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Abstract. Typically, physical properties of composite materials are strongly
dependent on microstructure. However, in exceptional situations, exact rela-
tions exist which are microstructure-independent. Grabovsky has constructed
an abstract theory of exact relations, reducing the search for exact relations
to a purely algebraic problem involving the multiplication of SO(3)-subrepres-
entations in certain endomorphism algebras. This motivates us to introduce
subrepresentation semirings, algebraic structures which formalize subrepresen-
tation multiplication.

We study the ideals and subsemirings of these semirings, relating them to
properties of the underlying G-algebra and proving classification theorems in
the case of endomorphism algebras of representations. For SU(2), we compute
these semirings for general V . When V is irreducible, we describe the semiring
structure explicitly in terms of the vanishing of Racah coefficients, coefficients
familiar from the quantum theory of angular momentum. In fact, we show
that Racah coefficients can be defined entirely in terms of subrepresentation
multiplication.

Keywords. Group actions on algebras, composite materials, G-closure, exact
relations, semirings, Racah coefficients, 6j-coefficients

1. Exact relations–A problem from the theory of composite
materials

Physical properties of composite materials such as conductivity and elasticity
depend not only on the properties of the constituents and the proportion in which
they are present, but also on the microstructure of the composite. For example,
consider a material made out of two components, one of which is rigid and the
other compressible. If the composite consists of small hard particles embedded in
the softer substance, then it will be compressible. On the other hand, if the softer
material lies within a rigid matrix, then the composite will be rigid. A natural
question thus arises. For fixed materials taken in fixed proportions, what is the
set of all possible values of a given physical property obtained as one varies the
microstructure of the composite? This set is called a G-closure; it will be a subset
of an appropriate tensor space.

The general G-closure problem is difficult and seems intractible with current
techniques. Indeed, there are only a few examples in which the G-closure has
been completely characterized[6, 7, 16]. A more accessible problem is suggested by
the fact that, generically, the G-closure will have nonempty interior in the given
tensor space. This, however, does not always occur; in exceptional cases, the set
degenerates to a surface, which is called an exact relation. Finding exact relations
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is of fundamental importance in both theory and applications because they describe
microstructure-independent situations. For example, a well-known exact relation
in elasticity due to Hill states that a mixture of isotropic materials with constant
shear modulus is isotropic and has the same shear modulus[13, 14].

The classical approach to exact relations has suffered from the shortcoming that
the methods used have been heavily dependent on the physical context. In the
late 1990’s, Grabovsky recognized that it was possible to construct an abstract
theory of exact relations[9]. This general theory has proved to be enormously
powerful. Indeed, it has led to complete lists of all rotationally invariant exact
relations for three-dimensional thermopiezoelectric composites that include all exact
relations for elasticity, thermoelasticity, and piezoelectricity as special cases[11].
This is accomplished by reducing the search for exact relations to purely algebraic
questions.

In this abstract formulation, we start with an intensity field E(x) and a flux field
J(x) with values in a (real) tensor space T. This tensor space is a representation of
the rotation group SO(3). The two fields are related by a linear map L(x) ∈ End(T),
the set of linear operators from T → T, such that J(x) = L(x)E(x); this is the
tensor describing the given physical property. For example, in conductivity, we
have j(x) = σ(x)e(x), where j and e are the current and electric fields, taking
values in T = R3, and σ is the conductivity tensor. Similarly, the elasticity tensor
C(x) ∈ End(Sym(R3)), where Sym(R3) is the space of symmetric linear operators
R3 → R3, is determined by the Hooke’s law equation τ (x) = C(x)ε(x) relating the
stress field τ to the strain field ε. (In both these cases, the linear map is actually
symmetric and positive definite, and there are additional differential constraints on
the fields.) At the macroscopic level, a composite will behave like a homogeneous
medium with tensor L∗ ∈ End(T); this is called the effective tensor of the composite.
This is defined by the equation 〈J〉 = L∗〈E〉 linking the volume averages of the
fields. Accordingly, the G-closure set is just the set of all possible effective tensors
L∗ as the local data varies. An exact relation is a manifold (with boundary) with
empty interior M ⊂ End(T) such that L(x) ∈ M for all x implies that L∗ ∈ M.
This means that M is stable under homogenization.

The success of the abstract theory of exact relations has been due to the fact
that both necessary conditions and sufficient conditions for an exact relation to hold
have been found which turn the search for them into purely algebraic problems.
We briefly sketch the derivation to indicate their general form. For simplicity, we
assume that the tensors in M are symmetric and positive definite. We also restrict
attention to rotationally invariant exact relations.

Milton has defined an analytic diffeomorphism W which maps M to a convex
subset containing the origin of Sym(T) ⊂ End(T)[16]. It follows that W (M) has
nonempty interior in the subspace Π spanned by W (M). The fact that M is ro-
tationally invariant implies that Π is a subrepresentation of End(T). The exact
relation M may be recovered from Π as the positive definite tensors in W−1(Π).

A composite is called a laminate if it is a stratified material whose properties vary
in only one direction. Evidently, stability under lamination is a necessary condition
for stability under homogenization. It can be shown that the subrepresentation Π
determines an exact relation stable under lamination if and only if Π satisfies the
following equation[11]:
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(1) (ΠAΠ)sym ⊂ Π.

Here, A is a fixed subrepresentation determined by the physical context. Also,
if X and Y are subspaces of End(T), then Xsym is the image of X under the
projection of End(T) on Sym(T) (or equivalently, Xsym = (X +Xt)∩Sym(T)) while
XY = span{xy | x ∈ X, y ∈ Y }. Note that if X and Y are subrepresentations, then
so is XY . Sufficient conditions for Π to give an exact relation have also been found,
and again, they involve multiplication of subrepresentations. Indeed, suppose that
in addition to the previous condition, there exists an SO(3)-submodule Π̂ ∈ End(T)
such that Π̂sym = Π and

(2) Π̂AΠ̂ ⊂ Π̂.

Then Π is an exact relation[16]. Thus, the search for exact relations has in large
part been reduced to the understanding of the multiplication of subrepresentations
of End(T).

When T is relatively simple, it is possible to find all solutions to (1) by brute
force calculations. For example, this approach succeeded in finding all exact rela-
tions for three-dimensional elasticity[10]. However, these naive methods are no
longer feasible even in the next simplest case of piezoelectricity. Indeed, here
T = Sym(R3)⊕R3, so we are dealing with a 45 dimensional representation Sym(T)
with many degeneracies consisting of 9 × 9 matrices. Moreover, we would like
to develop techniques capable of attacking much more general problems, such as
the coupling of k electric fields, l elastic fields, and m temperature fields where
T = (Rk ⊗R3)⊕ (Rl ⊗ Sym(R3))⊕ (Rm ⊗R).

These considerations motivate us to introduce subrepresentation semirings. These
are algebraic structures which formalize the multiplication of subrepresentations.
Given a group G and an algebra A on which G acts by algebra automorphisms, we
define the subrepresentation semiring SG(A) to be the set of G-submodules of A
with operations induced by the operations of the algebra. We will be most inter-
ested in the case A = End(V ), where V is a representation of G, and we let E(V )
denote the semiring SG(End(V )). In section two, we give some basic properties
and work out some simple examples.

In section three, we study the ideals and subsemirings of subrepresentation semir-
ings. These are natural objects to consider from a purely algebraic perspective, but
we will see that they also play a role in applications to composite materials. We
show that there is a one-to-one correspondence between saturated ideals of SG(A)
and G-invariant ideals of A, i.e an ideal of A which is also a subrepresentation.
There is a similar correspondence between saturated subsemirings and invariant
subalgebras of A. We then give explicit classifications of the saturated ideals and
subsemirings of E(V ), the former for arbitrary V and the latter under the as-
sumption that V is irreducible and that the underlying field is algebraically closed.
Whereas the result for ideals is straightforward, it turns out that the subsemirings
encode complicated representation-theoretic information about V , including how
V can be factored into a tensor product of projective representations and how it
can be expressed as an induced representation.

We now indicate how these concepts arise in the study of exact relations. It is
easy to see the relevance of subsemirings. Indeed, the sufficient condition for an
exact relation described above implies that Π̂AΠ̂A ⊂ Π̂A; in other words, Π̂A is an
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invariant subalgebra. To understand the connection between exact relations and
ideals in E(T), we need to introduce the notion of a uniform field relation. Given
constant fields J and E, the set M(J,E) of positive definite symmetric tensors L
such that J = LE is closed under homogenization[15]. We say that an exact relation
M (which we assume to be rotationally invariant) is a uniform field relation if it
is the intersection of a collection of surfaces {M(Ji, Ei)}. Fix an isotropic tensor
L0, i.e. a tensor such that R · L0 = L0 for all R ∈ SO(3). It is a consequence of
Proposition 3.3 together with results of [11] that there is a bijective correspondence
between the set of uniform field relations passing through L0 and the set of invariant
left ideals of End(T). Explicitly, the invariant ideal Λ gives rise to the uniform field
relation MΛ = {L0+K | K ∈ Λ}∩Sym+(T), where Sym+(T) denotes the symmetric
positive definite tensors.

In section four, we return to the original problem of computing the subrepresen-
tation semirings E(T), where T is a representation of SO(3) over R. We will actually
compute the semirings E(V ), where V is a complex finite-dimensional representa-
tion of SU(2). This will suffice for our applications to exact relations because the
semirings ESO(3)(T) and ESU(2)(T ⊗C) are canonically isomorphic.

We begin with the case when V is irreducible. The irreducible representations
of SU(2) are parametrized by elements of J = 1

2Z≥0; the corresponding Vj is also
a representation of SO(3) if j is an integer. It turns out that we can describe
E(Vj) explicitly in terms of the vanishing of certain constants called Racah (or 6j)
coefficients. These are coefficients depending on six indices which are familiar from
the quantum theory of angular momentum. In fact, we prove a more general result.
Consider the multiplication of subrepresentations induced by the composition of
linear maps Hom(Vk, Vl) ⊗ Hom(Vj , Vk) → Hom(Vj , Vk). It is a basic fact that
Hom(Vj , Vk) is multiplicity-free. This implies that an irreducible submodule is
uniquely determined by a half-integer a ∈ J . We show that if Va ⊂ Hom(Vj , Vk) and
Vb ⊂ Hom(Vk, Vl), then Vc ⊂ VbVa if and only if the Racah coefficient W (jkcb; al)
is nonzero. Moreover, we prove that Racah coefficients can be defined entirely in
terms of the multiplication of subrepresentations.

It should be noted that this interpretation of the vanishing of Racah coefficients
is conceptually much simpler than the description provided in angular momentum
theory. As an illustration, we show how our results explain Racah’s famous example
relating the vanishing of W (3, 5, 3, 5; 3, 3) to the embedding of the exceptional Lie
algebra G2 in so(7).

We conclude the paper by computing the semiring End(V ), where V is any
finite-dimensional representation of SU(2). As an application, we describe how all
exact relations can be found for the coupling of an arbitrary number of conductivity
problems.

2. The subrepresentation semiring

Let G be a group and A an associative algebra with identity over a field F
on which G acts by algebra automorphisms. Concretely, this means that A is
a representation with the additional property g · (xy) = (g · x)(g · y) for g ∈ G
and x, y ∈ A. The algebra A is called a G-algebra. We let SG(A) be the set
of all subrepresentations of A. The usual addition of subspaces makes this set
into an idempotent monoid, which becomes an (additively) idempotent semiring
with multiplication defined by XY = span{xy | x ∈ X, y ∈ Y }. The additive
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and multiplicative identities are {0} and F = F1A respectively (and will often
be denoted simply by 0 and 1). Note that the multiplication in this semiring is
specified by the products of the indecomposable subrepresentations of A. Thus,
the semiring SG(A) is determined by the structure constants CW

U,V , where for any
three indecomposable subrepresentations U , V , and W of A, CW

U,V is 1 if W ⊂ UV
and 0 otherwise.

The natural partial order on SG(A) given by inclusion can also be expressed in
terms of addition as X ⊆ Y if and only if X + Y = Y . For this partial order,
X + Y is the supremum of X and Y . In fact, SG(A) has arbitrary suprema over
which multiplication distributes: if I is an index set, supi∈I Xi =

∑
i∈I Xi. This

makes SG(A) into a complete idempotent semiring.1 The unique infinite element
of SG(A) is A itself, and we will sometimes denote it by ∞.

Let φ : A → B be a homomorphism of G-algebras. It is immediate that SG(φ) :
SG(A) → SG(B) is a morphism of complete idempotent semirings, i.e. a semiring
morphism preserving suprema. We conclude that SG is a functor from the category
of G-algebras to the category of complete idempotent semirings. We note two
other natural constructions of morphisms between subrepresentation semirings. If
f : H → G is a group homomorphism, then there is an obvious injective pullback
morphism f∗ : SG(A) → SH(A). Moreover, if K is an extension field of F , then
extending scalars gives an injective morphism SG,F (A) → SG,K(A⊗F K) (with self-
explanatory notation). Restriction to a subfield, on the other hand, does not give
rise to a semiring morphism because restriction does not preserve multiplicative
identities.

Remark. In our applications to composite materials, we use the fact that SSO(3),R(A)
is canonically isomorphic to SSU(2),C(A ⊗ C) for any real SO(3)-algebra A. This
is true because the natural morphisms SSO(3),R(A) → SSO(3),C(A ⊗ C) and π∗ :
SSO(3),C(A⊗C) → SSU(2),C(A⊗C) coming from the double cover SU(2) π→ SO(3)
are both isomorphisms.

Semiring morphisms do not behave as well as ring homomorphisms. Let γ : R →
S be a morphism of semirings. It is not true in general that R/ ker(γ) is isomorphic
to the range of γ; in particular, a semiring morphism with zero kernel need not be
injective. The range of γ is isomorphic to the quotient semiring R/ ≡γ , arising from
the congruence relation r ≡γ r′ if and only if γ(r) = γ(r′). The quotient semiring
R/ ker(γ), on the other hand, is defined using the congruence relation r ≡ker(γ) r′ if
and only if there exists k, k′ ∈ ker(γ) such that r + k = r′ + k′. Thus, the analogue
of the first isomorphism theorem for rings holds for γ precisely when these two
equivalence relations are the same, and γ is then called a steady morphism.

Not surprisingly, morphisms arising from G-algebra homomorphisms via the
functor SG are steady. To see this, let φ : A → B be a G-algebra homomor-
phism, and suppose that SG(φ)(X) = SG(φ)(Y ) or φ(X) = φ(Y ). It is obvi-
ous that φ(X + ker(φ)) = φ(Y + ker(φ)), and a simple verification shows that
X + ker(φ) = Y + ker(φ). Since ker(φ) is a subrepresentation in the kernel of
SG(φ), SG(φ) is a steady morphism. Summing up, we have:

1In the literature, complete idempotent semirings are sometimes called complete dioids or
quantales[12].
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Theorem 2.1. The correspondence SG is a functor from the category of G-algebras
to the category of complete idempotent semirings. Moreover, the morphisms in the
image of SG are steady.

Before continuing with the general development, we introduce the class of G-
algebras which will be our primary interest. Let V be a finite-dimensional represen-
tation of G (over the field F ), and consider the central simple algebra A = End(V ).
This algebra becomes a G-algebra via (g ·f)(v) = g(f(g−1(v))). (The same formula
makes End(V ) into a G-algebra if V is a projective representation.) We let E(V )
denote the semiring SG(End(V )). In the context of complex representations of
compact groups, note that E(V ) is finite if and only if End(V ) is multiplicity free,
i.e. every irreducible component appears with multiplicity one. In this case, E(V )
has 2k elements, where k is the number of irreducible components. As an additive
monoid, E(V ) is isomorphic to the “additive” monoid of the semiring P({1, . . . , k})
consisting of the subsets of a k element set under union and intersection. However,
these semirings are never isomorphic for k > 1, since the multiplicative identity
and infinite element do not coincide in E(V ).

We now give three simple concrete examples.

Examples. 1. If V is one-dimensional, then End(V ) is just the G-algebra F .
Therefore, E(V ) = SG(F ) is the Boolean semiring B = {0, 1} with 1 + 1 = 1.
2. Let C2 be the standard representation of SU(2). (In the notation of section

four, this is the irreducible representation V 1
2
.) The SU(2)-algebra End(C2) decom-

poses into a direct sum C⊕U of irreducible subrepresentations. The semiring E(C2)
is a commutative semiring whose structure is determined by U2 = ∞ = End(C2).
In fact, it can be shown that if E(V ) has size four for any representation V such
that End(V ) is completely reducible, then E(V ) is isomorphic to ESU(2)(C2). (As
a point of reference, there are 14 distinct idempotent semirings of size 4[20].)
3. Let F be a field whose characteristic is not 2 or 3, and let V be the standard

representation of the symmetric group S3. As a representation, End(V ) is isomor-
phic to F ⊕sgn⊕V . The semiring E(V ) is again commutative and is determined by
the products sgn2 = F , sgnV = V , and V 2 = F + sgn. In characteristic three, the
standard representation is indecomposable, but not irreducible, and the subrepre-
sentation semiring is infinite. In characteristic two, V is irreducible, but End(V ) is
not completely reducible. Here, E(V ) has six elements.

It should be noted that if W is a proper subrepresentation of V , then it is never
true that E(W ) is a subsemiring of E(V ). However, if V is a unitary representation,
then E(W ) is a subhemiring of E(V ), i.e. an additive submonoid closed under
multiplication, but not containing 1. This is because in this case, there is a natural
intertwining map End(W ) ↪→ End(V ) given by extending f : W → W to V by
setting it equal to zero on W⊥.

We will also need to consider a generalization of our setup. Given a representa-
tion X of G, we continue to denote the set of subrepresentations of X by SG(X);
it is an idempotent monoid. Let A, B, and C be three representations of G to-
gether with a G-map A ⊗ B → C. It is now possible to define a multiplication
map SG(A) × SG(B) → SG(C) just as before. Again, this multiplication is fully
determined by the products of indecomposable representations, and we can define
structure constants for the multiplication. We will be interested in the case when
the three representations are spaces of homomorphisms. Given representations U
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and V , we let H(U, V ) denote the monoid SG(Hom(U, V )). This monoid is in fact
an (E(V ),E(U))-bisemimodule. If W is a third representation, we have the G-map
Hom(V, W ) ⊗ Hom(U, V ) → Hom(U,W ) given by composition, and we obtain a
product H(V,W ) ⊗ H(U, V ) → H(U,W ). We call this matrix multiplication of
subrepresentations.

3. Ideals, subsemirings,and subhemirings of E(V )

We now return to an arbitary G-algebra A and examine the ideals and sub-
semirings of SG(A). To avoid pathologies caused by the lack of additive inverses,
we restrict ourselves to the case when the underlying additive submonoid is sub-
tractive. Let Z be a nonempty subset of a semiring R. Recall that Z is called
subtractive if x ∈ Z and x+y ∈ Z imply y ∈ Z while Z is called strong if x+y ∈ Z
implies x ∈ Z and y ∈ Z. If R is an idempotent semiring, we say that Z is satu-
rated if x ∈ Z and y ≤ x implies y ∈ Z. In an idempotent semiring, these concepts
coincide.

Lemma 3.1. Let Z be a nonempty subset of an idempotent semiring R. Then the
following statements are equivalent:

(1) Z is subtractive.
(2) Z is strong.
(3) Z is saturated.

Proof. Suppose Z is saturated. If x + y ∈ Z, then x, y ∈ Z, since x ≤ x + y
and y ≤ x + y. Thus Z is strong. If Z is subtractive, x ∈ Z, and y ≤ x, then
x+ y = x ∈ Z. This implies that y ∈ Z, so Z is saturated. Finally, it is trivial that
strong implies subtractive. ¤

In particular, since an ideal of a semiring is the kernel of a semiring morphism
if and only if it is subtractive, the saturated ideals of an idempotent semiring are
precisely the kernels.

Given a G-invariant left ideal I of A, define the saturation of I by I = {J ∈
SG(A) | J ⊆ I}. This is a saturated left ideal containing a maximum element.
Conversely, given any left ideal P of SG(A), sup(P ) is a G-invariant left ideal of
A. These mappings give a bijective correspondence between G-invariant left ideals
and saturated left ideals with a maximum element. If A is finite-dimensional,
left Noetherian, or satisfies the ascending chain condition on invariant left ideals,
then the maximum element condition is redundant. Similar considerations hold for
invariant right ideals, invariant subalgebras, etc. Thus, we have

Proposition 3.2. There is a bijective correspondence between G-invariant ideals
(left, right, or two-sided) of A and saturated ideals (of the appropriate type) of
SG(A) containing their suprema. There is a similar correspondence between G-
invariant subalgebras (resp. unital subalgebras) and saturated subhemirings (resp.
subsemirings) containing their suprema. If A is finite-dimensional or satisfies a
suitable ascending chain condition, then the supremum condition is redundant.

Remark. The saturation of an invariant unital subalgebra B is the largest sub-
semiring whose supremum is B. There is also a minimal such subsemiring, namely
{0, 1, B}. There is no analogue of this for nonunital subalgebras or ideals.
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3.1. Ideals. We now discuss the saturated ideals and subhemirings of E(V ). The
ideals are easy to describe. Let W be any subrepresentation of V . We define
invariant left and right ideals of End(V ) called the annihilator and coannihilator of
W via the formulas Ann(W ) = {f ∈ End(V ) | f(W ) = 0} and Coann(W ) = {f ∈
End(V ) | f(V ) ⊆ W}. It turns out that these are the only invariant ideals[19].

Proposition 3.3. The saturated left (right) ideals of E(V ) are Ann(W ) (Coann(W ))
for any subrepresentation W of V . There are no nontrivial saturated two-sided
ideals.

Remarks. 1. Analogous results hold for the saturated left E(V ) and right E(U)
semimodules of the bisemimodule H(U, V ).
2. Unless V is one-dimensional, E(V ) always has nonsaturated one-sided ideals.

Indeed, suppose every one-sided ideal is saturated. This implies that the infinite
element End(V ) is contained in no proper one-sided ideal and must therefore be a
unit. If End(V )A = F = AEnd(V ), then A is contained in the center of End(V ).
(Given a ∈ A and x ∈ End(V ), then either a is a multiple of x−1 or ax = xa = 0.)
But this means that End(V )A either vanishes or equals End(V ), a contradiction
for dimV > 1.
3. This explicit characterization of invariant ideals shows the existence of the

bijection between uniform field exact relations passing through the isotropic tensor
L0 and saturated ideals of E(T) described in the introduction. Indeed, Theorem 4.5
of [11] states that every such uniform field relation is of the form (L0 + Ann(N))∩
Sym+(T), where N is a submodule of T, and the result follows.

In particular, the semiring E(V ) has no nontrivial saturated one-sided ideals if
and only if V is irreducible, and this fact gives rise to other characterizations of
the irreducibility of V in terms of properties of E(V ). First, we need to recall some
definitions.

A semiring R is called left austere if it has no nontrivial subtractive left ideals.
Right austere is defined similarly. The semiring is called entire if it has no zero
divisors. An infinite element a ∈ R is called strongly infinite if ar = a = ra for all
r 6= 0. Finally, a character of R is a morphism R → B.

Proposition 3.4. The following are equivalent:

(1) V is irreducible.
(2) E(V ) is left austere.
(3) E(V ) is right austere.
(4) The infinite element End(V ) is strongly infinite.
(5) E(V ) is entire.
(6) E(V ) has a nonzero character (which is unique).

In this case, every left and right E(V )-semimodule is entire. In particular, for any
representation U , the left E(V )-semimodule H(U, V ) and the right E(V )-semimodule
H(V,U) are entire.

Proof. The first three conditions are equivalent because of the previous proposition.
Now suppose these conditions hold, but End(V ) is not strongly infinite. Then there
exists W 6= 0 such that End(V )W is not the whole G-algebra; call this product Q.
Consider the set {U ∈ E(V ) | End(V )U ⊆ Q}. It is immediate that this set is a
nonzero proper saturated left ideal, contradicting the left austerity of E(V ). On
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the other hand, if L 6= 0 is a proper G-invariant left ideal, then End(V )L ⊂ L, so
End(V ) is not strongly infinite.

Note that if γ is a character of E(V ), then ker γ is a proper saturated ideal,
which must be zero. Thus, for each W 6= 0, γ(W ) = 1. It is now clear that γ is a
morphism if and only if γ(WU) = γ(W )γ(U) = 1 for all nonzero U and W , and
this is true if and only if E(V ) is entire.

It is a standard result that if a semiring R is left (right) austere, then R is
entire as is every left (right) R-semimodule M [8, Proposition 6.25]. (Simply note
that the one-sided annihilator of a nonzero element is a proper saturated one-sided
ideal.) It remains to show that E(V ) is not entire for V reducible. Let W be
a proper subrepresentation, and consider the product Ann(W )Coann(W ). Given
f ∈ Ann(W ) and h ∈ Coann(W ), fh(V ) ⊆ f(W ) = 0. Thus, the generators
of Ann(W )Coann(W ) are all 0. It follows that the saturation of any nontrivial
invariant left or right ideal is a zero-divisor.

¤

Remark. If F is algebraically closed, we obtain another equivalent condition, namely
V is irreducible if and only if any nonzero saturated subhemiring is a subsemiring.
The proof is much more difficult and will use the classification of saturated hemir-
ings of E(V ) for V irreducible given in Theorem 3.7 below.

We can now easily prove the previous remark about the structure of semirings
E(V ) of size four. Let V be a representation such that End(V ) is a completely
reducible representation with irreducible decomposition F ⊕U . The semiring E(V )
is determined by the product U2, and we show that U2 = End(V ). First, note that
V is irreducible; if not, E(V ) must contain at least five elements: 0, 1, ∞, and two
others corresponding to a nontrivial left and right invariant ideal. The proposition
shows that ∞ is strongly infinite, so ∞ = ∞U = (1 + U)U = U + U2. This means
that U2 can only be 1 or ∞. However, if U2 = F , then all elements of U commute
with each other by an argument given in a previous remark. This implies the same
for End(V ) = U ⊕ F , which is absurd.

3.2. Subhemirings and subsemirings. We now consider the saturated sub-
hemirings of E(V ). One cannot hope to find an explicit description in general.
Indeed, if V is a vector space endowed with the trivial G-action, this amounts to
classifying all the subalgebras of End(V ). We therefore make the assumptions that
F is algebraically closed and V is irreducible.

First, we show how to construct the invariant unital subalgebras of End(V ), i.e.
the saturated subsemirings of E(V ). To do this, we need to define induction of
G-algebras. Let H be a subgroup of G of finite index and B an H-algebra. Choose
a left transversal g1 = e, g2, . . . , gn. The induced G-module IndG

H(B) =
⊕n

i=1 giB
becomes a G-algebra via (gib)(gjb

′) = δijgibb
′, and it is easy to see that this is

independent of the choice of tranversal. In other words, IndG
H(B) is isomorphic

to
⊕n

i=1 B as an F -algebra with the G-action permuting the factors. It is clear
that the usual properties of induction such as transitivity on subgroups remain
valid. Moreover, if C is an H-subalgebra of B, then IndG

H(C) is a G-subalgebra of
IndG

H(B).
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It should be remarked that this is not the same as the induction of interior
G-algebras (i.e. algebras on which the group acts by inner automorphisms) in-
troduced by Puig in the context of modular representation theory[17, 21]. In-
deed, if B is an interior H-algebra, then Puig’s induced G-algebra P-IndG

H(B)
is isomorphic as an algebra to Mn(B) instead of Bn. However, it is not hard
to see the connection between the two constructions. Recall that an interior
H-algebra is an algebra B together with a homomorphism φ : H → B×; the
group H then acts on B via the inner automorphisms h · b = φ(h)bφ(h)−1. As
a G-module, P-IndG

H(B) = FG ⊗FH B ⊗FH FG =
⊕n

i,j=1 giBgj
−1 with G act-

ing by conjugation in the obvious way. Ring multiplication is determined by
the equation (gibgj

−1)(gkb′gl
−1) = δjk(gibb

′gl
−1) with the unity element given

by
∑n

i=1(gi1Bgi
−1). Note that B embeds naturally into P-IndG

H(B) via the map
b 7→ ebe.

Proposition 3.5. There is a natural G-equivariant embedding of IndG
H(B) into

P-IndG
H(B), and IndG

H(B) may be identified as the smallest G-subalgebra of P-IndG
H(B)

containing B.

Proof. The embedding IndG
H(B) → P-IndG

H(B) is given by the block diagonal
map

∑
gibi 7→

∑
gibigi

−1. It is easy to see that the image of the embedding is⊕n
i=1 giBgi

−1, which is evidently the smallest G-subalgebra containing B. ¤
In particular, if W is a representation of H, then End(W ) is an interior H-

algebra, and the G-algebra P-IndG
H(End(W )) is canonically isomorphic to End(IndG

H(W )).
We thus have the corollary:

Corollary 3.6. IndG
H(End(W )) is a G-invariant subalgebra of End(IndG

H(W )).
Moreover, if Q is any H-subalgebra of IndG

H(End(W )), then IndG
H(Q) is a G-

subalgebra of End(IndG
H(W )).

Complementary to this procedure, which except in trivial cases produces invari-
ant subalgebras which are products of multiple copies of a simple algebra, we have
another construction which gives rises to invariant simple subalgebras. Suppose
that V can be decomposed as the tensor product of (necessarily irreducible) pro-
jective representations, i.e. V ∼= U ⊗ U ′. The endomorphism ring then factors into
the tensor product End(V ) ∼= End(U)⊗End(U ′). It is immediate that End(U)⊗F
and F ⊗ End(U ′) are invariant subalgebras; in fact, each is the centralizer of the
other, so they form a dual pair of invariant subalgebras. To give a trivial example,
the factorization V = V ⊗F gives rise to the invariant subalgebras End(V ) and F .

Now suppose that we are given data consisting of a quadruple (H, W,U,U ′),
where H is a finite index subgroup of G, W is a representation of H such that
IndG

H(W ) = V , and U and U ′ are projective representations of H such that W ∼=
U ⊗ U ′. Combining the two constructions, we obtain a dual pair of semisimple
invariant subalgebras IndG

H(End(U)⊗F ) and IndG
H(F ⊗End(U ′)). In fact, it turns

out that every unital invariant subalgebra is obtained in this way. We will give
only a brief indication of the proof of this statement, showing how to associate a
quadruple to a unital invariant subalgebra. For further details, see [19].

Let B be a unital invariant subalgebra of End(V ), and let U be a simple B-
submodule of V . The translates gU are also simple B-submodules, and it can
be shown using the irreducibility of V that V is a sum of simple B-submodules
isomorphic to these translates and that B is semisimple. Let W be the isotypic
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component of U in V , say W ∼= ⊕l
j=1U . If g2U, . . . , grU are the other simple

submodules appearing in V , then V = W ⊕ g2W ⊕ · · · ⊕ grW is the decomposition
of V into isotypic components, and G acts transitively on these components. We
let H be the stabilizer of W under this permutation representation. Moreover,
setting B1 = End(U) and k = dim U , the Wedderburn decomposition of B is B ∼=
B1 × g2B1g

−1
2 × · · · × grB1g

−1
r
∼= ∏r

i=1 Mk(F ). Finally, the centralizer ZEnd(V )(B)
of B preserves the isotypic components of V , and we let U ′ be a simple ZEnd(V )(B)-
submodule of W . It turns out that ZEnd(V )(B) ∼= ∏r

i=1 Ml(F ). It can now be shown
that B and ZEnd(V )(B) are isomorphic to IndG

H(End(U)⊗F ) and IndG
H(F⊗End(U ′))

respectively coming from the quadruple (H, W,U,U ′).
A consequence of this result is that unital invariant subalgebras are semisimple

of a very special type. A (unital) semisimple subalgebra B of End(V ) is called sym-
metrically embedded if both B and its centralizer are products of isomorphic simple
algebras, say B ∼= Mk(F )× · · · ×Mk(F ) and ZEnd(V )(B) ∼= Ml(F )× · · · ×Ml(F ),
with each product having r factors. Equivalently, the r Wedderburn components
of B are isomorphic as F -algebras, and the simple B-submodules of V all appear
with the same multiplicity l. Concretely, this means that B can be embedded into
End(V ) as a block diagonal subalgebra having rl blocks of size k (with dimV = rlk);
each Mk(F ) embeds diagonally into l blocks.

So far, we have only considered unital invariant subalgebras. However, we will
show that with the exception of {0}, there are no nonunital invariant subalgebras.
Thus, we have the following description of the invariant subalgebras of End(V ) or
equivalently, the subhemirings of E(V ).

Theorem 3.7. Every nonzero invariant subalgebra of End(V ) is of the form IndG
H(End(U)⊗

F ) for some quadruple (H, W,U,U ′) as above. Thus, the nonzero saturated hemir-
ings of E(V ) are of the form IndG

H(End(U)⊗ F ).

Remarks. 1. The duality operation on the set of nonzero invariant subalgebras
given by taking centralizers corresponds to interchanging U and U ′ in the quadruple.
2. The map from quadruples to invariant subalgebras is not injective. However,

redundancies only arise from the G-action on the set of quadruples. When V is
expressed as IndG

H(W ) ∼= W ⊕ g2W ⊕ · · · ⊕ grW , the choice of W as the starting
point for the induction is arbitrary. We can just as well write V ∼= IndG

Hgi (giW ).
Thus, if B comes from the quadruple (H, W,U,U ′), it will also come from the
(Hg, gW, gU, gU ′)’s and from no other quadruple. It should also be observed that
the projective representations U and U ′, even when they can be expressed as linear
representations, are of course only defined up to projective equivalence. For more
details, see [19].

The invariant subalgebras of End(V ) thus encapsulate rather delicate representation-
theoretic information which is often difficult to calculate. Even when G is finite and
F = C, the character table of G does not suffice to determine the invariant subal-
gebras. In general, it is necessary to know the character tables of a covering group
of each subgroup of G whose index divides the dimension of V . Before proceeding,
we give some illustrations of the theorem.

Examples. 1. Let F = C and G be a compact, simply connected Lie group. Then
G ∼= G1 × · · · × Gs, where each Gi is simple, compact, and simply connected.
An irreducible representation V of G can be expressed as a tensor product V ∼=
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V1 ⊗ · · · ⊗ Vs where Vi is an irreducible representation of Gi. The group G has
no finite-index subgroups. Moreover, the only factorizations of V are the obvious
ones: given a subset I ⊂ [1, s], V ∼= UI ⊗ U ′

I where the representations UI and U ′
I

are defined by UI =
⊗

i∈I Vi ⊗
⊗

i/∈I C and U ′
I = UIc . Thus, we obtain a result of

Etingoff that the nonzero invariant subalgebras are just End(UI)⊗C for I ⊂ [1, s].
In particular, if each of the Vi’s is nontrivial, there are 2s +1 invariant subalgebras.
If G is simple, there are no nontrivial invariant subalgebras. Similar results hold
for arbitrary compact connected Lie groups; see [19].
2. We compute the invariant subalgebras of End(V ) for all irreducible represen-

tations of the symmetric groups S3, S4, and S5 and F = C. We use the usual
parametrization of the irreducible representations of Sn in terms of partitions of n.
We omit the trivial cases when V is one-dimensional. Also, since representations
corresponding to conjugate partitions have isomorphic endomorphism algebras (one
is obtained from the other by tensoring by the alternating representation, so they
are projectively equivalent), we only include one representation from each such pair.
Finally, we only list the nontrivial invariant subalgebras.

S3: V(2,1) V(2,1)
∼= IndS3

A3
χ where χ is either nontrivial character of A3, so End(V(2,1))

has an invariant subalgebra isomorphic to C⊕C.
S4: V(2,2) V(2,2)

∼= IndS4
A4

χ where χ is either nontrivial character of A4, so End(V(2,2))
has an invariant subalgebra isomorphic to C⊕C.

V(3,1) V(3,1)
∼= IndS4

D4
τ where D4 is the dihedral group < (1234), (13) > and

τ is the character with τ((1234)) = −1 and τ((13)) = 1, so End(V(3,1))
has an invariant subalgebra isomorphic to C⊕C⊕C.

S5: V(4,1) No nontrivial invariant subalgebras.
V(2,2,1) No nontrivial invariant subalgebras.
V(3,1,1) V(3,1,1)

∼= IndS5
A5

σ where σ is either 3-dimensional irreducible represen-
tation of A5, which can of course be decomposed as σ ∼= σ ⊗ 1. It can
also be expressed as IndS5

Q µ where Q is a subgroup of size 20 and µ is
one of the two complex (i.e. nonreal) characters of Q. (In terms of gen-
erators and relations, Q =< s, t | s5 = t4 = e, tst−1 = s2 >; it can be
realized as the centralizer of the subgroup < (12345) > with s = (12345)
and t = (1243). For its character table, see [3].) Thus, the nontrivial
invariant algebras of End(V(3,1,1)) consist of a dual pair isomorphic to
M3(C)⊕M3(C) and C⊕C and a self-dual C6.

3. We give one last example which is more complicated. Let G be the Weyl group
of the root system E6, a group of size 51840. This group has a rank two subgroup
H isomorphic to the finite simple group U4(2). (This can be realized as the group
of 4× 4 matrices with coefficients in F4 which preserve a nondegenerate Hermitian
form and have determinant one.) Let Wi denote the ith irreducible representation
of H from the list in the Atlas of Finite Groups[4]. The group G has an irreducible
representation V of dimension 60 which is isomorphic to IndG

H(W12) and further-
more, W12

∼= W3⊗W4
∼= W12⊗W1, where W1 is trivial and W12, W3 and W4 have

degrees 30, 5, and 6 respectively. We thus obtain four invariant subalgebras with
the same center C2 ∼= IndG

H(End(W1)) in two dual pairs isomorphic to M30(C)2 and
C2 and M5(C)2 and M6(C)2 respectively; moreover, these are the only invariant
subalgebras with this center.

The theorem is also useful in determining when a subrepresentation of End(V )
generates the algebra. Indeed, we have the corollary:
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Corollary 3.8. If V is a primitive representation (i.e. is not induced from a proper
subgroup) and does not factor into a product of projective representations, then every
nonzero subrepresentation of End(V ) except the unique trivial subrepresentation F
generates the algebra.

In particular, this is the case for simple compact Lie groups. Another common
example consists of a representation of prime degree p of a group with no index p
subgroups.

It remains to show that there are no nonzero nonunital invariant subalgebras
of End(V ). The proof uses the classification of unital invariant subalgebras and
depends on the following lemma.

Lemma 3.9. Let B be a semisimple algebra over F . Then B has a nonunital
subalgebra of codimension one if and only if one of the simple components is F .
Moreover, any such subalgebra is a two-sided ideal obtained by omitting one such
simple component.

Proof. Let B1, . . . , Br be the simple components of B. We regard B as an affine
space with coordinates Xk

ikjk
for 1 ≤ k ≤ r and 1 ≤ ik, jk ≤ dk, where Bk is a dk

by dk matrix algebra.
Suppose Q is a codimension one nonunital subalgebra of B. Every element of Q is

noninvertible in B. This follows because if b is invertible, then 1B is a polynomial
with vanishing constant term in b. (To see this, embed B in a suitable matrix
algebra, say by the left regular representation, and apply the Cayley-Hamilton
theorem.) This means that Q is contained in the zero set of the polynomial h(X) =
det(X1) . . . det(Xr) consisting of the product of the determinants for each Bk. The
algebra Q itself is the zero set of a linear polynomial f , so we must have f dividing
h. Since each determinant factor of h is irreducible, this implies that f = det(Xk)
for some k. But then Bk

∼= F , and Q is the product of the remaining simple factors.
The converse is trivial. ¤

In our situation, the nonunital invariant subalgebra Q is a codimension one
subalgebra of the invariant subalgbra B = Q + F . By the structure theorem for
unital invariant subalgebras, B is the product of isomorphic simple components on
which G acts transitively. The lemma now implies that B is isomorphic to F r,
and Q consists of all vectors with vanishing kth component for a fixed k. This is
impossible by transitivity unless r = 1, so the only nonunital invariant subalgebra
is {0}.

We can now add another characterization of the irreducibility of V in terms of
the semiring E(V ) to our list from Proposition 3.4.

Proposition 3.10. If F is algebraically closed, then V is irreducible if and only if
every saturated nonzero subhemiring of E(V ) is a subsemiring.

Proof. This follows immediately from the theorem and the observation that if V is
reducible, then E(V ) has proper nontrivial saturated left ideals. ¤

4. Subrepresentation semirings for SU(2) and the vanishing of Racah
coefficients

In this section, we will explore the semiring structure of E(V ) more closely,
concentrating primarily on the cases relevant for applications to material science. In
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particular, the goal of this section is to give a complete description of the structure
constants for E(V ) where V is an arbitary finite-dimensional complex representation
of SU(2).

For the moment, we allow G to be any compact group. We begin with a criterion
for commutativity of E(V ).

Proposition 4.1. Let V be an irreducible self-dual representation whose endomor-
phism ring End(V ) is multiplicity free. Then E(V ) is a finite commutative semiring.

Proof. Self-duality of V implies that V is endowed with a nondegenerate G-invariant
bilinear form, which will be symmetric or antisymmetric depending on whether V
is real or quaternionic. In either case, the transpose with respect to this form is
a G-antiautomorphism of End(V ). If W is a subrepresentation, then W t is an
isomorphic subrepresentation, and the fact that End(V ) is multiplicity free implies
that W = W t. Commutativity now follows immediately: WU = (WU)t = U tW t =
UW . ¤

It is easy to see that E(V ) cannot be commutative unless V is irreducible. Indeed,
if E(V ) is commutative, then every saturated one-sided ideal is automatically two-
sided. But there are no nontrivial saturated two-sided ideals, so by Proposition 3.4,
V is irreducible.

However, it is not true that E(V ) is necessarily commutative for an arbitary
irreducible self-dual representation. In fact, we do not know of any commutative
semiring E(V ) which is not finite. We give two simple examples to illustrate this
point.

Examples. 1. Let V be the standard representation of A4. The endomorphism
algebra End(V ) decomposes into the sum of each of the three linear characters
together with two copies of V . If U is a subrepresentation isomorphic to one of
the nontrivial characters, then U fails to commute with all but two of the infinite
number of subrepresentations isomorphic to V .
2. Let V be the representation V(3,1,1) of S5. Choose a basis for V in which the

block-diagonal subalgebra M3(C)⊕M3(C) is invariant. The alternating represen-
tation then appears as the line spanned by the block-diagonal matrix (I,−I). Each
irreducible 5-dimensional representation appears with multiplicity two: one copy in
the invariant subalgebra and one block-antidiagonal copy. These four subrepresen-
tations are the only five-dimensional subrepresentations which commute with the
alternating subrepresentation.

For the rest of this section, we assume that G = SU(2). Recall that for every j in
the index set J = 1

2Z≥0, there is a unique irreducible representation of dimension
2j +1, which we call Vj . In quantum theory, Vj is the representation corresponding
to total angular momentum j. Concretely, V 1

2
is the standard representation while

V1 is the adjoint representation (or equivalently, the representation in C3 obtained
via the double cover SU(2) → SO(3)). Each Vj is self-dual, with the integer repre-
sentations being real and the half-integer representations quaternionic. Moreover,
the group SU(2) is multiplicity free, i.e. the tensor product of any two irreducible
representations is multiplicity free. In fact, the Clebsch-Gordan formula states that
Vj ⊗ Vk

∼= ∑j+k
i=|j−k| Vi. We say that the triple (jki) is admissible if i is one of

the indices appearing in this sum. Since End(V ) is isomorphic to V ∗ ⊗ V , it is an
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immediate corollary of Proposition 4.1 that E(Vj) is a commutative semiring with
22j+1 elements.

A finite-dimensional representation V of SU(2) is determined up to isomorphism
by the multiplicities of the irreducible components of V . Consequently, if the highest
weight present in V is n, we can express V conveniently as V =

⊕
j∈Jn

Crj ⊗ Vj

where Jn = {j ∈ J | j ≤ n} and rj ≥ 0. By elementary linear algebra, we have

(3)

End(V ) ∼=
⊕

j∈Jn

Hom(Crj ⊗ Vj ,Crk ⊗ Vk)

∼=
⊕

j∈Jn

Hom(Crj ,Crk)⊗Hom(Vj , Vk),

with the G-action acting only on the second factor. This equation makes it clear
that the first step to understanding the semiring E(V ) is to understand not only
the semirings E(Vj), but also the natural multiplication

(4) H(Vk, Vl)⊗H(Vj , Vk) → H(Vj , Vl).

Let Va and Vb be subrepresentations of Hom(Vj , Vk) and Hom(Vk, Vl) respec-
tively. Note that VbVa is a quotient of Vb ⊗ Va and hence multiplicity free. It is
obvious that Vc cannot be a component of VbVa unless it is simultaneously a compo-
nent of Hom(Vj , Vl) ∼= Vj⊗Vl and Vb⊗Va, i.e. unless (jlc) and (bac) are admissible.
However, it is not true that this condition is sufficient. In fact, it turns out that
the structure constants of the multiplication given in equation (4) depend on the
vanishing of certain coefficients called Racah coefficients which are familiar from the
quantum theory of angular momentum. These are real constants W (j1j2j3j4; j5j6),
parametrized by six irreducible representations, which encode the associativity of
a tensor product of three irreducible representations[1]. We will describe them in
more detail below, but first we state our main theorem on the structure constants
for the matrix multiplication of subrepresentations.

Theorem 4.2. The Racah coefficient W (jkcb; al) is nonzero if and only if Va, Vb,
and Vc are subrepresentations of Hom(Vj , Vk), Hom(Vk, Vl), and VbVa respectively.
In particular, if Va ∈ H(Vj , Vk) and Vb ∈ H(Vk, Vl), then

(5) VbVa =
⊕

{c|W (jkcb;al)6=0}
Vc.

Corollary 4.3. If Va, Vb, and Vc are subrepresentations of End(Vj), then

(6) VbVa =
⊕

{c|W (jjcb;aj 6=0}
Vc.

Remark. In terms of 6j-coefficients, the condition of the theorem is that
{

j k a
b c l

}
6= 0.

It is not at all clear a priori that the Racah coefficient W (jkcb; al) have anything
to do with the structure constants for the multiplication of subrepresentations.
Indeed, this coefficient is nonzero if and only if there is a nonzero intertwining map
defined by the composition

(7) Vc → Va ⊗ Vb → (Vj ⊗ Vk)⊗ Vb
∼= Vj ⊗ (Vk ⊗ Vb) → Vj ⊗ Vl → Vc
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whereas the theorem states that this is true if and only if there is a nonzero inter-
twining map Vc → VbVa[5]. This statement is not true in general for other groups,
even for groups whose representation theory bears a close formal resemblance to
that of SU(2).

It is obvious from (7) that the Racah coefficient W (jkcb; al) vanishes if any of
the four triples (abc), (jka), (kbl) and (jlc) are not admissible. However, there are
also nontrivial zeros, and these are not well understood. (For a survey, see [2].)
The description of a nontrivial zero of W (jkcb; al) using the classical definition is
rather cumbersome, namely that two embeddings Vc → Vj ⊗Vk⊗Vb corresponding
to two different iterations of the Clebsch-Gordan formula are orthogonal. The
interpretation provided by the theorem is conceptually much simpler.

The smallest example in which the multiplication semiring E(Vj) is not deter-
mined solely by the admissibility conditions occurs for j = 3

2 . Here, the fact that
W ( 3

2 , 3
2 , 2, 2; 2, 3

2 ) = 0 implies that V2V2 does not contain V2 as a subrepresentation.
A more illuminating example involves End(V3). Racah has shown that the zero

W (3, 5, 3, 5; 3, 3) is related to the embedding of the exceptional Lie algebra G2 in
so(7)[18]. The theorem provides a particularly simple way to see this connection.
Consider the SU(2)-algebra End(V3). Since V3 is a real representation of dimension
7, the antisymmetric matrices so(7) form a G-invariant Lie algebra which decom-
poses as V1 + V3 + V5. We verify that V1 + V5 is a Lie subalgebra. First, note that
[V1, Vk] ⊆ V1Vk ∩ so(7) = Vk for k = 1, 3, 5. Also, [V5, V5] ⊆ V5V5 ∩ so(7) ⊂ V1 + V5

because W (3, 5, 3, 5; 3, 3) = 0. This 14-dimensional Lie subalgebra is just G2.
To prove the theorem, we use the standard orthonormal basis for Vj from angular

momentum theory. This basis consists of weight vectors {vj
−j , . . . , v

j
j}. This means

that the vector vj
m of weight m is an eigenvector with eigenvalue 2m of the element

H =
(

1 0
0 −1

)
of the complexified Lie algebra su(2) ⊗ C ∼= sl(2,C). Moreover, the

basis is uniquely determined by the choice of vj
j ; if F = ( 0 0

1 0 ), then the phase of
vj

m is determined by the condition that it is a positive scalar multiple of F j−mvj
j .

In quantum theory, vj
m is just the eigenket |jm〉 with total and projection angular

momentum quantum numbers j and m respectively. We call such a basis a Clebsch-
Gordan or CG basis for Vj .

We will also need an explicit G-isomorphism φj : V ∗
j → Vj . This is given by the

formula vj∗
m 7→ (−1)mvj

−m, where {vj∗
m } is the dual basis and (−1)m is interpreted

as i2m. To see that this map is an intertwining map, first observe that vj∗
m is a

weight vector with weight −m. Thus, there is a unique intertwining map sending
vj∗
−j to (−1)−jvj

j . It now follows by induction that vj∗
−j+t maps to (−1)−j+tvj

j−t,
using the basic formula F · vj

m = [(j + m)(j −m + 1)]
1
2 vj

m−1. Indeed, if this holds
for t, then

(F · vj∗
−j+t)(v

j
m) = −vj∗

−j+t(F · vj
m) = −δ−j+t+1,m[(t + 1)(2j − t)]

1
2 .

This shows that

φj(F · vj∗
−j+t) = −[(t + 1)(2j − t)]

1
2 φj(v

j∗
−j+t+1).

On the other hand,

F · φj(v
j∗
−j+t) = (−1)−j+tF · vj

j−t = (−1)−j+t[(2j − t)(t + 1)]
1
2 vj

j−t−1,

and equating these two expressions completes the indutive step.
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For ease of notation, we let wj
m = (−1)mvj∗

−m denote the CG basis vectors in V j∗.
Identifying Hom(Vj , Vk) and V ∗

j ⊗Vk via the canonical isomorphism, we obtain the
basis {wj

m ⊗ vk
s } for Hom(Vj , Vk). Moreover, the obvious map sends this basis to

the usual basis for Vj ⊗ Vk.
Let Va be an irreducible component of Hom(Vj , Vk) , and let {za

m(j, k)} be the
CG basis for this subrepresentation. In terms of the basis vectors for Hom(Vj , Vk),
we have

(8) za
m(j, k) =

∑
m1m2

Cjka
m1m2mwj

m1
⊗ vk

m2
.

Here, we are using the convention that the constant Cjka
m1m2m vanishes unless m1 +

m2 = m. These coefficients are nothing more than the usual Clebsch-Gordan (or
Wigner) coefficients. In fact, mapping these vectors to Vj ⊗ Vk gives the standard
definition of the Clebsch-Gordan coefficients (see for example [1, equation (3.164)]).

Note that if any of the four triples (abc), (jka), (kbl) and (jlc) fails to be admis-
sible, then the Racah coefficient W (jkcb; al) = 0 while VbVa is either undefined or
does not contain a copy of Vc for trivial reasons. Accordingly, we now suppose that
the four triples are admissible, so that in particular Va, Vb, and Vc are components
of Hom(Vj , Vk), Hom(Vk, Vl), and Hom(Vj , Vl) respectively. This means that Vc has
a CG basis {zc

m(j, l)}. However, Vc is also a submodule of Vb ⊗ Va, and the image
of the CG basis for Vc in Vb ⊗ Va under the projection to VbVa is given by

(9) ζc
m =

∑
p1,p2

Cbac
p1p2mzb

p1
(k, l)za

p2
(j, k).

It follows that these sets of vectors are related by a scalar multiple Rjkl
abc depending

on the six indices a, b, c, j, k, and l, so that

(10) ζc
m = Rjkl

abcz
c
m(j, l).

Expanding (9) gives

(11)

ζc
m =

∑
p1,p2

Cbac
p1p2m(

∑
s1s2

Cklb
s1s2p1

wk
s1
⊗ vl

s2
)(

∑
t1t2

Cjka
t1t2p2

wj
t1 ⊗ vk

t2)

=
∑

p1,p2,s1,s2,t1,t2

δs1+t2,0(−1)s1Cbac
p1p2mCklb

s1s2p1
Cjka

t1t2p2
wj

t1 ⊗ vl
s2

.

Comparing the coefficient of the basis element wj
m1
⊗ vl

m2
on both sides of (10), we

obtain

(12) Rjkl
abcC

jlc
m1m2m =

∑
p1,p2,s

(−1)sCbac
p1p2mCklb

sm2p1
Cjka

m1(−s)p2
.

This expression is very similar to an analogous formula involving the Racah
coefficient W (jkcb; al). In order to show that the two coefficients differ by a nonzero
scalar multiple, we apply symmetries of the Clebsch-Gordan coefficients. Indeed,
from equation (3.180) in [1], we have

Cbac
p1p2m = (−1)c−a−bCabc

p2p1m and

Cklb
sm2p1

= (−1)2k+b−l−s[(2b + 1)/(2l + 1)]
1
2 Ckbl

(−s)p1m2
,
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giving

(13) (−1)a+l−c−2k[(2l + 1)/(2b + 1)]
1
2 Rjkl

abcC
jlc
m1m2m

=
∑

p1,p2,s

Cabc
p2p1mCkbl

(−s)p1m2
Cjka

m1(−s)p2
.

But the sum on the right is also equal to

(14) [(2a + 1)(2l + 1)]
1
2 W (jkcb; al)Cjlc

m1m2m

by equation (3.267) in [1]. Since (jlc) is admissible, we can choose m1, m2, and m
such that Cjlc

m1m2m 6= 0, and so we finally obtain

(15) Rjkl
abc = (−1)2k+c−a−l[(2a + 1)(2b + 1)]

1
2 W (jkcb; al).

Thus, Vc is a component of VbVa precisely when W (jkcb; al) 6= 0. This completes
the proof of the theorem.

As an immediate consequence of (15), we get

Corollary 4.4. Racah coefficients can be defined entirely in terms of multiplication
of subrepresentations.

We are now ready to calculate the structure constants for E(V ) where V is an
arbitrary finite-dimensional representation of SU(2), following the discussion in [11].
As explained above, such a representation can be expressed as V =

⊕
j∈Jn

(Crj ⊗
Vj). The endomorphism algebra E(V ) is no longer multiplicity free. In fact, if Va

appears in E(V ) with multiplicity m, then the set of distinct subrepresentations of
E(V ) isomorphic to Va is in one-to-one correspondence with the projective space
P(Cm). However, it is easy to find homogeneous coordinates for an arbitrary copy
of Va. Let Xa be such a subrepresentation. Using the decomposition (3), we have
a CG basis for Xa:

(16) za
m(X) =

∑

j,k∈Jn

xjk ⊗ za
m(j, k),

where the xjk ∈ Hom(Crj ,Crk). We can now fully describe E(V ).

Theorem 4.5. Let Xa and Y b be irreducible subrepresentations of E(V ), isomor-
phic to Va and Vb respectively, with homogeneous coordinates xjk and yjk. Then
Y bXa contains a copy of Vc if and only if the coefficients

(17) zjl =
∑

k∈Jn

yklxjkRjkl
abc

are not all zero; here, Rjkl
abc is the nonzero multiple of W (jkcb; al) defined in (15). In

this case, the zjl are the homogeneous coordinates for the unique subrepresentation
isomorphic to Vc.

Proof. As usual, Y bXa contains at most one copy of Vc. To avoid trivialities, we
assume that (bac) is admissible. The image of the CG basis for Y b ⊗Xa in Y bXa

is given by

(18) χc
m =

∑
p1,p2

Cbac
p1p2m(

∑

ql

yql ⊗ zb
p1

(q, l))(
∑

jk

xjk ⊗ za
p2

(j, k)).
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The only terms that contribute to the sum have q = k. Rearranging and substitut-
ing (10), we get

(19)

χc
m = (

∑

jkl

yklxjk)⊗ (
∑
p1,p2

Cbac
p1p2mzb

p1
(k, l)za

p2
(j, k))

=
∑

jl

(
∑

k

yklxjkRjkl
abc)⊗ zc

m(j, l)

as desired. ¤
Remarks. 1. The SO(3) version of this result is Theorem 5.6 in [11].
2. Given three SU(2)-modules U , V , and W , it is possible to describe the multipli-

cation H(V,W )⊗H(U, V ) → H(U,W ) in much the same way; the only difficulties
are notational.

We conclude by returning briefly to the problem of finding the exact relations for
the coupling of p electric fields, q elastic fields, and r temperature fields. Here, we
are considering End(T) for T = (Rp⊗R3)⊕(Rq⊗Sym(R3))⊕(Rr⊗R). Complex-
ifying and decomposing T into irreducible components, we see that our algebraic
conditions (1) and (2) for the existence of an exact relation involve computing the
semiring E(V ), where V = (Cq+r⊗V0)⊕ (Cp⊗V1)⊕ (Cq⊗V2). We can now apply
the theorem, using tabulated values of W (jkcb; al) where j, k, l ∈ {0, 1, 2}. (There
are no nontrivial zeros of the relevant Racah coefficients.) For the complete list of
exact relations in the case of thermopiezoelectricity for one field of each type, see
[11].

At present, we do not know of a simple way of describing the subrepresentations
of End(T) satisfying (1) in the general case. However, it is possible to give an
explicit characterization of the exact relations for p coupled electic fields[11]. Here,
we have T = Rp ⊗ V1, so a subrepresentation Π of Sym(T) can be written Π =
(L0 ⊗ V0) ⊕ (L1 ⊗ V1) ⊕ (L2 ⊗ V2) with L0, L2 ⊂ Sym(Rp) and L1 ⊂ Skew(Rp).
The subrepresentation A appearing in (1) is A = Ip⊗V2. A computation using the
theorem now shows that the stability of Π under lamination is equivalent to

(20)

[(L0 + L1 + L2)2]sym ⊂ L2,

[(L1 + L2) ∗ (L0 + L1 + L2)]skew ⊂ L1,

[(L0 ∗ L2) + (L1 + L2)2]sym ⊂ L0,

where X ∗Y = XY +Y X. It was shown in Theorem 5.2 of [11] that these equations
have a remarkably simple algebraic interpretation:

Theorem 4.6. The subspaces L0, L1, and L2 are solutions to (20) if and only if
L0 = L2 and B = L1 + L2 is an associative subalgebra of End(Rp) which is closed
under transposition and with skew-symmetric and symmetric components L1 and
L2 respectively.

Remark. The corresponding exact relations stable under lamination are in fact
stable under homogenization as well.

We give a brief sketch of the proof. Defining B as in the statement of the theorem,
it is immediate that B and B2 are closed under transposition. It follows from the
first two equations of (20) that (B2)sym ⊂ L2 ⊂ B and (B2)skew ⊂ L1 ⊂ B. This
implies that B2 ⊂ B, i.e. B is a subalgebra of End(Rp). Since this subalgebra is
closed under transposition, it is semisimple, hence contains a multiplicative identity.
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We thus obtain B2 = B, and the third equation shows that L2 = (B2)sym ⊂ L0.
Verifying the reverse inclusion is more involved, and we refer the reader to [11] for
the details.

When p = 2, there are only six classes of subalgebras of End(R2) closed under
transposition: B0 = {0}, B1 = RI2, B2(v) = {λv⊗ v | λ ∈ R} for a nonzero vector
v, B3(v) = {A ∈ Sym(R2) | v is an eigenvector of A}, B4 = {λR | λ ∈ R, R ∈
SO(2)}, and B5 = End(R2)[11]. There are thus four classes of nontrivial exact
relations in the context of two coupled conductivity problems.
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