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Abstract. Let G be a simple complex algebraic group. We prove that the irregularity of
the adjoint connection of an irregular flat G-bundle on the formal punctured disk is always
greater than or equal to the rank of G. This can be considered as a geometric analogue of
a conjecture of Gross and Reeder. We will also show that the irregular connections with
minimum adjoint irregularity are precisely the (formal) Frenkel-Gross connections. As a
corollary, we establish the de Rham analogue of a conjecture of Heinloth, Ngo, and Yun
for G = SLn.
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1. Introduction

1.1. The Gross-Reeder Conjecture. Let k be a p-adic field with residue field f. The
Weil group W of k is the subgroup of Gal(k̄/k) which acts on the algebraic closure f̄ by a
power of the Frobenius. More explicitly, W = 〈Fr〉 n I, where Fr is a geometric Frobenius
element and I is the inertia group, i.e., the subgroup of W that acts trivially on f̄. The wild
inertia group I+ is the pro-p-Sylow subgroup of I.

Let G be a connected reductive algebraic group over C. A Langlands parameter (with
values in G) is a homomorphism φ : W × SL2(C) → G such that the restriction to SL2(C)
is algebraic, the restriction to I is continuous, and φ(Fr) is semisimple. The parameter is
called discrete if the centralizer of the image is finite; it is called inertially discrete if there
are no nonzero invariants of the action of φ(I) on the Lie algebra g.

Note that a discrete, inertially discrete parameter φ is, in particular, wildly ramified,
i.e., the restriction of φ to I+ is nontrivial. A natural question that arises is what is the
minimum “wildness” possible for such a parameter. One way to make this precise is through
an invariant called the (adjoint) Swan conductor. Let Ad : G → GL(g) denote the adjoint
map. Then Ad(φ) : W × SL2(C) → GL(g) is a Langlands parameter with values in a
general linear group. Given a GLn-parameter, the Swan conductor is a canonical integer
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which measures how wildly ramified it is; in particular, one can consider the Swan conductor
of Ad(φ). We can now state a special case of the Gross-Reeder Conjecture [GR10]:

Conjecture 1 (Gross-Reeder). Suppose G is simple. If the Langlands parameter φ : W ×
SL2(C)→ G is discrete and inertially discrete, then the Swan conductor of Ad(φ) is greater
than or equal to the rank of G.

Gross and Reeder proved their conjecture in a number of important cases. In particular,
they verified Conjecture 1 under the assumption that the residual characteristic does not
divide the order of the Weyl group. They also analyzed the situation where the Swan
conductor equals the rank.1 This led them to construct simple wild parameters where
equality is achieved. They also constructed simple supercuspidal representations of a p-adic
group with dual group G which correspond under local Langlands to simple wild parameters.

This theory has also had important applications to the global Langlands program. Indeed,
Heinloth, Ngô, and Yun used these results to construct Kloosterman sheaves–`-adic local
systems on P1 \{0,∞} whose single wildly ramified singularity corresponds to a simple wild
parameter [HNY13]. These sheaves are cohomologically rigid, i.e., they have no infinitesimal
deformations which preserve the formal isomorphism classes at 0 and ∞. Moreover, they
provide an example of the wild ramification case of the Langlands correspondence between
`-adic local systems and Hecke eigensheaves.

1.2. Translation to geometry. The goal of this paper is to formulate and prove a geo-
metric analogue of Conjecture 1. This is, therefore, a continuation of our efforts to under-
stand wild ramification in the geometric Langlands program [BS13,BS12,BS18,BS14,Sag,
Kam16a,Kam15,KS15,CK16].

In the geometric world, formal flat G-bundles play the role of Langlands parameters, cf.
the appendix of [Kat87]. Accordingly, we start by reviewing their definition and some of
their numerical invariants. For more information, see §2 and [BV83,Kat87,BS18].

1.2.1. Formal flat G-bundles. Let K = C((t)) denote the field of formal Laurent series. Let
D× = Spec(K) be the formal punctured disk. A formal flat G-bundle (E,∇) is a principal
G-bundle E on D× endowed with a connection ∇ (which is automatically flat). Upon
choosing a trivialization, the connection may be written in terms of its matrix

[∇]φ ∈ Ω1
F (g(K))

via ∇ = d + [∇]φ. If one changes the trivialization by an element g ∈ G(K), the matrix
changes by the gauge action:

(1) [∇]gφ = g · [∇]φ = Ad(g)([∇]φ)− (dg)g−1.

Accordingly, the set of isomorphism classes of flat G-bundles on D× is isomorphic to the
quotient g(K)dtt /G(K), where the loop group G(K) acts by the gauge action.

1.2.2. Irregular Connections. Recall that a flat G-bundle (E, φ) on D× is called regular
singular if the connection matrix has only simple poles with respect to some trivialization;
otherwise, it is called irregular. It is well-known that irregular connections are geometric
analogues of wildly ramified Langlands parameters. In this paper, we will be concerned
with two invariants which measure “how irregular” a flat G-bundle is: the slope and the
irregularity.

1We remark that in a very recent unpublished preprint, Reeder has formulated and proven a modified version
of this conjecture [Ree16].
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1.2.3. Slope. There are several equivalent definitions of the slope. The simplest to describe
(though not necessarily to compute) uses the fact that there exists a ramified cover D×b =

Spec(C((u))) with u = t1/b and a trivialization of the pullback bundle such that the pullback
connection is of the form

d+ (X−au
−a +X1−au

1−a + . . . )
du

u
, Xi ∈ g, X−a non-nilpotent, a ≥ 0.

It turns out that the quotient a/b is independent of the choice of such an expression,
and one calls it the slope of ∇. The slope is positive if and only if the flat G-bundle is
irregular, and the smallest possible positive slope is 1/h, where h is the Coxeter number of
G [FG09,CK16,BS18].

1.2.4. Irregularity. To start with, suppose G = GLn. In this case, a flat G-bundle is equiva-
lent to a pair (V,∇V ) consisting of a vector bundle on D× endowed with a connection. It is
a well-known result of Turrittin [Tur55] and Levelt [Lev75] that after passing to a ramified
cover D×b , the pullback connection can be decomposed as a finite direct sum⊕

(Li ⊗Mi,∇Li ⊗∇Mi),

where (Li,∇Li) is rank one and (Mi,∇Mi) is regular singular. Let si denote the slope (in
the sense defined above) of the flat connection (Li⊗Mi,∇Li ⊗∇Mi). Then the irregularity
Irr(∇V ) is the sum of the slopes where each slope si appears with multiplicity dim(Mi).
One can show that the irregularity is a nonnegative integer that is zero if and only if V is
regular singular, cf. [Kat87].

Now, suppose G is a connected reductive group. Let (E,∇) be a flat G-bundle on D×. We
will be interested in the irregularity of the associated adjoint flat vector bundle(Ad(E),Ad(∇)).
Its irregularity Irr(Ad(∇)) is a nonnegative integer which is positive if and only if (E,∇)
is irregular. It can be considered as the geometric analogue of the Swan conductor of an
adjoint Langlands parameter.

1.2.5. An inequality for the adjoint irregularity. We are now ready to state our first main
result, which is a geometric analogue of Conjecture 1.

Theorem 2. Let G be a simple group, and let (E,∇) be an irregular singular formal flat
G-bundle. Then Irr(Ad(∇)) ≥ rank(G).

Example 3. This inequality is false if G is not simple. For instance, suppose G = GL2. Note
that if ∇ = d+Adt with A ∈ gl2(K), then Ad(∇) = d+ Ad(A)dt. Thus, if we take

∇ = d+ diag(t−1, t−1)
dt

t

then ∇ is irregular, but Ad(∇) is regular singular; thus, Irr(Ad(∇)) = 0.

Next, we discuss when equality is achieved.

1.3. Formal Frenkel-Gross Connections. Let G be a simple complex algebraic group
with Lie algebra g. Let us fix a maximal torus and a Borel subgroup H ⊂ B ⊂ G. Let Φ
and ∆ = {α1, . . . αn} be the corresponding sets of roots and simple roots. Also, let α0 be
the highest root of Φ. We denote the root subalgebras of g by uα. Now, choose nonzero
root vectors x−αi ∈ u−αi and xα0 ∈ uα0 . Note that N =

∑n
i=1 x−αi is principal nilpotent.

The global Frenkel-Gross connection associated to these root vectors is the connection on
the trivial bundle over P1 defined by
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(2) d+ (xα0t
−1 +

n∑
i=1

x−αi)
dt

t
.

This connection has a regular singularity at ∞ and an irregular singularity at 0.2 It is
the de Rham analogue of the Kloosterman sheaf; in particular, it is cohomologically rigid.

We define a formal Frenkel-Gross connection to be one which is isomorphic to the induced
formal connection at 0 of the global Frenkel-Gross connection:

Definition 4. A formal flat G-bundle is called a formal Frenkel-Gross connection if it is
isomorphic to d+ (xα0t

−1 +
∑n

i=1 x−αi)
dt
t for some choice of nonzero vectors x−αi ∈ u−αi

and xα0 ∈ uα0.

A priori, we have many different formal Frenkel-Gross connections as we can multiply
each x−ai and xα0 by nonzero complex numbers. However, as we shall see, it is sufficient
to fix one such (n + 1)-tuple and multiply it by nonzero scalars; see Example 18. More
precisely, let S be the connected centralizer of the regular element xα0t

−1 +
∑n

i=1 x−αi ; it
is a Coxeter torus (see §3.2). The relative Weyl group WS = N(S)/S is a cyclic group of
order h′ dividing h. We will show that any formal Frenkel-Gross connection is isomorphic
to d+ λ(xα0t

−1 +
∑n

i=1 x−αi)
dt
t for some λ ∈ C∗. Moreover, the connections associated to

λ and λ′ are isomorphic if and only if λ′/λ ∈ µh′ , the h′th roots of unity. In other words,
the set of isomorphism classes of formal Frenkel-Gross connections is isomorphic to C∗/µh′ .
(Of course, this space is homeomorphic to C∗. To get a set of representatives indexed by
C∗, one fixes the x−αi ’s and multiplies xα0 by a constant.)

We are now ready to state the companion result to Theorem 2:

Theorem 5. Let G be a simple group, and let (E,∇) be an formal flat G-bundle. Then the
following are equivalent:

(1) Irr(Ad(∇)) = rank(G);
(2) slope(∇) = 1

h ;
(3) ∇ is a formal Frenkel-Gross connection.

We remark that the proofs of the two theorems use quite different methods. The proof
of Theorem 2 makes use of the classical Levelt-Turritin theory of Jordan forms for formal
flat G-bundles. This allows us to translate the desired inequality into a statement about
eigenvectors of elements of finite real reflection groups; see also [Kam16b]. We check this
explicitly for each type. The statement makes sense in the context of complex reflection
groups as well, and we conjecture that it holds in general. In contrast, our proof of Theorem
5 requires non-classical methods. Indeed, the proof uses the full power of the geometric
theory of fundamental and regular strata for formal flat G-bundles developed in [BS18,
BS14].

1.4. A de Rham analogue of a conjecture of Heinloth, Ngo, and Yun. In [HNY13,
§7.1], the authors have conjectured that the Kloosterman sheaves are the only `-adic local
systems on P1 \ {0,∞} with certain prescribed behaviour at the marked points. They also
gave an analogous construction of Kloosterman D-modules and conjectured that they were
the same as global Frenkel-Gross connections. This was subsequently proved by Zhu [Zhu17].
Accordingly, one can translate the conjecture of Heinloth, Ngô, and Yun on Kloosterman
sheaves into the de Rham setting as follows:

2The connection in [FG09] has the irregular singularity at ∞ and the regular singularity at 0.
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Conjecture 6 (De Rham analogue of Conjecture 7.2 of [HNY13]). Let ∇ be a G-connection
on P1 which is regular away from {0,∞} and satisfies

• ∇∞ is regular singular with principal unipotent monodromy.
• ∇0 is irregular with irregularity equal to r = rank(G).

Then ∇ is isomorphic to a global Frenkel-Gross connection.

Theorem 7. Conjecture 6 holds for G = SLn.

Proof. By Theorem 5, there exists a (global) Frenkel-Gross SLn-connection ∇FG such that
∇0 ' ∇FG

0 . Moreover, since ∇ and ∇FG are both regular singular at ∞ and have the same
monodromy, we have ∇∞ ' ∇FG

∞ . According to [FG09], the Frenkel-Gross connection ∇FG

is cohomologically rigid. In fact, Katz’s rigidity theorem [Kat90, Theorem 3.7.3] shows that
∇FG is also cohomologically rigid when viewed as a GLn-connection. To apply this theorem,
we need to observe that ∇FG is irreducible as a GLn-connection and that χ(Gm,∇FG) = −1,
where χ is the Euler characteristic. The first fact is easy; it is even true of the localization
∇FG

0 . The second follows from Deligne’s formula for the Euler characteristic [Del70, §6.19,
(6.21.1)]:

χ(Gm,∇FG) = χ(U)rank(∇FG)− Irr(∇FG
0 )− Irr(∇FG

∞ ) = 0− 1− 0 = −1.

By the main result of [BE04], ∇FG is physically rigid when viewed as a GLn-connection.
This implies that there exists g ∈ GLn(C[t, t−1]) such that g.∇ = ∇FG, where the action is
gauge transformation as in (1). It remains to show that g can be chosen to be in SLn. To
this end, let us write

g = z−1g′, g′ ∈ SLn(C[t, t−1]), z = diag(det(g)−1, 1, 1, ..., 1).

Then, we have

g′.∇ = z.∇FG = ∇FG − (dz)z−1 =⇒ g′.∇−∇FG = −(dz)z−1.

Now, observe that the matrix of the connection g′.∇ −∇FG is traceless. This means that
the (dz)z−1 is traceless and diagonal, hence zero. Thus, g′.∇ = ∇FG, so ∇ and ∇FG are
equivalent as SLn-connections. �

1.5. Further directions. We observe that our characterization of the formal Frenkel-Gross
connection makes explicit the notion that it should be viewed as the geometric version of
the simple wild parameters of Gross and Reeder. This perspective also suggests a potential
generalization of the results of this paper. Reeder and Yu have constructed epipelagic
representations of p-adic groups, certain supercuspidal representations which generalize
Gross and Reeder’s simple supercuspidals [RY14]. This theory has been used by Yun in his
construction of generalized Kloosterman sheaves [Yun16]. Reeder has very recently shown
that the corresponding epipelagic Langlands parameters also are the parameters for which
equality holds in a certain inequality involving the Swan conductor [Ree16].

The theory of regular strata suggests that the geometric analogue of epipelagic parameters
are elliptic toral connections with minimal (positive) slope. In fact, regular strata can also be
used to construct de Rham analogues of generalized Kloosterman sheaves, whose irregular
singularity is a formal connection of such a type. (Yun has also accomplished this through
his notion of θ-connections, cf. [Che15].) We expect that these formal connections can be
characterized as those connections for which equality holds in a more complicated inequality
involving the adjoint irregularity. We will consider this issue in a future paper.
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1.6. Organization and Notation. In §2, we review the Jordan form (aka the Levelt-
Turrittin form) of a formal flat G-bundles. Using this, we give alternative definitions of
slope and irregularity. Properties of formal Frenkel-Gross connections are established in §3.
We use the theory of fundamental strata for formal connections [BS14,BS18] to prove that
every connection with slope 1/h is a formal Frenkel-Gross connection. In §4, we prove a
result about Weyl groups which will be crucial for our main theorems. Finally, we prove
Theorem 2 and 5 in §5.

Throughout the paper, G denotes a connected complex reductive group with Lie algebra
g; unless otherwise specified, we assume that G is simple. We fix a Borel subgroup B with
maximal torus H and unipotent radical N ; the corresponding Lie algebras are denoted by
b, h, and n. As in §1.3, Φ and ∆ = {α1, . . . αn} are the corresponding sets of roots and
simple roots, and W is the Weyl group. When Φ is irreducible, we let α0 be the highest
root of Φ. We denote the root subalgebras of g by uα.

1.7. Acknowledgements. We would like to thank Chris Bremer, Tsao-Hsien Chen, and
Dick Gross for helpful conversations regarding this project. The first author would like
to thank Jim Humphreys, Gus Lehrer, Peter McNamara, Chul-hee Lee, Daniel Sage, and
Ole Warnaar for helpful discussions regarding reflection groups. MK is supported by the
Australia Research Council DECRA Fellowship. DS is supported by an NSF Grant and a
Simons Collaboration Grant.

2. Jordan decomposition for formal connections

In this section, we recall some basic facts regarding formal flat G-bundles. Here, G is not
assumed to be simple.

2.1. Jordan decomposition. For each positive integer b, let Kb = C((t
1
b )) denote the

unique finite extension of K of degree b and let D×b denote the corresponding punctured

disk. Let πb : D×b → D× denote the canonical covering map. Given a flat G-bundle (E,∇),

we denote by (π∗bE, π
∗
b∇) its pullback to D×b . For ease of notation, we sometimes use the

substitution u = t
1
b .

Theorem 8. Let (E,∇) be a formal flat G-bundle. Then there exists a positive integer b
and a trivialization of π∗bE in which π∗b∇ can be written as

(3) π∗b∇ = d+ (h+ n)
du

u
, h ∈ h[u−1], n ∈ n(C),

and h and n commute. Moreover, the pair h and n satisfying the above properties is unique.

Definition 9. We call d+ (h+ n)duu the Jordan form of the formal flat connection (E,∇).

For G = GLn, the existence of the trivialization with the properties in the above theorem
was first proved by Turrittin [Tur55]. Subsequently, Levelt proved uniqueness [Lev75].
Babbitt and Varadarajan [BV83] have given an alternative proof of this fact. In addition,
following a suggestion of Deligne, they showed that the above theorem also holds for G an
arbitrary reductive group [BV83, §9].

2.2. Slope. Using the Jordan decomposition, we can give an alternative definition of the
slope of a formal flat G-bundle. If z is a Laurent series, we let ordpole(z) ∈ Z≥0 denote the
order of the pole of z. Clearly, z is a power series (i.e., has no singularity) if and only if
ordpole(z) = 0.
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Let (E,∇) be a formal flat G-bundle and let d+ (h+n)duu denote its Jordan form, where

u = t
1
b for some b ∈ Z≥1.

Definition 10. The non-negative rational number s = max{0, ordpole(h)
b } is called the slope

of ∇.

It is immediate that this definition coincides with the one given in the introduction when
h 6= 0, since the leading term of h+n is evidently non-nilpotent. If h = 0, then ∇ is regular
singular, and both definitions give 0. We will also need an equivalent definition of the slope
given in terms of fundamental strata [BS18]; this will be discussed in §3. For yet another
equivalent definition, see [CK16, §2].

2.3. Irregularity. Let G = GLn, and let B (resp. H) denote the upper triangular (resp.
diagonal) matrices. Let (E,∇) be a formal flat G-bundle (equivalently, a vector bundle on
D× equipped with a connection). Let d+ (h+ n)duu denote its Jordan form with respect to

the above choice of B and H. (Recall that u = t
1
b for some b ∈ Z≥1.) Since h is diagonal,

we can write
h = diag(h1, · · · , hn), hi ∈ C[u−1].

Definition 11. The irregularity of (E,∇) is defined by

Irr(∇) =
n∑
i=1

{max{0,
ordpole(hi)

b
}}.

One can show that Irr(∇) ∈ Z≥0 and that this integer coincides with the one defined in
the introduction.

3. Irregular connections with minimum slope

In §1.3, we introduced the notion of a formal Frenkel-Gross connection. In this section,
we will characterize these connections as the irregular flat G-bundles on D× with minimum
slope, i.e., with slope 1/h, where h is the Coxeter number of G.

Recall from §1.3 that the connected centralizer of the matrix of a Frenkel-Gross connection
is a maximal torus of G(K) called a Coxeter torus; its relative Weyl group is a cyclic group
of order h′ dividing h.

Proposition 12. For a flat G-bundle ∇ = (E,∇) the following are equivalent:

(i) ∇ is isomorphic to a Frenkel-Gross connection;
(ii) The slope of ∇ equals 1

h .

Moreover, the set of isomorphism classes of such flat G-bundles is in bijection with C∗/µh′.
Finally, for each such connection, Irr(Ad(∇)) = rank(G).

In order to prove the proposition, we will need to recall some of the geometric theory of
fundamental strata from [BS18,BS14].

3.1. Fundamental strata. Let B be the Bruhat-Tits building of G; it is a simplicial
complex whose facets are in bijective correspondence with the parahoric subgroups of the
loop group G(K). The standard apartment A associated to the split maximal torus H(K)
is an affine space isomorphic to X∗(H) ⊗Z R. Given x ∈ B, we denote by G(K)x (resp.
g(K)x) the parahoric subgroup (resp. subalgebra) corresponding to the facet containing x.

For any x ∈ B, the Moy-Prasad filtration associated to x is a decreasing R-filtration

{g(K)x,r | r ∈ R}
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of g(K) by C[[t]]-lattices. The filtration satisfies g(K)x,0 = g(K)x and is periodic in the
sense that g(K)x,r+1 = tg(K)x,r. Moreover, if we set g(K)x,r+ =

⋃
s>r g(K)x,s, then the set

of r for which g(K)x,r 6= g(K)x,r+ is a discrete subset of R.
For our purposes, it will suffice to give the explicit definition for x ∈ A. In this case, the

filtration is determined by a grading on g(C[t, t−1]), with the graded subspaces given by

g(K)x(r) =


htr ⊕

⊕
α(x)+m=r

uαt
m, if r ∈ Z

⊕
α(x)+m=r

uαt
m, otherwise.

Let κ be the Killing form for g. Any element X ∈ g(K) gives rise to a continuous C-linear
functional on g(K) via Y 7→ Resκ(Y,X)dtt . This identification induces an isomorphism

(g(K)x,r/g(K)x,r+)∨ ∼= g(K)x,−r/g(K)x,−r+.

The leading term of a connection with respect to a Moy-Prasad filtration is given in
terms of G-strata. A G-stratum of depth r is a triple (x, r, β) with x ∈ B, r ≥ 0, and
β ∈ (g(K)x,r/g(K)x,r+)∨. Any element of the corresponding g(K)x,−r+-coset is called a

representative of β. If x ∈ A, there is a unique homogeneous representative β[ ∈ g(K)x(−r).
The stratum is called fundamental if every representative is non-nilpotent. When x ∈ A, it
suffices to check that β[ is non-nilpotent.

Definition 13. If x ∈ A ∼= hR, we say that (E,∇) contains the stratum (x, r, β) with respect
to the trivialization φ if [∇τ ]φ − x ∈ g(K)x(−r) and is a representative for β. (See [BS18]
for the general definition.)

We recall some of the basic facts about the relationship between flat G-bundles and
strata:3

Theorem 14 ([BS18, Theorem 2.8]). Every flat G-bundle (E,∇) contains a fundamental
stratum (x, r, β), where x is in the fundamental alcove C ⊂ A and r ∈ Q; the depth r is
positive if and only if (E,∇) is irregular singular. Moreover, the following statements hold.

(1) If (E,∇) contains the stratum (y, r′, β′), then r′ ≥ r.
(2) If (E,∇) is irregular singular, a stratum (y, r′, β′) contained in (E,∇) is fundamental

if and only if r′ = r.

As a consequence, one can define the slope of ∇ as the depth of any fundamental stratum
it contains.

As an example, let xI be the barycenter of the fundamental alcove in A, which corresponds
to the standard Iwahori subgroup. It is immediate from the definition that g(K)xI (−1/h) =
t−1uα0 ⊕

⊕n
i=1 u−αi . One now sees that a Frenkel-Gross connection contains a stratum of

the form (xI ,
1
h , β). This stratum is fundamental; in fact, β[ is regular semisimple. In

particular, the slope of a formal Frenkel-Gross connection is 1
h . We note that Frenkel and

Gross derived this directly from the definition of slope given in the introduction.

3.2. Regular strata and toral flat G-bundles. We will also need some results on flat
G-bundles which contain a regular stratum, a kind of stratum that satisfies a graded version
of regular semisimplicity. For convenience, we will only describe the theory for strata based
at points in A.

3This theorem and Theorem 17 remain true for reductive G.
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Let S ⊂ G(K) be a (in general, non-split) maximal torus, and let s ⊂ g(K) be the
associated Cartan subalgebra. We denote the unique Moy-Prasad filtration on s by {sr}.
More explicitly, we first observe that if S is split, then this is just the usual degree filtration.
In the general case, if Kb is a splitting field for S, then sr consists of the Galois fixed points
of s(Kb)r. Note that sr 6= sr+ implies that r ∈ Z1

b .
A point x ∈ A is called compatible with s if sr = g(K)x,r ∩ s for all r ∈ R.

Definition 15. A fundamental stratum (x, r, β) with x ∈ A and r > 0 is an S-regular

stratum if x is compatible with S and S equals the connected centralizer of β[.

In fact, every representative of β will be regular semisimple with connected centralizer a
conjugate of S.

Definition 16. If (E,∇) contains the S-regular stratum (x, r, β), we say that (E,∇) is
S-toral.

Recall that the conjugacy classes of maximal tori in G(K) are in one-to-one correspon-
dence with conjugacy classes in the Weyl group W [KL88]. It turns out that there exists
an S-toral flat G-bundle of slope r if and only if S corresponds to a regular conjugacy class
of W and e2πir is a regular eigenvalue for this class [BS14, Corollary 4.10]. Equivalently,
s−r \ s−r+ contains a regular semisimple element. For example, a Frenkel-Gross connection
is S-toral for S a Coxeter torus, i.e., a maximal torus corresponding to the Coxeter con-
jugacy class in W . (One way to see this is that e2πi/h is a regular eigenvalue for Coxeter
elements and for no other elements of W .) Moreover, since the regular eigenvalues of a Cox-
eter element are the primitive hth roots of 1, the possible slopes for S-toral flat G-bundles
are m/h with m > 0 relatively prime to h.

An important feature of S-toral flat G-bundles is that they can be “diagonalized” into
s. To be more precise, suppose that there exists an S-regular stratum of depth r. The
filtration on s can be defined in terms of a grading, whose graded pieces we denote by
s(r). Let A(S, r) be the open subset of

⊕
j∈[−r,0] s(j) whose leading component (i.e., the

component in s(−r)) is regular semisimple. This is called the set of S-formal types of depth
r. Let W aff

S = N(S)/S0 be the relative affine Weyl group of S; it is the semidirect product

of the relative Weyl group WS and the free abelian group S/S0. The group W aff
S acts on

A(S, r). The action of WS is the restriction of the obvious linear action while S/S0 acts by
translations on s(0).

Theorem 17. [BS14, Corollary 5.14] If (E,∇) is S-toral of slope r, then ∇ is gauge-
equivalent to a connection with matrix in A(S, r)dtt . Moreover, the moduli space of S-toral

flat G-bundles of slope r is given by A(S, r)/W aff
S .

Example 18. Let S be a Coxeter maximal torus. After conjugating, we may assume that
it is the connected centralizer of the matrix ζ dtt of a Frenkel-Gross connection with ζ =

xα0t
−1 +

∑n
i=1 x−αi ∈ t−1uα0 ⊕

⊕n
i=1 u−αi . In this case, xI is graded compatible with s,

i.e., s(r) = gxI (r) ∩ s for all r. It is easy to see that S is elliptic. Indeed, an element of
s(0) ⊂ gxI (0) = h would commute with the principal nilpotent element N =

∑n
i=1 x−αi .

However, sinceG is simple, z(N) is a subset of n̄, the nilpotent radical of the Borel subalgebra
opposite to b, so s(0) = {0}. This means that the action of S/S0 on A(S, mh ) is trivial, so
the moduli space of S-toral flat G-bundles of slope m/h is just A(S, mh )/WS .

Whenm = 1, we may be entirely explicit. First, we show that s(−1/h) is one-dimensional.
Suppose that yα0t

−1 +N ′ ∈ s−1/h ⊂ gxI (−1/h); here, yα0 ∈ uα0 and N ′ ∈ gxI (−1/h) ∩ n.
Since N is regular nilpotent and [N,N ′] = 0, N ′ = λN for some λ ∈ C. It follows that
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[N,λxα0 −yα0 ] = 0, so z(N) ⊂ n̄ implies yα0 = λxα0 . Next, WS is isomorphic to a subgroup
of the centralizer of a Coxeter element in W [BS14, Proposition 5.9], so WS is a cyclic group
of order h′|h. Since nonzero elements of s(−1/h) are regular semisimple, WS acts freely on
it. Thus, the moduli space A(S, mh )/WS is isomorphic to C∗/µh′ .
3.3. Proof of Proposition 12. We will begin the proof of the proposition with two lem-
mas.

Lemma 19. If (E,∇) is an S-toral flat G-bundle of slope r, then Irr(Ad(∇)) = r|Φ|.4 In
particular, a Frenkel-Gross connection has irregularity r = rank(G).

Proof. Suppose that S splits over the degree b extension Kb with uniformizer u such that
ub = t. The pullback connection ∇′ is toral for a split maximal torus. Accordingly, we
can choose a trivialization for which [∇′] = X dt

t , where X ∈ h(Kb) with regular semisimple
leading term; moreover, for each root α, α([X]) has valuation −rb. Thus, the adjoint
connection of ∇′ is the direct sum of |Φ| flat line bundles of slope rb and n trivial flat line
bundles. It follows that the irregularity of Ad(∇) is |Φ|rb/b as desired.

If ∇ is a Frenkel-Gross connection, it is S-toral with S a Coxeter maximal torus and has
slope 1/h. Since |Φ|/h = n, Irr(Ad(∇)) = n. �

Now, let ∇ be a flat G-bundle of slope 1/h. We want to show that ∇ must be a formal
Frenkel-Gross connection. The fact that the slope of ∇ equals 1/h means that ∇ contains
a fundamental stratum (x, 1/h, β) for some x ∈ B with respect to some trivialization. By
equivariance, we can assume that x lies in the fundamental alcove C corresponding to the
standard Iwahori subgroup I. Let xI be the barycenter of C.

Lemma 20. The barycenter xI is the unique point x ∈ C for which there exists a funda-
mental stratum of the form (x, 1/h, β).

Proof. Suppose there is a fundamental stratum of depth 1/h based at x. Since x ∈ C,
αi(x) ≥ 0 for 1 ≤ i ≤ n and α0(x) ≤ 1. This implies that if α is positive (resp. negative),
then α(x) ∈ [0, 1] (resp. α(x) ∈ [−1, 0]. As a result,

gx(−1/h) =
⊕

{α<0|α(x)=−1/h}

uα ⊕
⊕

{α>0|α(x)=1−1/h}

t−1uα.

Let I = {i ∈ [1, n] | αi(x) ≤ 1/h}, and let J = Ic. Let pI be the standard parabolic subal-
gebra generated by b and those uαi with i ∈ I. We denote its standard Levi decomposition
by pI = lI ⊕ nI .

Since gx(−1/h) contains a non-nilpotent element, there must exist a positive root α with
α(x) = 1 − 1/h. (Otherwise, gx(−1/h) is contained in n̄.) Since any positive root is the
sum of at most h− 1 simple roots, either the decomposition of α into simple roots involves
αj for j ∈ J or else J is empty, αi(x) = 1/h for all i, and α = α0. The second case is just
x = xI .

It remains to show that J cannot be nonempty. If not, then we see that gx(−1/h) ⊂
(l ∩ n̄) ⊕ nI . However, if X ∈ pI is the sum of a nilpotent element of lI and an element in
nI , it is nilpotent. Thus, every element of gx(1/h) is nilpotent, a contradiction. �

Remark 21. A similar argument gives another proof that 1/h is the smallest possible slope
of an irregular singular flat G-bundle. Indeed, if this were false, then there would exist a
fundamental stratum (x, r, β) with x ∈ C and 0 < r < 1/h. Setting I = {i ∈ [1, n] | αi(x) ≤
r}, we obtain that for any α > 0 coming from lI , α(x) ≤ (h − 1)r < 1 − 1/h < 1 − r. It
follows that gx(−r) ⊂ (l ∩ n̄)⊕ nI consists entirely of nilpotent elements, a contradiction.

4In particular, r|Φ| is an integer.
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We now know that ∇ contains a fundamental stratum (xI , 1/h, β) so that the leading
term of [∇] with respect to the xI filtration has the form (t−1y0 +

∑n
i=1 yi)

dt
t with y0 ∈ uα0

and yi ∈ u−αi for i ≥ 1. In order for this element to be non-nilpotent, every yi must be
nonzero. Indeed, if some yi equals 0, then the remaining n roots are a base for a maximal
rank reductive subalgebra of g, so that the leading term is nilpotent, a contradiction.

We thus have each yi nonzero. It follows that this leading term is regular semisimple
with centralizer a Coxeter maximal torus S with Lie algebra s. The unique Moy-Prasad
filtration on s is induced by a grading with degrees in 1

hZ. By Theorem 17, after applying

a gauge change, one can assume that [∇] ∈ (s(−1/h)⊕ s(0))dtt . However, since G is simple

and S is elliptic, s(0) = {0}. Hence, ∇ = d + (t−1x0 +
∑n

i=1 xi)
dt
t in this trivialization.

Since t−1x0 +
∑n

i=1 xi ∈ s(−1/h) is regular semisimple, each xi is nonzero, i.e., ∇ is a
Frenkel-Gross flat G-bundle. In fact, as shown in Example 18, s(−1/h) is one-dimensional,
and the cyclic group WS

∼= µh′ acts freely on s(−1/h) \ {0}. Thus, the set of isomorphism
classes of Frenkel-Gross connection is isomorphic to C∗/µh′ . This concludes the proof of
the proposition. �

4. A key result about Weyl groups

For the remainder of the paper, let G be a simple complex algebraic group of rank r.
Recall that |Φ| = hr.

4.1. Statement of the result. For x ∈ h, define a non-negative integer

(4) N(x) := |{α ∈ Φ |α(x) 6= 0}|.

The stabilizer Wx of x is a parabolic subgroup generated by the set Φx for which α(x) = 0,
so that N(x) = |W | − |Wx|.

For each positive integer b, let V (b) ⊆ h denote the union of all the eigenspaces of elements
of W with eigenvalue a primitive bth root of unity, i.e.

V (b) = {x ∈ h |wx = ζx for some w ∈W and some primitive bth root of unity ζ}.

Let d1, . . . , dm be the degrees of W , and choose Q1, . . . , Qm ∈ C[h]W homogeneous polyno-
mials with deg(Qi) = di that generate C[h]W . It is a result of Springer [Spr74, Proposition
3.2] that

(5) V (b) =
⋂
b-di

{x | Q(x) = 0}.

In particular, V (b) = {0} unless b divides an exponent of W , so V (b) nonzero implies that
b ≤ h.

The following result will play a key role for us:

Theorem 22. Let b be a positive integer, and suppose x ∈ V (b) \ {0}. Then N(x) ≥ br.
Moreover, equality is achieved if and only if b = h, in which case x is a regular eigenvector
for a Coxeter element of W .

For more details about this result, including its relation with previous results on eigen-
values of Coxeter elements, we refer the reader to [Kam16b].

We remark that the case b = h is a theorem of Kostant [Kos59, §9], so in what follows,
we assume that b < h. We now discuss the proof, which uses a case by case analysis.



12 MASOUD KAMGARPOUR AND DANIEL S. SAGE

4.2. Proof for classical groups. The proof in the classical types proceeds as follows.
First, we rule out small values of b. Next, we note that x must be a root of a certain class
of polynomials. Finally, we analyze the roots of these polynomials and show that their
stabilizers in W can never be “too big”. To illustrate this, we give the complete proof for
G = SLn. The adaptation to other classical groups is straightforward.

Let V be the subspace of the Rn consisting of n-tuples (x1, · · · , xn) satisfying
∑
xi = 0.

Here, the Weyl group is Sn. It will be convenient to take the coefficients of the characteristic
polynomial as the invariant polynomials on g and on h. Up to sign, these are the elemen-
tary symmetric polynomials: if x = diag(x1, · · · , xn) ∈ h ∼= VC, then the characteristic
polynomial of x is

P (X) =
∑

ciX
i,

where c1 = −
∑
xi = 0, · · · , cn = (−1)nx1 · · ·xn.

Lemma 23. Suppose x ∈ V (b). Then, there exists 1 ≤ k ≤ n
b and complex numbers ai such

that the xi’s are the roots of the polynomial

(6) P (X) := Xn + a1X
n−b + · · ·+ akX

n−bk, ak 6= 0.

Proof. Indeed, suppose x = (x1, · · · , xn) ∈ V (b). Then by (5), ci = 0 for all i with b - i.
Now take ai = cn−bi. �

Let x ∈ VC be a non-zero element, so that Wx is a proper parabolic subgroup. It is easy
to check that the proper parabolic of W with the largest number of roots is isomorphic to
Sn−1. Thus, for all non-zero x ∈ VC, we have

|Φ| − |Φx| ≥ n(n− 1)− (n− 1)(n− 2) = 2(n− 1) > (n− 1).

Therefore, the theorem is evident for b = 1.
Henceforth, we assume 1 < b < n, so n ≥ 3. Let P (X) denote the polynomial in the

above lemma. Let γ1, · · · , γk denote the roots of the polynomial

Q(Y ) := Y k + a1Y
k−1 + · · ·+ ak.

Since ak 6= 0, we have that γi 6= 0 for all i. Let ζ be a primitive bth root of unity. Then, the
roots of P (X) equal

ζiγj , i ∈ {1, 2, · · · , b}, j ∈ {1, 2, · · · , k}
together with n− kb copies of 0.

Note that the largest possible stabilizer for x (for fixed b) is achieved if and only if
ζi1γ1 = ζi2γ2 = · · · = ζikγk for some integers i1, · · · , ik. In this case,

Wx ' (Sk)
b × Sn−bk.

Thus, for every non-zero x ∈ VC, we have

N(x) = |Φ| − |Φx| ≥ |ΦSn | − |Φ(Sk)b×Sn−bk
|

= n(n− 1)− [bk(k − 1) + (n− kb)(n− kb− 1)]

= 2kbn− k2b2 − bk2.

We claim that N(x) > b(n− 1). Indeed, if k = 1, then since b < n,

N(x) = 2bn− b2 − b > b(n− 1).

On the other hand, if k > 1, then

N(x) = 2kbn− k2b2 − bk2 ≥ b(2kn− kn− k2) > b(n− 1).
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Here, the first inequality follows from the fact that bk ≤ n. The second inequality is
equivalent to

n(k − 1) > (k − 1)(k + 1) ⇐⇒ n > k + 1,

which is true because k ≤ n
2 and n ≥ 3. This completes the proof for G = SLn. �

4.3. Proof in the exceptional cases. Next, we turn our attention to the proof in the
exceptional cases. We provide the complete proof for E6. The proof for the other exceptional
types is similar, but easier.

Recall that E6 has 72 roots and its degrees are 2, 5, 6, 8, 9, and 12. It is easy to check
that the proper parabolic of E6 with the largest number of roots is D5 with 40 roots. Thus,
for all non-zero x ∈ VC, we have

N(x) ≥ 72− 40 = 32 > 5× 6,

so the claim holds for b ≤ 5.
Now, assume b > 5. Let Q denote the unique, up to scalar, homogeneous quadratic

invariant polynomial. If x is an eigenvector with eigenvalue a primitive bth root of unity,
then Q(x) = 0, because b - 2 = deg(Q). Using this fact, it is easy to show that the stabilizer
Wx must be a parabolic subgroup of rank ≤ 4, cf. [Kam16b, Corollary 5]. The maximum
number of roots in a parabolic subgroup of E6 of rank ≤ 4 is 24 (for D4). Thus,

(7) N(x) ≥ 72− 24 = 48 > 6× 6,

so the result is also true for b = 6.
The remaining cases are b = 8 and b = 9. Let x ∈ V (9) be a non-zero element. One

can show that if x is not regular, then there exists a proper parabolic subgroup of W with
a degree divisible by 9. But there is no such parabolic subgroup of E6. Thus, x must be
regular, and so the theorem is immediate.

It remains to treat the case b = 8. Suppose x is a non-regular non-zero element of V (8).
One can show (cf. [Spr74, Lemma 4.12]) that there exists a proper parabolic subgroup
P < W and w ∈ P such that

w · x = ζx,

where ζ is a primitive 8th root of unity.
Now, the parabolic P must have a degree divisible by 8. The only possibility is P ' D5. In

this case, however, 8 is the highest degree of P , and so, by a theorem of Kostant [Kos59, §9],
x is regular for the reflection action of P . In particular,

α(x) 6= 0, for all roots α of P .

It follows that α(x) is zero for at most one simple root of W . Hence, either x is regular or
Wx ' A1. In both cases, we have N(x) > 6× 8. �

4.4. Conjugacy classes over Laurent series. We record an application of Theorem 22
to the study of rationality of conjugacy classes over Laurent series.

Corollary 24. Suppose that Y ∈ g(K̄) is conjugate to an element of g(K) and that the
semisimple part X of Y lies in h(K̄). Suppose

X = xta/b + higher order terms, x ∈ h \ {0}, gcd(a, b) = 1.

Then, N(x) ≥ br. Moreover, equality is achieved if and only if b = h is the Coxeter number,
Y = X, and x is a regular eigenvector of a Coxeter element of W .
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Proof. We first observe that it suffices to assume that Y is semisimple. Indeed, if Ad(g)(Y ) ∈
g(K), then the semisimple part of Ad(g)(Y ) is Ad(g)(X). Since K is perfect, Ad(g)(X) ∈
g(K) [Bor91, Theorem 4.4(2)].

In view of Theorem 22, to obtain the inequality, it is sufficient to show that x ∈ V (b),
i.e., x is an eigenvector for some element of W with eigenvalue a primitive bth root of unity.

Let Q ∈ C[g]G be an invariant homogeneous polynomial of degree d. Note that Q is also
an invariant polynomial on g(K) and g(K̄). Choosing g ∈ G(K̄) such that Ad(g)(X) ∈ g(K),
we see that Q(X) = Q(Ad(g)(X)) ∈ K.

Since xt
a
b is the leading term of X, we have have

Q(X) = Q(xt
a
b ) + higher order terms = t

da
b Q(x) + higher order terms.

Then, for the leading term of the above expression to be in K, we must have

Q(x) = 0 whenever b does not divide d.

Here, we are using the fact that (a, b) = 1. Since C[g]G ' C[h]W , it now follows from (5)
that x ∈ V (b); thus, the inequality is established.

It is immediate from Theorem 22 that N(x) = br if and only if b = h and x is a
regular eigenvector of a Coxeter element. This means that the leading term of X is regular
semisimple, which implies that X itself is regular semisimple. In particular, Y = X.

�

Remark 25. Take X ∈ g(K̄), and let OX ⊂ g(K̄) denote the G(K̄)-orbit of X. Then X
is G(K̄)-conjugate to an element of g(K) if and only if OX is closed under the action of
Gal(K̄/K), i.e., OX is defined over K. To see this, note that the forward implication is
trivial. The converse follows from a theorem of Steinberg, stating that any homogeneous
space defined over a perfect field of cohomological dimension ≤ 1 has a rational point [Ste65,
Theorem 1.9].

4.5. Gauge classes over Laurent series. We record a version of the above corollary for
gauge equivalence classes over Laurent series.

Proposition 26. Let ∇ be an irregular singular connection on D× with Jordan form d +
(X +N)duu . Let xta/b be the leading term of X, with x ∈ h \ {0} and gcd(a, b) = 1. Then,
N(x) ≥ br. Moreover, equality is achieved if and only if b = h, N = 0, and x is a regular
eigenvector of a Coxeter element of W .

Proof. We will show that X is conjugate to an element of g(K); the desired inequality will
then follow by Corollary 24. Let us write

X =
∑
i

xit
ri , xi ∈ h \ {0}, ri ∈ Q≤0.

Since d+ (X +N)duu is G(K̄)-gauge equivalent to the pullback of a connection on D×, the
proposition in §9.8 of [BV83] implies that there exists an integer c ≥ 1 and an element
θ ∈ G such that θc = 1, cri = si ∈ Z, and

Ad(θ)(X) =
∑
i

xit
riωsic =

∑
i

xit
si/cωsic = σc(X).

Here, ωc = e2πi/c and σc is the generator of Gal(Kc/K) defined by t1/c 7→ ωct
1/c. Applying

θ repeatedly, we see that

Ad(θj)(X) = σjc(X), j = 0, . . . , c− 1.
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Since the action of Gal(K̄/K) on X factors through Gal(Kc/K), we have shown that the
Galois orbit of X is contained in Ad(G(K̄))(X). It is now immediate that this adjoint orbit
is defined over K, so by Remark 25, X is conjugate to an element of g(K).

As in the proof of Corollary 24, N(x) = br holds if and only if b = h and x is a regular
eigenvector of a Coxeter element, and this implies that X is regular semisimple. Since N
commutes with X, we obtain N = 0. �

Remark 27. The corollary in §9.8 of [BV83] gives a gauge version of Remark 25. Let
∇ = d + (X + N)duu be a G-connection in Jordan form on D×b for some b; here, ub = t.

Then ∇ is G(K̄)-gauge equivalent to the pullback of a connection on D× if and only if the
gauge class of ∇ is closed under the action of Gal(K̄/K).

5. Proofs of the main theorems

5.1. Proof of Theorem 2. Let (E,∇) be an irregular singular formal flat G-bundle. Let

d+(X+N)duu denote the Jordan form of ∇, where u = t1/b, X ∈ h(C[t−
1
b ]), and N ∈ n(C).

Let xt−k/b be the leading term of X. Since ∇ is irregular singular, k > 0, so by Proposition
26, N(x) ≥ br.

Now, we consider the adjoint connection. By uniqueness of the Jordan form, d+(Ad(X)+
Ad(N))duu is the Jordan form for Ad(∇). We view Ad(X) as a matrix in terms of a basis for
g consisting of weight vectors. In this basis, Ad(X) is clearly diagonal, and the irregularity is
the sum of the order of the poles of the diagonal entries. If α(x) 6= 0, then the corresponding
diagonal element has a pole of order k/b, thereby contributing k/b ≥ 1/b to the irregularity.
We thus obtain

(8) Irr(Ad(∇)) ≥ N(x)
k

b
≥ N(x)

b
≥ r.

�

5.2. Proof of Theorem 5. The equivalence (2) ⇐⇒ (3) and the implication (3) =⇒ (1)
have been established in Proposition 12. We will complete the proof of the theorem by
showing that (1) =⇒ (2). Suppose ∇ is a connection with Irr(Ad(∇)) = r. This means
that all the inequalities in (8) are equalities. In particular, we have N(x) = br, implying
that b = h and k = 1. Thus, ∇ has slope 1/h. �
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