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In recent years, there has been extensive interest in meromorphic con-
nections on curves due to their role as Langlands parameters in the geo-
metric Langlands correspondence. In particular, connections with irregular
singularities are the geometric analogue of Galois representations with wild
ramification.

The classical approach to studying the local behavior of irregular singu-
lar meromorphic connections on curves depends on the leading term of the
connection matrix being well-behaved. Let V be a trivializable vector bun-
dle over P1 endowed with a meromorphic (automatically flat) connection ∇.
Upon fixing a local parameter z at a singular point y and a local trivialization,
one can express the connection near y as

d+ (M−rt
−r +M1−rt

1−r + . . . )
dt

t
, (1)

with Mi ∈ gln(C), M−r 6= 0 and r ≥ 0. From a more geometric point of view,

setting F = C((t)), this formula defines the induced connection ∇̂y on the
formal punctured disk Spec(F ).

When M−r is well-behaved, this leading term contains important in-
formation about the connection. As a first example, if M−r is nonnilpotent,
then the expansion of ∇ at y with respect to any local trivialization must
begin in degree −r or below. Moreover, if ∇̂y is irregular, r is the slope of
the connection at y. (The slope is an invariant introduced by Katz [6] that
gives one measure of how singular a connection is at a given point.)

Much more can be said in the irregular singular nonresonant case when
r > 0 and M−r is regular semisimple. We assume that r > 0 so that we
are in the irregular singular case. In this case, asymptotic analysis [9] guar-
antees that ∇ can be diagonalized at y by an appropriate gauge change so
that ∇ = d + (D−rt

−r + D1−rt
1−r + . . . D0)dt

t , with each Di diagonal. The
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diagonal 1-form here is called a formal type of ∇̂y. When all of the irregular
singularities on a meromorphic connection on P1 are of this form, Boalch has
shown how to construct well-behaved moduli spaces of such connections; he
has further realized the isomonodromy equations as an integrable system on
an appropriate moduli space [1].

However, many interesting connections do not have regular semisimple
leading terms. Consider, for example, the generalized Airy connections:

d+

(
0 t−(s+1)

t−s 0

)
dt

t
= d+

(
0 1
0 0

)
t−(s+1) dt

t
+

(
0 0
1 0

)
t−s

dt

t
, (2)

for s ≥ 0. Note that when s = 1, this is the usual Airy connection with the
irregular singular point at 0 instead of ∞. Also, when s = 0, this is the GL2

version of the Frenkel-Gross rigid flat G-bundle on P1 [7]. For the generalized
Airy connections, the leading term is nilpotent, and it is no longer the case
that one can read off the slope directly from the leading term. Indeed, the
slope is s+ 1

2 , not s+ 1.
In a recent series of papers joint with Bremer [2, 3, 4, 5], we have

generalized these classical results to meromorphic connections on curves (or
even flat G-bundles for reductive G) whose leading term is nilpotent. We
have introduced a new notion of the “leading term” of a formal connection
through a systematic analysis of its behavior in terms of suitable filtrations
on the loop algebra. This theory has already proved useful in applications to
the geometric Langlands program [8].

In this paper, we will illustrate our theory in the case of rank 2 flat vector
bundles, where much of the Lie-theoretic complexity is absent. In this case,
up to GL2(F )-conjugacy, one need only consider two filtrations on gl2(F ),
the degree filtration and the (standard) Iwahori filtration.

Let o = C[[t]] be the ring of formal power series, and let ω = ( 0 1
t 0 ).

Then the Iwahori filtration is defined by

ir =

(
tdr/2eo tbr/2co
tbr/2c+1o tdr/2eo

)
. (3)

Recalling that the standard Iwahori subgroup I ⊂ GL2(o) consisting of the
invertible matrices which are upper triangular modulo t, one sees that i :=
Lie(I) is just i0; moreover, ir = iωr = ωri. A matrix is homogeneous of degree
2s (resp. 2s+1) with respect to the Iwahori filtration if it is in

(
Cts 0
0 Cts

)
(resp.(

0 Cts
Cts+1 0

)
). In particular, the matrix of the generalized Airy connection is

Iwahori-homogeneous of degree 2s+ 1.
The groups GL2(o) and I are examples of “parahoric subgroups”. For

any parahoric P , there is an associated filtration pj of gl2(F ); this filtration
satisfies pj+eP = tpj for eP ∈ {1, 2}. For GL2(o), the filtered subspaces are
tj gl2(o). For simplicity, we will take P to be I or GL2(o) in this paper. Note
eGL2(o) = 1 and eI = 2.

It will be convenient to view any one-form ν ∈ Ω1(gl2(F )) as a contin-
uous C-linear functional on (subspaces of) gl2(F ) via Y 7→ Res TrY ν. Any
such functional on pr can be represented as X dt

t for some X ∈ p−r. For our
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standard examples, a functional β ∈ (pr/pr+1)∨ can be written uniquely as
β[ dt

t for β[ homogeneous.
A GL2-stratum is a triple (P, r, β) with P ⊂ GL2(F ) a parahoric sub-

group, r a nonnegative integer, and β ∈ (pr/pr+1)∨. The stratum is called

fundamental if β[ is nonnilpotent. A formal connection ∇̂ contains (P, r, β) if

∇̂ = d+X dt
t with X ∈ p−r and β is induced by X dt

t . The following theorem
shows that fundamental strata provide the correct notion of the leading term
of a connection.

Theorem 1. Any formal connection ∇̂ contains a fundamental stratum (P, r, β)

with r/eP = slope(∇̂); in particular, the connection is irregular singular if
and only if r > 0. Moreover, if (P ′, r′, β′) is any other stratum contained

in ∇̂, then r′/eP ′ ≥ r/eP with equality if (P ′, r′, β′) is fundamental. The

converse hold if ∇̂ is irregular singular.

The theorem shows that the classical slope of a connection can also be
defined in terms of the fundamental strata contained in it. For flat G-bundles,
the analogous result serves to define the slope [4].

Example 1. The connection in (2) (with the Mi’s in gl2(C)) contains the
stratum (GL2(o), r,M−rt

−r dt
t ); it is fundamental if and only if M−r is non-

nilpotent, in which case the slope is r. If M−r is upper triangular with a

nonzero diagonal entry, then ∇̂ contains a fundamental stratum of the form
(I, 2r, β), where β is induced by the diagonal component of M−rt

−r. Again,
one sees that the slope is 2r/2 = r. On the other hand, if M−r has a nonzero

entry below the diagonal, then ∇̂ contains a nonfundamental stratum of the
form (I, 2r + 1, β′).

Example 2. The generalized Airy connection with parameter s contains the
nonfundamental stratum (GL2(o), s + 1,

(
0 t−(s+1)

0 0

)
dt
t ). It also contains the

fundamental stratum (I, 2s+ 1, ω−(2s+1) dt
t ), whence its slope is s+ 1

2 .

In order to construct well-behaved moduli spaces, we need a condition
on strata that is analogous to the nonresonance condition for diagonalizable
connections. This is accomplished through the notion of a regular stratum.
Let S ⊂ GL2(F ) be a (not necessarily split) maximal torus. Up to GL2(F )-
conjugacy, there are two distinct maximal tori: T (F ) and C((ω)× (nonzero
Laurent series in ω). For our standard examples, we say that (P, r, β) is S-
regular if S is the centralizer of β[. (See [2, 5] for the general definition.)

Example 3. IfM−r is regular semisimple, then the stratum (GL2(o), r,M−rt
−r dt

t )
is Z(M−r)(F )-regular.

Example 4. The stratum (I, 2s+ 1, ω−(2s+1) dt
t ) contained in the generalized

Airy connection is C((ω))×-regular. On the other hand, if (P, r, β) is C((ω))×-
regular, then r/eP ∈ 1

2Z \ Z.

From now on, we assume that S is T (F ) or C((ω))×. Note that s =
Lie(S) is t(F ) and C((ω)) in these two cases, and both are endowed with an
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obvious filtration by powers of t or ω. We call a connection containing an
S-regular stratum S-toral. An S-toral connection can be “diagonalized” into
s = Lie(S). Again, for simplicity, we will only describe what this means for
S equal to T (F ) and C((ω))×. For any r > 0 such that sr contains a regular
semisimple element of homogeneous degree r, one can define a quasiaffine
variety A(S, r) ⊂ sr dt

t of S-formal types of depth r: A(T, r) = {D−rt−r +

· · ·+D0 | Di ∈ t, D−r regular}dtt and A(C((ω))×, 2s+ 1) = {p(ω−1)dt
t | p ∈

C[ω−1],deg(p) = 2s + 1}. We remark that if we set PT (F ) = GLn(o) and

PC((ω))× = I, then an S-formal type Ay = X dt
t of depth r gives rise to the

S-regular stratum (PS , r,X
dt
t ).

Theorem 2. If ∇̂ contains the S-regular stratum (P, r, β), then ∇̂ is P 1 := 1+
p1-gauge equivalent to a unique connection of the form d+A for A ∈ A(S, r)
with leading term β[ dt

t .

Before discussing moduli spaces, we need to define the notion of a fram-
able connection. Suppose that ∇ is a flat G-bundle on P1. Upon fixing a
global trivialization φ, we can write ∇ = d + [∇], where [∇] is the ma-

trix of the connection. Assume that the formal connection ∇̂y at y has for-
mal type Ay. We say that g ∈ GL2(C) is a compatible framing for ∇ at

y if g · ∇̂y contains the regular stratum determined by Ay. For example, if

Ay = (D−rt
−r + · · · + D0)dt

t , then g is a global gauge change such that

g · ∇̂y = d + (D−rt
−r + Xt−r+1)dt

t with X ∈ gl2(o). The connection ∇ is
framable at y if there exists a compatible framing.

We now explain how moduli spaces of connections can be defined for
meromorphic connections ∇ on P1 such that ∇̂y is toral at each irregular
singularity. We also want to allow for regular singular points. If the residue
of a regular singular connection is “nonresonant”, in the sense that the eigen-
values do not differ by a nonzero integer, then its formal isomorphism class
is determined by the adjoint orbit of the residue. Accordingly, our starting
data will consist of:

• A nonempty set {xi} ⊂ P1 of irregular singular points;
• A = (Ai), a set of Si-formal types with positive depths ri at the xi’s;
• A set {yj} ⊂ P1 of regular singular points disjoint from {xi};
• A corresponding collection C = (Cj) of nonresonant adjoint orbits.

Let M(A,C) be the moduli space classifying meromorphic rank 2 con-
nections (V,∇) on P1 with V trivializable such that:

• ∇ has irregular singular points at the xi’s, regular singular points at the
yj ’s, and no other singular points;
• ∇ is framable and has formal type Ai at xi;
• ∇ has residue at yj in Cj .

We will construct this moduli space as the Hamiltonian reduction of a
product over the singular points of symplectic manifolds, each of which is
endowed with a Hamiltonian action of GL2(C). At a regular singular point
with adjoint orbit C, the symplectic manifold is C viewed as the coadjoint
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orbit C dt
t .) The symplectic manifold at an irregular singular point with formal

type A will be denoted MA; it is called an extended orbit. To define it, let
OA be the PS-coadjoint orbit of A|pS

∈ p∨S . If A is a T (F )-formal type, then
MA = OA. The GL2(C)-action is the usual coadjoint action, and the moment
map µA is just restriction of the functional α to gl2(C). The definition is more
complicated when A is a C((t))× formal type. In this case, let B ⊂ GL2(C)
be the upper triangular subgroup. Then, MA = {(Bg, α) | (Ad∗(g)(α))|i ∈
OA)} ⊂ (B\GL2(C))×gl2(o)∨. The group GL2(C) acts on MA via h(Bg, α) =
(Bgh−1, Ad∗(h)α) with moment map µA : (Bg, α) 7→ α|gl2(C).

We can now describe the structure of M(A,C).

Theorem 3. The moduli space M(A,C) is obtained as a symplectic reduction
of the product of local data:

M(A,C) ∼=

(∏
i

MAi

)
×

∏
j

Cj

 �0 GL2(C).

Remark 4. For other variants and a realization of the isomonodromy equa-
tions as an integrable system, see [2, 3].

Here, GL2(C) acts diagonally on the product manifold, so that the mo-
ment map µ for the product is the sum of the moment maps of the factors.
Since each factor involves a functional on gl2(o) or gl2(C), the definition of
the local moment maps shows that µ−1(0) is the set of tuples for which the
restrictions of these functionals to gl2(C) sum to 0. Writing each functional
as a 1-form, this is just the condition that the sum of the residues vanish.

We conclude this paper with two illustrations of the theorem, each
with one irregular singular and one regular singular point, say at 0 and ∞.
Take As = diag(a, b)t−1 dt

t ∈ A(T (F ), 1) (so a 6= b) and Ae = ω−1 dt
t ∈

A(C((ω))×, 1). Also, let C be an arbitrary nonresonant adjoint orbit. Below,
we use the identifications gl2(o)∨ = gl2(C)[t−1]dtt and i∨ = t[ω−1]dtt . Under

these identifications, the restriction map gl2(o)∨ → i∨ has fiber Ce12 dt
t .

Example 5 (M(As
0, C∞)). We first observe that Ad∗(1 + t gl2(o))(As) = As +

( 0 u
v 0 ) dt

t with u, v ∈ C arbitrary. Indeed, if X,Y ∈ gl2(C), then (1+tX)Y (1+

tX)−1 ≡ Y+t[X,Y ] (mod t2), and the claim follows since ad(diag(a, b))(gl2(C))
is the off-diagonal matrices. Since GL2(o) = GL2(C) n (1 + t gl2(o)), we get

Ad∗(GL2(o))(As) = Ad∗(GL2(C))

{(
at−1 u
v bt−1

)
dt

t
| u, v ∈ C

}
. (4)

The moduli space is the space of GL2(C)-orbits of pairs (α, Y ) with
Y ∈ C, and Res(α) + Y = 0. One sees from (4) that every orbit has a

representative with α of the form
(

at−1 u
v bt−1

)
dt
t for some u, v ∈ C. Since T

is the stabilizer of the leading term, it follows that the moduli space is the
same as the set of T -orbits of pairs (α, Y ) with α in this standard form. We
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claim that

|M(As
0, C∞)| =


2, if C is regular nilpotent

1, if C = 0 or C is regular semisimple with trace 0

0, otherwise.

(5)

To see this, note that there are unique representatives for the T -orbits of
standard α’s by taking (u, 1) with u ∈ C, (1, 0), and (0, 0). Each (u, 1) with
u 6= 0 gives rise to Y regular semisimple with trace 0 and determinant u. The
pairs (1, 0) and (0, 1) both lead to regular nilpotent Y ’s while (0, 0) just gives
Y = 0.

Example 6 (M(Ae
0, C∞)). Here, the moduli space is the space of GL2(C)-

orbits of triples (Bg, α, Y ), where (Bg, α) ∈MAe , Y ∈ C, and Res(α)+Y = 0.
This is the same as the space of B-orbits of triples (B,α, Y ). Using I = TnI1,
an argument similar to the one in the previous example shows that

Ad∗(I)(Ae) = Ad∗(T )

{(
z t−1

1 −z

)
dt

t
| z ∈ C

}
. (6)

It follows easily that

α =

(
z vt−1 + w
v−1 −z

)
dt

t
(7)

for some z, v, w ∈ C with v 6= 0. In fact, each B-orbit has a unique represen-
tative with v = 1 and z = 0. This means that the only adjoint orbits C that
give nonempty moduli space are the orbits of

(
0 −w
−1 0

)
. Thus, M(Ae

0, C∞) is a
singleton if C is regular nilpotent or a regular semisimple with trace zero; oth-
erwise, it is empty. We remark that in the regular nilpotent case, the unique
such connection is the GL2 version of the Frenkel-Gross rigid connection, and
this argument shows that this connection is indeed uniquely determined by
its local behavior.

Remark 5. By setting C = 0 in these examples, we obtain the corresponding
one singularity moduli spaces: |M(As

0)| = 1 and M(Ae
0) = ∅.
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