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Abstract. In algebraic geometry, one often encounters the following prob-
lem: given a scheme X, find a proper birational morphism Y → X where the

geometry of Y is “nicer” than that of X. One version of this problem, first
studied by Faltings, requires Y to be Cohen-Macaulay; in this case Y → X is
called a Macaulayfication of X. In another variant, one requires Y to satisfy

the Serre condition Sr. In this paper, the authors introduce generalized Serre
conditions–these are local cohomology conditions which include Sr and the
Cohen-Macaulay condition as special cases. To any generalized Serre condi-
tion Sρ, there exists an associated perverse t-structure on the derived category

of coherent sheaves on a suitable scheme X. Under appropriate hypotheses,
the authors characterize those schemes for which a canonical finite Sρ-ification
exists in terms of the intermediate extension functor for the associated perver-
sity. Similar results, including a universal property, are obtained for a more

general morphism extension problem called Sρ-extension.

1. Introduction

In algebraic geometry, one often encounters the following problem: given a
scheme X, find a proper birational morphism Y → X where the geometry of Y
is “nicer” than that of X. The strongest version of this problem is the resolution
of singularities. On the other hand, there are many weaker variations expressed
in terms of local cohomology. For example, one might require Y to satisfy Serre’s
condition S2. In another version, introduced by Faltings [4], Y is required to be
Cohen-Macaulay; Y → X is then called a Macaulayfication of X. Kawasaki has
shown that Macaulayfications exist for a broad class of schemes [7], and they can
often be constructed in contexts where desingularizations do not exist.

In general, Macaulayfications are not canonical. However, it was shown in [1]
that there may exist a finite Macaulayfication, restricting to an isomorphism over
the Cohen-Macaulay locus, that satisfies an appropriate universal property. This
is a special case of a more general morphism extension problem.
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Consider the following diagram, where U is an open dense subscheme of X and
ζ1 is a finite dominant morphism.

Ũ � � //

ζ1

��

X̃

ζ

��
U

� � j // X

In [1], Achar and Sage investigated the problem of constructing an “S2-extension”

of (X, ζ1): this is a scheme X̃ together with a finite morphism ζ : X̃ → X such that

X̃ contains Ũ as an open subscheme, ζ extends ζ1, X̃ is S2 off of Ũ , and (X̃, ζ) sat-
isfies an appropriate universal property. If a pair satisfies all conditions except for
the universal property, it is called a weak S2-extension. They applied the theory
of perverse coherent sheaves to show that the S2-extension exists under suitable
hypotheses (for example, the “componentwise codimension” of the complement of
U must be at least 2) . When ζ1 is the identity, S2-extension gives a canonical S2-
ification, which restricts to an isomorphism over U . Achar and Sage used similar
techniques to show that a canonical finite Macaulayfication exists when a certain
perverse coherent sheaf is defined and a sheaf (i.e., concentrated in degree 0). More-
over, in this case, the finite Macaulayfication coincides with the S2-ification. This
last fact was first observed in a local ring context by Schenzel [8].

In this paper, we strengthen and generalize these results. A summary of the the-
ory of perverse coherent sheaves appears in Section 2. In Section 3, we introduce
“generalized Serre conditions”–these are local cohomology conditions which include
the Serre conditions Sr and the Cohen-Macaulay condition as special cases. A gen-
eralized Serre condition is defined in terms of a function ρ : Z≥0 → Z≥0 which has
slope at most one and satisfies ρ(0) = 0. These conditions have a close relationship
to perversities in the theory of coherent sheaves, and we show how to associate an
Sρ-perversity to the pair (X,U) in Definition 3.6. We also provide an example of
an Sρ variety that is “strictly Sρ through codimension n”. We then investigate the
Sρ-extension problem in Section 4 and show that under appropriate assumptions,
an Sρ-extension exists if and only if a certain intermediate extension sheaf (with
respect to the Sρ-perversity) exists and is a sheaf (Theorem 4.4). If it exists, it
is the only weak Sρ-extension; moreover, it coincides with the S2-extension. This
result is applied to the finite Sρ-ification problem in Theorem 4.13. We obtain
similar results when the codimension condition is relaxed, although here stronger
hypotheses are required.

2. Serre conditions and perverse coherent sheaves

Throughout the paper, X will be a semi-separated scheme of finite type over a
Noetherian base scheme S admitting a dualizing complex. We will further assume
that X is equidimensional. For any x ∈ X, we will write x̄ ⊂ X for the subscheme
corresponding to the closure of {x}. We will write codimx for codim x̄. If Z is a
closed subscheme of X, we will let c-codim(Z) denote the “componentwise codi-
mension” (or “c-codimension”) of Z inX; if theXi’s are the irreducible components
of X, then

c-codim(Z) = min
Z∩Xi 6=∅

codimXi Z ∩Xi.
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Let Coh(X) be the category of coherent sheaves on X, and let D(X) be the
bounded derived category of Coh(X). Suppose that ix : {x} → X is the inclusion
of a point. If F ∈ Coh(X), we define i∗x(F) to be the stalk of F at x. Since i∗x is
exact, it induces an exact functor from D(X) to the bounded derived category of
OX,x-modules (written D(OX,x)). We define Γx(F) to be the submodule of i∗x(F)

consisting of sections with support on {x}. This is a left exact functor, and we
write i!x : D(X) → D(OX,x) for the corresponding derived functor.

Recall that the depth of a coherent sheaf F at y is defined to be r if Hr(i!xF) is
the first non-vanishing local cohomology sheaf; in other words, Hr(i!xF) 6= 0 and
Hk(i!xF) = 0 for k < r. We will denote the depth of F at y by depthy(F).

Definition 2.1. Let r be a positive integer. We say that a coherent sheaf F ∈
Coh(X) is Sr if depthx(F) = dimx(F) for all x ∈ X satisfying dimx(F) ≤ r. The
sheaf F is Cohen-Macaulay if depthx(F) = dimx(F) for all x ∈ X.

Now, we recall the Deligne-Bezrukavnikov theory of perverse coherent sheaves
and its extension by Achar and Sage [2, 1].

Definition 2.2. A perversity is a function p : X → Z satisfying

p(y) ≥ p(x) and

codim(y)− p(y) ≥ codim(x)− p(x) whenever codim(y) ≥ codim(x).

(In particular, p(x) only depends on codim(x).) Given a perversity p, we define the
dual perversity p̄ by p̄(x) = codim(x̄)− p(x).

By [2, Theorem 3.10], a perversity determines two full subcategories, pD(X)≤0

and pD(X)≥0, such that (pD(X)≤0, pD(X)≥0) is a t-structure on D(X). Specifi-
cally,

pD(X)≤0 = {F ∈ D(X) | ∀x ∈ X,Hk(i∗x(F)) = {0} whenever k > p(x)}
pD(X)≥0 = {F ∈ D(X) | ∀x ∈ X,Hk(i!x(F)) = {0} whenever k < p(x)}.

We call this t-structure the perverse t-structure with respect to the perversity
p. There are associated truncation functors τp≤0 : D(X) → pD(X)≤0 and τp≥0 :

D(X) → pD(X)≥0. The heart of the t structure, denoted Mp(X), is the category
of perverse coherent sheaves with respect to p. For example, if p is the trivial per-
versity defined by p(x) = 0 for all x ∈ X, then one easily sees that Mp(X) is the
usual category of coherent sheaves on X.

One of the powerful tools in the theory of perverse coherent sheaves is the in-
termediate extension functor. Suppose that U ⊂ X is an open dense subscheme
of X, and let Z = X \ U . In certain cases, there exists an intermediate extension
functor ICp which defines an equivalence between a subcategory of Mp(U) and a
subcategory of Mp(X). The definition of ICp requires the construction of two new
perversities associated to p, denoted p+ and p−, which depend on the pair (X,U)
(although this dependence will be suppressed in the notation). In order to ensure
that the domain of ICp is non-empty, we will eventually need to impose conditions
on the perversity p as well as on c-codim(Z).

Definition 2.3. Fix a pair (X,U) as above. Let p be a perversity on X, and let z
be any point in X such that codim(z) = c-codim(Z). We define

p−(x) =

{
p(x)− 1 if p(x) ≥ p(z),
p(x) if p(x) < p(z),
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and

p+(x) =

{
p(x) + 1 if codim(x)− p(x) ≥ codim(z)− p(z),
p(x) if codim(x)− p(x) < codim(z)− p(z).

Additionally, we define M
p
±(U) and M

p
±(X) to be the full subcategories

M
p
±(U) = p−

D(U)≤0 ∩ p+

D(U)≥0 ⊂ Mp(U),

M
p
±(X) = p−

D(X)≤0 ∩ p+

D(X)≥0 ⊂ Mp(X).

Proposition 2.4 ([1, Proposition 2.3]). Let j : U → X be the inclusion map.
Then, j∗ : Mp

±(X) → M
p
±(U) is an equivalence of categories.

Definition 2.5. The intermediate extension functor ICp(X, ·) : Mp
±(U) → M

p
±(X)

is defined as the inverse equivalence to that of Proposition 2.4.

Remark 2.6. By [1, Remark 2.7], if U is irreducible, then the category M
p
±(U)

reduces to the zero object whenever codim(Z) ≤ codim(U) + 1.

From now on, unless otherwise mentioned, we will assume that U is an open dense
subset of X and that c-codimZ ≥ 2. These conditions are needed for many of the
results we use from [1]. Moreover, we will primarily consider standard perversities
on X.

Definition 2.7. We say that a perversity p on (X,U) is standard if

p(x) = p−(x) = p+(x) = 0 if codim(x) = 0.

There are unique maximal and minimal standard perversities on X defined by:

s(x) =

{
0,
1,

c(x) =

{
codim(x) if codim(x) < c-codim(Z),
codim(x)− 1 if codim(x) ≥ c-codim(Z).

Lemma 2.8 ([1, Lemma 3.3]). Every standard perversity p satisfies s(x) ≤ p(x) ≤
c(x) for all x ∈ X.

Remark 2.9. If p is any standard perversity, then p− ≥ 0. It follows that any

coherent sheaf F is contained in p−
D(X)≤0.

Remark 2.10. The complex ICs(X,F) is automatically a sheaf if it is defined. In-
deed, it is just j∗F by [1, Proposition 3.7].

3. Generalized Serre Conditions

3.1. The conditions Sρ. In this section, we introduce a class of local cohomology
conditions which generalize Serre’s conditions Sr and the Cohen-Macaulay condi-
tion. We also show their connection to perversity functions.

Let W ′ be the set of weakly increasing functions ρ : Z≥0 → Z≥0 such that
ρ(0) = 0 and ρ(k+1)− ρ(k) ≤ 1 for all k. Note that W ′ is a lattice with respect to
the usual partial order with the identity (resp. the zero function) as the maximum
(resp. minimum). If we set ρr(k) = min(k, r), then {ρr} is an increasing sequence
whose supremum is id. Let W = {ρ ∈ W ′ | ρ ≥ ρ2}.

Definition 3.1. Given ρ ∈ W ′, we say that F ∈ Coh(X) is Sρ at x if Hk(i!x(F)) =
{0} for k < ρ(dimx(F)); F is Sρ if it is Sρ at x for all x ∈ X.
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Note this says that F is Sρ at x if and only if depthx(F) ≥ ρ(dimx(F)) for all
x ∈ X. In particular, Sρr is the usual condition Sr while a sheaf is Sid if and only
if it is Cohen-Macaulay. Elements of W correspond to local cohomology conditions
which are at least as strong as S2.

To see the relationship between these conditions and perversities, we need a
numerical version of perversity functions.

Definition 3.2. For n ≥ 2, a standard numerical perversity of level n is a function
π : Z≥0 → Z≥0 such that π(0) = 0, 0 < π(n) < n, and both π and its dual

π̄
def
= id − π are nondecreasing. The set of all such functions is denoted by Pn;

these satisfy Pn ⊂ Pm if n ≤ m. A standard numerical perversity is an element of
P = ∪n≥2Pn.

Note that 0 ≤ π(k + 1)− π(k) ≤ 1 for any π ∈ P .
Given (X,U), any element π ∈ Pc-codimZ induces a standard perversity pπ =

π ◦ codim : X → Z≥0. Conversely, any perversity comes from a (non-unique)
element of Pc-codimZ .

For π ∈ Pn, we set

π+
n (k) =

{
p(k) + 1 if k − p(k) ≥ n− p(n),

p(k) if k − p(k) < n− p(n).

We will suppress n from the notation when it is unambiguous. In particular, if we
are considering a pair (X,U), then we will always take n = c-codim(Z). With this
convention, we see that pπ+ = (pπ)

+.
Given ρ : Z≥0 → Z≥0 such that r(0) = 0 and n ≥ 2, let Pn(ρ) be the set

of standard numerical perversities π ∈ Pn such that π+(k) ≤ ρ(k) for all x with
equality if k ≥ n. Given ρ ∈ W and n ≥ 2, let m be the largest index such that
ρ(m) < ρ(n). We then define π̂ρ,n, πρ,n ∈ Pn via

π̂ρ,n(k) =

{
ρ(k), if k ≤ m,

ρ(k)− 1, if k ≥ m+ 1,
πρ,n(k) =

{
max(k − (n− ρ(n) + 1), 0), if k < n,

ρ(k)− 1, if k ≥ n.

It is easy to check that these are indeed standard numerical perversities in Pn(ρ).
We also define a function φ : P2 → W :

φ(π)(k) =

{
k, if k ≤ 1,

π(k) + 1, if k ≥ 2.

Proposition 3.3.

(1) Let ρ : Z≥0 → Z≥0 be a function such that ρ(k) = k for k ≤ 1. The set
P2(ρ) is nonempty if and only if ρ ∈ W .

(2) For any ρ ∈ W and n ≥ 2, πρ,n (resp. π̂ρ,n) is the unique minimum (resp.
maximum) element of Pn(ρ).

(3) There exists π ∈ Pn(ρ) such that π+
n = ρ if and only if ρ(n− 1) < ρ(n).

(4) The function φ : P2 → W is surjective and two-to-one with φ−1(ρ) =
P2(ρ) = {πρ,2, π̂ρ,2}. Moreover, the duality map on numerical perversities
induces a duality map ρ 7→ ρ̄ on W such that φ(πρ,2) = π̂ρ̄,2 and φ(π̂ρ,2) =
πρ̄,2.

Proof. If π ∈ P2(ρ), then π(k) = ρ(k) − 1 for k ≥ 2. Also, π(2) = 1, so ρ(2) = 2.
This implies that ρ is nondecreasing and ρ ≥ ρ2. Moreover, since π(k+1)−π(k) ≤ 1,
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the same holds for ρ. Thus, ρ ∈ W . The converse holds, since πρ,2 ∈ P2(ρ) for
ρ ∈ W .

For the second part, note that if π ∈ Pn(ρ), then π(n) = ρ(n) − 1. If π(k) <
k− (n− ρ(n) + 1) for n− ρ(n) + 1 ≤ k < n, then π(n) < ρ(n)− 1, a contradiction,
so π ≥ πρ,n. On the other hand, π ≤ ρ, so if π � π̂ρ,n, there exists k such that
m < k < n such that π(k) = ρ(k) = ρ(n). Since π is nondecreasing, we obtain
π(n) ≥ r(n), which is again a contradiction.

Note that π̂+
ρ,n(k) = ρ(k) except for m < k < n, so π̂+

ρ,n(k) = ρ precisely when

ρ(n− 1) < ρ(n). Since π ≤ π′ implies π+ ≤ π′+, the third statement follows.
For π ∈ P2, it is immediate that π ∈ P2(ρ) if and only if φ(π) = ρ. In addition,

π ∈ P2(ρ) is uniquely determined by π(1) ∈ {0, 1}, so πρ,2 and π̂ρ,2 are the only
elements of φ−1(ρ) = P2(ρ). The final statement about duality is obvious. �
Definition 3.4. Given ρ ∈ W , we say that Sρ̄ is the generalized Serre condition
dual to Sρ.

Example 3.1.1
The Serre condition dual to Sr is given by Sρ̄r , where

ρ̄r(k) =


k, if k ≤ 1;

2, if 2 ≤ k ≤ r;

k − (r − 2), if k > r.

In particular, S2 and Cohen-Macaulay condition are dual to each other.

Proposition 3.5. Let π ∈ Pc-codimZ(ρ), and suppose that F ∈ Coh(U).

(1) The complex ICpπ (X,F) is defined if and only if F ∈ p+
π D(U)≥0. In partic-

ular, this is true if Supp(F) = U and F is Sρ.
(2) If ICpπ (X,F) is a sheaf, it is Sρ at all points not in U .

Proof. Since F is a sheaf and pπ is standard, F lies in p−
π D(U)≤0 by Remark 2.9.

Hence, ICpπ (X,F) is defined if and only if F ∈ p+
π D(U)≥0. If Supp(F) = U ,

then dimu F = codimu for all u ∈ U , so F ∈ p+
π D(U)≥0. Finally, if x ∈ Z,

then Hk(i!x(IC
pπ (X,F)) = 0 for all k < p+π (x) = ρ(codim(x)). If ICpπ (X,F) is a

sheaf, then it is Sρ at x because the dimension of a coherent sheaf at x is at most
codim(x). �
Definition 3.6. The Sρ-perversity on (X,U) is the standard perversity pρ(x) =
πρ,c-codimZ(codim(x)).

Note that this perversity gives the least restrictive conditions on F ∈ Coh(U)
guaranteeing that IC(X,F) is Sρ for all points in Z (if it is a sheaf). In our previous
notation, s is the S2-perversity. However, c is not the Sid (i.e., the Cohen-Macaulay)
perversity, since it corresponds to π̂id,c-codimZ .

We end this section with an explicit description of what it means for a sheaf to

be in p+
ρ D(X)≥0.

Proposition 3.7. Let n = c-codimZ. A sheaf F is in p+
ρ D(X)≥0 if and only if

(3.1) depthx F ≥


ρ(codim(x)), if codim(x) ≥ n;

ρ(n)− (n− codim(x)), if n− ρ(n) + 1 ≤ codim(x) < n;

0, if codim(x) ≤ n− ρ(n).
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The proof is a simple calculation using the definition of p+ρ . Note that the first

two cases correspond to points for which p+ρ (x) = p+ρ (x) + 1.

3.2. Example. In this section, we will construct an Sρ scheme X that is “strictly
Sρ through codimension n”. This example is adapted from [5, Section 4].

LetK be an algebraically closed field of characteristic zero, and letK[X1, . . . , Xa, Z]
be a polynomial ring in a + 1 variables. We define a graded ring T a by T a =
K[X1, . . . , Xa, Z]/(f), where (f) is the ideal generated by f = Za+1 −

∑a
i=1 X

a+1
i .

Let Ab be the polynomial ring K[Y0, Y1, . . . , Yb]. We let Xa,b = Spec(T a ×K Ab),
where T a ×K Ab denotes the Segre product. (Recall that this is the subalgebra
of T a ⊗K Ab generated by elements r ⊗ s with r and s homogeneous of the same
degree.) Griffith showed in [5, Theorem 4.5] that this variety has the following
properties:

Lemma 3.8.

(1) The variety Xa,b is Sa, but not Sa+1.
(2) The non-smooth locus of Xa,b is the singleton point corresponding to the

irrelevant maximal ideal.

Let ρ ∈ W be a weakly increasing function as in Section 3.1, so in particular
ρ ≥ ρ2. We define the nth inclination of ρ by

tnρ(k) =

{
ρ(k) k ≤ n

ρ(n) + k − n k > n.

Note that tnρ is the maximum element of W that agrees with ρ on [0, n]. It is
trivial that tmρ ≥ tnρ whenever m ≤ n.

Fix ρ ∈ W and n ≥ 3, and assume that ρ|[0,n] 6= id[0,n]. This data determines
a (nonempty) increasing sequence (d1, d2, ..., ds), consisting of those indices m ≤ n
satisfying tnρ(m + 1) > tnρ(m) = tnρ(m − 1). Set ei = di − ρ(di) and ri = ρ(di).
We define a variety Xρ,n by

Xρ,n =
s∏

i=1

Xri,ei .

Let xri,ei be the closed point of Xri,ei corresponding to the irrelevant ideal of

T ri ×K Aei . Note that xri,ei has codimension di. Define a subvariety X ′
ρ,n ⊂ Xρ,n

by

X ′
ρ,n =

⋃
1≤i≤j≤s

({xri,ei} × {xrj ,ej} ×
∏

1≤`≤s
6̀=i,j

Xr`,e`).

Finally, we write Xρ,n = Xρ,n \X ′
ρ,n.

Proposition 3.9. The variety Xρ,n satisfies the generalized Serre condition Sρ.
Moreover, if ρ′ ∈ W is a function such that tnρ

′ > tnρ, then Xρ,n does not satisfy
Sρ′ .

Proof. Let Yi denote the subvariety {xri,ei}×Xri,ei
Xρ,n. By assumption, Yi∩Yj =

∅. Note that Yi
∼=

∏
j 6=i Xrj ,ej \ {xrj ,ej}, so, by Lemma 3.8, it is smooth.

First, we calculate the depth at any point x ∈ Xρ,n. Since ∩iY
c
i is contained

in the smooth locus, depthx(OXρ,n) = codim(x) if x /∈ ∪iYi. Now, suppose that
x ∈ Yi. Let R = OXri,ei

,xri,ei
and S = OXρ,n,x, with corresponding maximal

ideals m and n. Since the projection map Xρ,n → Xri,ei is flat, depthn(S) =
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depthm(R) + depthn(S/mS). There is a similar equation for codimension. Since
the fiber over xri,ei of this projection is isomorphic to Yi, S/mS ∼= OYi,x. An
application of Lemma 3.8 gives depthm(R) = ri and depthn(S/mS) = codimYi(x).
We deduce that

(3.2)
codim(x) = di + codimYi(x)

depthx(OXρ,n,x) = ri + codimYi(x).

whenever x ∈ Yi. (Since ri < di, it follows that the Cohen-Macaulay locus (and
the smooth locus) is precisely ∩iY

c
i .)

To show that Xρ,n is Stnρ, we need only consider x ∈ Yi. Equation (3.2) shows
that the generalized Serre condition corresponding to tdiρri is satisfied at such an
x. The function tdiρri is strictly increasing until k = ri, nonincreasing on the
interval [ri, di], and then strictly increasing afterwards. It is easily checked that
tdiρri ≥ tnρ.

Finally, we suppose that ρ′ ∈ W is a function such that tnρ
′ > tnρ. In particular,

there exists a smallest integer k such that 2 < k ≤ ds and ρ′(k) > ρ(k). Note that
one cannot have k ≤ d1 unless ρ(k) = ρ(d1). It is clear that Xρ,n can not be
Sρ′ if k ≤ di and ρ(k) = ρ(di), since the generic point of Yi is a codimension di
point that has depth ρ(di). Suppose now that di < k < di+1 and ρ(k) < ρ(di+1).
Then, ρ is strictly increasing on the interval [di, k]. It follows that ρ′(k) > ri +
k − di. Choose any point x ∈ Yi with codimension k in Xρ,n. By equation (3.2),
depthx(OXρ,n,x) = ri+(k−di). Therefore, Xρ,n does not satisfy the condition Sρ′ ,
since ri + (k − di) < ρ′(k).

�

4. Sρ-extension and finite Sρ-ification

In this section, we investigate the “Sρ-extension problem” for any ρ ∈ W and
its relationship to S2-extension. In particular, we apply our results to the finite
Sρ-ification problem.

4.1. Sρ-extension.

Definition 4.1. Let U ⊂ X be an open dense subscheme with complement Z. A
finite morphism f : Y → X is Sρ relative to U if f∗OY satisfies the depth conditions
in (3.1).

If c-codim(Z) ≥ 1, this is equivalent to the statement f∗OY ∈ p+
ρ D(X)≥0. If

c-codimZ = 1, this simply means that f∗OY is Sρ.
The initial data for Sρ-extension consists of an open dense subscheme U of the

scheme X and a finite dominant morphism ζ1 : Ũ → U that maps generic points

to generic points and satisfies ζ1∗OŨ ∈ p+
ρ D(U)≥0. We will let j : U → X denote

the inclusion.

Definition 4.2. We say that a scheme X̃ together with a morphism ζ : X̃ → X is
an Sρ-extension of (X, ζ1) if it satisfies the following conditions:

(1) X̃ contains Ũ as an open dense subscheme;
(2) ζ extends ζ1 and is finite;
(3) ζ is Sρ relative to U ; and



GENERALIZED SERRE CONDITIONS 9

(4) (X̃, ζ) is universal among finite dominant morphisms f : Y → X which send
generic points to generic points, which are Sρ relative to U , and whose
restriction f |f−1(U) factors through ζ1. (In other words, there exists a

unique g : Y → X̃ such that f = ζ ◦ γ.)
We say that (X̃, ζ) is a weak Sρ-extension if it satisfies conditions (1) and (2) and

X̃ is Sρ off of Ũ .

Note that ζ is automatically dominant and takes generic point to generic points.

Remark 4.3. Let f : Y → X be a finite dominant map extending ζ1 and taking
generic points to generic points. Under these conditions, c-codimY (Y − f−1(U)) =
c-codimX Z and codim(y) = codim(f(y)). (Note that we are using the equidimen-
sionality of X.) This means that the perversities corresponding to ρ on X and Y
are related by pYρ = pXρ ◦f , so there is no ambiguity in denoting both simply by pρ.

Moreover, the argument given in [1, Proposition 3.5] shows that f∗OY ∈ p+
ρ D(X)≥0

implies that OY ∈ p+
ρ D(Y )≥0 in the case c-codimZ ≥ 2. In particular, if f is

Sρ-relative to U , then Y is Sρ at all points y with codim(y) ≥ c-codimZ.

If c-codimZ ≥ 2, (X, ζ1) has an S2-extension if and only if ICs(X, ζ1∗OŨ ) is
defined; moreover, it is given by Spec(ICs(X, ζ1∗OŨ )) → X [1, Theorem 4.5]. (By
Remark 2.10, ICs(X, ζ1∗OŨ ) = j∗ζ1∗OŨ ) is automatically a sheaf of OX -algebras if
it is defined. Thus, the global Spec makes sense.) We now give the corresponding
result for Sρ-extension.

Theorem 4.4. Suppose that c-codimZ ≥ 2. Then, the pair (X, ζ1) has an Sρ-
extension if and only if ICpρ(X, ζ1∗OŨ ) is defined and is a sheaf. If it exists, it is
given by Spec(ICpρ(X, ζ1∗OŨ )) → X and coincides with the S2-extension.

Proof. First, suppose that (X̃, ζ) is an Sρ-extension. By property (3), ζ∗OX̃ ∈
M

pρ

± (X); restricting to U , we see that ζ1∗OŨ ∈ M
pρ

± (U). This means that ICpρ(X, ζ1∗OŨ )
is defined. By [1, Lemma 3.4], if a coherent sheaf onX extending ζ1∗OŨ is contained

in p+
ρ D(X)≥0, then it is isomorphic to ICpρ(X, ζ1∗OŨ ). Thus, ICpρ(X, ζ1∗OŨ )

∼=
ζ∗OX̃ is a sheaf.

Conversely, suppose ICpρ(X, ζ1∗OŨ ) is defined and is a sheaf. Since pρ ≥ s,
ICs(X, ζ1∗OŨ ) is defined, and the same argument given in the previous paragraph

implies that ICpρ(X, ζ1∗OŨ ) = ICs(X, ζ1∗OŨ ). Accordingly, X̃ = Spec(ICpρ(X, ζ1∗OŨ ))
is the S2-extension of (X, ζ1) and a fortiori satisfies the Sρ-extension universal prop-

erty. Finally, ζ is Sρ relative to U because ζ∗OX̃ = ICpρ(X, ζ1∗OŨ ) ∈
p+
ρ D(X)≥0.

�
We will see later that under the conditions of the theorem, a weak Sρ-extension

is automatically an Sρ-extension. We first prove this for S2-extension.

Proposition 4.5. Suppose that c-codimZ ≥ 2 and that (X, ζ1) has an S2-extension.

Then a weak S2-extension (X̂, ζ̂) coincides with the S2-extension.

Proof. Let ĵ : Ũ → X̂ be the inclusion. By Remark 4.3, Ũ is S2 at all points
with codimension at least c-codimZ, so ICs(X̂,OŨ ) is defined. Since X̂ is S2 off

of Ũ , we obtain OX̂
∼= ICs(X̂,OŨ )

∼= ĵ∗OŨ , where the last isomorphism holds by

Remark 2.10. Applying ζ̂∗ gives ρ̂∗OX̂
∼= j∗ζ1∗OŨ

∼= ICs(X, ζ1∗OŨ ). Thus, X̂ is
isomorphic to the S2 extension Spec(ICs(X, ζ1∗OŨ )). �
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Let f : Y → X be a finite map, and let j′ : f−1(U) ↪→ Y be the inclusion.
Write f1 = f |f−1(U) : f−1(U) → U . We say that Y is the integral closure of X

relative to f−1(U) (resp. Y is integrally closed relative to f−1(U)) if Y = Spec(F),
where F is the integral closure of OX in j∗f1∗(Of−1(U)) (resp. OY is integrally
closed in j′∗Of−1(U)). (See [6, Proposition 6.3.4]). If we relax the condition that
c-codimZ ≥ 2, we can prove a weaker version of S2-extension as long as the integral
closure of X relative to Ũ is finite over X.

Proposition 4.6. Suppose that the integral closure of X relative to Ũ is finite over
X. Let X̂ be the associated reduced scheme. The natural morphism ζ : X̂ → X
is universal with respect to finite morphisms f : Y → X satisfying the following
properties:

(1) f−1(U) is dense in Y ;
(2) f |f−1(U) factors through ζ1; and

(3) Y is reduced and integrally closed relative to f−1(U).

Remark 4.7. In this proposition, we do not need to assume that ζ1 is dominant or
that it takes generic points to generic points.

Remark 4.8. We note that condition (3) is equivalent to the following by Serre’s
criterion [3, Theorem 11.5].

(3’) Y is reduced, and Y satisfies S2 and R1 away from f−1(U).

Remark 4.9. If the base S is a Nagata scheme, then the condition that X̃ is finite
over X is automatically satisfied.

The pair (X̂, ζ) given in the proposition is a particular weak S2-extension of
(X, ζ1). If c-codimZ ≥ 2, then it is the S2-extension by Proposition 4.5.

Proof. There is a natural morphism of quasi-coherent sheaves of OX -algebras

(4.1) j∗ζ1∗(OŨ ) → j∗f1∗(Of−1(U))

defined as follows. Since f1 factors finitely through ζ1, we may write f1 = ζ1 ◦ f ′
1

where f ′
1 : f−1(U) → Ũ is a finite map. To obtain (4.1), we simply apply the

functor j∗ζ1∗ to the adjunction map OŨ → (f ′
1)∗(f

′
1)

∗(OŨ )
∼= (f ′

1)∗(Of−1(U)).
By assumption, f∗OY is integrally closed in j∗(f1∗)(Of−1(U)). Moreover, the map

f∗OY → j∗(f1∗)(Of−1(U)) is injective; indeed, since f−1(U) is dense in Y and Y
is reduced, the morphism OY → (j′)∗Of−1(U) is injective. Finally, [6, 6.3.5] shows

that there is a canonical morphism Y → X̂.
�

Lemma 4.10. Suppose that f : Y → X is a finite dominant morphism of reduced
Noetherian schemes that takes generic points to generic points. Suppose that U is
a dense open subscheme of X such that f induces an isomorphism between f−1(U)
and U . Let x ∈ X \U be a codimension one point that is regular. Then, there exists
a unique point y ∈ Y (necessarily of codimension one) lying above x. Moreover, y
is regular, and the map f∗

y : OX,x → OY,y is an isomorphism.

Proof. The hypotheses imply that f induces a bijection between the irreducible
components of Y and X. Since x is regular, it lies in a single component of X.
This means that f−1(y) can only intersect the corresponding component of Y . We
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may accordingly assume without loss of generality that X and Y are irreducible,
hence integral, and f induces an isomorphism of function fields K(X) ∼= K(Y ).

Since x is regular, f−1(x) contains a single point y by the valuative criterion
of properness. Moreover, the local ring OY,y dominates the valuation ring f∗

yOX,x

in K(Y ), so they are equal. Hence, OY,y is also a discrete valuation ring, and
f∗
y : OX,x → OY,y is an isomorphism.

�

Proposition 4.11. Let X, Y , and f : Y → X satisfy the conditions in Propo-
sition 4.6. Suppose that f is dominant and takes generic points to generic points
and that the given factorization map g1 : f−1(U) → Ũ is an isomorphism. If we

further assume that Y (and hence Ũ) is S2, then the map g : Y → X̂ constructed
in Proposition 4.6 is an isomorphism.

Proof. Suppose that we can find an open subset Ũ ⊂ V ⊂ X̂ such that g|g−1(V ) :

g−1(V ) → V is an isomorphism and c-codim(X̂ \ V ) ≥ 2. Since g is a weak S2-
extension of g|g−1(V ) : g−1(V ) → V , by Proposition 4.5, g is the S2-extension.

Moreover, the identity map V → V has an S2-extension, namely, X̂ → X̂. It
follows that g is an isomorphism.

Let V be the complement of the support of the coherent OX̂ -module f∗OY /OX̂ .

This is an open set containing Ũ . Note that g|g−1(V ) : g−1(V ) → V is a contin-
uous bijection; finiteness implies that it is closed, hence a homeomorphism. Since
the induced map of sheaves is obviously an isomorphism, we obtain a scheme iso-
morphism. By Lemma 4.10, V contains all codimension one points not in Ũ . It
follows that codim X̃ \ V ≥ 2. The same holds for the c-codimension. Indeed, the
equidimensionality hypothesis implies that a point x has the same codimension in
any irreducible component containing it. �

Putting together Propositions 4.5 and 4.11 and using the fact that a weak Sρ-
extension is a weak S2-extension, we obtain the following result above weak Sρ-
extensions.

Theorem 4.12.

(1) Suppose c-codimZ ≥ 2 and ICs(X, ζ1∗OŨ ) is defined. Then any weak Sρ-
extension of (X, ζ1) coincides with the S2-extension.

(2) Suppose that Ũ is reduced and the integral closure of X relative to Ũ is finite
over X. Then any reduced weak Sρ-extension (Y, f) of (X, ζ1) that is R1

outside of f−1(U) coincides with the weak S2-extension (X̂, ζ) constructed
in Proposition 4.6.

4.2. Finite Sρ-ification. We now apply our results to the finite Sρ-ification prob-

lem. Recall that a finite Sρ-ification of a scheme X is an Sρ scheme X̂ together

with a finite birational map ζ̂ : X̂ → X. If we let U be an open dense subset of X

on which ζ̂ is an isomorphism, we see that a finite Sρ-ification may be viewed as
a weak Sρ-extension of the identity map U → U . (Observe, however, that a weak
Sρ-extension of the identity can be defined without assuming U is Sρ.)

Theorem 4.13.

(1) Assume that the Sρ locus of X contains an open dense set whose comple-
ment has c-codimension at least 2. Then,
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(a) If the complex ICpρ(X,OU ) is a sheaf for such an open set U , then
ICpρ(X,OV ) is a sheaf for any such V , and they are all isomorphic.

(b) The scheme X has a finite Sρ-ification which is an isomorphism off of
a closed set of c-codimension at least 2 if and only if ICpρ(X,OU ) is a
sheaf for any such open set U .

(c) If such an Sρ-ification exists, it is unique and coincides with the unique
finite S2-ification which is an isomorphism on the S2 locus W . In
particular, the S2 and Sρ loci coincide, and this finite Sρ-ification can
be given explicitly as Spec(ICs(X,OW )) → X.

(2) Assume that the Sρ locus of X contains a reduced open dense set U such

that the integral closure X̂ of X relative to U is finite over X. Then, X
has a finite Sρ-ification which is R1 off of U if and only if X̂ is Sρ. If such
a finite Sρ-ification exist, it coincides with the unique S2-ification which is
R1 off of U .

Proof. The second part follows immediately from Proposition 4.6 and Theorem 4.12.
Note that since U is reduced, the integral closure of X relative to U is automatically
reduced. Thus, it is unnecessary to pass to the associated reduced scheme as in
Proposition 4.6.

For the first part, assume that U ↪→ X is open, dense, and Sρ with c-codim(X \
U) ≥ 2. Since a finite Sρ-ification that is an isomorphism over U is the same thing
as a weak Sρ-extension of id : U → U , Theorem 4.4 implies that this exists if and
only if ICpρ(X,OU ) is a sheaf, in which case it coincides with ICs(X,OU ) ∼= j∗(OU )
(where the last isomorphism uses Remark 2.10).

Suppose that this is the case and that V
i
↪→ X is another open, dense, Sρ sub-

scheme with the c-codimension of its complement at least 2. Both j∗(OU ) and
i∗(OV ) ∼= ICs(X,OV ) are S2 coherent sheaves extending OU∩V , so they are iso-
morphic; they are both isomorphic to ICs(X,OU∩V ). (Since c-codim(X \ (U ∩
V )) ≥ 2, the IC sheaf is defined.) In particular, i∗(OV ) ∈ pρD(X)≥0, so it equals
ICpρ(X,OV ). Thus, this complex is a sheaf and coincides with ICpρ(X,OU ).

Part (1b) now follows from Theorems 4.4 and 4.12 because such a finite Sρ-
ification is the same thing as a weak Sρ extension of id : U → U (with U as above).
Part (1a) also shows that if this Sρ-ification exists, it is unique. Finally, observe that
U ⊂ W , so ICs(X,OU ) = ICs(X,OW ). This implies that Spec(ICs(X,OU )|W )| ∼=
W , so W is Sρ.

�

Remark 4.14. Even in the context of part (1) of the theorem, there can be other
finite Sρ-ifications which are not isomorphisms over an open, dense set whose com-
plement has c-codimension at least 2. Indeed, take any variety which is S2, but
not R1. Then, the identity map and the normalization are non-isomorphic finite
S2-ifications.

Corollary 4.15. If the non-S2 locus of X has c-codimension at least 2, then there
is a unique finite S2-ification which is an isomorphism on a dense, open set whose
complement has c-codimension at least 2. Moreover, it is an isomorphism over the
S2 locus.

Proof. This follows from the theorem because ICs takes sheaves to sheaves. �
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