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Abstract. Let G be a connected Lie group acting by algebra automorphisms
on a finite-dimensional complex central simple algebra A. The algebra A is
isomorphic to the endomorphism algebra of a projective representation V of
G. We study the invariant subalgebras of A. In particular, we show that if V
is irreducible, then the invariant subalgebras appear in dual pairs arising from
factorizations of V . We apply this result to find a very simple description of
the invariant subalgebras when G is compact. For example, if G is simple, the
only stable subalgebras are A, C, and {0}. We also determine the invariant
ideals of A.

1. Introduction

Let G be a group and V a finite-dimensional complex representation of G. A
fundamental problem in representation theory is to classify the subrepresentations
of V , or in other words, to determine those subspaces of V which are stabilized
by the group action. For the case when G is a compact group, the solution goes
back to Hermann Weyl. The representation can be decomposed canonically into
a direct sum of subrepresentations V = U1 ⊕ · · · ⊕ Um, where each Ui is the di-
rect sum of ni copies of an irreducible representation Vi and the Vi’s are pairwise
nonisomorphic. The G-invariant subspaces of Ui are parametrized by subspaces of
Cni while the subrepresentations of V are direct sums of subrepresentations of the
Ui’s which may be chosen independently. As long as a decomposition of V into
irreducible components is given explicitly (which may be very difficult in practice),
this classification is also entirely explicit.

In this paper, we will consider an analogue of this problem, motivated by ap-
plication to physics, in which G is a connected Lie (or topological) group and the
representation V is replaced by a continuous G-algebra A, i.e. a unital associative
algebra on which G acts by continuous algebra automorphisms. In this context, it
is natural to study the subrepresentations of A with multiplicative significance. In
particular, we would like to understand the G-invariant subalgebras and ideals of
A. These problems are much more difficult than the classification of subrepresen-
tations, and it is unreasonable to expect to find a way of determining G-invariant
subalgebras and ideals that works for all G-algebras. Indeed, if we let G act trivially
on A, then this result would give a uniform way of classifying ideals and subalgebras.
It is thus necessary to limit the class of algebras under consideration.
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In this paper, we restrict attention to simple algebras over C, that is, complex
matrix algebras. When the unique simple (left) module V of A is an irreducible
projective representation, we show that all nonzero invariant subalgebras are them-
selves simple and appear in dual pairs. In particular, we show that a nonzero
representation which is closed under ring multiplication must contain the identity.
Moreover, we give an explicit description of these dual pairs in terms of V . We
then apply these results when G is a compact connected Lie group to obtain a par-
ticularly elegant solution of the classification problem due to Etingof. For example,
when G is simple, the only invariant subalgebras are {0}, C, and V . In the final
section of the paper, we classify the invariant ideals of A without any restrictions
on V .

Our initial motivation for looking at these questions came from a problem in
solid state physics. The study of G-actions on endomorphism algebras is impor-
tant in understanding how physical properties such as conductivity, elasticity, and
piezoelectricity of a composite material depend on the properties of its constituents.
These physical characteristics are described by elements of a symmetric tensor space
Sym2(T ), where T is a certain real representation of the rotation group SO(n). In
general, a property of a composite depends heavily on the microstructure, i.e. the
arrangement of the component materials. Let M ⊂ Sym2(T ) be the set of all possi-
ble values of a fixed property for composites made with their constituents taken in
prescribed volume fractions. Typically, M is the closure of an open set in Sym2(T )
and may be described by a system of inequalities, so that away from the boundary
of M , it is possible to make any desired small change in the property by varying
the microgeometry. However, in certain unusual situations, some of the inequalities
become equations, determining a proper closed submanifold E in which M is locally
closed. The submanifold E and also the equations defining E are called exact rela-
tions for the property. The variability of the property with microstructure is thus
drastically reduced when an exact relation is present. Recent work of Grabovsky,
Milton, and Sage has shown how to classify exact relations in terms of the mul-
tiplication of SO(n)-subrepresentations in the endomorphism algebra End(T ); in
particular, invariant algebras and ideals of this simple algebra have great physical
significance [GS, GMS].

It is a great pleasure to thank Yury Grabovsky for first bringing these problems
to my attention and for many illuminating discussion on their physical significance.
I would also like to thank Pavel Etingof for letting me use an unpublished result
on invariant subalgebras of compact connected Lie groups.

2. Invariant subalgebras

Let A be a finite-dimensional (central) simple algebra over C, and let V be a
simple (left) A-module. The module V is unique up to isomorphism and is a finite-
dimensional complex vector space. It is well-known that A is isomorphic to the
matrix algebra End(V ) def= EndC(V ), and from now on, we assume without loss of
generality that A = End(V ).

It is easy to construct examples of simple algebras on which a group G acts
by algebra automorphisms. Recall that a mapping ρ : G → GL(V ) is called a
projective representation of G if ρ(1) = 1V and if there exists α : G × G → C∗

such that ρ(xy) = α(x, y)ρ(x)ρ(y) for all x, y ∈ G. We will sometimes denote the
linear map ρ(g) by ḡ. (Equivalently, we can view a projective representation as a
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homomorphism G → PGL(V ).) The homomorphism π : G → GL(A) then makes
A into a (linear) representation of G with (π(g)f)(v) = ρ(g)(f(ρ(g)−1(v)) for all
g ∈ G, f ∈ A, and v ∈ V . Moreover, the linear map π(g) is in fact an algebra
automorphism. It turns out that all complex simple G-algebras are of this type.

Proposition 2.1. Suppose that G acts on A = End(V ) by algebra automorphisms,
i.e. A is a representation of G via a homomorphism G

π→ Aut(A). Then V is
a projective representation of G determined up to projective equivalence, and the
G-action on A is the natural action induced by the projective G-action on V .

Proof. Any automorphism of A is inner by the Skolem-Noether theorem. Hence,
we obtain a function ρ̂ : G → A× ⊆ GL(V ) such that π(g)(a) = ρ̂(g)aρ̂(g)−1 for
all g ∈ G and a ∈ A. Since π(1) = 1A, we have ρ̂(1) ∈ Z(A)× = C∗. Setting
ρ(g) = ρ̂(g)/ρ̂(1) gives ρ(1) = 1V . Also, the equation π(gh) = π(g)π(h) implies
that ρ(gh)ρ(h)−1ρ(g)−1 is central and therefore a nonzero multiple of the identity.
It follows that (V, ρ) is a projective representation of G giving rise to π. ¤

From now on, let G be a connected Lie group and A a continuous G-algebra.
The identification of Aut(A) with PGL(V ) shows that a continuous homomorphism
G → Aut(A) ⊂ GL(A) gives rise to a continuous projective representation G →
PGL(V ) and vice versa. In particular, the projective representation V associated
to A is continuous.

In general, invariant subalgebras of a simple G-algebra can be very badly be-
haved. For example, if we let G act trivially on End(V ), then every subalgebra is
invariant. This means that if V has dimension n, then End(V ) contains every n-
dimensional C-algebra as an invariant subalgebra. We will therefore need to place
additional restrictions on the G-algebra A.

For the remainder of this section, we assume that the projective representation V
associated to the G-algebra A is irreducible. We will call such an algebra G-simple.

First, we show that all unital invariant subalgebras of A are simple.

Proposition 2.2. Let B be an invariant subalgebra of A containing 1A. Then B
is also simple.

Proof. The inclusion of B in A makes the A-module V into a B-module. Let U be
a simple B-submodule of V ; for example, take U to be a B-submodule of minimal
dimension. Consider the translate ḡU for g ∈ G. Note that the G-invariance of B
implies that

(1) bḡ(u) = ḡḡ−1bḡ(u) = ḡ(g−1 · b)(u) ∈ ḡU

for all b ∈ B and u ∈ U . Here, we have used the fact that g−1 = α(g, g−1)ḡ−1, where
α is the cocycle defined by (V, ρ). Thus, ḡU is a B-submodule of V . Moreover, ḡU
is simple, since the same argument shows that if W is a submodule of ḡU , then
g−1W is a submodule of U . The sum

∑
g∈G ḡU is evidently a nonzero G-invariant

subspace of V , and by irreducibility, V =
∑

g∈G ḡU . Thus, V is a semisimple B-
module, and we can choose g1, . . . , gl ∈ G such that V = ⊕l

i=1ḡiU . Without loss of
generality, set g1 = 1V .

Let u1, . . . , uk be an F -basis for U . The map B → ⊕l
i=1k(giU) given by b 7→

(bg1u1, . . . , bg1uk, . . . , bglu1, . . . , bgluk) is a B-homomorphism. If b is in the kernel,
then b kills an F -basis of V , and since b ∈ A ⊆ EndF (V ), we have b = 0; hence,
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the map is injective. This shows that B is a semisimple F -algebra, and any simple
B-module is isomorphic to ḡU for some g ∈ G.

Write B = B1⊕· · ·⊕Bt, where the Bi are simple. The restriction of the G-action
π to B gives rise to a permutation representation of G on the set of Bi’s because
the algebra automorphism π(g) must permute the minimal two-sided ideals of B.
More explicitly, let X = {e1, . . . , et} with ei = 1Bi

be the set of central primitive
idempotents of B. Since ei is the unique nonzero idempotent in the center of Bi, it
is clear that if π(g)(Bi) = Bj , then π(g)(ei) = ej . We thus obtain a homomorphism
π̄B : G → St, where we have identified S(X) with St in the obvious way.

This permutation representation is transitive. Indeed, choose g ∈ G such that
ḡU is a simple Bi module. By definition, e1 acts on U by the identity map, so for
all u ∈ U , we have (g · e1)(ḡu) = ḡ(e1(ḡ−1(ḡu) = ḡ(e1(u)) = ḡ(u). Since ei is the
unique central primitive idempotent acting as the identity on ḡU , this implies that
g · e1 = ei.

Thus, we see that G acts transitively and continuously on the finite set of Wed-
derburn components of B. But G is connected, implying that B has only one
component, i.e. B is simple. ¤

Remark. If G is not connected, the conclusion of the theorem is not true. For
example, let G = S3, the symmetric group on three elements, and V its two-
dimensional irreducible representation. Then End(V ) ∼= C ⊕W ⊕ V , where W is
the alternating representation. The submodule C⊕W is an invariant subalgebras
isomorphic to the algebra C⊕C.

In fact, we can use this result to show that all nonzero invariant subalgebras are
unital. First, we need a lemma.

Lemma 2.3. For t ≥ 2, the matrix algebra Mt(C) has no nonunital subalgebras of
codimension one.

Proof. Suppose that Q is a codimension one nonunital subalgebra. First note that
any element of Q must be singular. To see this, take q ∈ Q invertible. Since
det q 6= 0, the Cayley-Hamilton theorem implies that q−1 can be expressed as a
polynomial in q and so lies in Q. But then 1A = qq−1 ∈ Q, a contradiction. Thus,
Q ⊆ V (det), the hypersurface of Mt(F ) cut out by the determinant. However, Q
is a codimension one linear subvariety, so Q = V (f) for some homogeneous degree
one polynomial f . As a result, f divides det, and this cannot be true, since the
determinant is an irreducible polynomial of degree t. ¤

Now, let Q be an nonunital invariant subalgebra. Then Q′ = Q+F1A is a unital
invariant subalgebra. By the previous proposition, Q′ is simple, hence isomorphic
to Mt(F ) for some t ≥ 1. Since Q is a codimension one nonunital subalgebra, the
lemma forces t = 1, and so Q = {0}. Applying the lemma finishes the proof. We
have thus proved

Proposition 2.4. Any nonzero subrepresentation of the continuous G-algebra A
closed under multiplication must contain the identity. Equivalently, {0} is the only
nonunital invariant subalgebra of A.

We now show how to construct unital invariant subalgebras. First observe that
if B is invariant, then so is ZA(B), the centralizer of B. This follows from the fact
that (g · z)b = g · (z(g−1 · b)) = g · ((g−1 · b)z) = b(g · z) for all g ∈ G, b ∈ B,
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and z ∈ ZA(B). By the double centralizer theorem, B = ZA(ZA(B)), so invariant
subalgebras appear in dual pairs (B,ZA(B)). Since B is simple, ZA(B) is as well;
in fact ZA(B) is isomorphic to Mm(C), where V ∼= mU as B-modules. Moreover,
the natural map B ⊗C ZA(B) → A is a G-algebra isomorphism.

Let W be the simple left module for ZA(B); it is also a projective representation
of G. The tensor product U ⊗ W is a simple module for B ⊗C ZA(B). Thus,
we obtain a G-isomorphism U ⊗ W → V inducing the G-algebra isomorphism
B ⊗C ZA(B) = End(U) ⊗ End(W ) → End(V ) = A. It is obvious that U and W
are irreducible projective representations, so we see that each dual pair of invariant
(nonzero) subalgebras of A is induced by a factorization of V into the tensor product
of irreducible projective representations.

Conversely, any such factorization V ∼= U ⊗ W gives rise to a dual pair of in-
variant subalgebras given by the images of End(U) ⊗ C and C ⊗ End(W ) under
the isomorphism End(U) ⊗ End(W ) → End(V ). Finally, suppose another factor-
ization V ∼= U ′⊗W ′ induces the same dual pair (taken in the same order). The the
composite G-algebra isomorphism End(U)⊗End(W ) → End(U ′)⊗End(W ′) gives
G-algebra isomorphisms End(U) → End(U ′) and End(W ) → End(W ′). This im-
plies that U ′ and W ′ are projectively equivalent to U and W respectively. Summing
up, we have the following theorem.

Theorem 2.5. Let A = End(V ) be G-simple. Suppose that V ∼= U ⊗W , where U
and W are irreducible projective representations of G. Then A ∼= End(U)⊗End(W ),
and the images of the two factors in A are a dual pair of invariant subalgebras.
Conversely, all nonzero invariant subalgebras arise in this way. Indeed, there is a
one-to-one correspondence between unordered pairs of irreducible projective repre-
sentations {U,W} modulo projective equivalence such that V ∼= U ⊗ W and dual
pairs of nonzero invariant subalgebras.

Remark. The analogous result holds with the same proof when G is a connected
topological group.

In general, finding all (or even some) factorizations for a given of V into a tensor
product of projective representations is a difficult problem. (For a discussion, see
[St].) As a first example, suppose G is a simply connected complex Lie group. Note
that projective representations of G are in fact linear. Every continuous represen-
tation can be expressed uniquely as the tensor product of one that is holomorphic
and one that is anti-holomorphic [St]. Thus, every continuous G-algebra comes
equipped with a natural dual pair of invariant subalgebras arising from the holo-
morphic and anti-holomorphic factors.

In the case that G is a compact connected Lie group, the theorem can be ap-
plied to obtain a complete classification of invariant subalgebras of a continuous
G-algebra. We start with a lemma.

Lemma 2.6. Suppose that G is a simple compact connected Lie group, and let
V (λ) and V (µ) be irreducible representations with highest weights λ and µ. Then
V (λ)⊗ V (µ) is irreducible if and only if λ or µ is 0.

Proof. Since V (λ + µ) is a component of V (λ) ⊗ V (µ), it suffices to compare the
dimension of these representations. The Weyl dimension formula states that

dim V (λ) =
∏

α∈R+

〈α, λ + ρ〉
〈α, ρ〉 ,
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where R+ is the set of positive roots, ρ is half the sum of the positive roots, and
〈 , 〉 is a Weyl group invariant inner product on the R-span of the roots. The
equation 〈α, λ + µ + ρ〉〈α, ρ〉+ 〈α, λ〉〈α, µ〉 = 〈α, λ + ρ〉〈α, µ + ρ〉 shows that

〈α, λ + µ + ρ〉
〈α, ρ〉 ≤ 〈α, λ + ρ〉

〈α, ρ〉
〈α, µ + ρ〉
〈α, ρ〉 ,

with equality if and only if 〈α, λ〉〈α, µ〉 = 0. Here we have used the fact that
〈α, λ〉 ≥ 0 and 〈α, ρ〉 > 0 for every positive root α and dominant weight λ. If β is
the highest root, then 〈β, ν〉 > 0 for any nonzero dominant weight ν. Multiplying
over all positive roots, it follows easily that dim V (λ + µ) < dim V (λ) dim V (µ) if
and only if both λ and µ are nonzero. ¤

Remarks. 1. This result is known, but we have included a proof for lack of a
satisfactory reference.
2. The analogue of this lemma does not hold for simple algebraic groups in positive

characteristic. In the notation of the Atlas of Finite Groups, U4(2) = PSp4(F3)
has irreducible representations χ3 and χ4 of dimensions five and six respectively
such that χ3 ⊗ χ4

∼= χ12 is also irreducible [C].

Let G be a compact connected Lie group. It is well-known that the universal
covering group of G is of the form G̃ = G1 × · · · × Gs × Rn, where each Gi is a
simple, simply connected, compact Lie group. Let V be an irreducible projective
representation of G. Then V can be lifted to an irreducible representation of G̃,
which can be expressed as V1 ⊗ . . . ⊗ Vs ⊗ L, where Vi is a complex irreducible
representation of Gi and L is a character of Rn. This means that V is projectively
equivalent to Ṽ = V1 ⊗ . . . ⊗ Vs. Moreover, simple Lie groups have no nontrivial
characters, so projective and linear equivalence are the same for representations of
G1 × · · · × Gs. The lemma shows that any factorization of Ṽ = W ⊗W ′ into the
tensor product of two representations of G̃ must have W and W ′ as complementary
partial products of V1 ⊗ . . . ⊗ Vs. More precisely, let I = {i | Vi 6= C} and take
J ⊂ I. Set WJ =

⊗s
i=1 WJi and W ′

J =
⊗s

i=1 W ′
Ji

, where WJi is Vi if i ∈ J
and C otherwise and W ′

Ji
is Vi if i /∈ J and C otherwise. We get a factorization

Ṽ = WJ⊗W ′
J , and J 7→ WJ gives a one-to-one correspondence between the subsets

of I and the factors of Ṽ . This observation combined with Theorem 2.5 proves the
following theorem due to Etingof:

Theorem 2.7. Let G be a compact connected Lie group, and let A = EndC(V )
where V is an irreducible projective representation of G projectively equivalent to
V1 ⊗ . . .⊗ Vs. Then there is a bijective correspondence between P(I), the power set
of I = {i | Vi 6= C}, and the set of nonzero invariant subalgebras of A, given by
J 7→ End(WJ). Moreover, the duality operator corresponds to taking complements
in P(I), i.e. it is given by End(WJ) 7→ End(WI−J).

Corollary 2.8. There are exactly 2|I| + 1 subrepresentations of End(V ) which are
closed under matrix multiplication: 2|I| unital subalgebras and {0}.

In particular, if G is a simple compact connected Lie group, then no G-simple
algebra has any nontrivial invariant subalgebras.
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3. Invariant ideals

In this section, we briefly describe the G-invariant ideals of a simple G-algebra.
We no longer assume that A is G-simple, so A ∼= End(V ) where V is an arbitrary
finite-dimensional projective representation of G.

We now recall the ideal structure of A. Let S(V ) denote the set of subspaces of
V partially ordered by inclusion. This poset is in fact a complete lattice, with the
greatest lower bound and least upper bound of a collection of subspaces given by
their intersection and sum respectively. Similarly, the sets L(A) and R(A) of left
and right ideals of A are complete lattices. It will be convenient to work with the
dual lattice L(A)∗ of left ideals under reverse inclusion (and with the supremum
and infimum reversed). If L is a subspace of V , we define the annihilator and
coannihilator of L by Ann(L) = {f ∈ A | f(L) = 0} and Coann(L) = {f ∈ A |
f(V ) ⊂ L}; these are respectively left and right ideals of A. We then have the
well-known fact that all left and right ideals of A are of this form.

Proposition 3.1. The maps S(V ) Ann→ L(A)∗ and S(V ) Coann−→ R(A) are isomor-
phisms of complete lattices. The inverses are given by I 7→ ⋂

f∈I Ker(f) and
J 7→ ∑

f∈J f(V ), where I ∈ L(A) and J ∈ R(A).

Remark. In matrix language, this simply says that a left ideal consists of all matrices
(with respect to some basis depending on the ideal) with zeroes in given columns
while a right ideal consists of all matrices with zeros in given rows.

Let SG(V ) ⊂ S(V ) be the complete sublattice of all subspaces of V preserved by
the G-action on V . Similarly, we define the complete sublattices LG(A) ⊂ L(A) and
RG(A) ⊂ R(A) of G-invariant left and right ideals of A. It is natural to conjecture
that the sublattices LG(A) and RG(A) are just the images of SG(V ) under the above
isomorphisms, i.e. invariant left and right ideals are annihilators and coannihilators
respectively of subrepresentations of V . This is indeed the case.

Theorem 3.2. The restrictions of the maps Ann and Coann define isomorphisms
of complete lattices SG(V ) Ann→ LG(A)∗ and SG(V ) Coann−→ RG(A).

Proof. In order to prove the first isomorphism, it suffices to show that Ann(SG(V )) ⊂
LG(A)∗ and Ann−1(LG(A)∗) ⊂ SG(V ). If L is a subrepresentation of V and
f ∈ Ann(L), then (g · f)(v) = ḡ(f(ḡ−1(v))) = ḡ(0) = 0 for all g ∈ G and
v ∈ L. Thus, Ann(L) is G-invariant. Conversely, if I is an invariant left ideal
and v ∈ Ann−1(I) =

⋂
f∈I Ker(f), then we also have v ∈ ⋂

f∈I Ker(g · f). Since
ρ(g) is bijective, this gives f(ḡ−1v) = 0 for all g ∈ G and f ∈ I. It follows that
Ann−1(I) is G-invariant.

The proof for invariant right ideals is similar. ¤
Remarks. 1. Since A is simple, the only two-sided ideals are {0} and A which
are of course G-invariant. However, it is a general fact that if B is an arbitrary
G-algebra on which G acts by inner automorphisms, then all two-sided ideals are
G-invariant. Indeed, if I is a two-sided ideal and the action of g on B is given by
conjugation by bg ∈ B×, then gI = bgIb−1

g ⊂ I.
2. Suppose that V is a completely reducible linear representation of G, say V ∼=

n1V1⊕ · · · ⊕nmVm where the Vi’s are pairwise nonisomorphic irreducible represen-
tations. Then the G-invariant left (and right) ideals of End(V ) are parametrized
by

∏m
i=1{subspaces of Cni}.



8 DANIEL S. SAGE

3. An analogous result holds for the space of linear maps between two linear
representations of G. If V and W are two representations of G, then Hom(V, W ) is a
representation whose G-action is compatible with the (End(W ), End(V ))-bimodule
structure. A similar proof shows that the lattice of subrepresentations of V is
isomorphic to the lattice of invariant left End(W )-submodules of Hom(V, W ) while
the lattice of subrepresentations of W is isomorphic to the lattice of invariant right
End(V )-submodules of Hom(V, W ) under reverse inclusion.

This theorem allows us to characterize certain properties of representations in
terms of the associated endomorphism algebras.

Corollary 3.3. (1) The projective representation V is irreducible if and only
if End(V ) has no proper invariant one-sided ideals.

(2) Suppose that V is completely reducible. Then V is multiplicity free if and
only if End(V ) has a finite number of invariant one-sided ideals.

Proof. The first statement is clear from the theorem. The other follows from the
second remark and the fact that a complex vector space has an infinite number of
subspaces if and only if it has dimension larger than one. ¤

Note that in spite of the strong connection between subrepresentations and in-
variant ideals, the group action on a subrepresentation does not determine the
action on the corresponding left and right invariant ideals or vice versa.
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