1. Suppose H and K are finite subgroups of a group G such that $|H|$ and $|K|$ are coprime. Prove that $H \cap K = \{e\}$, where e is the identity element in G. (10pts)
2. Write out all the six elements of S_3 and then write out all possible subgroups of S_3. (10pts)
3. Recall that for any integer m, we have the quotient $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ which is a group under addition. Elements of \mathbb{Z}_m are the cosets $a + m\mathbb{Z}$ with a running over all integers. On \mathbb{Z}_6 consider the mapping given by

$$f : \mathbb{Z}_6 \rightarrow \mathbb{Z}_6 : x + 6\mathbb{Z} \mapsto 3x + 6\mathbb{Z}$$

This is well-defined and is a homomorphism. Write out the kernel of f and the image of f.

(10pts)
4. Let G be a group, x an element of G, and let C_x be the set of all $y \in G$ which commute with x, i.e.

$$C_x = \{ y \in G : yx = xy \}$$

Verify that C_x is a subgroup of G. (10pts)