STAGGERED SHEAVES ON PARTIAL FLAG VARIETIES

PRAMOD N. ACHAR AND DANIEL S. SAGE

ABSTRACT. Staggered t-structures are a class of t-structures on derived categories of equivariant co-
herent sheaves. In this note, we show that the derived category of coherent sheaves on a partial flag
variety, equivariant for a Borel subgroup, admits an artinian staggered t-structure. As a consequence,
we obtain a basis for its equivariant K-theory consisting of simple staggered sheaves.

RESUME. Les t-structures échelonnées sont certaines t-structures sur des catégories dérivées des fais-
ceaux cohérents équivariants. Nous montrons ici que la catégorie dérivée des faisceaux cohérents sur
une variété de drapeaux partiels, équivariants sous un sous-groupe de Borel, admet une t-structure
échelonnée artinienne. Par conséquent, ’ensemble des faisceaux échelonnés simples constitue une base
pour sa K-théorie équivariante.

Let X be a variety over an algebraically closed field, and let G be an algebraic group acting on X
with finitely many orbits. Let Cof)G(X ) be the category of G-equivariant coherent sheaves on X, and let
DY(X) denote its bounded derived category. Staggered sheaves, introduced in [1], are the objects in the
heart of a certain t-structure on DY(X), generalizing the perverse coherent t-structure [2]. The definition
of this t-structure depends on the following data: (1) an s-structure on X (see below); (2) a choice of a
Serre-Grothendieck dualizing complex wx € D% (X) [4]; and (3) a perversity, which is an integer-valued
function on the set of G-orbits, subject to certain constraints. When the perversity is “strictly monotone
and comonotone,” the category of staggered sheaves is particularly nice: every object has finite length,
and every simple object arises by applying an intermediate-extension (“IC”) functor to an irreducible
vector bundle on a G-orbit.

An s-structure on X is a collection of full subcategories ({€oh(X)<pn}, {€0h% (X)>p})nez, satisfying
various conditions involving Hom- and Ext-groups, tensor products, and short exact sequences. The
staggered codimension of the closure of an orbit ic : C — X, denoted scod C, is defined to be codim C'+n,
where 7 is the unique integer such that i,wx € D(C) is a shift of an object in €oh®(C) <, NEHY (C)>p.
By [1, Theorem 9.9], a sufficient condition for the existence of a strictly monotone and comonotone
perversity is that staggered codimensions of neighboring orbits differ by at least 2. The goal of this note
is to establish the existence of a well-behaved staggered category on partial flag varieties, by constructing
an s-structure and computing staggered codimensions. As a consequence, we obtain a basis for the
equivariant K-theory KZ(G/P) consisting of simple staggered sheaves.

1. A GLUING THEOREM FOR s-STRUCTURES

If X happens to be a single G-orbit, s-structures on X can be described via the equivalence between
QZth(X ) and the category of finite-dimensional representations of the isotropy group of X. In the
general case, however, specifying an s-structure on X directly can be quite arduous. The following
“gluing theorem” lets us specify an s-structure on X by specifying one on each G-orbit.

Theorem 1.1. For each orbit C' C X, let Zc C Ox denote the ideal sheaf corresponding to the closed

subscheme ic : C — X. Suppose each orbit C is endowed with an s-structure, and that i5Zc|c €
Q:Of]G(C)S_l. There is a unique s-structure on X whose restriction to each orbit is the given s-structure.

Proof. This statement is nearly identical to [1, Theorem 10.2]. In that result, the requirement that
itIclc € Cof)G(C)S_l is replaced by the following two assumptions:
(F1) For each orbit C, itZ¢|c € €oh®(C)<o.
(F2) Each F € €0h%(C)<,, admits an extension F; € €oh(C) whose restriction to any smaller orbit
C" c C is in €oh%(C") <.
Condition (F1) is trivially implied by the stronger assumption that it.Z¢|c € QIth(C)S,l. It suffices,
then, to show that (F2) is implied by it as well. Given F € €oh®(C)<y, let G € Coh®(C) be some
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sheaf such that G|c ~ F. Let ¢/ C C \ C be a maximal orbit (with respect to the closure partial
order) such that i%,G|cr ¢ €oh®(C")<,. (If there is no such C’, then G is the desired extension of F,
and there is nothing to prove.) Let v € Z be such that i%,G|cr € €oh%(C')<,. By assumption, we
have v > w. Let ¢’ = G ® Z&'™". Since Z¢|y g is isomorphic to the structure sheaf of X ~ ),
we see that §'|z & ~ G|z & On the other hand, according to [1, Axiom (S6)] (which describes how
tensor products behave with respect to s-structures), the fact that i, Zer|or € €oh®(C”")<_, implies that
i5.G o ~ i85 Glor @ (5 Tor|c)® ™ € €oh%(C")<y. Thus, G is a new extension of F such that the
number of orbits in C' \. C where (F2) fails is fewer than for G. Since the total number of orbits is finite,
this construction can be repeated until an extension JF; satisfying (F2) is obtained. (I

2. TORUS ACTIONS ON AFFINE SPACES

In this section, we consider coherent sheaves on an affine space. Let T be an algebraic torus over an
algebraically closed field &, and let A be its weight lattice. Choose a set of weights A1,..., A\, € A. Let
T act linearly on A™ = Spec k[z1, ..., z,] by having it act with weight A; on the line defined by the ideal
(xj:j#1). Given p € A, let V(p) denote the one-dimensional T-representation of weight p. If X is an
affine space with a T-action, we denote by Ox (u) the twist of the structure sheaf of X by p.

Suppose m < n, and identify A™ with the closed subspace of A™ defined by the ideal (z; : j > m).
Let Z C Opn denote the corresponding ideal sheaf, and let i : A™ < A™ be the inclusion map.

Proposition 2.1. With the above notation, we have
i*T >~ Opm (= Amt1) © - - D Opm (=) and i Opn (1) = Opm (1 + Ayt 4 -+ - M) [m — 1.

Proof. Throughout, we will pass freely between coherent sheaves and modules, and between ideal sheaves
and ideals. In the T-action on the ring R = k[x1,...,2,], T acts on the one-dimensional space kx;
with weight —);. We have i*Z ~ Z/7? ~ (p41,...,2n)/(xiz; : m+1 < i < j < n), so if we let
S =kl[z1,..., 2], we obtain i*Z ~ 2,115 - xS =2 V(A1) @S @ - DV(=A,) ®S.

To calculate i'Opn (1), we may assume that m = n — 1, as the general case then follows by induction.
Recall that i.4'(-) ~ RHom(i,Ogn-1,-). To compute the latter functor, we employ the projective reso-
lution 2, R — R for ,Ogn-1. Now, z,R ~ V(=) ® R, so when we apply Hom(-, V(u) ® R) to this
sequence, we obtain an injective map V(u) ® R — V(i + A,) ® R whose image is V(i + Ay) ® z,R.
The cohomology of this complex vanishes except in degree 1, where we find V(u+ A,) ® R/x, R. Thus,
148" Opn (1) = RHom (i, Ogn—1, Opn () ~ 1.Opn—1 (1 + A\p)[—1], as desired. O

3. $-STRUCTURES ON BRUHAT CELLS

Let G be a reductive algebraic group over an algebraically closed field, and let T' C B C P be a maximal
torus, a Borel subgroup, and a parabolic subgroup, respectively, and let L be the Levi subgroup of P.

Let W be the Weyl group of G (with respect to T'), and let ® be its root system. Let ®T be the set
of positive roots corresponding to B. Let W, C W and ®; C ® be the Weyl group and root system
of L, and let ®p = & U PT. For each w € W, we fix once and for all a representative in G, also
denoted w. Let X, denote the Bruhat cell BwP/P, let X,, denote its closure (a Schubert variety), and
let 4, : Xy — G/P be the inclusion. Note that X = X? if and only if wW, = vW7,.

Let A denote the weight lattice of T', and let p = %Z(I)‘*‘. (For a set ¥ C &, we write Y U” for
Y wew @) For any w € W, we define various subsets of ®* and elements of A as follows:

H(w) = ot Nw(®")  7w(w)= > T(w) My (w) =@ Nw(®" ~®r) 7p(w)=> T (w)

O(w) =T Nw(®) Ow)=> 6(w) Or(w) =2 Nw(® ~®7) Op(w)=>.0r(w)

For any subset ¥ C ®, we define g(¥) = @,cy do- Next, let B, = wBw™!, and let U, denote the
unipotent radical of B,,. Its Lie algebra u,, is described by u,, = g(w(®")). Let (-,-) denote the Killing
form. By rescaling if necessary, assume that (2p,\) € Z for all A € A.

Now, the category Q‘,ahB(Xf,’J) is equivalent to the category PRep(B,, N B) of representations of the

isotropy group B, N B. We define an s-structure on X; via this equivalence as follows:
) Coh®(X2)<p ~ {V € Rep(B, N B) | (A, —2p) < n for all weights A occurring in V'}
Coh®(X2)spn =~ {V € Rep(B, N B) | (A, —2p) > n for all weights A occurring in V'}

Lemma 3.1. For any v,w € W, there is a B,-equivariant isomorphism B,wP/P ~ g(v(© (v~ w))).
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Proof. We have B,wP/P = w - By-1,P/P ~ w - By-1,/(By-1, N P). Since B,-1, N P contains the
maximal torus T, the quotient B,,~1,/(B,-1, N P) can be identified with a quotient of U,,-1,, and hence
of u,-1,. Specifically, it is isomorphic to g(w™'v(®T) \ ®p) ~ glw tv(®T) N (P~ \ D)), so
BywP/P ~w-g(w 'o(®T) N (™ \ ®1)) ~ g(v(Or (v w))). O
In the special case v = wwy, where wy is the longest element of W, the set v(O(v~1w)) is given by
wwo(Or(wo)) =w(®7)Nw(®™ N @) =w(® @) = —1II;(w) UOr(w).

Let Yy, = Byw,wP/P. Applying Lemma 3.1 with v = 1 and with v = wwy, we obtain
(2) Xp~9O©r(w)) and Y, ~ X7 ® (-1 (w)).

Finally, let Z,, denote the ideal sheaf on G/P corresponding to X,,. Since Y,, is open, Proposition 2.1
tells us that iy, 7, |xo ~ €D ) Oxs (a). Since (a, —2p) < 0 for all a € ®F, we see that iy, T, |xs €
QlohB(X;)g_l, and then Theorem 1.1 gives us an s-structure on G/P. Separately, Proposition 2.1 also
tells us that i!w(’)c;/p[codim Xy] is in Q:UhB(G/P)S<7‘—L(w),2p> N Q:UhB(G/P)Z<ﬂ—L(w),2p>. If w is the unique

element of maximal length in its coset wWp, then we have codim X,, = |®1| — ¢(w) and 7 (w) = 7(w).
(See [3, Chap. 2].) Combining these observations gives us the following theorem.

a€lly, (w

Theorem 3.2. There is a unique s-structure on G/P compatible with those on the various X,. If w
is the unique element of mazimal length in wWp,, then the staggered codimension of X,,, with respect to
the dualizing complex Ogp, is given by scod Xy, = |®T| — L(w) + (7(w), 2p). O

4. MAIN RESULT

Theorem 4.1. With respect to the s-structure and dualizing complex of Theorem 3.2, DB(G/P) admits
an artinian staggered t-structure. In particular, the set of simple staggered sheaves {ZC(Xy, Oxe (X))},
where X € A, and w ranges over a set of coset representatives of Wy, forms a basis for K2 (G/P).

By the remarks in the introduction, this theorem follows from Proposition 4.6 below. Throughout this
section, the notation “u-v” for the product of u,v € W will be used to indicate that ¢(uv) = £(u) + £(v).
Note that if s is a simple reflection corresponding to a simple root «, ¢(sw) > ¢(w) if and only if « € II(w).

Lemma 4.2. Let s be a simple reflection, and let « be the corresponding simple root. If {(sw) > (w),
then w(sw) = sm(w) + a and 6(sw) = sO(w) + .

Proof. Since II(s) = ®T ~\ {a}, it is easy to see that if a € II(w), then II(sw) = s(II(w) \ {a}), and
hence that 7(sw) = s(w(w) — @) = s7(w) + a. The proof of the second formula is similar. O

Lemma 4.3. For any w € W, we have (m(w),0(w)) = 0.

Proof. We proceed by induction on £(w). If w =1, 8(w) = 0, and the statement is trivial. If £(w) > 1,
write w = s-v with s a simple reflection. Let o be the corresponding simple root. We have (r(w), 8(w)) =
(m(sv),0(sv)) = (sw(v) + a, s6(v) + ), and so

(m(w), 0(w)) = {s(v), 6(v)) + (s7(v), @) + (s6(v), @) + o, @) = (n(v), 8(v)) + (s(2p) + ).

Now, (7(v), 8(v)) vanishes by assumption. Since s permutes ®* \ {a}, and 2p — « is the sum of all roots
in @ < {a}, we see that s(2p — a) = 2p — a. But s(2p — a) = s(2p) + « as well, so we find that

(m(w), 0(w)) = (2p — a, ) = (s(2p — @), ) = (2p — ,50) = —(2p — @, Q).
Comparing the second and last terms above, we see that all these quantities vanish, as desired. (I
Proposition 4.4. If o € I(w) is a simple root, then {«,f(w)) < 0.

Proof. 1t is clear that it suffices to consider the case where W is irreducible. We proceed by induction
on {(w). When w =1, §(w) = 0, so the statement holds trivially. Now, suppose £(w) > 0, and let ¢ be a
simple reflection such that ¢(tw) < ¢(w). Let 8 be the simple root corresponding to . We must consider
four cases, depending on the form of tw.

Case 1. w=1t-v with a € II(v). Then (a, §(tv)) = (o, t0(v) + B) = (te, 8(v)) + (v, ), so («, O(tv)) =
(a = (BY,a)B,0(v)) + (o, B) = (v, 0(v)) — (BY,a)(B,0(v)) + (e, 3). We know that (8Y,a) < 0 and
(a, By < 0. The fact that £(tv) > £(v) implies that 8 € II(v), and o € TI(v) by assumption, so
(a,0(v)) <0 and (8,0(v)) <0 by induction. The result follows.

In the remaining cases, we will have o ¢ II(tw). This implies that s and ¢ do not commute. Let
N = {(a",B){BY,a). We then have N € {1,2,3}, with N = 3 occurring only in type Gs.
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Case 2. w = ts-v with g € II(v). We have («,0(tsv)) = (o, t0(sv) + B) = (a,tsO(v) + ta + () =
(sta,0(v)) + (a, ta+ B). Tt is easy to check that sta = (N —1)a— (3, @), and hence that (sta, 0(v)) =
(N —1){a,0(v)) — (8Y,a)(B,6(v)). Now, € II(v) by assumption, and « € II(v) since £(sv) > £(v), so
(e, 0(v)) < 0and (B,0(v)) <0 by induction. Clearly, N—1 > 0 and (3", a) < 0, so (sta,0(v)) < 0. Next,
we have ta+ 0 = a—(8Y,a) 3+, so (o, ta+ ) = (a, a) — (BY, a){a, B) +{a, §) = @(Z—N—i—(av,ﬁ)).
Recall that (aV, ) € {—1,—N}, so (2— N + (a",)) is either 1 — N or 2 — 2N. In either case, we see
that (a,ta + () < 0. It follows that (a, 0(w)) < 0.

In the last two cases, we assume that G ¢ II(stw). This implies that w = tst - v for some v. We also
have sw = stst - v, so it must be that N > 2.

Case 8. w = tst-v and N = 2. In this case, sw = stst - v = tsts - v, so £(sv) > £(v), and hence
a € II(v). Calculations similar to those above yield that 0(tstv) = tstd(v) + tsfB + ta + 3, and that
(a,tsfB + ta + B) = (o, ) — #(av,@ = 0. Thus, (a,0(tstv)) = {(a,tstd(v)) + (o, ts8 + ta + B) =
(tsta, O(v)). Direct calculation shows that tsta = « (regardless of whether « is a short root or a long
root). Since « € II(v), (@, 8(v)) < 0 by induction, so (@, #(w)) < 0 as well.

Case 4. w =tst-v and N = 3. Since we have assumed that W is irreducible, W must be of type Gs.
Since sw = stst-v, we must have v € {1, s, st}, since ststst is the longest word in W. First suppose v = st.
Since sw is the longest word, we have II(w) = {a}, and hence 8(w) = 2p — @, so Lemma 4.2 implies that
(a, 8(w)) = 0. If v = s, direct calculation gives §(w) = 2p— o — s, and then that (o, 6(w)) = («, 5) < 0.
Finally, if v = 1, we find that 6(w) = 2p — a — s — sta, and again («, 6(w)) < 0. O

Proposition 4.5. Let s be a simple reflection, corresponding to the simple root o.. Let v, w be such that
l(vsw) = £(v) + 1+ L(w). Then {(m(vw),2p) — (r(vsw),2p) = (1 — (aV,0(v~1)))(w™ta,2p) > 0.

Proof. We proceed by induction on £(v). First, suppose that v = 1. Note that (v=1) = 0. Since
2p = m(w) + 6(w), Lemma 4.3 implies that (m(w),2p) = (m(w), 7(w)). Similarly,

(m(sw),20) = {m(s0), m(sw)) = (s7(w) + @, s7(w) + )
= (sm(w), sm(w)) + 2(sm(w), @) + (@, @) = (w(w), w(w)) + 2(7(w), s) + (2p, @)
= (m(w), 2p) = 2(r(w), @) + (m(w) + O(w), @) = (w(w),2p) — (w(w) — O(w), @).

It is easy to see that m(w) — 0(w) = w(2p), whence it follows that (m(w),2p) — (7(sw),2p) = (w™ e, 2p).
Finally, the fact that ¢(sw) > ¢(w) implies that w™la € &+, so (w™ta,2p) > 0.

Now, suppose £(v) > 1, and write v = t - 2, where ¢ is a simple reflection with simple root 5. Using
the special case of the proposition that is already established, we find

(m(zsw), 2p) — (w(txsw),2p) = (w sz ™13, 2p) and (m(zw), 2p) — (w(tzw), 2p) = (w1, 2p).
Combining these with the fact that sz =!8 = 2718 — (a", 27 !8)a, we find

(m(taw),2p) — (w(tzsw), 2p) = ({x(zw),2p) — (z(zsw),2p)) + (w5271 6,2p) — (w™ x5, 2p))
— (1 (0", B ) 20) — (a2 ) (wa 20) = (1 (0¥, 0~) + 1)) (w0, 29).
An argument similar to that of Lemma 4.2 shows that 0(x~!) + 2713 = (z=t) = 0(v~1), so the desired

formula is established. Since £(vs) > ¢(v), we also have £(sv=1) > ¢(v™1), and then Proposition 4.4 tells
us that (o, 0(v™1)) <0. Thus, (r(vw),2p) — (7(vsw),2p) > 0. O

The preceding proposition is a statement about a pair of adjacent elements with respect to the Bruhat
order. It immediately implies that for any v,w € W with v < w in the Bruhat order, (f(v),2p) —
(0(w),2p) > 0. By Theorem 3.2, we deduce the following result, and thus establish Theorem 4.1.

Proposition 4.6. If X, C X,,, then scod X,, — scod X, > 2. O
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