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Abstract. Let Ĝ be an algebraic loop group associated to a reductive group
G. A fundamental stratum is a triple consisting of a point x in the Bruhat-Tits

building of Ĝ, a nonnegative real number r, and a character of the correspond-

ing depth r Moy-Prasad subgroup that satisfies a non-degeneracy condition.
The authors have shown in previous work how to associate a fundamental stra-
tum to a formal flat G-bundle and used this theory to define its slope. In this

paper, the authors study fundamental strata that satisfy an additional regular
semisimplicity condition. Flat G-bundles that contain regular strata have a

natural reduction of structure to a (not necessarily split) maximal torus in Ĝ,

and the authors use this property to compute the corresponding moduli spaces.
This theory generalizes a natural condition on algebraic connections (the GLn

case), which plays an important role in the global analysis of meromorphic
connections and isomonodromic deformations.

1. Introduction

The study of meromorphic connections on algebraic curves (or equivalently, flat
GLn(C)-bundles) often reduces to the analysis of the associated formal connections
at each pole. This local-to-global approach has proven to be especially effective
when the principal part of the connection at any irregular singular point has a
diagonalizable leading term with distinct eigenvalues. For example, the first sig-
nificant progress on the isomonodromy problem for irregular singular differential
equations came in a 1981 paper of Jimbo, Miwa, and Ueno, in which they imposed
this condition at the singularities [13]. Also in this context, Boalch has constructed
well-behaved moduli spaces of connections on P1 with given formal isomorphism
classes at the singularities and has further exhibited the isomonodromy equations
as an integrable system on an appropriate Poisson manifold [1]. Analogous results
hold for flat G-bundles, where G is a complex reductive group [10]. Other aspects
of the monodromy map for flat G-bundles of this type have been studied in [6, 2].

While there is a very satisfactory picture of this type of connection, the conditions
imposed are quite restrictive. Indeed, such connections necessarily have integral
slope at each singularity whereas the slope of a rank n formal connection at an
irregular singular point can be any positive rational number with denominator at
most n. Moreover, many connections of particular interest are not of this type.
Recall that in the GLn case of the geometric Langlands program, the role of Galois
representations is played by monodromy data associated to flat connections: over
a smooth complex curve X or the formal punctured disk ∆× = Spec(F ) depending
on whether one is in the global or local context. By analogy with the classical

The research of the second author was partially supported by a grant from the Simons Foun-
dation (#281502).

1



2 CHRISTOPHER L. BREMER AND DANIEL S. SAGE

situation, one expects that connections corresponding to cuspidal representations
will not have regular semisimple leading terms. For example, Frenkel and Gross
have constructed a rigid flat G-bundle (for any reductive G) which corresponds to
the Steinberg representation at 0 and a certain “small” supercuspidal representation
at ∞ [11]. When G = GL2(C), this is just the classical Airy connection. Here, the
leading term at the irregular singular point at ∞ is nilpotent.

In [3], the authors generalized Boalch’s results mentioned above to a much wider
class of meromorphic connections. This was done through the introduction of a
new notion of the “leading term” of a formal connection in terms of a geometric
version of the theory of fundamental strata familiar from p-adic representation
theory (see, for example, [8]). Let F = C((z)) be the field of formal Laurent
series with ring of integers o = C[[z]]. A GLn(F )-stratum is a triple (P, r, β) with
P ⊂ GLn(F ) a parahoric subgroup, r a nonnegative integer, and β a functional
on the quotient of congruent subalgebras Pr/Pr+1. The stratum is fundamental if

β satisfies a certain nondegeneracy condition. Let (V̂ , ∇̂) be a rank n connection
over the formal punctured disk ∆× = Spec(F ). After fixing a trivialization for

V̂ , the matrix of the connection [∇̂] is an element of gln(F )
dz
z . In particular, it

induces a functional on gln(F ) via taking the residue of the trace form. We say

that (V̂ , ∇̂) contains the stratum (P, r, β) if this functional kills Pr+1 and induces
β on the quotient space. Every connection contains a fundamental strata, and each
such stratum should be viewed as a “correct” leading term of the connection. For
example, a stratum determines the slope of an irregular connection if and only if
it is fundamental. The Frenkel-Gross connection does not contain a fundamental
stratum at the irregular singular point with respect to the usual filtration (with
P = GLn(o)), but it does with respect to a certain Iwahori subgroup.

The key property that allows one to construct smooth moduli spaces of global
connections is for the corresponding formal connections to contain regular strata.
These are fundamental strata which are centralized in a graded sense by a pos-
sibly nonsplit maximal torus S ⊂ GLn(F ). For example, if [∇] = (M−rz

−r +
M−r+1z

−r+1 + . . . )dzz with Mi ∈ gln(C) and M−r regular semisimple, then it
contains a regular stratum (GLn(o), r, β) centralized by the diagonal torus. Only
certain conjugacy classes of maximal tori can centralize a regular stratum, and only
uniform maximal tori–maximal tori which are the product of some number of copies
of E× for some field extension E of F–are considered in [3, 4]. The Frenkel-Gross
connection for GLn(C) contains a regular stratum centralized by a maximal torus

isomorphic to F [z1/n]×. If (V̂ , ∇̂) contains a regular stratum (P, r, β) centralized
by S, then we show that its matrix is gauge-equivalent to an element of sdzz , where
s = Lie(S). In fact, we construct a certain affine subvariety of s−r/s−1 called the

variety of S-formal types of depth r, which admits a free action of ŴS , the relative
affine Weyl group of S. (Here, sk is the k-th piece of the natural filtration on s.)
We then show that the moduli space of such connections is isomorphic to the set
of ŴS-orbits.

In [3, 4], we generalize Boalch’s results to meromorphic connections on P1 which
contain regular strata at each irregular singular point. In particular, consider mero-
morphic connections (V,∇) with singularities at y = (y1, . . . , ym) and which contain
regular strata (Pi, ri, βi) centralized by Si at each yi. We then construct a Pois-

son manifold M̃(y,S, r) of such connections with given “framing data”. If A is an
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m-tuple of formal types with the combinatorics determined by S and r, we also con-

struct the space M(y,A) (resp. M̃(y,A)) of framable (resp. framed) connections
with the specified formal types. The variety M(y,A) is the symplectic reduction

of the symplectic manifold M̃(y,A) via a torus action. The constructions of all of
these spaces are automorphic, in the sense that they are realized as the symplectic
or Poisson reduction of products of smooth varieties determined by local data. Fi-
nally, the monodromy map and the formal types map induce orthogonal foliations

on M̃(y,S, r). Thus, the fibers of the monodromy map are the leaves of an inte-

grable system on M̃(y,S, r) determined by the isomondromy equations while the

connected components of the M̃(y,A)’s are the symplectic leaves of M̃(y,S, r).
The goal of this paper is to develop the local theory necessary to obtain similar

results for flat G-bundles. In particular, we generalize the theory of regular strata
and its application to formal G-bundles. Our starting point is the geometric theory
of fundamental strata for reductive groups [5], which we review in Section 2. Given
any point x in the Bruhat-Tits building B for G(F ), Moy and Prasad have defined
a decreasing R-filtration (gx,r) on g(F ) with a discrete number of steps [15, 16]. A
stratum is a triple (x, r, β) where x ∈ B, r ∈ R≥0, and β is a functional on the r-th
step gx,r/gx,r+ in the filtration. In [5], we show that every flat G-bundle contains a
fundamental stratum and the stratum depth r is the same for all of them. We thus
obtain a new invariant for formal flat G-bundles called the slope. These results are
the geometric analogue of Moy and Prasad’s theorem on the existence of minimal
K-types for admissible representations of p-adic groups [15, 16].

Intuitively, regular strata are fundamental strata that satisfy a graded version of
regular semisimplicity. Regular strata do not appear in the p-adic theory, though
they have some points in common with the semisimple strata considered for p-adic
classical groups in [9, 18]. As a preliminary, we first study points in the building
compatible with a given Cartan subalgebra. A point x is compatible with the
Cartan subalgebra s if the restriction of the filtration given by x to s is the unique
Moy-Prasad filtration on s. If A0 ⊂ B is a fixed rational apartment, Theorems 3.11
and 3.13 give existence and classification results for Cartan subalgebras graded
compatible with a given point in A0. We apply these results in Corollary 3.15 to
classify the set of points in A0 compatible with some conjugate of s.

In the following section, we introduce the concept of an S-regular stratum
(x, r, β), where S is a maximal torus in G(F ). Roughly speaking, this means that
x is compatible with the associated Cartan subalgebra s and that every represen-
tative of β has connected centralizer a suitable conjugate of S. The existence of an
S-regular stratum is a restrictive condition. Recalling that the classes of maximal
tori in Ĝ correspond bijectively to the conjugacy classes in the Weyl group W ,
we show in Corollary 4.10 that it can only occur when S corresponds to a regular
conjugacy class inW . For example, when G = GLn, such maximal tori are the uni-
form maximal tori and tori of the form S′ × F× where S′ is uniform in GLn−1(C).
Combining this with Corollary 3.15, we obtain a description of all points in A0

which can support a regular stratum for a given conjugacy class of maximal tori.
Finally, in Section 5, we study the category C(S, r) of formal flat G-bundles

which contain an S-regular stratum of slope r and an associated category Cfr
x (S, r),

depending on a choice of compatible point x, of framed flat bundles. (When S is
split, we take S = T (F ) and only allow x to be the vertex corresponding to G(o).)
We show that the framed categories are independent of the choice of x. The moduli
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space of Cfr
x (S, r) can be viewed as the set A(S, r) of S-formal types of depth r–a

certain affine open (when r > 0) subset of s∨−r/s
∨
0+ endowed with a free action of

the relative affine Weyl group ŴS . Theorem 5.1 states that any ∇̂ containing an
S-regular stratum is gauge-equivalent to a flat G-bundle determined by a formal
type in A(S, r). More precisely, the forgetful deframing functor Cfr

x (S, r) → C(S, r)

induces the quotient map A(S, r) → A(S, r)/ŴS on moduli spaces.
We expect that the results on meromorphic connections in [3, 4] can be gen-

eralized to meromorphic flat G-bundles containing regular strata at each irregular
singular point. We are also hopeful that these results will be of use in the geometric
Langlands program. In particular, we anticipate that there is an interpretation of
fundamental strata for representations of affine Kac-Moody algebras and that rep-
resentations containing regular strata should correspond to formal flat G-bundles
containing regular strata.

2. Preliminaries

Let k be an algebraically closed field of characteristic 0, and let G be a connected
reductive group over k with Lie algebra g. Fix a maximal torus T ⊂ G with
corresponding Cartan subalgebra t. Let N = N(T ) be the normalizer of T , so that
the Weyl groupW of G is isomorphic toN/T . The set of roots with respect to T will
be denoted by Φ. Given α ∈ Φ, Uα ⊂ G is the associated root subgroup and uα ⊂ g
is the weight space for t corresponding to α. We will write Z for the center of G
and z for its Lie algebra. We fix a nondegenerate invariant symmetric bilinear form
〈, 〉 on g throughout. Finally, Rep(G) denotes the category of finite-dimensional
representations of G over k.

Let F = k((z)) be the field of formal Laurent series over k with ring of integers
o = k[[z]], and let ∆× = Spec(F ) be the formal punctured disk. We denote the

Euler differential operator on F by τ = z d
dz . We set Ĝ = G(F ) and ĝ = g ⊗k F ;

note that Ĝ represents the functor sending a k-algebra R to G(R((z))). We will use

the analogous notation Ĥ and ĥ for any algebraic group H over k. Similarly, if V is
a representation of G, then V̂ = V ⊗F will denote the corresponding representation
of Ĝ.

The Bruhat-Tits building and the enlarged building of Ĝ will be denoted by B̄

and B respectively. If x ∈ B, we denote the corresponding parahoric subgroup
(resp. subalgebra) by Ĝx (resp. ĝx). The standard apartment in B associated to

the split rational torus T̂ = T (F ) is an affine space isomorphic to X∗(T ) ⊗Z R. If
R ⊂ k, then points in A0 may be viewed as elements of tR. The map A0 → tR is
induced by evaluating cocharacters at 1. We write x̃ ∈ tR for the image of x ∈ A0.
If x ∈ X∗(T )⊗Z Q, then x̃ ∈ t is defined for any k.

Convention. If the notation x̃ is used for x ∈ A0, then either k contains R or x is
a rational point of A0 (so x̃ ∈ tQ).

Let F̄ be an algebraic closure of F . Later in the paper, we will need to consider
elements of T (F̄ ) of the form zv with v ∈ tQ. Recall that F̄ is generated by m-th
roots of z. Suppose that u ∈ F̄ satisfies um = z. If v ∈ t 1

mZ, one can define zv

as the unique element of T (F [u]) satisfying χ(zv) = udχ(mv) for all χ ∈ X∗(T ).
This, of course, depends on the choice of m and u, but it is well-defined up to
multiplication by ξv ∈ T , where ξ is an mth root of unity. Since ξv ∈ T , and in
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particular is fixed by Gal(F̄ /F ) and killed by τ , it will follow that all results that
involve zv will be independent of this choice. For convenience, we may assume
that all elements of this form are defined in terms of a coherent set of uniformizers
for the finite extensions of F̄ , i.e., a choice of elements um ∈ F̄ for each m ∈ N
satisfying umm = z and such that if m′|m, then u

m/m′

m = um′ .

2.1. Moy-Prasad filtrations. If V is any finite-dimensional representation of G,
then any point x ∈ B induces a decreasing R-filtration {V̂x,r} of V̂ by o-lattices

called the Moy-Prasad filtration [12, 15]. Since gV̂x,r = V̂gx,r, it suffices to recall
the definition for x ∈ A0, where it can be constructed in terms of a grading on
V ⊗k k[z, z−1]. If χ ∈ X∗(T ) and Vχ is the corresponding weight space, then the
r-th graded subspace is given by

(1) V̂x,A0(r) =
⊕

〈χ,x〉+m=r

Vχz
m ⊂ V̂ .

The grading depends on the choice of apartment. However, since we only use
gradings with respect to A0, we usually write V̂x(r) for V̂x,A0(r). For any r ∈ R,
define

V̂x,r =
∏
s≥r

V̂x,A0(s) ⊂ V̂ ; V̂x,r+ =
∏
s>r

V̂x,A0(s) ⊂ V̂ .

The collection of lattices {V̂x,r} is the Moy-Prasad filtration on V̂ associated to x.
The set Critx(V ) of critical numbers of V at x is the discrete, Z-invariant subset of
R for which V̂x,r/V̂x,r+ ∼= V̂x,A0(r) 6= {0}. It is easy to see that the sets of critical
numbers associated to the adjoint and coadjoint representations coincide and are
symmetric around 0.

There is also a corresponding filtration {Ĝx,r}r∈R≥0
of the parahoric subgroup

Ĝx = Ĝx,0 for x ∈ B. If one sets Ĝx,r+ =
⋃
s>r Ĝx,s, then Ĝx+ = Ĝx,0+ is the pro-

unipotent radical of Ĝx. For r > 0, there is a natural isomorphism Ĝx,r/Ĝx,r+ ∼=
ĝx,r/ĝx,r+ [15]. On the other hand, Ĝx/Ĝx+ is isomorphic to a reductive, maximal
rank subgroup of G. For x ∈ A0, we give an explicit isomorphism. Let Hx ⊂ G
be the subgroup generated by T and the root subgroups Uα such that dα(x̃) ∈
Z. (If C ⊂ k, Hx is the connected centralizer of exp(2πix̃) ∈ G.) There is a

homomorphism θ′x : Hx → Ĝx defined on the generators of Hx via T ↪→ T (o) and

θ′x(Uα(c)) = Uα(cz
−α(x̃)) for c ∈ k. The induced map θx : Hx → Ĝx/Ĝx+ is an

isomorphism [5]. It is easy to see that the group Hx acts on V̂x(r) for any r and θx
intertwines the representations V̂x(r) and V̂x,r/V̂x,r+.

We collect the basic properties of these filtrations in the following proposition.

Proposition 2.1. Take V ∈ Rep(G), and fix x ∈ A0 and r ∈ R.
(1) The space V̂x(r) is the eigenspace corresponding to the eigenvalue r in V̂

for the differential operator τ + x̃.
(2) An element v ∈ V̂ lies in V̂x,r if and only if (τ + x̃)(v)− rv ∈ V̂x,r+.

(3) The set V̂x(r) constitutes a full set of coset representatives for the coset

space V̂x,r/V̂x,r+.

(4) If X ∈ ĝx(s), then ad(X)(V̂x(r)) ⊂ V̂x(r + s).

If E is a degree e extension of F , then these gradings and filtrations extend
naturally to V (E) by setting the valuation of the uniformizer in E to be 1/e.
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For example, if E = F ((u)) with ue = z, then t(E)(m/e) = umt for m ∈ Z.
Proposition 2.1 remains true if one interprets τ as 1

eu
d
du , its unique extension to E.

If Γ = Gal(E/F ), then Vx,r = V (E)Γx,r and similarly for the gradings.

We will frequently need to compare Moy-Prasad filtrations on Ĝ with filtrations
on nonsplit maximal tori. For a torus, there is a unique Moy-Prasad filtration on the
maximal bounded subgroup and the Cartan subalgebra. If S is a maximal torus
with Lie algebra s, then we may define graded and filtered pieces by extending
scalars to a finite splitting field E and conjugating the analogous data for T (E)
and t(E). To be more explicit, if g ∈ G(E) satisfies Ad(g−1)s(E) = t(E) and

Γ = Gal(E/F ), then s(r) = (Ad(g)(t(E)(r)))
Γ
, sr = (Ad(g)(t(E)r))

Γ
, and Sr =(

g(T (E))r)g
−1

)Γ
. These definitions do not depend on the choice of E or g. Indeed,

if one takes another diagonalizer g′ and takes E big enough so that g, g′ ∈ G(E),
then g′ = gn for n ∈ N(E). Independence now follows, since N(E) fixes the grading
and filtrations on t(E) and T (oE). Observe that this definition rescales the index
on filtrations for nonsplit groups constructed in [16] by a factor of 1/e, but it is
effectively the same as that appearing in [7, Section 10] and [12, Section 5].

Moy-Prasad filtrations are well-behaved under duality. If W is an o-module,
let W∨ be its smooth (k-linear) dual. Note that if V ∈ Rep(G), then there is a

Ĝ-isomorphism (̂V ∨) = V ∨ ⊗ F
κ→ (V̂ )∨, κ(α)(v) = Resα(v)dzz ; we will abuse

notation slightly by denoting both by V̂ ∨. However, V̂ ∨
x,r will always mean (V̂ ∨)x,r.

We recall the following facts. (See [5] for more details.)

Proposition 2.2. Fix V ∈ Rep(G), x ∈ B, and r ∈ R.

(1) The isomorphism κ restricts to give Ĝx-isomorphisms V̂ ∨
x,−r

∼= V̂ ⊥
x,r+ and

V̂ ∨
x,−r+

∼= V̂ ⊥
x,r.

(2) There is a natural Ĝx-invariant perfect pairing

V̂ ∨
x,−r/V̂

∨
x,−r+ × V̂x,r/V̂x,r+ → k,

which induces the isomorphism (V̂x,r/V̂x,r+)
∨ ∼= V̂ ∨

x,−r/V̂
∨
x,−r+.

(3) There are Ĝx-isomorphisms (V̂x,r)
∨ ∼= V̂ ∨/V̂ ∨

x,−r+ and (V̂x,r+)
∨ ∼= V̂ ∨/V̂ ∨

x,−r.
(4) Suppose that V is endowed with a nondegenerate G-invariant symmetric

bilinear form (, ). Then, (, ) dz
z

def
= Res((, ) dzz induces Ĝx-isomorphisms

V̂ ∨
x,−r

∼= V̂x,−r and V̂
∨
x,−r+

∼= V̂x,−r+; in particular, (V̂x,r/V̂x,r+)
∨ ∼= V̂x,−r/V̂x,−r+.

2.2. Formal flat G-bundles and strata. A formal principal G-bundle G is a
principal G-bundle over the formal punctured disk ∆×. The G-bundle G induces a
tensor functor from Rep(G) to the category of formal vector bundles via V 7→ VG =
G×GV , and this tensor functor uniquely determines G. Formal principal G-bundles
are trivializable, so we may always choose a trivialization φ : Ĝ → G. Moreover,
there is a left action of Ĝ on the set of trivializations of G.

A flat structure on a principal G-bundle is a formal derivation ∇ that determines
a compatible family of flat connections on VG for all V ∈ Rep(G). In terms of a
fixed trivialization φ for G, ∇ acts on VG as the operator d+ [∇]φ∧, where d is the
ordinary exterior derivative and [∇]φ ∈ Ω1

F (ĝ) is thematrix of∇ in the trivialization
φ. Since Ω1

F (ĝ)
∼= Ω1

F (ĝ
∨) via the choice of invariant form on fg and Ω1

F (ĝ
∨) ∼= ĝ∨

canonically, we can view [∇]φ as a functional on ĝ. The group Ĝ acts on [∇]φ by
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gauge transformations, namely

(2) [∇]gφ = g · [∇]φ = Ad∗(g)([∇])− (dg)g−1.

The right-invariant Maurer-Cartan form (dg)g−1 lies in Ω1
F (ĝ). Note that if ιτ is the

inner derivation by τ , then we can write [∇]φ = [∇τ ]φ
dz
z , where [∇τ ]φ = ιτ [∇]φ ∈ ĝ.

The flat G-bundle (G,∇) is called regular singular if the flat connection VG is regular
singular for each V ∈ Rep(G); otherwise, it is irregular singular.

We now recall some results from the theory of minimal K-types (or fundamental
strata) for formal flat G-bundles developed in [5]. Given x ∈ B and a nonnegative
real number r, a G-stratum of depth r is a triple (x, r, β) with β ∈ (ĝx,r/ĝx,r+)

∨.

We say that β̃ ∈ ĝ∨x,−r is a representative for β if the coset β̃ + ĝ∨x,−r+ corresponds

to β under the isomorphism ĝ∨x,−r/ĝ
∨
x,−r+

∼= (ĝx,r/ĝx,r+)
∨. If x ∈ A0, we let β̃0

denote the unique homogeneous representative in ĝ∨x (−r). The loop group Ĝ acts
on the set of strata with g · (x, r, β) the stratum determined by gx, r, and the coset

Ad∗(g)(β̃) + ĝ∨gx,−r+.

A stratum is called fundamental if β is a semistable point of the Ĝx/Ĝx+-

representation (ĝx,r/ĝx,r+)
∨; equivalently, the corresponding coset β̃+ ĝ∨x,−r+ does

not contain a nilpotent element. This can only occur when r ∈ Critx(g). If x ∈ A0,

then a stratum is nonfundamental if and only if the homogeneous representative β̃0
is nilpotent.

Given x ∈ A0, we say that the flat G-bundle (G,∇) contains the stratum (x, r, β)
with respect to the trivialization φ for G if [∇]φ − x̃dzz ∈ ĝ⊥x,r+ and the coset(
[∇]φ − x̃dzz

)
+ ĝ∨x,−r+ determines the functional β ∈ (ĝx,r/ĝx,r+)

∨. Note that if
r > 0, then β is the functional determined by [∇]φ; moreover, if x′ and x have the
same image in B̄, then (x′, r, β) is also contained in (G,∇).

Given a flat G-bundle (G,∇), we say that its slope is the infimum of the depths of
the strata contained in it. In [5], it is shown that this infimum is actually attained
and that it is a rational number. More precisely, we have the following theorem.

Theorem 2.3. [5, Theorem 3.15] Every flat G-bundle (G,∇) contains a funda-
mental stratum (x, slope(G), β), where x is an optimal point in A0 in the sense of
[15]; the slope is positive if and only if (G,∇) is irregular singular. Moreover, the
following statements hold.

(1) If (G,∇) contains the stratum (y, r′, β′), then r′ ≥ slope(G).
(2) If (G,∇) is irregular, a stratum (y, r′, β′) contained in (G,∇) is fundamental

if and only if r′ = slope(G).

In particular, the slope is an optimal number–a critical number for an optimal
point in A0.

For future reference, we recall the following lemma from [5] describing the cal-
culus for change of trivialization on strata contained in G.

Lemma 2.4. [5, Lemma 3.4]

(1) If n ∈ N̂ , [∇]nφ − ñxdzz ∈ Ad∗(n)([∇]φ − x̃dzz ) + t̂0+
dz
z .

(2) If X ∈ ûα ∩ ĝx,`, then

[∇]exp(X)φ − x̃
dz

z
∈ Ad∗(exp(X))([∇]φ − x̃

dz

z
)− `X

dz

z
+ ĝ∨x,`+.

(3) If p ∈ Ĝx, then [∇]pφ − x̃dzz ∈ Ad∗(p)([∇]φ − x̃dzz ) + ĝ∨x+.
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(4) If p ∈ Ĝx,` for ` > 0, then [∇]pφ − x̃dzz ∈ Ad∗(p)([∇]φ − x̃dzz ) + ĝ∨x,`.

Remark 2.5. Applying part (3) of the lemma to [∇]φ = 0, we see that if p ∈ Ĝx,
then τ(p)p−1 ∈ Ad(p)(x̃) − x̃ + ĝx+ ⊂ ĝx. This fact will be used throughout the
paper.

3. Compatible Filtrations

Intuitively, one can view a fundamental stratum contained in a flat G-bundle as
a nondegenerate “leading term” of the derivation ∇. The goal of this paper is to
study flat G-bundles containing strata corresponding to regular semisimple leading
terms. In order to do this, we need to study filtrations that are compatible with
the natural filtration on a maximal torus in Ĝ.

By [14, Lemma 2], there is a bijection between the set of conjugacy classes of

Cartan subalgebras in ĝ (resp. maximal tori in Ĝ) and the set of conjugacy classes

in W . We briefly recall the correspondence. Let Γ̄ ∼= Ẑ be the absolute Galois
group of F . If s ⊂ ĝ is a Cartan subalgebra, then there exists g ∈ G(F̄ ) such
that Ad(g)t(F̄ ) = s(F̄ ), so ρ 7→ g−1ρ(g) is a 1-cocycle of Γ̄ with values N(F̄ ).

In fact, since H1(F, Ĝ) = 1 (as G is connected reductive and F has cohomological
dimension 1), all 1-cocycles inN(F̄ ) are of this form, and such a cocycle coming from

h ∈ G(F̄ ) gives rise to the Cartan subalgebra (Ad(h)(t(F̄ )))Γ̄. The induced map

gives a bijection betweenH1(F, N̂) and the conjugacy classes of Cartan subalgebras.

Moreover, H1(F, N̂) is isomorphic (as pointed sets) to the set of conjugacy classes
of W ; the image of the above cocycle is the class of g−1σ(g)T (F̄ ) ∈ W , where σ
is a fixed topological generator of Γ̄. In particular, Ad(g−1) intertwines the action
of σ on s(F̄ ) with w ◦ σ on t(F̄ ). Of course, if E is a finite splitting field for s,
then one can take g ∈ G(E) and Ad(g−1) again intertwines a fixed generator σ for
Gal(E/F ) ∼= Z[E:F ] with w ◦ σ. Since w and σ commute, it follows that the order
of w divides [E : F ].

Definition 3.1. Let γ denote a conjugacy class in W . We say that a Cartan
subalgebra s ⊂ ĝ (resp. a maximal torus S ⊂ Ĝ) is of type γ if the conjugacy class
of s (resp. S) corresponds to γ as above.

For the remainder of this section, we fix a maximal torus S type γ, and choose
a representative w ∈ W for γ. Let E = k((z1/e)) be a splitting field of s, and
let σ ∈ Γ = Gal(E/F ) be a fixed generator. We then take g ∈ G(E) such that
Ad(g−1)s(E) = t(E) and g−1σ(g)T (E) = w. We call such a g a w-diagonalizer of
S.

3.1. Compatible gradings and filtrations. Let S be a maximal torus in Ĝ with
Cartan subalgebra s.

Definition 3.2. We say that a point x ∈ B is compatible with s if the filtration
induced by x on s is the (rescaled) Moy-Prasad filtration on s, i.e., sr = ĝx,r ∩ s
for all r. If x ∈ A0, x is graded compatible with s if s(r) = ĝx(r) for all r and
s(0) ⊂ t̂(0) = t.

Remark 3.3. Similarly, we say that x ∈ B is compatible with the maximal torus S
if Sr = Ĝx,r ∩ S for all r ≥ 0. It is easy to see that x is compatible with S if and
only if it is compatible with s.
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It is obvious that every point in A0 is graded compatible (hence compatible) with
t̂. Conversely, if s′ is a split Cartan subalgebra graded compatible with x ∈ A0,
then dim s′(0) = dim t and s′(0) ⊂ t, so s′ = t̂. As we will see later, nonsplit Cartan
subalgebras can be graded compatible with points in A0. One can also show that
if s is any Cartan subalgebra compatible with each point of A0, then s = t̂. Indeed,
it follows from the definitions that s0 ⊂ ∩x∈A0 ĝx,r = t̂0, and since s0 contains a

regular semisimple element, s = t̂.
The goal of this section is to show that if x ∈ A0 is compatible with S, then

there exists a Ĝx-conjugate of S which is graded compatible with x. We begin with
several equivalent formulations of graded compatibility.

Lemma 3.4. The following statements are equivalent:

(1) The point x ∈ A0 is graded compatible with s;
(2) (τ + ad(x̃)) (s) ⊂ s;
(3) If g ∈ G(E) is a w-diagonalizer, then Ad(g−1)(x̃+ τ(g)g−1) ∈ t(E); and
(4) If g ∈ G(E) is a w-diagonalizer, then Ad(g−1)(x̃+ τ(g)g−1) ∈ t(oE).

Proof. Suppose x is graded compatible with s. Then, s(r) = s ∩ ĝx(r) implies that
there is a topological basis for s consisting of eigenvectors for τ + ad(x̃), proving
the second statement.

Next, observe that

(3) (τ + ad(x̃)) (Ad(g)X) = Ad(g)
([
τ + ad

(
Ad(g−1)(x̃) + g−1τ(g)

)]
(X)

)
for X ∈ g(E). If (τ + ad(x̃)) (s) ⊂ s, then applying Ad(g−1) of this equation to
X ∈ t(E) gives

(4)
[
τ + ad

(
Ad(g−1)(x̃) + g−1τ(g)

)]
(t(E)) ⊂ t(E).

Since τ t(E) ⊂ t(E), it follows that ad
(
Ad(g−1)(x̃) + g−1τ(g)

)
(t(E)) ⊂ t(E).

Therefore, Ad(g−1)(x̃) + g−1τ(g) ∈ t(E).
Now, assume that Ad(g−1)(x̃) + g−1τ(g) ∈ t(E). We see that the differential

operator τ+ad
(
Ad(g−1)(x̃) + g−1τ(g)

)
restricts to τ on t(E), so the r-eigenspace of

the former on t(E) is t(E)(r). Applying (3) and Proposition 2.1 gives Ad(t(E)(r)) =
s(E) ∩ g(E)x(r), and s(r) = s ∩ ĝx(r) follows by taking Galois fixed points.

It remains to show the equivalence of the last two statements. One direction
is trivial, so assume that Y = Ad(f−1)(x̃ + τ(f)f−1) ∈ t(E). By the Iwasawa
decomposition, we can write f−1 = put, where p ∈ G(oE), u ∈ U(E) (with U
the unipotent radical of B), and t ∈ T (E). Before calculating Y , we make sev-
eral observations. First, the fact that τ(zm)z−m = m implies that τ(t)t−1 =
t−1τ(t) ∈ t(Q) + z1/et(oE). Setting X = Ad((ut))[x̃ + τ((ut)−1)(ut)], we see that
X = Ad(u)(x̃− τ(t)t−1 − u−1τ(u)) ∈ x̃− τ(t)t−1 + u(E) ⊂ g(oE) + u(E).

Next, write p−1 = p1p2 with p1 ∈ G and p2 in the first congruence subgroup
of G(oE) with respect to z1/e (i.e., G(E)o+). We obtain τ(p−1)p = τ(p1)p

−1
1 +

Ad(p1)(τ(p2)p
−1
2 ) = τ(log(p2)) ∈ z1/eg(oE). Since Y = Ad(p)(X + τ(p−1)p), we

see that Ad(p)(X+g(oE)) = Y+g(oE). BecauseX+g(oE) contains the ad-nilpotent
element −τ(u)u−1, Y + g(oE) also contains an ad-nilpotent element.

Suppose that Y /∈ z(E) + t(oE). Let n > 0 be the smallest integer such that
Y ∈ z(E) + z−nt(oE). This means that there exists a root α such that α(Y ) ∈
z−noE \ z1−noE . Thus, the action of ad(Y ) on the root subalgebra u(E)α is non-
nilpotent. Furthermore, if Y ′ ∈ Y + g(oE) and Z ∈ uα, then (ad(Y ′))n(Z) ∈
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(ad(Y ))n(Z) + g(oE) = α(Y )nZ + g(oE) and hence is nonzero. Thus, no element
of Y + g(oE) is ad-nilpotent, a contradiction.

Accordingly, X ∈ Ad(p−1)(Y + g(oE)) ⊂ z(E) ∩ g(oE). This means that X ∈
(z(E) ∩ g(oE)) ∩ (u(E) + g(oE)) = g(oE), so Y ∈ g(oE) as well. �

Lemma 3.5. A Cartan subalgebra s is compatible with x ∈ A0 if and only if
s(E)r = g(E)x,r ∩ s(E) for all r ∈ R.

Proof. The reverse implication follows by taking Galois invariance of the equations
s(E)r = s(E) ∩ g(E)x,r.

Now, suppose that S is compatible with x. Let tr : s(E) → s be the trace map,
so that ηi(X) = 1

ez
i/e tr(z−i/eX) is the projection onto the ξi-eigenspace for σ.

Since zi/es(E)r = s(E)r+ 1
e
and zi/eg(E)x,r = g(E)x,r+ 1

e
, we obtain ηi(s(E)r) ⊂

zi/esr− 1
e

⊂ zi/egx,r− 1
e

⊂ g(E)x,r. The action of Γ is completely reducible, so

s(E)r ⊂ g(E)x,r. On the other hand, suppose that there exists X ∈ (s(E) ∩
g(E)x,r) \ s(E)r. The same must be true for ηi(X) for some i. We then obtain

z−i/eηi(X) ∈ (s ∩ gx,r− 1
e
) \ sr− 1

e
, a contradiction. �

If S′ ⊂ Ĝ is a maximal split torus compatible with x ∈ A0, an elementary version
of the argument given below in Proposition 4.5 shows that there exists g ∈ Ĝx such
that g−1S′g = T̂ . If x is compatible with S, it follows from this and the previous
lemma that there exists p ∈ G(E)x satisfying p−1S(E)p = T (E). We will need a
refinement of this statement.

Lemma 3.6. Suppose that S ⊂ Ĝ is a maximal torus that splits over E. If x ∈ A0

is compatible with s, then there exists q ∈ G(E)x such that q−1S(E)q = T (E) and
q−1σ(q) ∈ N .

Proof. With p ∈ G(E)x as defined in the preceding paragraph, we will construct

s ∈ T (E)0+ such that q = ps satisfies q−1σ(q) ∈ N . Noting that p−1σ(p) ∈ N̂(E)∩
G(E)x, we can write p−1σ(p) = tn with n ∈ N and t ∈ T (E)0+. An easy induction

gives σj(p) = p
∏j−1
i=0 σ

i(tn) for j ≥ 0 (the product taken in increasing order);

since σe(p) = p, we obtain 1 =
∏e−1
i=0 σ

i(tn). It follows that
∏e−1
i=0 (w ◦ σ)e(t) ∈

T ∩G(E)x+ = {1}.
Set M = T (E)0+, and view it as a Z/eZ-module with 1̄ acting as w ◦ σ. If h

denotes the norm map for this action, the previous paragraph shows that h(t) = 1.
We will show that H1(Z/eZ,M) = {1}. Assuming this, there exists s ∈ M such
that s−1(w ◦σ)(s) = t−1. We then see that (ps)−1σ(ps) = s−1w ◦σ(s)p−1σ(p) = n.

The exponential map gives an equivariant isomorphism t(E)0+ → M . Thus, to
show that H1(Z/eZ,M) = {1}, it suffices to check that H1(Z/eZ, t(E)0+) = {0}.
Recalling that a w-diagonalizer intertwines this action with the usual Galois action
on s(E)0+, we are reduced to showing that H1(Γ, s(E)0+) = {0}. If X is in the
kernel of the norm map, there exists an element Y ′ ∈ s(E) such that σ(Y ′)−Y ′ = X
by Hilbert’s Theorem 90. Letting Y ∈ s(E)0+ be the projection of Y obtained by
killing graded terms in nonnegative degree, one has σ(Y )− Y = X as desired. �

We define πs to be the orthogonal projection of ĝ onto s with respect to the
F -bilinear invariant pairing 〈, 〉 on ĝ obtained by extending scalars. The invariance

of the form makes it clear that πAd(g)(s) = Ad(g) ◦ πs ◦Ad(g−1) for any g ∈ Ĝ. We
will analyze this map in detail in Section 4.
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Theorem 3.7. Suppose that x ∈ A0 is compatible with the Cartan subalgebra s.
Then, there exists q ∈ Ĝx such that x is graded compatible with q−1sq.

Proof. Applying Lemma 3.6, choose p ∈ G(E)x such that p−1S(E)p = T (E) and
p−1σ(p) = n ∈ N . In particular, p is a w-diagonalizer of S for w = nT ∈ W .
Furthermore, τ(p)p−1 ∈ ĝx, since σ(p) = pn and σ(τ(p)p−1) = (τ(p)n)(n−1p−1) =
τ(p)p−1. Finally,

(5) τ(p)p−1 + x̃ ∈ Ad(p)(x̃) + ĝx+.

This follows from Lemma 2.4(3) by setting [∇]φ to be the zero form and applying
the inner derivation τ .

If τ(p)p−1 + x̃ ∈ s, then x is graded compatible with s by Lemma 3.4(3). There-

fore, it is enough to show that there exists q ∈ Ĝx+ (so that qp ∈ G(E)x will be
a w-diagonalizer for qSq−1 with (qp)−1σ(qp) = n) such that τ(qp)(qp)−1 + x̃ ∈
Ad(q)(s(E)). Equivalently, if q′ = p−1qp,

q′−1τ(q′) + Ad(q′−1)(Ad(p−1)
[
τ(p)p−1 + x̃

]
) ∈ t(E).

If we set X = Ad(p−1)
[
τ(p)p−1 + x̃

]
− x̃, we see from (5) that X ∈ Ad(p)(ĝx+) ⊂

g(E)x+. Also, since τ(p)p−1 ∈ ĝx, X + x̃ ∈ Ad(p−1)(ĝx). We have thus reduced to
the following general problem: Given X ∈ g(E)x+ such that X + x̃ ∈ Ad(p−1)(ĝx),

find q′ ∈ p−1Ĝx+p such that Ad(q′−1)(X + x̃) + q′−1τ(q′) ∈ t(E).
We will construct q′ recursively. First, observe that since Ad(p−1) intertwines

the Galois action with the twisted Galois action generated by σ′ = Ad(n)◦σ, X+ x̃
is fixed by σ′. This action preserves the x-filtration, so x̃ and X are individually
fixed. Thus, X + x̃ ∈ Ad(p−1)(s0) + Ad(p−1)(ĝx,`0) with `0 > 0.

We now apply an inductive argument. Suppose that Y ∈ g(E)x+ satisfies Y +x̃ ∈
Ad(p−1)(s0) +Ad(p−1)(ĝx,`) for ` > 0 a critical number. Let Y + x̃ = πt̂(Y + x̃) +∑
ψ∈Φ Yψ,` where Yψ,` ∈ uψ ∩ g(E)x,`. Since Ad(p−1)πs = πt̂Ad(p−1), it follows

that πt̂(Y + x̃) ∈ Ad(p−1)(s0) and hence
∑
ψ∈Φ Yψ,` ∈ Ad(p−1)(ĝx,`).

Write qψ,` = exp(−1
`Yψ,`). Proposition 2.1 now gives

Ad(q−1
ψ,`)(Y + x̃) + q−1

ψ,`τ(qψ,`) ∈ −
[
ad(x̃)(1`Yψ,`) + τ( 1`Yψ,`)

]
+ Y + x̃+ g(E)x,`+

= Y + x̃− Yψ,` + g(E)x,`+.

Set q` = exp(−
∑
ψ∈Φ

1
`Yψ,`) ∈ exp(Ad(p−1)(ĝx,`)) = p−1Ĝx,`p. It is evident from

the calculation above that Ad(q−1
` )(Y + x̃)+ q−1

` τ(q`) ∈ Ad(p−1)(s0)+ g(E)x,`′ for
some critical number `′ > `.

In order to show that Y ′ = Ad(q−1
` )(Y + x̃) + q−1

` τ(q`) − x̃ satisfies the induc-

tive hypothesis, first observe that Ad(q−1
` )(Y ), q−1

` τ(q`), and Ad(q−1
` )(x̃) − x̃ all

lie in ĝ(E)x+, so the same holds for Y ′. Since we already know that Y ′ + x̃ ∈
Ad(p−1)(s0) + Ad(p−1)(g(E)x,`′), to show that Y ′ + x̃ ∈ Ad(p−1)(ĝx,`′), it suffices

to show that Ad(q−1
` )(Y + x̃) and q−1

` τ(q`) both lie in Ad(p−1)(ĝx). It is clear that

this holds for the first expression, since q−1
` ∈ p−1Ĝx,`p. A direct calculation, using

the same fact along with the observation that τ(p)p−1 = −pτ(p−1) ∈ ĝx, proves
the statement for q−1

` τ(q`).
We thus obtain an increasing sequence `i > 0 of critical numbers for the x-

filtration and qli ∈ Ĝx,`i for which q
′ = lim(q`m · · · q`1) satisfy the desired condition.

�
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3.2. Compatible points. The goal of this section is to describe the collection of
points in A0 that are compatible with some Cartan subalgebra of type γ. We begin
by showing that if s is graded compatible with x, then the w-diagonalizer g can
be chosen to have very special properties. In particular, this construction gives a
well-behaved embedding of a Cartan subalgebra of type γ in ĝ. We then use this
to classify x ∈ A0 which are graded compatible with s. Finally, we find all points
in A0 which are compatible with some conjugate of s. We remark that in [12],
Goresky, Kottwitz, and MacPherson construct a particular Cartan subalgebra s of
type γ and a point x in A0 which is graded compatible with s.

Lemma 3.8. Suppose x ∈ A0 is graded compatible with s. Then y ∈ A0 is graded
compatible with s if and only if x̃− ỹ ∈ s(0).

Proof. Assume that x, y ∈ A0 are graded compatible with s. If s ∈ s(r), then
ad(x̃)(s) = ad(ỹ)(s), i.e., ad(x̃ − ỹ)(s) = 0. We may construct a topological basis
for s consisting of elements of s(r) for r ∈ 1

eZ. It follows that ad(x̃ − ỹ)(s) = {0},
so x̃ − ỹ ∈ s. Write x̃ − ỹ =

∑
r�−∞ sr with sr ∈ s(r). We obtain

∑
r�−∞ rsr =

(τ +ad(x̃))(x̃− ỹ) = ad(x̃)(x̃− ỹ) = [x̃, ỹ]. Similarly,
∑
r�−∞ rsr = (τ +ad(ỹ))(x̃−

ỹ) = ad(ỹ)(x̃− ỹ) = [ỹ, x̃]. This implies that sr = 0 unless r = 0, so x̃− ỹ ∈ s(0).
The converse is immediate from Lemma 3.4. �

Lemma 3.9. The point x ∈ A0 is graded compatible with s if and only if s(0) ⊂ t
and there exists a splitting field E for s and a w-diagonalizer g ∈ G(E) of S such
that −τ(g)g−1 ∈ (x̃+ s(0)) ∩ tQ.

Proof. Let f ∈ G(E′) be a w-diagonalizer of S. If E is a finite extension of E′, it is
obvious that any element of the left coset fT (E) is also a w-diagonalizer. We will
construct a finite extension E of E′ and g ∈ fT (E) that satisfies the property in
the statement.

We retain the notation of the proof of Lemma 3.4 with f replacing g, so f−1 = put
and Y = Ad(f−1)(x̃+ τ(f)f−1) ∈ t(oE′). Write Y = t0 + t′, with t0 ∈ t(E′)(0) = t

and t′ ∈ t(E′)0+. Replacing f with fev
′
, where v′ ∈ t(E′)0+ satisfies τ(v′) = −t′,

we may assume that Y = t0 ∈ t.
We now construct v ∈ tQ such that g = fzv satisfies x̃ + τ(g)g−1 ∈ s(0). If

ev ∈ tZ and E is an extension of E′ with [E : F ] = e, then zv ∈ T (E). Write
w̃ = f−1σ(f) ∈ N(E′). Note that we can decompose w̃ = t1w̃2, where w̃2 ∈ N and
t1 ∈ T (E′). It follows that τ(w̃)w̃−1 = τ(t1)t

−1
1 ∈ tQ + t(E′)0+. Moreover, using

the facts that σ commutes with τ and fixes t,

τ(w̃)w̃−1 = Ad(f−1)
(
−τ(f)f−1) + σ

(
τ(f)f−1

))
= Ad(f−1)

(
−
[
x̃+ τ(f)f−1

]
+ σ

[
x̃+ τ(f)f−1

])
= −Y + w ◦ σ(Y ) = −Y + w · Y ∈ t.

We deduce that τ(w̃)w̃−1 ∈ tQ. Choose a Q-linear projection t → tQ, and let v ∈ tQ
be the image of Y . Then, τ(w̃)w̃−1 = v − w · v.

Set g = fzv, so that τ(g)g−1 = τ(f)f−1 +Ad(f)(v). We obtain

σ
[
τ(g)g−1

]
= σ(τ(f)f−1) + σ(Ad(f)(v))

= (τ(f)f−1 +Ad(f)(τ(w̃)w̃−1) + Ad(f)(w · v)
= τ(f)f−1 +Ad(f)((t− w · v) + w · v) = τ(g)g−1.
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It follows that x̃+ τ(g)g−1 ∈ (s(E)(0))Γ = s(0).
It remains to show that τ(g)g−1 ∈ tQ. First, note that Y is conjugate to x̃ +

τ(g)g−1 ⊂ t+s(0) ⊂ t by hypothesis. Next, recall from the proof of Lemma 3.4 that
Y ∈ Ad((p1p2)

−1)(x̃+ q+ n+ z1/eg(oE)) for some q ∈ tQ and n ∈ u, where p1 ∈ G
and p2 ∈ G(E)o,0+. Since the projection g(oE) → g restricts to the identity on g
and Y ∈ t, applying the projection shows that Y is conjugate in G to x̃+ q+n ∈ b.
The latter element is semisimple, so it is B-conjugate to an element of t, which
must clearly be x̃+ q. It follows that x̃+ τ(g)g−1 and x̃+ q are G(oE)-conjugate,
so the same is true for q and τ(g)g−1. However, two elements of t are conjugate
only if they are in the same W -orbit, and W · tQ = tQ. Thus, τ(g)g

−1 ∈ tQ.
We now prove the converse. Since x̃+τ(g)g−1 ∈ s, Ad(g−1)(x̃+τ(g)g−1) ∈ t(E),

and the result follows from Lemma 3.4. �

Lemma 3.10. Suppose that n ∈ N̂ determines the element w ∈ Ŵ . For all
x ∈ A0, u = Ad(n)(x̃) − τ(n)n−1 ∈ w̃x + t̂0+. Moreover, if u ∈ tR and V is a

finite-dimensional representation of G, then nV̂x(r) = V̂wx(r).

Proof. The fact that u ∈ w̃x+ t̂0+ is proved in [5, Lemma 2.3]. Now, assume that
u ∈ tR (so u = w̃x), and take X ∈ Vx(r). Applying Lemma 2.1 gives

τ(nX) + u(nX) = τ(n)n−1(nX) + n(τ(X)) + u(nX)

= nτ(X) + (Ad(n)x̃)(nX) = n((τ + x̃)(X))

= r(nX).

Therefore, nV̂x(r) ⊂ V̂wx(r). A similar argument shows the reverse inclusion. �

We now show that every conjugacy class of Cartan subalgebra in ĝ has a rep-
resentative s that is graded compatible with a point x ∈ A0. Given w ∈ W , set
tw := {X ∈ t | wX = X}.

Theorem 3.11. There exists a maximal torus S of type γ and a representative
w ∈W such that s is graded compatible with some x ∈ A0 and satisfies s(0) = tw.

Proof. Let n′ ∈ N be a finite order coset representative for w′ ∈ γ; this exists
by a theorem of Tits [19]. The element n′ is semisimple and commutes with Tw

′
.

It follows that n′ and Tw
′
are contained in a maximal torus T ′. Choose h ∈ G

such that T = hT ′h−1. Since n′ has finite order, there exists t ∈ t(Q) such that
exp(−2πit) = Ad(h)(n′). Write g = z−th. It is clear that g−1σ(g) = n′, so g is a

w′-diagonalizer of a maximal torus S ⊂ Ĝ with type γ.

Let x be the image of t in A0; equivalently, x̃ = ˜τ(g)g−1. Therefore, Ad(g−1)(x̃+
τ(g)g−1) ∈ Ad(g−1)(z) ⊂ t. By Lemma 3.4, x is graded compatible with s.

It will be shown in Theorem 3.13 below that s(0) = Ad(h)(tw
′
). A standard

argument now shows that there exists n0 ∈ N such that s(0) = Ad(n0)(t
w′
). Indeed,

t and Ad(h)(t) are two Cartan subalgebras in Z(s(0)), so there exists k ∈ Z(s(0))
such that Ad(kh)(t) = t. One may then take n0 = kh. Setting w = w0w

′w−1
0 ∈ γ

with w0 = n0T ∈W , we have s(0) = tw as desired. �

Remark 3.12. The existence of a Cartan subalgebra s of type γ which is graded
compatible with some x ∈ A0 may also be derived from the construction in [12,
Section 5.3].
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Theorem 3.13. Suppose that s is a Cartan subalgebra of type γ graded compatible
with x ∈ A0. Choose a class representative w ∈W for γ. Then, there exists a finite
extension E of F and g ∈ G(E) satisfying the following properties:

(1) g is a w-diagonalizer of s;
(2) g−1σ(g) ∈ N is a finite order coset representative for w ∈ N/T ;
(3) −τ(g)g−1 ∈ (x̃+ s(0)) ∩ tQ; and
(4) g = z−th, where t = −τ(g)g−1 ∈ tQ, the image y of t in A0 is a point com-

patible with s (indeed, y is graded compatible with s), h ∈ G simultaneously
diagonalizes g−1σ(g) and tw into t, and s(0) = Ad(h)(tw) ⊂ t.

As explained in Section 2, the element z−t depends on a choice of uniformizer
for E. However, for any such choice h = ztg will satisfy the properties in part (4).

Remark 3.14. One may think of the element g described above as a generalized
Vandermonde matrix. Consider the case where G = GLn and γ is the orbit of
the Coxeter element. Let ξ be a primitive nth root of unity and choose u ∈ E
to be an nth root of z. Then, it is possible to choose g to be a conjugate to
the matrix with entries

(
ξ(i−1)jui−1

)
. Here, t is the diagonal matrix with entries

(0, 1/n, . . . , (n−1)/n) corresponding to the barycenter of the fundamental chamber
in A0. An explicit embedding of the Coxeter torus satisfying the properties in the
theorem is given by setting S = F [$]×, where $ = zen1 +

∑n−1
i=1 ei(i+1). More

generally, one obtains a good embedding of any maximal torus by taking a block-
diagonal embedding of Coxeter tori.

Proof. We note that Lemma 3.9 implies that there exists g ∈ G(E) satisfying parts
(1) and (3) and such that g−1σ(g) ∈ N(E) is a coset representative for w ∈ N/T .
Assuming g = z−th as in part (4), g−1σ(g) = Ad(h−1)e−2πit ∈ N has finite order
and is diagonalized by h.

It remains to prove the rest of part (4). Let t = −(dg)g−1 ∈ t(Q). We first prove
that g = z−th for some h ∈ G. Indeed,

τ(ztg)(g−1z−t) = Ad(zt)
(
t+ τ(g)g−1

)
= 0.

It follows that h = ztg ∈ G. Since t = −τ(g)g−1 ∈ x̃ + s(0), Lemma 3.8 implies
that y is graded compatible with s.

Finally, suppose that X ∈ t. Computing, we get (τ + ad(ỹ))(Ad(g)(X)) = (τ +
ad(t))(Ad(g)(X)) = 0, so Ad(g)(X) ∈ s(E)(0) ⊂ t(E)(0) = t. In particular, since
zt ∈ T (E), Ad(h)(X) = Ad(g)(X). Moreover, σ(Ad(g)(X)) = Ad(g)(w ◦ σ(X)) =
Ad(g)(wX), so Ad(g)(X) ∈ s(0) = (s(E)(0))Γ if and only if X ∈ tw. It follows that
s(0) = Ad(g)(tw) = Ad(h)(tw). �

We can now identify the set of points in A0 which are compatible with some
maximal torus of type γ. We denote this set by Πγ . Note that this set is nonempty
by Theorem 3.11. A similar problem for p-adic classical groups is considered in [7].

Corollary 3.15. Let γ denote a conjugacy class in W , and choose x ∈ A0 and s
of type γ such that x is graded compatible with s and x̃ ∈ tQ. Then, Πγ = {y ∈ A0 |
ỹ ∈ Ŵ (x̃+ s(0))}.

Theorem 3.7 shows the existence of x and s as in the statement of the theorem.
Note that this guarantees that x̃ ∈ t for any base field k.

Remark 3.16. Theorem 3.7 shows that Πγ can also be characterized as the set of
y ∈ A0 graded compatible with some conjugate of s.
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Proof. Applying Theorem 3.7, assume without loss of generality that x is graded
compatible with S. Lemma 3.8 then implies that any point y with ỹ ∈ x̃ + s(0)

is (graded) compatible with S. Now, suppose that v ∈ Ŵ . We may choose a
representative m = ztn for v, where t ∈ tZ ∼= X∗(T ) and n ∈ N . Observe that
τ(m)m−1 ∈ tQ, so Lemma 3.10 implies that Ad(m)(gx(i)) = gvx(i). We deduce

that vx is graded compatible with Ad(m)(S). This shows that Ŵ (x̃+ s(0)) ⊂ Πγ .
Now, choose x′ ∈ Πγ , and let s′ be a Cartan subalgebra of type γ graded com-

patible with x′. Choose a representative w ∈ W for γ. By Theorem 3.13(4),

there exists a w-diagonalizer g = z−th (resp. g′ = z−t
′
h′) for S (resp. S′)

such that h simultaneously diagonalizes g−1σ(g) and tw (resp. h′, (g′)−1σ(g′)).

We shall write ζ = ztσ(z−t) = e−2πit ∈ T and ζ ′ = zt
′
σ(z−t

′
). We also set

n = h−1ζh = g−1σ(g) ∈ N and similarly for n′. They are both representatives for

w, so we can take ζ̃ ∈ T such that n = n′ζ̃.
Let S[ ⊂ T be the subgroup generated by rational cocharacters of S. One

may deduce from Theorem 3.13(4) that hTwh−1 = S[. We now show that ζ ∈
(W · ζ ′)S[. Applying Lemma 3.17, write ζ̃ = δw(ζ1)ζ2, with ζ2 ∈ Tw. In particular,
n = (ζ1n

′ζ−1
1 )ζ2. Moreover,

(hζ1)n
′(hζ1)

−1 = (hζ1)n
′ζ2(ζ2)

−1(hζ1)
−1

= (hζ1)n
′ζ2(hζ1)

−1hζ−1
2 h−1 ∈ ζS[.

The last line follows from the observation above that s = hζ−1
2 h−1 ∈ hTwh−1 =

S[. Thus, q = hζ1h
′−1 conjugates ζ ′ to ζs. We further note that qS′[q−1 =

hζ1T
wζ−1

1 h−1 = hTwh−1 = S[. This implies that qζ ′S′[q−1 = ζS[. The connected

centralizer Z(ζ ′S′[)0 is reductive. Moreover, it contains the maximal tori T and
q−1Tq, so there exists p ∈ Z(ζ ′S′[)0 such that pq−1Tqp−1 = T . It follows that
qp−1 ∈ N and that conjugation by qp−1 and q coincide on ζ ′S′[. If we let u ∈ W
be the image of q, we see that u(ζ ′) = ζs and u(S′[) = S[.

Finally, it is evident that s = e2πi(u(t
′)−t) and therefore t ∈ u(t′)+X∗(T )+ s(0).

Since x̃ ∈ t + s(0), x̃′ ∈ t′ + s′(0), and u(s′(0)) = s(0), we conclude that x̃′ lies in

Ŵ (x̃+ s(0)). �

Lemma 3.17. Given w ∈ W , let δw : T → T be the homomorphism δw(t) =
w−1(t)t−1. Then, T has the direct product decomposition T = δw(T )T

w.

Proof. This follows immediately from the obvious fact that Lie(δw(T )) = {w−1(X)−
X | X ∈ t} and tw are complementary subspaces of t. �

4. Regular Strata

In this section, we introduce a class of strata with regular semisimple “leading
term”. We will first do so only for strata coming from the standard apartment.

If β̃ ∈ ĝ∨, we let Z(β̃) (resp. Z0(β̃)) denote the stabilizer (res. connected

stabilizer) of β̃ in Ĝ under the coadjoint action. The corresponding Lie algebra

z(β̃) is the stabilizer of the Lie algebra action.

Definition 4.1. A stratum (x, r, β) with x ∈ A0 is graded regular if Z0(β̃0) is a

maximal torus which is compatible with x. We call Z0(β̃0) the connected centralizer
of the stratum.
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It is of course equivalent to check that the Lie centralizer z(β̃0) of the stratum is
a Cartan subalgebra compatible with x. It is obvious that a graded regular stratum
is fundamental.

Given a torus S, we write ρs : ĝ
∨ → s∨ for the restriction map. If s is compatible

with x ∈ B, ρs(ĝ
∨
x,r)) ⊂ s∨r and ρs(ĝ

∨
x,r+)) ⊂ s∨r+ for all r. Moreover, if s is graded

compatible with x ∈ A0, then ρs(ĝ
∨
x (r)) ⊂ s∨(r).

Lemma 4.2 (Tame Corestriction). Take x ∈ A0, and let (x, r, β) be a graded
regular stratum with connected centralizer S. Then, there is a morphism of s-
modules πs : ĝ → s satisfying the following properties:

(1) πs restricts to the identity on s;
(2) πs(ĝx,`) = s` and π

∗
s (s

∨
` ) ⊂ ĝ∨x,`;

(3) the kernel of the restriction map

ρ̄s,` : (π
∗
s (s

∨) + ĝ∨x,`−r)/ĝ
∨
x,(`−r)+ → s∨/s∨(`−r)+

is given by the image of ad∗(ĝx,`)(β̃) modulo ĝ∨x,(`−r)+, where β̃ ∈ ĝ∨x,−r is

any representative of β;
(4) if Z ∈ s and X ∈ ĝ, then 〈Z,X〉 dz

z
= 〈Z, πs(X)〉 dz

z
;

(5) πs (resp. π∗
s) commutes with the adjoint action of the normalizer N(S) of

S; and
(6) the image π∗

s (s
∨
` ) consists of those elements in ĝ∨x,` stabilized by S.

Remark 4.3. The proof will actually show that ad∗(ĝx,`)(X) modulo ĝ∨x,(`−r)+ is in

the kernel of ρ̄s,` for any X ∈ π∗
s (s

∨
−r) + ĝ∨x,−r+.

Remark 4.4. We will usually omit the subscript ` on ρ̄s,` when it is clear from
context.

Proof. Recall that πs is the orthogonal projection of ĝ onto s with respect to the
F -bilinear invariant pairing 〈, 〉 on ĝ obtained by extending scalars. The invariance
of the form immediately shows that πs is an s-module map that is equivariant with
respect to the adjoint action of N(S). The first and fourth statements are trivial.

Recall that F -duals and smooth k-duals of F -vector spaces are identified using
the map κ described before Proposition 2.2. We will use this identification and the
results of this proposition in the rest of the proof without comment.

Since x is compatible with s, we have s` ⊂ ĝx,`, so πs(ĝx,`) ⊃ s`. Now, suppose
that Z ∈ s−`+ and X ∈ ĝx,`. In order to show that πs(X) ∈ s`, it suffices to show
that 〈X,Z〉 dz

z
= 0. This follows immediately, since Z ∈ ĝx,−`+ = ĝ⊥x,`. Also, if

α ∈ s∨` , then π∗
s (α)(ĝx,`+) = α(π(ĝx,`+)) = α(s∨`+) = 0, so π∗

s (s
∨
` ) ⊂ ĝ∨x,`. This

proves the second statement.
Suppose that α ∈ s∨ and s ∈ S. Then, if X ∈ ĝ, Ad∗(s)(π∗

s (α))(X) =
π∗
s (α)(Ad(s

−1)(X)) = α(πs(Ad(s
−1)(X))). The right hand side is equal to π∗

s (α)(X)
by part (5). Thus, π∗

s (s
∨) is stabilized by S. On the other hand, if α ∈ ĝ∨ is stabi-

lized by S, then, writing α = 〈Y, ·〉, one sees that Ad(s)(Y ) = Y for all s ∈ S, i.e.,
Y ∈ s. By part (4), α(X) = α(πs(X)), so α ∈ π∗

s (s). This proves (6).

Finally, we consider the third statement. The image of ad∗(ĝx,j)(β̃) modulo

ĝ∨x,(j−r)+ is independent of the choice of representative, so we can take β̃ = β̃0 ∈
ĝ∨x (−r). Since S stabilizes β̃0, ad

∗(Z)(β̃0) = 0 for Z ∈ s, and it follows that for any

X ∈ ĝ, ad∗(X)(β̃0)(Z) = −ad∗(Z)(β̃0)(X) = 0, i.e., ρs(ad
∗(ĝ)(β̃0)) = 0. Therefore,
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(ad∗(ĝx,j)(β̃0) + ĝ∨x,(j−r)+)/ĝ
∨
x,(j−r)+) ⊂ ker(ρ̄s,j). For convenience, we denote the

former space by Cj .
We will show that dimCj = dimker(ρ̄s,j). Observe that ρs ◦ π∗

s is the identity
on s∨, so ker(ρ̄s,j) = ker(ĝ∨x,j−r/ĝ

∨
x,(j−r)+ → s∨j−r/s

∨
(j−r)+). This second map is

surjective, so dimker(ρ̄s,j) = dim ĝ∨x (j−r)−dim s∨(j−r). Next, suppose that X ∈
ĝx,j and ad∗(X)(β̃0) ∈ ĝx,(j−r)+. Since this is always the case if X ∈ ĝx,j+, we can

assume that X ∈ ĝx(j). By Proposition 2.1, ad∗(X)(β̃0) ∈ ĝ∨x (j − r) ∩ ĝ∨x,(j−r)+ =

{0}, so X ∈ s ∩ ĝx(j) = s(j). We thus obtain dim(Cj) = dim ĝx(j)− dim s(j).
We now sum these two dimensions over j in the full period ` ≤ j < `+ 1. Note

that summing j over the full period ` ≤ j < ` + 1 gives
∑
`≤j<`+1 dim ĝx(j) =

dim g = dim g∨ =
∑
`≤j<`+1 dim ĝ∨x (j − r) and similarly,

∑
`≤j<`+1 dim sx(j) =∑

`≤j<`+1 dim s∨x (j). (Of course, both sides are zero if ĝ∨x (j − r) = {0}.) Thus,∑
`≤j<`+1 dimCj =

∑
`≤j<`+1 dimker(ρ̄s,j). Since each term on the right is greater

or equal to the corresponding term on the left, we get dimCj = dimker(ρ̄s,j) for
all j. In particular, C` = ker(ρ̄s,`). �

Proposition 4.5. If (x, 0, β) is a graded regular stratum with x ∈ A0, then there

exists m ∈ Ĝx such that m ·(x, 0, β) = (x, 0, β′) is regular with connected centralizer

T̂ . The stratum (x, 0, β′) is uniquely determined by (x, 0, β) up to the action of

(N̂ ∩ Ĝx)/T̂x ∼= (N ∩Hx)/T .

Proof. Write S = Z0(β̃0), so t′ = (dθx)
−1(s0/s0+) is a Cartan subalgebra in hx.

Choose h ∈ Hx such that Ad(h)t′ = t, and let m ∈ Ĝx be a lift of θx(h). Define a

new stratum (x, 0, β′) = m · (x, 0, β) which has representative β̃′
0 ∈ (Ad∗(m)(β̃0) +

ĝ∨x+) ∩ ĝ∨x (0). It suffices to show that Z0(β̃′
0) = T̂ .

Let Z0(β̃
′
0) = Z0(β̃′

0)∩Ĝx and Z+(β̃
′
0) = Z0(β̃′

0)∩Ĝx+. Observe that θ−1
x (Z0(β̃

′
0)/Z+(β̃

′
0)) =

T , so by the T -equivariance of θx, if t ∈ T ⊂ Ĝx, Ad∗(t)(β̃′
0)− β̃′

0 ∈ ĝ∨x+ ∩ ĝ∨x (0) =

{0}. We deduce that T̂ ⊂ Z0(β̃′
0).

On the other hand, the T -equivariance of θx also implies that Z0(β̃
′
0) ⊂ TĜx,+.

Suppose g ∈ Z0(β̃
′
0) ∩ Ĝx,` for ` > 0. Write g ∈ exp(X)Ĝx,`+ for some X ∈ ĝx(`).

Then, β̃′
0 = Ad∗(g)(β̃′

0) ∈ β̃′
0 +ad∗(X)(β̃′

0)+ ĝx,`+. It follows that ad
∗(X)(β̃′

0) = 0.

Therefore, ad∗(Ad(m−1)(X))(β̃0) ∈ ĝ∨x,`+. Finally, this implies that Ad(m−1)(X) ∈
s` + ĝx,`+ and X ∈ t̂` + ĝx,`+. Thus, Z0(β̃

′
0) ∩ Ĝx,` ⊂ T̂`Ĝx,`+. A standard limit

argument shows that Z0(β̃
′
0) ⊂ T̂0 and thus Z0(β̃′

0) ⊂ T̂ .
Now suppose that (x, 0, β) is a graded regular stratum with connected centralizer

by T̂ , and there exists m ∈ Ĝx such that the same holds for m · (x, 0, β). It suffices

to show that there exists n ∈ N̂ ∩ Ĝx such that n · (x, 0, β) = m · (x, 0, β). Recall

that m′ · (x, 0, β) = m · (x, 0, β) whenever m′ ∈ mĜx+. Let m̄ be the image of m

in Hx under the composition Ĝx → Ĝx/Ĝx,+
θ−1
x−−→ Hx. Then, θ

′
x(m̄) ∈ mĜx,+ and

Ad∗(θ′x(m̄))(β̃0) ∈ ĝ∨x (0). Since β̃0 is a regular element of ĝx(0) stabilized by T̂ ,

and the same is true for Ad∗(θ′x(m̄))(β̃0), we deduce that θ′x(m̄) ∈ N̂ ∩ Ĝx.
Finally, it is clear that the action of T̂x fixes (x, 0, β). Moreover, the correspon-

dence m 7→ m̄ above determines a homomorphism from N̂ ∩ Ĝx → N ∩Hx. It is
easily checked that this homomorphism induces an isomorphism (N̂ ∩ Ĝx)/T̂x ∼=
(N ∩Hx)/T . �



18 CHRISTOPHER L. BREMER AND DANIEL S. SAGE

If (x, 0, β) is graded regular with centralizer T̂ , then, since x is graded compatible

with T̂ , β̃0 ∈ tdzz and Res(β̃0) is a regular element of t.

Proposition 4.6. Suppose that (x, 0, β) is a graded regular stratum with connected

centralizer T̂ , and let m ∈ N̂∩Ĝx determine an element w ∈W . Then, for any root
α, α(Res(β̃0)) + α(x̃) ∈ Z<α(x̃) if and only if w(α)(Res(Ad∗(m)(β̃0)) + w(α)(x̃) ∈
Z<w(α)(x̃).

Proof. It is evident that w(α)(Res(Ad∗(m)(β̃0)) = w(α)(wRes(β̃0)) = α(Res(β̃0)).

It is now obvious that α(Res(β̃0))+α(x̃) < α(x̃) if and only if w(α)(Res(Ad∗(m)(β̃0))+
w(α)(x̃) < w(α)(x̃), so it remains to show that if one of the expressions on the
left is an integer, the other is as well. In particular, it suffices to show that
α(x̃)−w(α)(x̃) ∈ Z for all α, or equivalently (replacing α by w−1α), α(wx̃− x̃) ∈ Z.

Exponentiating, it is enough to show that Ad(exp(2πi(wx̃− x̃)))(X) = X. How-
ever, by Proposition 4.5, there is an element h ∈ Hx∩N such that wx̃ = Ad(h)(x̃).
Therefore, exp(2πi(wx̃ − x̃)) = h exp(2πix̃)h−1 exp(2πix̃)−1. Since h commutes
with exp(2πix̃), this is the identity. �
Definition 4.7. Let (x, 0, β) be a graded regular stratum with x ∈ A0. Without

loss of generality, assume that T̂ = Z0(β̃0). We say that (x, 0, β) is resonant if for

some root α of T̂ ,
α(Res(β̃0)) + α(x̃) ∈ Z<α(x̃).

By Proposition 4.5, one can always chose m ∈ Ĝx such that m · (x, 0, β) =

(x, 0, β′) has connected centralizer T̂ . The only ambiguity in the choice of m lies

in the fact that, for any n ∈ N̂ ∩ Ĝx, nm will also “diagonalize” (x, 0, β). However,

Proposition 4.6 implies that the condition in the definition above holds for β̃0 if
and only if it holds for Ad∗(n)(β̃0).

Definition 4.8. A stratum (x, r, β) is called regular if the following conditions are

satisfied: all subgroups Z0(β̃) for any representative β̃ are Ĝx+-conjugate maximal
tori compatible with x, and additionally the stratum must be nonresonant when it
has depth 0. If Σ is the Ĝx+-conjugacy class of maximal tori determined by these
stabilizers, we say the stratum is Σ-regular (or even S-regular, if S ∈ Σ).

Note that any Ĝx+-conjugate of a representative β̃ is also a representative, so

the set of connected centralizers of a regular stratum is a full Ĝx+-orbit. Also,
the compatibility with x need only be checked on a single S ∈ Σ. The following
proposition shows that (x, r, β) is regular if and only if it is conjugate to a graded
regular stratum coming from x′ ∈ A0.

Proposition 4.9.

(1) If x ∈ A0, then the stratum (x, r, β) is graded regular (and nonresonant if
r = 0) if and only if it is regular.

(2) Let (x, r, β) be an S-regular stratum. If β̃ ∈ π∗
s (s

∨
−r)+ĝ∨x,`−r for ` > 0 is any

representative, then there exists p ∈ Ĝx,` such that Ad∗(p)(β̃) ∈ π∗
s (s

∨
−r).

Proof. It is trivial that regular implies graded regular. Now, assume that (x, r, β)

is graded regular, and set S = Z0(β̃0). First, suppose that β̃ ∈ π∗
s (s

∨) is a represen-

tative. We show that z(β̃) = s. By Lemma 4.2(6), s ⊂ z(β̃). Conversely, suppose

this inclusion is strict. Then, there exists an element of z(β̃) of the form Y + Y ′
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with Y ∈ ĝx(`) \ s(`) and Y ′ ∈ ĝx,`+ \ ĝx,`. Since β̃ = β̃0 + α with α ∈ ĝ∨x,−r+,

ad∗(Y + Y ′)(β̃) equals ad∗(Y )(β̃0) ∈ ĝ∨(` − r) plus higher order terms. It follows

that ad∗(Y )(β̃0) = 0, contradicting that fact that Y /∈ s.

Next, let β̃ be any representative. It suffices to find p ∈ Ĝx,0+ such that

Ad∗(p)(β̃) ∈ π∗
s (s

∨), as the previous argument will then imply that z(β̃) = Ad(p−1)(s).

Note that β̃ ∈ π∗
s (s

∨
−r)+ ĝ∨x,(`−r)+ for some ` > 0. Since β̃−π∗

s (ρs(β̃))+ ĝ∨x,(`−r)+ ∈
ker(ρ̄s), Lemma 4.2(3) states that there exists X ∈ ĝx,` such that ad∗(X)(β̃) ∈ β̃−
π∗
s (ρs(β̃)) + ĝ∨x,(`−r)+. Take p` = exp(−X) ∈ Ĝx,`. Then, Ad∗(p`)(β̃) ∈ π∗

s (s
∨
−r) +

ĝ∨x,(`−r)+. Recursively applying this argument, we obtain an increasing sequence

`i (with `1 = `) and elements p`i ∈ Ĝx,`i such that Ad∗(p`m) · · ·Ad∗(p`1)(β̃) ∈
π∗
s (s

∨
−r) + ĝ∨x,(`m−r)+ for all m. Setting p = lim(p`m · · · p`1) ∈ Ĝx,`, we have

Ad∗(p)(β̃) ∈ π∗
s (s

∨
−r) as desired. This also proves the second statement for x ∈ A0.

Finally, the general case of part (2) follows by conjugating a regular stratum
(x, r, β) to (x′, r, β′) with x′ ∈ A0. One need only observe that conjugation preserves
Moy-Prasad filtrations while if S′ = gSg−1, then πs′Ad(g) = Ad(g)πs. �

Not every maximal torus can be the connected centralizer of a regular stratum.
Recall that a Weyl group element w is called regular if it has an eigenvector in the
reflection representation whose stabilizer is trivial [17]. Equivalently, it has a regular
semisimple eigenvector in t. Note that the eigenvalue of such a regular eigenvector
can equal one only for the identity element of W . We say that a maximal torus
(or Cartan subalgebra) has regular type if it has type γ, with γ a regular conjugacy
class in W .

Corollary 4.10. Let γ be a conjugacy class in W . Then, there exists an S-regular
stratum for some maximal torus S of type γ if and only if γ is regular. In this
case, the set of x ∈ A0 which support an S-regular stratum for some S of type γ is
precisely Πγ , which is described explicitly in Corollary 3.15.

Proof. It is obvious that the split torus T̂ , corresponding to e ∈W , admits regular
strata (with r = 0), so we assume that S is nonsplit. Let E/F be a degree e
extension over which S splits, and let g ∈ G(E) be a w-diagonalizer of S. It follows

that α = Ad∗(g−1)(β̃) ∈ t̂∨E(−er) has connected centralizer T̂ . One can then find
v ∈ z−rt regular semisimple such that α = 〈v, ·〉. With σ our fixed generator
for Gal(E/F ) and ξ the e-th root of unity defined by σ(z1/e) = ξz1/e, we have
w−1(v) = σ(v) = ξ−rev. We deduce that zrv ∈ t is a regular eigenvector for w
(with eigenvalue ξre).

If γ is a nonidentity regular conjugacy class, e2πir( 6= 1) is a regular eigenvalue
for γ with r > 0, and x ∈ Π, it is easy to write down an explicit regular stratum
based at x of depth r whose connected centralizers are of type γ. A classification
of such strata is given in Theorem 5.13. �

Example 4.11. For GLn, a conjugacy classes in the Weyl group Sn is regular if its
cycle decomposition consists of either n/k k-cycles or (n−1)/k k-cycles and an addi-
tional 1-cycle. The corresponding maximal tori are the isomorphic to (F [z1/k]×)n/k

and (F [z1/k]×)(n−1)/k × F× respectively. A maximal torus of the former type is
called uniform; formal connections contains S-regular strata for S uniform were
studied in [3].
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5. Isomorphism classes of flat G-bundles

In this section, we give a parameterization for the space of isomorphism classes
of formal flat G-bundles that contain regular strata. More precisely, let S be a max-
imal torus of regular type which is compatible with some point in A0. If r ≥ 0, let
C(S, r) be the category of connections of slope r that contain an S-regular stratum.

For each x ∈ A0 compatible with x, we also define the category Cfr
x (S, r) of framed

flat formal G-bundles whose objects are quadruples F = (G,∇, (x, r, β), φ), where
(G,∇) is an object in C(S, r) containing the regular stratum (x, r, β) with respect
to the trivialization φ. The morphisms in Hom(F,F′) consists of isomorphisms

ψ : (G,∇) → (G′,∇′) such that ψ′ = φ′ ◦ ψ ◦ φ−1 ∈ Ĝx and ψ′∗(β′) = β. There is a

forgetful “deframing” functor Cfr
x (S, r) → C(S, r). We show that the moduli space

of Cfr
x (S, r) is the space of (S, r)-formal types–an explicitly-determined open1 subset

of s∨−r/s
∨
0+. The space of formal types is endowed with an action of the relative

affine Weyl group, and the moduli space of C(S, r) is the corresponding orbit space.
Throughout this section, S will denote a maximal torus of regular type compat-

ible with some point in A0. For clarity of exposition, we will assume that S = T̂
when r = 0. This restriction is unnecessary, but it allows one to avoid the nota-
tional complications inherent in discussing the resonance condition for other split
maximal tori.

5.1. Framed flat G-bundles and formal types. In this section, we show that
the category Cfr

x (S, r) is essentially independent of the choice of x for r > 0 and
compute its moduli space.

Theorem 5.1. Suppose that (G,∇) contains an S-regular stratum (x, r, β) with
respect to the trivialization φ.

(1) There exists p ∈ Ĝx+ and an element Ã ∈ π∗
s (s

∨
−r) such that [∇]pφ− x̃dzz =

Ã− x̃dzz .

(2) The orbit of Ã− x̃dzz under Ĝx+-gauge transformations contains Ã− x̃dzz +
ĝ∨x+.

(3) If Ã1, Ã2 ∈ π∗
s (s

∨
−r) both determine the same regular stratum (x, r, β), and

there exists p ∈ Ĝx such that p · Ã1 ∈ Ã2 + ĝ∨x+, then Ã
1 ∈ Ã2 + π∗

s (s
∨
0+).

Before proving this theorem, we show how it can be recast in the language of
formal types. Since π∗

s : s∨ → ĝ∨ is an injection which is compatible with the
Moy-Prasad filtration induced by x, the above theorem suggests that one may
parameterize flat G-bundles of slope r containing S-regular strata by elements of
s∨−r/s

∨
0+. In the following, we will adopt the notational convention that whenever

Ã ∈ π∗
s (s

∨
−r), then A = ρs(Ã) + s∨0+ ∈ s∨−r/s

∨
0+. Similarly if A ∈ s∨−r/s

∨
0+, then

Ã ∈ π∗
s (s

∨
−r), unless already defined, will denote an arbitrary element of π∗

s (A).

Definition 5.2. A functional A ∈ (s0)
∨ ∼= s∨/s∨0+ is called an S-formal type of

depth r if

(1) the smallest congruence ideal contained in A⊥ is sr+;
(2) there exists x ∈ A0 compatible with S; and
(3) for some x compatible with S, the corresponding stratum (x, r,Ax) is S-

regular, where Ax is the functional induced by Ã− x̃dzz .

1for r > 0



FLAT G-BUNDLES AND REGULAR STRATA FOR REDUCTIVE GROUPS 21

We denote the space of S-formal types of depth r by A(S, r), which we will view
as a subset of s∨−r/s

∨
0+

∼= (s0/sr+)
∨. An S-formal type is any element of ∪A(S, r).

Remark 5.3. When r > 0, A(S, r) is an open subset of the affine space s∨−r/s
∨
0+

∼=⊕0
j=−r s

∨(j) with the summation only including j ∈ Crit(s). Indeed, a coset

s∨−r/s
∨
0+ corresponds to an element of A(S, r) if and only if its projection onto

s∨(−r) is regular, which is clearly an open condition. If r = 0, the proof of Propo-

sition 5.4 below shows that A(T̂ , 0) ∼= {X ∈ t | α(X) /∈ Z for all α ∈ Φ}. This is
not Zariski-open, but if k = C, it is open in the complex topology.

Proposition 5.4. Suppose that A ∈ (s0)
∨ is an S-formal type of depth r.

(1) If r > 0, (x, r,Ax) is S-regular for all x ∈ A0 compatible with S.

(2) When r = 0, the stratum (x, r,Ax) is T̂ -regular if and only if α(Res(Ã)) 6=
α(x̃) for all α ∈ Φ. In particular, if Hx = G, then (x, r,Ax) is T̂ -regular

for all A ∈ A(T̂ , 0).

Proof. Choose y ∈ A0 such that (y, r, Ay) is S-regular. When r > 0, the functional
Ax is induced by π∗

s (A), so it is immediate that (x, r,Ax) is S-regular for any x ∈ A0

compatible with S.
Now, suppose that r = 0 and S = T̂ . The nonresonance condition states that

for all α ∈ Φ, α(Res(Ã)) = α(Res(Ã− ỹ dzz )) + α(ỹ) /∈ Z<α(ỹ). Since this condition

holds for −α, either α(Res(Ã)) is not an integer or α(Res(Ã)) = α(ỹ). However,

if α(Res(Ã)) = α(ỹ), then α(Res(Ã − ỹ dzz )) = 0 and (y, 0, Ay) is not a regular

stratum. We deduce that α(Res(Ã)) /∈ Z for all α ∈ Φ.

The set of x ∈ A0 such that Ã− x̃dzz does not determine a regular stratum thus

consists of those points for which there exists α ∈ Φ such that α(Res(Ã)) = α(x̃).
This is a finite union of hyperplanes. (Since x̃ ∈ tR, this condition is vacuous for

roots α with α(Res(Ã)) /∈ R.) Finally, suppose that Hx = G. If the corresponding

stratum (x, r,Ax) is not regular, then there exists α such that α(Res(Ã)) = α(x̃).

Since Hx = G, α(x̃) ∈ Z. This contradicts the fact that α(Res(Ã)) /∈ Z. On the
other hand, if Hx 6= G, there exists α for which α(x̃) /∈ Z. We can thus choose

A ∈ A(T̂ , 0) such that α(Res(Ã)) = α(x̃). �

Corollary 5.5. If x and y are both compatible with S and r > 0, then the categories
Cfr
x (S, r) and Cfr

y (S, r) are canonically isomorphic.

Proof. If A is the formal type for Fx = (G,∇, (x, r, βx), φ), then the proposition
shows that the functor Fx 7→ Fy = (G,∇, (y, r, βy), φ) is the desired isomorphism.

�

We can now describe the moduli spaces of these categories of framed flat G-
bundles. Let Ax(T̂ , 0) be the Zariski-open subset of A(T̂ , 0) consisting of those A

satisfying α(Res(Ã)) 6= α(x̃) for all α ∈ Φ. It is clear that Ax(T̂ , 0) = A(T̂ , 0) if
and only if α(x̃) ∈ Z for all α ∈ Φ; equivalently, this holds precisely when Hx = G.

Theorem 5.6.

(1) If r > 0, A(S, r) is the moduli space of Cfr
x (S, r).

(2) The moduli space of Cfr
x (T̂ , 0) is a subset of A(T̂ , 0), with equality if and

only if Hx = G.
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Proof. If (G,∇) contains an S-regular stratum (x, r, β), then Theorem 5.1(1) shows

that there is an element Ã ∈ π∗
s (s

∨
−r) and a trivialization φ of ∇ such that Ã− x̃dzz

determines β and [∇]φ|ĝx,0
= Ã. Thus, any isomorphism class can be represented

by a quadruple F = (G,∇, (x, r, β), φ) satisfying these properties. We define a
map from the moduli space to A(S, r), sending the class of F to the formal type

A = ρs(Ã) + s∨0+. Part (3) shows that this map is well-defined. Moreover, the map
is injective: if F′ is another such good representative of an isomorphism class for
which Ã′ determines the same formal type A, then part (2) shows that F′ ∼= F.

Thus, the moduli space of Cfr
x (S, r) is a subset of A(S, r). One easily sees that the

image lies in Ax(T̂ , 0) when r = 0.
It remains to compute the image of the formal types map. Let Gtriv be the triv-

ial principal formal G-bundle. If A ∈ A(S, r), define a flat structure on Gtriv via

[∇Ã]id = Ã, where id is the identity trivialization. The flat G-bundle (Gtriv,∇Ã)
contains the stratum (x, r,Ax) with respect to id. When r > 0, the class of
(Gtriv,∇Ã, (x, r,A

x), id) is mapped to A, so the formal types map is surjective. If

r = 0, the elements of Ax(T̂ , 0) are precisely those formal types for which (x, r,Ax)

is a regular stratum, and we see that the image is Ax(T̂ , 0) in the same way. �

We now turn to the proof of Theorem 5.1. We begin with two lemmas.

Lemma 5.7. Suppose that (G,∇) contains an S-regular stratum (x, r, β) with re-
spect to the trivialization φ, and assume that [∇]φ ∈ π∗

s (s
∨)+ ĝ∨x,`−r for some ` > 0.

(1) There exists p ∈ Ĝx,` such that [∇]pφ ∈ π∗
s ◦ ρs([∇]φ) + ĝ∨x,(`−r)+.

(2) If q ∈ Ĝx,` and r > 0, then

ρs([∇]qφ) ∈ ρs([∇]φ) + s∨(`−r)+.

Proof. First, assume r > 0, so [∇]φ is a representative of β. In the notation of
Lemma 4.2, [∇]φ−π∗

s ◦ρs([∇]φ)+ĝ∨x,(`−r)+ ∈ ker(ρ̄s). Part (3) of the Lemma implies

that there exists X ∈ ĝx,` such that [∇]φ+ad∗(X)([∇]φ)−π∗
s ◦ρs([∇]φ) ∈ ĝ∨x,(`−r)+.

Set p = exp(X). By Lemma 2.4(4), [∇]pφ−x̃dzz ∈ Ad∗(p)
(
[∇]φ − x̃dzz

)
+ĝ∨x,`. Since

Ad∗(p)([∇]φ− x̃dzz ) ∈ [∇]φ− x̃dzz +ad∗(X)([∇]φ)+ ĝ∨x,(`−r)+ and ĝ∨x,` ⊂ ĝ∨x,(`−r)+, it

follows from the observations above that [∇]pφ−x̃dzz ∈ π∗
s◦ρs([∇]φ)−x̃dzz +ĝ∨x,(`−r)+.

This proves the first statement in the irregular singular case.
Writing q = exp(Y ) for Y ∈ ĝx,`, we obtain

[∇]qφ − x̃
dz

z
∈ Ad∗(q)([∇]φ − x̃

dz

z
) + ĝ∨x,(`−r)+

= [∇]φ + ad∗(Y )([∇]φ)− x̃
dz

z
+ ĝ∨x,(`−r)+.

Since ad∗(Y )([∇]φ) + ĝx,(`−r)+ ∈ ker(ρ̄s) by Lemma 4.2(3), the second statement
follows.

Now, assume that r = 0 and S = T̂ , and write [∇]φ − x̃dzz ∈ π∗
t̂
ρt̂([∇]φ)− x̃dzz +∑

ψ∈Φ Yψ
dz
z + ĝ∨x,`+, where Yψ ∈ ûψ ∩ ĝx,`. Choose α ∈ Φ such that ` − α(x̃) ∈

Z>−α(x̃); this condition is necessarily satisfied by α if Yα
dz
z ∈ ĝ∨x,`\ĝ∨x,`+. Recall

that the graded representative β̃0 ∈ [∇]φ − x̃dzz + ĝ∨x,0+ satisfies b = Res(β̃0) ∈ t.

The nonresonance condition ensures that `+ α(b) 6= 0. Define Xα = 1
`+α(b)Yα. By
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Lemma 2.4(2),

[∇]exp(Xα)φ − x̃
dz

z
∈ Ad∗(exp(Xα))([∇]φ − x̃

dz

z
)− `Xα

dz

z
+ ĝ∨x,`+

= [∇]φ − x̃
dz

z
− (α(b) + `)Xα

dz

z
+ ĝ∨x,`+

= π∗
t̂
ρt̂([∇]φ)− x̃

dz

z
+

∑
ψ∈Φ
ψ 6=α

Yα
dz

z
+ ĝ∨x,`+

Repeating this process, we can kill off all of the off-diagonal terms Yα
dz
z . This

completes the proof. �

Lemma 5.8. Suppose that x ∈ A0 is compatible with S. Let Z dz
z ∈ π∗

s (s
∨
` ) for ` >

0; here, Z ∈ s`. Then, there exists s ∈ S` such that (ds)s−1 ∈ (Z−ad(x̃)(1`Z))
dz
z +

ĝ∨x,`+. In particular, π∗
s ◦ ρs((ds)s−1) ∈ Z dz

z + ĝ∨x,`+.

Proof. Take s = exp(1`Z). Then, (ds)s
−1 = 1

` τ(Z)
dz
z . However, 1

` τ(Z) ∈ −ad(x̃)(1`Z)+

Z+ĝx,`+. Consider ad
∗(x̃)( 1`Z

dz
z ). IfX ∈ s, then ad∗(x̃)(1`Z

dz
z ) (X) = −ad∗(X)( 1`Z

dz
z ) (x̃) =

0. It follows that ρs(ad
∗(x̃)(1`Z

dz
z )) = 0 by definition of the restriction map. There-

fore, ρs((ds)s
−1) ∈ ρs(Z

dz
z ) + s∨`+. �

Proof of Theorem 5.1. By Theorem 3.7, we may assume that S is graded compat-
ible with x. Suppose that φ′ is a trivialization for which [∇]φ′ ∈ π∗

s (s
∨) + ĝ∨x,`−r

with ` > 0. Writing ρs([∇]φ) =
∑
i≥−r Ai with Ai ∈ s∨(i), we have [∇]φ′ =∑

−r≤i<`−r Ãi + ĝ∨x,`−r. We suppose further that if ` − r > 0, then Ai = 0 for

0 < i < ` − r. We now show that we can construct p`, in Ĝx,`−r if ` − r > 0 and

in Ĝx,` if not, such that [∇]p`φ′ =
∑

−r≤i<`−r Ãi + π∗
s (s(` − r)) + ĝ∨x,(`−r)+. If we

can do this, then applying this process recursively, starting with φ and the smallest
`′ for which ĝ∨x,(`′−r)+ 6= ĝ∨x,−r+, we obtain a well-defined p =

∏∞
`=`′ p` satisfying

part (1). Moreover, we can set A =
∑0
i=−r Ai.

By Lemma 5.7, there exists q ∈ Ĝx,` such that [∇]qφ′ − x̃dzz ∈ π∗
s ◦ ρs([∇]φ′) −

x̃dzz + ĝ∨x,(`−r)+. If `−r ≤ 0, set p` = q. On the other hand, if `−r > 0, Lemma 5.8

shows that there exists s ∈ S`−r such that ρs((ds)s
−1) ∈ A`−r + s∨(`−r)+. In

particular, ρs([∇]sqφ) ∈
∑0
i=−r Ai + s∨(`−r)+. Applying Lemma 5.7 once more, we

obtain q′ ∈ Ĝx,` such that [∇]q′sqφ−x̃dzz ∈
∑0
i=−r Ãi− x̃

dz
z + ĝ∨x,(`−r)+. The desired

change of trivialization is given by p` = q′sq.
Part (2) now follows from the observation that whenever X ∈ ĝ∨x,0+, the preced-

ing algorithm produces an element p ∈ Ĝx,0+ such that p · (Ã+X) = Ã.

It remains to prove part (3). Recall that Lemma 2.4(3) states that p · Ã1− x̃dzz ∈
Ad∗(p)(Ã1 − x̃dzz ) + ĝ∨x,0+. It follows that Ad∗(p)(Ã1 − x̃dzz ) ∈ Ã2 − x̃dzz + ĝ∨x,0+.

Since Ã1 and Ã2 determine the same regular stratum, Ad∗(p)(Ã1 − x̃dzz ) ∈ Ã1 −
x̃dzz + ĝ∨x,−r+.

We first consider the case r > 0. By Proposition 4.9, there exists q ∈ Ĝx,r
such that Ad∗(qp)(Ã1) ∈ Ã2 + π∗

s (s
∨
0+), so n = qp ∈ N(S) ∩ Ĝx. Write Ã1 ∈

Ã−r + π∗
s (s

∨
−r+) where Ã−r ∈ π∗

s (s
∨(−r)); note that Ã2 ∈ Ã−r + π∗

s (s
∨
−r+) by

assumption. Fix a w-diagonalizer g for S satisfying Theorem 3.13, and write n′ =
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g−1ng ∈ N(E). A direct calculation, using the fact that τ(n′)(n′)−1 ∈ t(E), shows
that τ(n)n−1 ∈ τ(g)g−1 −Ad(n)(τ(g)g−1) + s = −x̃+Ad(n)(x̃) + s. Therefore,

τ(Ad∗(n)(Ã−r)) + ad∗(x̃)(Ad∗(n)(Ã−r))

= Ad∗(n)(τ(Ã−r)) + ad∗(τ(n)n−1)(Ad∗(n)(Ã−r)) + ad∗(x̃)(Ad∗(n)(Ã−r))

= Ad∗(n)(τ(Ã−r) + ad∗(x̃)(Ã−r)) = −rAd∗(n)(Ã−r).

We deduce that Ad∗(n)(Ã−r) = Ã−r. Since Ã−r is regular semisimple, n ∈ S∩Ĝx =
S0. Using the facts that (dn)n−1 ∈ Ad∗(n)(x̃) − x̃ + s∨0+ and ρs commutes with

Ad∗(n), we see that ρs(n · Ã1) ∈ ρs(Ã
1) + s∨0+. We now apply Lemma 5.7 (2) to

obtain

ρs(Ã
2) ∈ ρs(q

−1n · Ã1) + s∨0+ = ρs(n · Ã1) + s∨0+ = ρs(Ã
1) + s∨0+.

This proves part (3) when r > 0.

Finally, assume that r = 0. Since Ã1 and Ã2 both determine the same stratum,
Ã1−x̃dzz + ĝ∨x+ = Ã2−x̃dzz + ĝ∨x+. We thus have Ã1−Ã2 ∈ π∗

t̂
(̂t∨0 )∩ ĝ∨x,0+ = π∗

t̂
(̂t∨0+).

�

5.2. Flat G-bundles and orbits of formal types. Let S be a maximal torus of
type γ, which for the time being is not assumed to be regular. Let WS = N(S)/S

and ŴS = N(S)/S0 be the relative Weyl group and the relative affine Weyl group

associated to S. Note that ŴS
∼=WS nS/S0. The group ŴS consists of the Galois

fixed points of N(S(E))/S0(E) ∼= Ŵ .

Proposition 5.9. The group WS is isomorphic to a subgroup of the centralizer in
W of a representative w for γ.

Proof. In order to prove this, let n ∈ N(S) and choose a regular element s ∈ s.
Choose a w-diagonalizer g for S. Then, s = Ad(g)(t) for some t ∈ t(E) that
satisfies σ(t) = w−1t. Write n′ = g−1ng. It is clear that n′ ∈ N(E). Moreover,
since N(E) = N · T (E), one sees that σ(n′t(n′)−1) = n′σ(t)(n′)−1. Thus, if u ∈W
is the image of n′, w−1ut = uw−1t. Since t is regular, w−1u = uw−1. It follows that
n 7→ u defines a monomorphism from N(S)/S into the centralizer of w in W . �

We now show that there is an action %̂ of N(S) on s∨/s∨0+ by affine transforma-
tions given by the formula

%̂(n)(X + s∨0+) = Ad∗(n)(X)− ρs((dn)n
−1) + s∨0+.

Proposition 5.10. The map %̂ : N(S) → Aff(s∨/s∨0+) defined above is a group

homomorpism. The kernel of %̂ contains S0, so %̂ induces a group action % of ŴS

on s∨/s∨0+. Finally, s∨−r/s
∨
0+ ⊂ s∨/s∨0+ is a finite dimensional submodule for all

r ≥ 0, and the quotient action on s∨/s∨0 is comes from the coadjoint action of N(S).

Proof. Without loss of generality, assume that s is graded compatible with x ∈ A0.
Choose a w-diagonalizer g ∈ G(E) such that Ad(g)(t(E)) = s(E) and (τg)g−1 ∈
x̃+ s(0) as in Proposition 3.9.

Suppose that n1, n2 ∈ N(S). Then, ρs(Ad
∗(n1)((dn2)n

−1
2 ) = Ad∗(n1)ρs((dn2)n

−1
2 ).

It follows that

Ad∗(n1n2)(X)−ρs((d(n1n2))(n1n2)−1) = Ad∗(n1)
[
Ad∗(n2)(X)− ρs((dn2)n

−1
2 )

]
−d(n1)n−1

1 ,
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and thus %̂ is a homomorphism. Now, take s ∈ S0. Write s = ts′, where t ∈ S0 ∩ T
and s′ ∈ S0+. By Lemma 3.10, −(dt)t−1 ∈ t∨0+. Since s′ = exp(X) for some

X ∈ s0+, ρs(−(ds′)(s′)−1) = ρs(−τ(X)dzz ) ∈ s∨0+. It follows that S0 lies in the
kernel of %̂.

We now prove the second half of the proposition. Let n ∈ N(S). There exists
n′ ∈ N(E) such that g(n′)g−1 = n. Then,

(dn)n−1 = Ad∗(gn′)(−g−1dg) + Ad∗(g)(dn′(n′)−1) + (dg)g−1

= Ad∗(g)(dn′(n′)−1)−Ad∗(n)((dg)g−1) + (dg)g−1.

Since (dg)g−1 ∈ ĝ∨x (0), it follows that ρs((dg)g
−1) ⊂ s∨(0). Moreover, ρs(Ad∗(n)((dg)g−1)) =

Ad∗(n)(ρs((dg)g
−1)), so the restriction of the second two terms in the expres-

sion above lie in s∨(0). By Lemma 3.10, (dn′)(n′)−1 ∈
(
Ad(n′)(x̃)− ñ′x

)
dz
z +

t0+(E)dzz ⊂ t0(E)dzz . Thus, Ad∗(g)((dn′)(n′)−1) ∈ π∗
s (s

∨(E)0) ∩ ĝ∨ = π∗
s (s

∨
0 ).

We conclude that ρs((dn)n
−1) ∈ s∨0 . This proves that %̂(n)(X + s∨0+) + s∨0 =

Ad∗(n)(X) + s∨0 whenever X ∈ s∨.
Finally, since the action of the Weyl group preserves the Moy-Prasad filtration

on a split torus, it follows that Ad∗(n)(s∨(E)−r) = s∨(E)−r. Thus, Ad∗(n)(s∨−r) =
s∨−r. Since (dn)n−1 ∈ s∨0 , it is now clear that %̂(n)(s∨−r) ⊂ %̂(n)(s∨−r) whenever
r ≥ 0. �

From now on, we reimpose the conditions on S from the previous section. In
particular, γ is a regular conjugacy class. First, we show that the action % restricts
to give an action on the space of S-formal types of depth r.

Proposition 5.11. The subspace A(S, r) ⊂ s∨−r/s
∨
0+ is stable under the action of

ŴS.

Proof. By Proposition 5.10, s∨−r/s
∨
0+ is closed under the action of ŴS . Assume

without loss of generality that x ∈ A0 is graded compatible with s, and write
X−r ∈ s∨(−r) for the leading term of X ∈ A(S, r). Suppose that ŵ ∈ Ŵ with rep-
resentative n ∈ N(S). The same proposition shows that %(ŵ)(X) ∈ Ad∗(n)(X)+s∨0 .

First, we assume that r > 0. Since Ad∗(n)(s(r)) = s(r), it follows that %(ŵ)(X)−r =
Ad∗(n)(X−r). Thus, Z0(%(ŵ)(X)−r) = Ad∗(n)(Z0(X−r)) = S. By Proposi-
tion 4.9, %(ŵ)(X) determines a regular stratum. Therefore, %(ŵ)(X) ∈ A(S, r).

Now, we consider the case r = 0 and S = T̂ . Choose a representative n ∈ N
for ŵ. The proof of Proposition 5.4 shows that X ∈ t̂∨0 /̂t

∨
0+ is in A(T̂ , 0) if and

only if α(Res(X̃0)) /∈ Z for every root α. It is obvious that if X satisfies this
condition, then the same holds for Ad∗(n)(X). Also, Lemma 3.10 shows that
(dn)n−1 ∈ (−ñx + t̂0+)

dz
z , so that Res((dn)n−1) ∈ t(Z)dzz . It follows immediately

that α(%(ŵ)(Res(X̃0))) /∈ Z for all α, i.e., %(ŵ)(X) ∈ A(T̂ , 0). �
We now show that isomorphisms classes of flat G-bundles in C(S, r) can be

identified with orbits in A(S, r).

Lemma 5.12. Suppose that x is compatible with s and X ∈ π∗
s (s

∨
−r) + ĝ∨x . If

g ∈ Ĝx,r with r > 0, ρs(Ad
∗(g)(X)− (dg)g−1) ∈ ρs(X) + s∨0+.

Proof. Lemma 2.4(3) implies that Ad∗(g)(X)−(dg)g−1 ∈ Ad∗(g)(X)−Ad∗(g)(x̃dzz )+

x̃dzz + ĝ∨x+. Since g ∈ Ĝx+, it is clear that −Ad∗(g)(x̃dzz )+ x̃
dz
z ∈ ĝ∨x+ It thus suffices

to show that ρs(Ad
∗(g)(X)) ∈ ρs(X)+ s∨0+. Write g = exp(Y ), for Y ∈ ĝx,r. Then,
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Ad∗(g)(X) ∈ X + ad∗(Y )(X) + ĝ∨x+. By Remark 4.3, ρs(X + ad∗(Y )(X) + ĝ∨x+) ∈
ρs(X) + s∨0+. �

Theorem 5.13. There is a bijection between the set of isomorphism classes of
formal flat G-bundles that contain an S-regular stratum of depth r and the set
A(S, r)/ŴS.

Proof. Theorem 5.1 shows that whenever (G,∇) contains a regular stratum (x, r, β),
there is a trivialization φ such that [∇]φ ∈ π∗

s (s
∨
−r). Moreover, the isomorphism

class of (G,∇) depends only on the restriction of [∇]φ to s∨−r/s
∨
0+, giving rise to an

element A ∈ A(S, r). One further sees that every formal type in the ŴS-orbit of

A can be obtained from (G,∇) by changing the trivialization by elements of N̂ . It
remains to show the converse.

With φ a trivialization for G as above, take g ∈ Ĝ such that (G,∇) contains the
regular strata (y, r, β′) with respect to the trivialization gφ. Note that the depths
are necessarily the same by Theorem 2.3. We may assume that [∇]gφ ∈ π∗

s (s
∨
−r)

by Theorem 5.1(1), so that β′ = ρs([∇]gφ)
y. If r > 0, Proposition 5.4 implies

that (x, r, ρs([∇]gφ)
x) is a regular stratum contained in (G,∇) with respect to the

trivialization gφ. On the other hand, if r = 0, the same proposition shows that
for any x′ in a nonempty open subset of the fundamental alcove, (G,∇) contains

the regular strata (x′, 0, ρt̂([∇]φ)
x′
) and (x′, 0, ρt̂([∇]gφ)

x′
) with respect to φ and

gφ respectively. Thus, we may assume without loss of generality that x = y and
further, that Ĝx is the standard Iwahori subgroup I when r = 0.

First, assume that r > 0. Write g = p1np2 using the affine Bruhat decomposition,
where p1, p2 ∈ Ĝx and n ∈ N̂ . By Lemma 2.4(3), [∇]p2φ − x̃dzz ∈ Ad∗(p2)([∇]φ −
x̃dzz ) + ĝ∨x+. Applying Ad∗(p−1

2 ) to both sides,

[∇]φ − p−1
2 (dp2) ∈ [∇]φ − x̃

dz

z
+Ad∗(p−1

2 )(x̃
dz

z
) + ĝ∨x+ ⊂ [∇]φ + ĝ∨x .

By Lemma 4.9(2), we see that there exists q2 ∈ Ĝx,r such that

(6) Z1 := Ad∗(q−1
2 )

(
[∇]φ − p−1

2 dp2
)
∈ [∇]φ + π∗

s (s
∨
0 ).

Using the fact that (dn)n−1 ∈ ĝ∨x , a similar argument shows that there exists

q1 ∈ Ĝx,r such that

(7) Z2 := Ad∗(q1)
(
[∇]gφ + (dp1)p

−1
1 +Ad∗(p1)((dn)n

−1)
)
∈ [∇]gφ + π∗

s (s
∨
0 ).

Note that Z1 and Z2 are regular semisimple elements of π∗
s (s

∨) since they both
determine regular strata. Setting h = q1gq2, the following calculation shows that
Ad∗(h)(Z1) = Z2 and thus h ∈ N(S):

Ad∗(h)(Z1) = Ad∗(q1p1n) ([∇]p2φ)

= Ad∗(q1p1)
(
[∇]np2φ + (dn)n−1

)
= Ad∗(q1)

(
[∇]gφ +Ad∗(p1)

(
(dn)n−1

)
+ (dp1)p

−1
1

)
= Z2.

Now, letX = ρs([∇]φ)+s∨0+ and Y = ρs([∇]gφ)+s∨0+, so thatX,Y ∈ A(S, r). We
will show that Y = %̂(h)(X). Applying Lemma 5.7(2), we see that ρs([∇]q1gφ) ∈
ρs([∇]gφ) + s∨0+ and ρs([∇]q−1

2 φ) ∈ ρs([∇]φ) + s∨0+. Since ρs is an N(S)-map by
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Lemma 4.2(5), it follows that

ρs([∇]hq−1
2 φ) = ρs(Ad

∗(h)([∇]q−1
2 φ))− (dh)h−1)

= Ad∗(h)(ρs([∇]q−1
2 φ))− ρs((dh)h

−1) ∈ ρs([∇]hφ) + s∨0+.

Finally,

Y = ρs([∇]gφ) + s∨0+ = ρs([∇]q1gφ) + s∨0+

= ρs([∇]hq−1
2 φ) + s∨0+ = ρs([∇]hφ) + s∨0+ = %̂(h)(X).

Now, take r = 0 with Ĝx = I. Again, write g = p1np2 with pi ∈ I and n ∈ N̂ .
Furthermore, since I = T n I+, we may assume that p1, p2 ∈ Ĝx+ = I+.

Since pi ∈ I+, ρt̂([∇]p2φ) ∈ ρt̂([∇]φ) + t̂∨0+ and ρt̂([∇]p−1
1 gφ) ∈ ρt̂([∇]gφ) + t̂∨0+ by

Lemma 2.4(4). Finally,

ρt̂([∇]gφ) ∈ ρt̂([∇]np2φ) + t̂∨0+ = Ad∗(n)(ρt̂([∇]p2φ))− (dn)n−1 + t̂∨0+

= Ad∗(n)(ρt̂([∇]φ))− (dn)n−1 + t̂∨0+ = %̂(n)(ρt̂([∇]φ) + t̂∨0+). �

Corollary 5.14. The moduli space of C(S, r) is A(S, r)/ŴS. Moreover, the de-

framing functor Cfr
x (S, r) → C(S, r) corresponds to the quotient map A(S, r) →

A(S, r)/ŴS on moduli spaces when r > 0 or r = 0 and Hx = G.

Thus, the category Cfr
x (S, r) (with Hx = G if r = 0) may be viewed as a “reso-

lution” of C(S, r).
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