(y, 2) (0" ya,a™ za) = 0,.(a, b)ya(y, 2) (9)
v.(a,b)y.(ab, c)w(z taz, 27 bz, 27 ez) = 4.(b, ¢)7y.(a, be)w(a, b, c) (10)

for all a,b,c,y, z € G. We leave the verification for the readers as an exercise.
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Remark 2.1 If w = 1, then the twisted quantum double D*(G) is identical to the Drinfeld
double of the group algebra C[G]. However, D¥(G) is not a Hopf algebra in general. More-
over, even if w,w’ are differed by a coboundary, D“(G) and D (G) are not isomorphic as
quasi-bialgebras. Nevertheless, they are gauge equivalent.

The dual space, C[G]*, admits a natural C[G]-module structure given by

z-e(g) = e(zgr™)

for any x, g € G. Actually, C[G]* is a C[G]-module algebra. Moreover, the algebra structure
of D¥(G) is the cross-product of C[G]*#,C[G] where o € Hom¢(C[G] ® C[G], C[G]*) is the
Sweedler 2-cocycle [Swe68] defined by

oz ®y) = Z Oq(x,y)e(g)
geG
for any z,y € G. Since both C[G] and C[G]* are semisimple and so is D¥(G) (cf. [Mon93]
7.4.2 or [BM89]).

When G is abelian, 6, = v, for any g € G. We will collectively write w, for both 6, and ~,
in the sequel whenever G is abelian.

Theorem 2.2 [MNO1, 2.2|Let G be a finite abelian group and w a normalized 3-cocycle w
of G. Then (D“(G), -, 1p«(q), A,€,5) is a self-dual Hopf algebra. Moreover, if w and w' are
normalized 3-cocycles differed by a coboundary, then the Hopf algebras D*(G), D¥'(G) are
1somorphic.

As a consequence of the above theorem, the Hopf algebra structure on D*(G) depends only
on the cohomology class w € H3(G, C*) represented by w but not the representatives of w.
In the sequel, we will write D“(G), for the Hopf algebra (D“(G), -, 1p«(q), A, €, S) whenever
G is abelian.

Remark 2.3 The Hopf algebra D¥(G)y is not necessarily quasi-triangular although the
quasi-Hopf algebra D“(G) is quasi-triangular. The universal R-matrix for the quasi-Hopf
algebra D (G) given in (7) is failed to be a universal R-matrix for the Hopf algebra D¥(G)o.

3 Group-like Elements of D“(G),

Let G be a finite abelian group and w € Z*(G, C*). A nonzero element u in D*(G), is called
group-like if A(u) = u ® u. We will denote by I' the group of all group-like elements of
D¥(G)p. The elements in I' can be characterized by the following proposition [MNO1, 3.2].

Proposition 3.1 Let G be a finite abelian group and w € Z3(G,C*). Then u € T if, and

only if, u=>_ a(g)e(g) ® x for some x € G and a function o : G—C* such that
geG

for any g, h € G.



Corollary 3.2 Let G be a finite abelian group and w a normalized 3-cocycle of G. Then
6w lies in the center of D¥(G)o.

Proof. For any u € I'Y, by Proposition 3.1,

u=>Y a(ge(g) @z

geG

for some z € G and a : G——C* such that
W:r(% Z) =

for any y, 2 € G. Then for any h,y € G,

(e(h)@y) -u = wp(y,z)a(h) @y
u-(e(h)®@y) = wypl(z,y)alh) @ yx.

Since wy(h,y) = w.(y, h),

(Uh($,y) . w(h,a:,y)w(y,h, x)w(m,y, h) _ wl’(y’h’) =1.

wi(y,z)  w(z, h,y)w(h,y, 2)w(y,z,h)  w.(h,y)

Therefore, wy(x,y) = wp(y, z) for any h,y € G. Hence, (e(h) ®@y)-u =u-(e(h) ®y) for any
h,ye G. O

Since w is normalized, w; = 1. Therefore, for any character a of G, > a(g)e(g) ® 1 € T¥
geG

is a group-like element of D¥(G)y. It is easy to see that the map 7 : @—J‘“’, 1

> a(g)e(g) ® 1 actually defines an injective group homomorphism where G is the character
geG
group of G.

The assignment e(g) @z — d 12 defines an algebra map from D (G) to C[G]|. We write j for
the restriction of this map on I'Y. Then j(I'¥) C G and j : I'*—G is a group homomorphism.
It follows from Proposition 3.1 that Im+¢ = ker j. Let

BY ={x € G|w, is a 2-coboundary.} .
Then, by Proposition 3.1, ImjC B“. Conversely, for any = € B“, there is a function
a : G—C* such that (@)a(h)
a(g)a
wxgvh :(SOé gah = T N
(9.h) = 8(a)(g. ) = “ L
for any g,h € G. Then, > a(g)e(g) @ x € I'¥ and j(u) = z. Hence, Imj = B¥ and B¥ is a

geG
subgroup of G. This gives the proof for the first part of following lemma (cf [MNO1, 2.3 and

2.4],).



Proposition 3.3 Let G be a finite abelian group and w a normalized 3-cocycle of G. Then,
'Y is an abelian central extension of B¥ by G. If w and ' are cohomologous normalized
3-cocycles of G, then B = B¥" and the central extensions

1—G—T¥—B“—1 and 1—G—T¥ —B 1
are equivalent.

Let Z3(G,C*),, denote the set of all normalized 3-cocycles w of G such that B = G, and
H3(G,C*), the set of cohomology classes associated to Z3(G, C*)y. Thus, w € Z3(G, C*)y
if, and only if, w, is a 2-coboundary for all g € G. It is fairly easy to show that H3(G,C*)y
is a subgroup of H*(G,C*).

Take any w € Z3(G,C*)y. Then, by Proposition 3.3, T is an abelian central extension of
G by G. Let 3, € Z*(B¥,G) be a 2-cocycle associated to this extension

1—G—TY—G—1.

Proposition 3.3 also implies that w + £, induces a map A : H3(G,C*),,— H*(G, @),
where H?(G, C*)g. In addition, A : H*(G,C*)p— H?*(G, G) is a group homomorphism (cf.
[MNO1, 3.8]). We will discuss this map again in Section 5.

4 Construction of non-commutative, non-cocommutative
Hopf algebras

Let G be a finite abelian group and w € Z3(G,C*). Since I'* lies in the center of D¥(G)o,
C[I'*] is a commutative normal Hopf subalgebra of D“(G),. In fact, D¥(G) is a commutative
algebra if, and only if, D“(G) is identical to the C[I™*].

Proposition 4.1 [MNO1, 3.6] Let G be a finite abelian group and w a normalized 3-cocycle
of G . Then the following statements are equivalent :

(i) D*(QG) is spanned by T';
(11) w € Zg(G, C*)ab;
(i) D¥(G) is a commutative algebra.

In order to obtain a non-commutative, non-cocommutative Hopf algebra from the twisted
quantum double D¥(G) of a finite abelian group G, the necessary and sufficient condition is
that [w] € H3(G, C*)4p, where [w] denotes the cohomology class represented by w.

Proposition 4.1 suggests how to determine whether D¥(G) is commutative. However, using
the definition of Z3(G,C*) to check whether w € Z3(G, C*), is not very practical. Inter-
esting enough, H3(G,C*)y can be described as the kernel of a map ¢* from H?*(G,C*) to
Hom(A® G, C*).



To see the construction of such a map ¥*, we firstly consider the homology groups of G. The
homology groups H*(G,Z) is the homology of the standard complex Ay(G) given by

where C,, is the free abelian group generated by all n-tuples (z1,...,,) of elements x; of G
and 0 is a Z-linear map defined by

—

n—

Oy, m) = (22, ,xn) + Y (D) (1, T, Tiig1s -, T) + (1) (21, Tny) -
1

We will call (z,...,z,) a n-dimensional cell of Ay(G).

For any two cells (z1,...,2,) and (y1,...,¥m) in Ag(G), we can define a “shuffle” of the n
letters 1, ..., x, through the m letters y1, ..., v, to be the n+m-tuple in which the order of
the z’s and the order of 3’s are preserved. The sign of the shuffle is the sign of the permuta-
tion required to bring the shuffled letters back to the standard shuffle (z1, ..., 20, Y1, -, Ym)-
Then, we can define the “star” product (z1,...,x,) * (y1,...,Ym) to be the signed sum of
the shuffles of the letters x through the letters y.

Since G is abelian, Ay(G) is a differential graded ring with respect to *. Moreover, H,(G,7Z)
is an anti-commutative ring under the induced product of %. Since G is also finite, there is
a split embedding 1 : \* G— H,(G,Z) which sends g; A -+ A g, in A" G to the homology
class of o 8e0(0)(go(1)s - - - Yo(ny) (cf. [Bro82, V.5]). In particular, ¢ : N\’ G— Hs(G, 7,)
is a split monomorphism. Then the dual ¢* : Hom(Hs(G, Z), C*)—Hom(A® G, C*) of ¥ is
a split epimorphism.

For any w € Z3(G, C*), w naturally defines a homomorphism E,, in Hom(H,(G, Z),C*) by
the evaluation on the cell representatives. By the universal coefficient theorem, the map E :
H3(G,C*)—Hom(Hy(G, Z),C*), [w] — E,, is a group isomorphism. We will simply identify
H3(G,C*) with Hom(Hs(G,Z),C*) through E. Then, ¢* : H3(G,C*)—Hom(A® G, C*) is
given by
&4 Cwly,x, 2)w(z,y, )w(z, 2,y)

for any cohomology class [w] represented by a 3-cocycle w. The group H*(G,C*), can be
characterized nicely by the kernel of ¢* [MNO1, 7.4]).

Proposition 4.2 Let G be a finite abelian group. Then H3(G,C*)y is identical to the kernel
of the homomorphism 1*.

The formula of ¢* given in (11), together with propositions 4.1 and 4.2, suggest an easy way
to determine whether D“(G), is non-commutative and non-cocommutative.

Theorem 4.3 Let G be a finite abelian group and w a normalized 3-cocycle. Then D¥(G)g
is a non-commutative, non-cocommutative semisimple Hopf algebra if, and only if v*(w) # 1.
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The radical of 1*([w]) is then given by

B = {zeG|¢(w)(z,y,z) =1forally,z€ G}

= {xGG

= {ze€Glwyy,2) =w,(z,y) forall y,z € G}

w(y,z, z) w(z,z,y)

w(z,y, 2)w(z,z,y) W@,z y)w(zy, ) forall y,z € G }

Since C* is divisible, w,(y, z) = w,(z,y) for all y, z € G if, and only if, w, is a 2-coboundary
of G. Hence B = B*“. This proves the following proposition.

Proposition 4.4 Let G be a finite abelian group and w a normalized 3-cocycle of G. Then
B¥ is the radical of ¥*([w]).

The set of tri-characters of G is a good source of normalized 3-cocycles of G. By Theorem
4.3, non-commutative and non-cocommutative Hopf algebras of the form D*(G) can be
constructed easily.

Example 4.5 Let n be a positive integer and let G = Z,, X Z,, X Z,,. For any a = (a1, as, as),
b= (by,by,b3), and ¢ = (c1, co,c3) € G, define w(a, b, c) = (%% where ( is a primitive nth
root of unity. One can easily see that w is a tri-character on GG and hence a normalized
3-cocycle on G. Moreover,

¥ ([w))(a, b, ) = ¢etlobe]

where [a, b, c] is the matrix

ap as as
b1 by b3
1 C2 C3

Obviously, ¥*([w])((1,0,0),(0,1,0),(0,0,1)) = ¢. Therefore, ¥*([w]) # 1. Hence, D*(G)q
is then a non-commutative, non-cocommutative semisimple Hopf algebra of dimension n®.
One can easily see that detla,b,c] = 0 for all b,c € G if, and only if, a = 0. Hence, the

radical of ¢*(|w]) is trivial and so is B¥. Therefore, the group I' is isomorphic to G.

Since the map ¥* : H3(G, (C*)—>Hom(/\3 G, C*) is surjective, for any non-trivial alternating
tri-character f of G, there exists a cohomology class [w] € H?(G,C*), represented by a
normalized 3-cocycle w, such that ¢*(jw]) = f. Then, D*(G), is non-commutative, as well
as, non-cocommutative. However, if G = C x Cy where (', Cs are finite cyclic groups, then
A’ G is trivial. Hence, D*(QG), is always commutative and cocommutative. When G is a
direct sum of more than or equal to three cyclic factors, neither /\3 G nor Hom( /\3 G,C")
is trivial. Hence, there must be an [w] € H3(G, C*) such that D¥(G), is non-commutative,
and non-cocommutative as well.



5 Relation to the Eilenberg-MacLane Cohomology

Let G be a finite abelian group. The subgroup H3(G, C*)y, of H3(G, C*) is the of cohomol-
ogy classes [w] such that D“(G)y is commutative. The map A : H3(G, C*)y— H2(G, G),
defined in the end of section 3, has an interesting relation to the Eilenberg-MacLane coho-
mology for abelian groups.

Using the multiplicative structure of the complex Ay(G), one can define the complex A; (G)
as follows [Mach2]: The cells of A;(G) are symbols o = [aq|ag] - - - |ay], with each «a; a cell
of Ag(G). The dimension of o is p — 1 plus the sum of the dimensions of the «;, and the
boundary of o is

P p—1
90 = (=15 au| -+ - || -+ o] + D (=1 [an] -+ g -+ |y,
i=1 =1

where ¢, = 1+dim[a4| - - - |oy]. For any abelian group M, we denote by C%, (G, M), Z (G, M),
B! (G, M) and H], (G, M) the dimension n-cochains, cocycles, coboundaries, and cohomol-
ogy classes of Hom(A;(G), M) respectively. Note that H% (G, M) is the same as Extz(G, M).

Notice that Ay(G) is a subcomplex of A;(G). We have the exact sequence of complexes
0—Ag(G)—A1(G)— B(G)—0
with B(G) the quotient complex A;(G)/Ao(G). Since C* is divisible, the sequence
1—Hom(B(G),C*)—Hom(A,(G), C*)—Hom(A4y(G),C*)—1

is exact and we have the long exact sequence

. HY(B(G),C")—H},(G,C*)— H*(G,C*) = H**Y(B(G),C")—H5 (G, C*)— - --

where H"(B(G),C*) is the nth cohomology group of the cochain complex Hom(B(G), C*).
In particular,

H3(B(G),C*)—H3,(G, C*)—H3(G, C*) > HYB(G),C"). (12)

The subgroup H3(G, C*), of H3(G, C*) is contained in the kernel of § and Im A € H2,(G, G).
Moreover, there exists a monomorphism = : H2 (G, G)— H*(B(G),C*) such that the dia-
gram

H3,(G,C*) — H3(G, C*) ——~ HY(B(G),C*)
incfj\ JE
HY (G, C) o —— H2(G, G)

commutes (cf. [MNO1, Section 6]). Hence, ker A = ker d. Using the exact sequence (12), we
obtain the following Theorem [MNO1, 6.3]:



Theorem 5.1 Let G be a finite abelian group. Then the kernel of the map

A H¥G,C")yy—H*(G,G)

1s isomorphic to the maximal elementary 2-subgroup of G.

Recall that Afw] is the cohomology class in H%(G, G) associated to the central extension I'”
of G by G. Thus, [w] € ker A if, and only if, the exact sequence

1—G—TY—G—1

splits. Hence, I'¥ =2 G x G if, and only if, [w] € ker A. Consequently, if [w] € ker A is not
trivial, then D*(G) and D'(G) are not gauge equivalent (cf. [MNO1, 9.5]).
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