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Introductory Remarks

These notes were written for a History of Mathematics class (Math 4700) at LSU
in Spring 2006. There is, however, very little history in the notes. I chose a
few topics, many of which are related to the Euclidean Algorithm, with roots in
history, and followed their development, sometimes anachronistically.

In Chapter 1, we first begin with Euclid’s algorithm (Book VII of his Ele-
ments) for finding the greatest common divisor of two numbers. The algorithm is
then applied to deduce several basic results on divisibility, and eventually to two
fundamental facts about numbers: every number greater than 1 is a product of
primes in a unique way, and there are infinitely many primes. After this we return
to Euclid’s algorithm in the geometric setting (Book X of Euclid’s Elements), of
finding ‘common measures of like magnitudes.’ This leads to the notion of both
rational numbers (those for which the Euclidean algorithm terminates) and irra-
tional numbers (those for which the algorithm does not terminate), understood in
terms of continued fractions, which emerge naturally from Euclid’s geometric al-
gorithm for the greatest common measure. We then develop the basic facts about
continued fractions, and apply them to solving Pell’s equation and simple Dio-
phantine equations. We also take a look at the Fibonacci numbers in the context
of continued fractions. The notes don’t include additional material, such as the
Chinese remainder theorem, and properties of the icosahedron, covered in class.

Chapter 2 examines topics in the theory of polynomials and polynomial equa-
tions. The role of the Euclidean algorithm, now in the setting of the algebra of
polynomials, is underlined. The present form of the notes don’t include all the
topics in the theory of equations which were discussed in class, such as meth-
ods of solving cubic and quartic equations, and some facts about determinant and
resultants.

Chapter 3 presents axiomatics, due to Hilbert, of Euclidean geometry, but the
objective is to understand how the Euclidean axioms and geometric ruler-compass
constructions (producing points and lines consistent with the axioms) lead to an
algebraic structure:

• ratios of segments can be added and multiplied, and these, together with 0
and negatives, form a field.

With a sufficiently strong axiom of completeness, this is the field of real numbers.
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Thus, from the Euclidean viewpoint, real numbers (or numbers in extensions of
the field of rationals) are ratios of segments, or, more generally, of magnitudes.
In class we also looked at projective geometry and, very briefly, conic sections.
These are not discussed in the notes.

Historical dates cited are all taken from Wikipedia. References to Euclid’s
Elements are most conveniently looked up online at http://aleph0.clarku.
edu/~djoyce/java/elements/elements.html

Hilbert’s axioms are taken from Hilbert’s book [1].
These notes have not been proof read carefully. I will update them time to

time.

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html


Chapter 1

Topics in Number Theory

We shall examine some key ideas of elementary number theory, from a historical,
primarily Greek, viewpoint. Euclid, in his Elements, considers both numbers and
magnitudes. Numbers are cardinal numbers, arising from counting, i.e. measuring
sizes of abstract sets. Magnitudes are of geometric origin, measuring sizes of
geometric sets, and include positive rationals and, if one is granted a powerful
enough axiom system, all positive real numbers.

The central theme of this chapter will be Euclid’s algorithm for finding the
greatest common divisor of two numbers, and his corresponding algorithm for the
common measure of two magnitudes.

1.1 Basic Notions and Notation
We need a few basic notions and notation first. These notions and notation arose
in the 19th and 20th centuries, but will provide us with a convenient and precise
language necessary to discuss mathematical concepts from antiquity.

A set is a collection of objects. These objects are called the elements of the
set. We often display a set by listing its elements within brackets; for example,

S = {a,b,c}

displays a set S whose elements are a, b, and c. If x is an element of a set B then
we denote this symbolically as:

x ∈ B.

Thus, in the example above, a ∈ S.

7
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The set of natural numbers is

N = {1,2,3, ...}.

The set of integers is
Z = {0,1,−1,2,−2, ...}.

Sometimes we shall use the set of whole numbers:

W = {0,1,2,3, ...}.

The set which has no elements at all is called the empty set and is denoted

/0.

To stress that a particular set is not empty, we will use the adjective ‘non-empty.’
A fundamental fact about the natural numbers is the principle of well-ordering:

Every non-empty subset of N has a least element. (1.1)

For example, the set of positive even numbers has 2 as its least element. This
principle may seem at first to be too ‘obvious’ a fact to bother mentioning, but as
we shall see, a vast body of facts about numbers can be established using this prin-
ciple as a tool of reasoning. Such ‘obvious’ principles were not often recognized
in the early days of mathematics.

An integer x ∈ Z is said to be a factor or divisor of an integer y if y is an exact
multiple of x, i.e. if

y = mx,

for some integer m ∈ Z. Notationally, we shall often write this as

x|y,

which should be read ‘x divides y’, or as ‘x is a factor of y’. By our convention we
have to say that every integer (including 0) is a divisor of 0.

A number p ∈ N is said to be a prime number if it is not equal to 1 and if its
only divisors are 1 and itself. The first few primes numbers are:

2,3,5,7,11,13,17,19,23,29,31, . . . .



Topics in Number Theory, Algebra, and Geometry 9

1.2 Euclid’s Greatest Common Divisor Algorithm

Euclid presents an exposition of number theory in Book VII of the Elements. In
Proposition 2 of this book, he describes an algorithm for finding the greatest com-
mon divisor of two numbers. In this section we will describe Euclid’s algorithm.

Quite separately, Euclid also developed, in Book X of the Elements, an anal-
ogous theory applicable to magnitudes (such as line segments or plane areas), as
opposed to numbers. We shall discuss this theory in a later section.

In this section, we use the term ‘number’ to mean a natural number, i.e. a
positive integer.

Consider numbers
a,b.

A common divisor of a and b is a number integer which divides both a and b. The
greatest common divisor, or gcd, of a and b is the largest number which divides
both a and b, and is denoted

gcd(a,b).

For example,
gcd(45,63) = 9.

We say that a and b are co-prime if their gcd is 1. For example, 16 and 21 are
co-prime.

Euclid Book VII Proposition 2 describes how to work out the gcd of two num-
bers (the procedure is believed to have been known in the Greek mathematical
community prior to Euclid). The idea is simple, and Euclid states it in one sen-
tence:

Subtract the smaller number from the larger repeatedly until the smaller
number turns out to be a divisor of the larger; the gcd is the last ‘smaller’
number.

This method, and related procedures of reducing a number theoretic problem
to one involving smaller numbers, was known in India (around 500 AD in the
works of Aryabhatta and others) as the method of ‘pulverizing’.

To see this in action, let us work out

gcd(288,90).
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Subtracting the smaller from the larger we obtain the following pairs:

288 90
198 90
108 90
18 90 : the process halts here because 18 is a divisor of 90.

We halt the process here on observing that 18 is a divisor of 90. The gcd is 18.
The procedure becomes a little easier to analyze if we change the halt instruc-

tion to the following: halt the process when the two numbers become equal, this
common value being the gcd. Carrying this out in our example we have:

288 90
198 90
108 90
18 90
18 72
18 54
18 36

18 18. :the process halts here because the two values are equal.

A moment’s thought shows that there is no real difference between Euclid’s pre-
scription and the longer one stated above in terms of the answer that would be
produced.

Let us now state the algorithm more formally. Let

a and b

be the numbers whose gcd is the be found. The following is the procedure:

1. Set
a1 = a and b1 = b.

2. If ai 6= bi define the next pair ai+1, bi+1, by:

ai+1 = max{ai,bi}−min{ai,bi}

bi+1 = min{ai,bi}.
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3. If ai = bi then
gcd(a,b) = bi,

and the process halts.

Note that in step 2, assuming the two numbers at stage i are unequal shows
that in the next stage we do again obtain numbers ≥ 1 (the max of ai,bi is not
equal to their min).

Let us now see why the process will definitely produce the gcd of a and b.
The first question to ask (which was not explicitly done by Euclid) is why this

procedure would ever halt. To see why the procedure does halt eventually, observe
that at each stage we have numbers ai and bi (both ≥ 1), and if they are unequal
then in the next stage the larger of the numbers ai,bi gets reduced by at least 1.
Let

a = max{a,b}.
If the process were to be continued to A number of steps then the resulting num-
bers would be ≤ 0, which is impossible. Thus the procedure must halt in less than
A steps.

Now observe that if a number is a divisor of two numbers then it is certainly
also a divisor of their difference. Formally, if x|a and x|b then

a = mx and b = nx for some numbers m and n,

and so
a−b = mx−nx = (m−n)x

which shows that x is a divisor of a−b.
The preceding observation shows that any common divisor of ai and bi would

be a common divisor of ai+1,bi+1 in the algorithm.
Conversely, observe that

ai+1 +bi+1 = max{ai,bi} and bi+1 = min{ai,bi}.

Therefore, a common divisor of ai+1 and bi+1 would be a divisor of ai and bi.
Thus, the common divisors of the pairs (ai,bi) remain the same as one contin-

ues through the algorithm. The final step in the algorithm produces the output

c = aN = bN .

The greatest common divisor of c and c, is, of course, c itself. Thus,

gcd(a,b) = c.
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Each step in the preceding algorithm used very simple arithmetic operations:
picking the smaller of two given numbers, and subtracting the smaller from the
larger.

Let us look back at our example:

288 90
198 90
108 90
18 90
18 72
18 54
18 36

18 18. :the process halts here because the two values are equal.

Notice that in the first four steps, the number 90 is subtracted from 288 repeatedly,
until a smaller number, 18, results. More generally, if A and B are numbers then
we can keep subtracting B from A stopping only when the resulting number is
smaller than B; thus, we see that A is a multiple of B plus a number smaller than
B:

A = qB+ r

where q,r are integers, with
0 ≤ r < B.

Note that if we began with a number B larger than A then the process terminates
immediately, produce q = 0 and r = B. The integer q is the quotient on dividing
A by B, and r is the remainder.

If we use this division algorithm as a ‘sub-routine’ in the algorithm then we
have a shorter algorithm:

1. Set
a1 = a and b1 = b.

2. If bi is not a divisor of ai then divide ai by bi, obtaining quotient q and
remainder r, and then set

ai+1 = r and bi+1 = min{ai,bi}.
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3. If bi is a divisor of ai then

gcd(a,b) = bi,

and the process halts.

1.3 Consequences of Euclid’s Algorithm
In this section we shall explore some profound results about numbers that follow
from applying the Euclidean algorithm.

Examining the algorithm

ai+1 = max{ai,bi}−min{ai,bi}, bi+1 = min{ai,bi},

we see that each number produced at this stage is an integer combination of the
preceding two:

ai+1 = Eai +Fbi, bi+1 = Gai +Hbi,

where E,F,G,H are integers (possibly −1,0, or 1). It follows from this that each
of ai and bi is an integer linear combination of the original a and b. In particular,
going to the very last line, we see that c can be expressed as

c = ma+nb,

where m and n are integers. Thus,

gcd(a,b) = ma+nb for some integers m and n. (1.2)

It is useful to note that if d is a common divisor of a and b then d divides any
integer linear combination

Ma+Nb, (1.3)

because here both Ma and Nb are multiples of d and hence so is the sum.
For example, the greatest common divisor of 45 and 35 is 5, and this can be

expressed in terms of 45 and 35 as

5 = 4×35︸ ︷︷ ︸
140

+(−3)×45︸ ︷︷ ︸
−135

.
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Now consider three numbers x, y, and z, and suppose z is co-prime to x. Thus,

gcd(z,x) = 1.

Let D denote the greatest common divisor of z and y:

gcd(z,y) = D.

Our objective is to show that the gcd of z and xy is also D. First note that D is a
divisor of z and of xy, because we know that D is a common divisor of z and y.
Next we will show that any common divisor of z and xy will also be divisor of D.
For this we will show that a relation of the type (1.3) holds for a = z and b = xy.
To this end we use the fact that there are integers m and n such that

mz+nx = 1,

and integers s and t such that
sz+ ty = D.

In order to get to the product xy, we multiply the preceding equations together:

(mz+nx)(sz+ ty) = D.

Thus,
msz2 +mtzy+nsxz+ntxy = D.

Regrouping terms on the left, this becomes:

(msz+mty+nsx)z+(nt)xy = D.

Thus, we have established that any common divisor of z and xy is also a divisor
of D. We had already noted the converse, that D is a common divisor of z and xy.
Thus, D is the greatest common divisor of z and xy.

We summarize these observations:

Proposition 1 Suppose x, y, and z are numbers.

(i) If z is co-prime to x then

gcd(z,xy) = gcd(z,y). (1.4)

(ii) If z is co-prime to both x and y then z is co-prime to xy.
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(iii) If z is co-prime to x and z is a divisor of xy then z is a divisor of y.

Parts (ii) and (iii) follow from (i). For example, for (iii), if z is co-prime to x
and is a divisor of xy then

gcd(z,xy) = z.

Consequently, by (i) it follows that

gcd(z,y) = z.

But this means that z is a divisor of y.
We can deduce Euclid’s Proposition 32 (Book VII) from the preceding result

(Euclid’s proof uses a different strategy):

Theorem 1 Every number greater than one is divisible by a prime.

Suppose there is a number > 1 not divisible by any prime. Then, by the well-
ordering principle, there is a least such number; call this x. Since x divides itself,
and x has no prime divisor, x cannot be prime. Therefore, x has a divisor y which
is neither 1 nor x. In particular, 1 < y < x. Therefore, y must have a prime divisor
p. But then p would also divide x. This contradiction proves the theorem.

Now we can prove that

Theorem 2 Every number > 1 is a product of primes.

If this were not so then there would be a least number x > 1 not a product of
primes. Now we know that x has a prime divisor p. Therefore,

x = py,

for some number y, and 1 < y < x. But then y, being a number greater than 1 but
less than x, would be a product of primes. But then it would follow that x = py
itself would be a product of primes. The contradiction proves the result.

The Fundamental Theorem of Arithmetic says:

Theorem 3 Every number > 1 is a product of primes in a unique way.

(Though definitely known in Euclid’s time, this does not appear explicitly in
Euclid’s Elements.)

For example,
240 = 24×3×5.
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It is somewhat complicated to state the uniqueness part in a precise way: If a
number can be expressed as both

pa1
1 ...par

r ,

and as
qb1

1 ...qbs
s ,

where the pi’s are distinct primes in increasing order (p1 < p2 < · · ·< pr), the qi’s
are distinct primes in increasing order, and the ai and b j numbers, then r = s, and
each pi = qi, and each ai = bi.

The proof of the uniqueness part of the fundamental theorem was presented in
class.

Finally, let us look at one of the most celebrated results from Euclid (Proposi-
tion 20 of Book IX in the Elements):

Theorem 4 There are infinitely many prime numbers.

At first it may seem to be impossible to prove such a result: how could one
actually produce infinitely many primes? Euclid’s argument was by the ‘reduction
to absurdity’ method, i.e. by the the method of contradiction. Suppose in fact there
are only finitely many primes, these being

p1, ..., pk.

Consider then the number
x = 1+ p1...pk.

If this were divided by p1 it would leave a remainder of 1. Similarly, x is not
divisible by any of the primes pi. But x is a number > 1, and so must have a
primes divisor. Thus, we have reached a contradiction.

1.4 Euclid’s Algorithm for Magnitudes: The Geo-
metric Viewpoint

In Book X of Euclid’s Elements, Euclid develops the notion of commensurate and
incommensurate magnitudes. A magnitude is an abstract entity which measures a
geometric object, and, in practice, may refer to length, area of volume.
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For definiteness, let us focus on line segments in Euclidean geometry. There is
the notion of congruence of two segments. A segment x is greater than a segment
y if there are points on x which mark off a segment congruent to y.

A segment x measures a segment y if a whole number of copies of x form a
segment congruent to y.

The segments x and y are commensurate if they have a common measure.
(This is essentially Definition I of Book X in the Elements.

If m copies of z cover x, and n copies of z cover y, then the formal ‘ratio’ x : y
corresponds to the rational number m/n, and may well be considered good reason
for defining the notion of a rational number.

Two magnitudes are incommensurable if they are not commensurate. In Propo-
sition 2 of Book X, Euclid lays out his algorithm for finding the greatest common
measure of two commensurable magnitudes:

Given two magnitudes, continue to subtract the larger from the smaller. If
equal magnitudes are obtained at some stage then this is the greatest common
measure of the original pair of magnitudes. If equal magnitudes are never ob-
tained then the original magnitudes are incommensurable.

Though structurally identical to the procedure for finding the greatst commond
divisor, the contex is quite different, and, furthermore, it leads to the discovery of
incommensurable magnitudes. This is the geometric basis for introducing irra-
tional numbers; they are ratios of incommensurable magnitudes.

It should be kept in mind that a segment is not a magnitude. Rather, an equiv-
alence class of all segments congruent to each other is a magnitude. (A similar
formulation may be made for planar regions.) However, we have not been and
will not be too precise about this distinction.

Suppose q copies of CD can be placed in AB, starting at A, and leaves a
segment EB smaller than CD:

AB = q ·CD+EB.

Thus, q is the ‘quotient’ and EB the remainder. Euclid’s algorithm for finding the
greatest common measure (which we continue to call gcd) works as follows:

1. Draw a rectangle of length x and width y;

2. Mark off on the longer side, say y, as many copies as possible, say q, of the
shorter side x, and remove the rectangle thus formed with sides qx by x (this
may be done step by step, removing x-by-x squares);

3. If the remaining rectangle, r by x, is not a square, then apply Step 2 to it;



18 Ambar N. Sengupta

4 If the remaining rectangle at any stage is a square then halt the process;
the side of this square is the greatest common measure (gcd) of the original
segments of length x and y.

If we do start with x and y which are commensurate, say

x = mz, y = nz,

then the procedure above is simply that of finding the gcd of m and n and we have
seen that the process will halt in at most m steps, and produce the segment

gz,

where
g = gcd(m,n).

Conversely, if the process halts after a finite number of steps then we will have
obtained a common measure (indeed the greatest common measure) z of x and y,
and so both x and y would be whole multiples of z.

Thus, if we happen to have x and y for which the Euclid algorithm never halts
then x : y is irrational, which is another way of saying that x and y are incommen-
surate.

1.5 From Euclid’s Algorithm to Continued Fractions
In this section we shall explore further consequences of the geometric form of
Euclid’s algorithm. However, for practical convenience, we will use standard
notation and knowledge about the real number system.

It is possible to rewrite the material below with 1 replaced by any particular
magnitude and

√
2 replaced by the diagonal of the square on that segment. The

algebraic manipulations could also be replaced by geometric constructs.
We can apply this to

√
2. Consider the rectangle R0 of height 1 and length

√
2.

The first rectangle R1 we mark off will have side 1 and will leave a remainder of√
2−1: √

2 = 1+ (
√

2−1).

Next, we have a rectangle R2 of sides 1 and
√

2− 1. Marking off the largest
multiple of

√
2−1 in 1 we have:

1 = 1 · (
√

2−1)+2−
√

2.
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The next rectangle R3 has sides

2−
√

2 by
√

2−1.

But here we notice that
2−

√
2 = (

√
2−1)

√
2,

and so our rectangle R3 has sides

X by X
√

2,

where X =
√

2− 1. Thus, R3 is the original rectangle R0 scaled by the factor X .
Then it is clear that as we continue on applying Euclid’s algorithm we will keep
repeating the sequences

R0,R1,R2,

with a scaling factor of X applied at each run. Clearly then this process will never
halt. Thus, we have proved that

√
2 is irrational.

Here is a way to lay out the Euclidean algorithm in this context:

√
2 = 1+(

√
2−1)

= 1+
1
1√
2−1

= 1+
1

1+ 2−
√

2√
2−1

= 1+
1

1+
√

2

(1.5)

You should try out a proof of the irrationality of
√

3 in this way.
Let us now extract the essence of the preceding procedure. Consider positive

real numbers x and y. We write the ratio x
y by using the division

x = q0y+ r1,

where q0, the quotient, is a whole number, and 0 ≤ r1 < y. Then we apply the
same to the ratio y/r1:

y = q1r1 + r2,
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and so on, producing

x = q0y+ r1

y = q1r1 + r2

r1 = q2r2 + r3

r2 = q3r3 + r4
... =

...

Notice that we can display this also as

x
y

= q0 +
r1

y

= q0 +
1
y
r1

= q0 +
1

q1 + r2
r1

= q0 +
1

q1 + 1
q2+

r3
r2

We know that if the original ratio is rational then this procedure terminates, while
if x/y is irrational then the procedure does not terminate.

Given a sequence of numbers q0,q1, ...,qn, with q0 being possibly 0, we can
form the continued fraction

q0 +
1

q1 + 1
q2+···+ 1

qn

, (1.6)

which is denoted in short by
[q0;q1, ...,qn].

Of course, we have seen that an irrational number would generate an infinite con-
tinued fraction

[q0;q1,q2, ...].

Note that by allowing q0 to range over {0,1,2, ...} we obtain in this way all real
numbers ≥ 0, and by allowing q0 to be any integer (possibly negative) we are able
to obtain any real number.
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1.6 Continued Fractions: The Basics
In this section we shall develop the essential facts about continued fractions.

The first objective will be to work out the continued fraction

[q0;q1, ...,qn]

in the form
Pn

Qn
= [q0;q1, ...,qn],

with integer Pn and Qn.
For reasons which will become clear shortly let us introduce the notation

P−1 = 1, Q−1 = 0.

The simplest continued fraction is given by a whole number q0 itself. We can
write this as

P0

Q0
= q0,

with
P0 = q0, Q0 = 1 (1.7)

Now that we have (P−1,Q−1) and (P0,Q0), we will show that all the numbers
Pn and Qn can be generated by applying a simple recursive scheme:

Pn+1 = qn+1Pn +Pn−1, Qn+1 = qn+1Qn +Qn−1.

The proof of this will keep us busy for a page.
Consider, as a first step, the continued fraction

[q0;q1] = q0 +
1
q1

=
q1q0 +1

q1
. (1.8)

The numerator and denominator of the right side are denoted P1 and Q1:

P1 = q1q0 +1, Q1 = q1.

Observe that we can write these as:

P1 = q1P0 +P−1, Q1 = q1Q0 +Q−1. (1.9)
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We can move to the next level

[q0;q1,q2] = q0 +
1

q1 + 1
q2

,

by observing that this is readily obtained from (1.8) by replacing q1 with q1 + 1
q2

.
Thus, we can write down

[q0;q1,q2] =

(
q1 + 1

q2

)
q0 +1(

q1 + 1
q2

) ,

and so

[q0;q1,q2] =
(q2q1 +1)q0 +q2

q2q1 +1
=

q2(q1q0 +1)+q0

q2q1 +1
.

So we write
P2 = q2P1 +P0, Q2 = q2Q1 +Q0. (1.10)

Now let’s move on to the general step. Suppose that we have written

[q0;q1, ...,qn] =
Pn

Qn
, (1.11)

where Pn and Qn are integer linear combinations of the q0, ...,qn, and suppose we
have the pattern:

Pn = qnPn−1 +Pn−2, Qn = qnQn−1 +Qn−2.

Then we can get to the next step readily:

[q0;q1, ...,qn+1] = [q0;q1, ...,qn−1,qn +
1

qn+1
]

=

(
qn + 1

qn+1

)
Pn−1 +Pn−2(

qn + 1
qn+1

)
Qn−1 +Qn−2

.

(1.12)

Simplifying this as before, we obtain

[q0;q1, ...,qn+1] =
qn+1(qnPn−1 +Pn−2)+Pn−1

qn+1(qnQn−1 +Pn−2)+Qn−1
,
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and so indeed we have
[q0;q1, ...,qn+1] =

Pn+1

Qn+1
,

where

Pn+1 = qn+1Pn +Pn−1, Qn+1 = qn+1Qn +Qn−1. (1.13)

Thus, there is a simple scheme to generate the value of a finite continued fraction.
Let’s look at an example. Let’s work out the value of the continued fraction

[3;4,3,1,2].

n qn Pn Qn

−1 1 0
0 3 3 1
1 4 13 4
2 3 42 13
3 1 55 17
4 2 152 47

So the convergents of [3;4,3,1,2] are

3,
13
4

,
42
13

,
55
17

,
152
47

.

Note that

Pn+1 ≥ Pn +Pn−1, and Qn+1 ≥ Qn +Qn−1. (1.14)

In particular each Pn exceeds the preceding by at least 1, and so Pn is at least n.
The same holds for Qn. Thus

Pn ≥ n, Qn ≥ n. (1.15)

(A little thought here shows that these lower bounds are really cheap ones. Indeed,
in view of (1.14), one would guess that the Pn and Qn have lower bounds related
to the Fibonacci numbers.)

How much do Pn/Qn and Pn+1/Qn+1 differ? To this end we have

Pn+1

Qn+1
− Pn

Qn
=

Pn+1Qn−PnQn+1

QnQn+1
=

hn+1

QnQn+1
, (1.16)
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where hk denotes the numerator:

hk = PkQk−1−Pk−1Qk,

which we can develop a step further:

hk = (qkPk−1 +Pk−2)Qk−1−Pk−1(qkQk−1 +Qk−2)
= Pk−2Qk−1−Pk−1Qk−2

=−
(

Pk−1Qk−2−Pk−2Qk−1

)
=−hk−1.

Thus, each time we reduce the subscript of hk by 1 we pick up a factor of (−1).
So

hk = (−1)kh0.

Recalling the initial values of P and Q, we have

h0 = P0Q−1−P−1Q0 = q0 ·0−1 ·1 =−1.

So
hk = (−1)k(−1) = (−1)k+1.

In other words,

PkQk−1−Pk−1Qk = (−1)k+1. (1.17)

Consequently,

Pn+1
Qn+1

− Pn
Qn

= (−1)n

QnQn+1
. (1.18)

The difference between successive ratios Pn/Qn is thus

1
QnQn+1

.

As n increases the denominator here, QnQn+1, also increases, and so the difference
between successive ratios Pn/Qn decreases.
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Recall that Qn ≥ n, and Qn+1 ≥ n+1. So∣∣∣ Pn+1

Qn+1
− Pn

Qn

∣∣∣≤ 1
n2 . (1.19)

The relation (1.18) also shows that

P1

Q1
=

P0

Q0
+

1
Q0Q1

>
P0

Q0
.

Again, similarly,
P2

Q2
<

P1

Q1
,

and
P3

Q3
>

P2

Q2
.

Putting everything together we have

P0

Q0
<

P2

Q2
<

P4

Q4
· · ·< · · · P3

Q3
<

P1

Q1
.

Suppose now that we take an infinite sequence q0,q1,q2, .... Given that successive
ratios Pn/Qn differ by 1/n2, there is a unique real number x that lies between all
the odd-ratios and the even-ratios:

P0

Q0
<

P2

Q2
<

P4

Q4
· · ·< x < · · · P3

Q3
<

P1

Q1
. (1.20)

We have ∣∣∣x− Pn

Qn

∣∣∣< 1
n2 . (1.21)

This real number x is denoted as an infinite continued fraction:

x = [q0;q1,q2, ...], (1.22)

and the continued fraction
Pn

Qn
= [q0;q1, ...,qn]

is called the n–th convergent to x.
Using what we know about the differences between successive convergents,

we can write

[q0;q1,q2, ...] = q0 +
1

Q1
− 1

Q1Q2
+

1
Q2Q3

−·· · (1.23)
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1.7 Pell’s Equation
Let D be a number which is not a perfect square (for instance, D could be 2). The
equation

x2−Dy2 = 1 (1.24)

is called Pell’s equation. The name comes the English mathematician Pell (17th
century); Euler (apparently mistakenly) credited Pell for a study of this equation,
and the name has stuck. The task is to find integers x and y satisfying (1.24).

The simplest case of Pell’s equation is with D = 2:

x2−2y2 = 1. (1.25)

Note that if x and y satisfy the Pell equation (1.24) then

x2

y2 = D+
1
y2 ,

and so, if y is a large number, then

x
y
≈
√

D.

Thus solutions of Pell’s equation with large denominators provide rational approx-
imations to the irrational number

√
D.

A solution of Pell’s equation appears implicitly in one of the Sulva Sutras
authored by Baudhayana (approx. 800 BC; but these dates are not always trust-
worthy, with some dating Baudhayana to around 400 BC). In describing the con-
struction of an altar, the following approximate value of

√
2 is given:

√
2 ' 1+

1
3

+
1

3×4
− 1

3×4×34
=

577
408

.

As we can check,
5772−2(408)2 = 1.

In fact, even the first three terms of Baudhayana give

1+
1
3

+
1

3×4
=

17
12

,

and we can check that
172−2(12)2 = 1.
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For
√

3, Baudhayana provides the prescription
√

3 = 1+
2
3

+
1

3×5
− 1

3×5×52
=

1351
780

,

which again provides solutions to the Pell equation with D = 3.
Approximations to

√
3 providing solutions to Pell’s equation were also given

by Archimedes (287-212 BC). But a more celebrated example is the the Cattle
Problem posed by Archimedes. Stated through a complex set of conditions, the
problem comes down to finding integers x and y satisfying

x2−4729494y2 = 1.

According to Archimedes,

If thou art able, O stranger, to find out all these things and gather them
together in your mind, giving all the relations, thou shalt depart crowned
with glory and knowing that thou hast been adjudged perfect in this species
of wisdom.

It was shown by Amthor (1880) that the smallest solution has over twenty thou-
sand digits in decimal form. For a visual representation of the solution see the
illustration

http://www.ams.org/notices/200202/noti-feb02-cov.jpg
for Lenstra’s article
http://www.ams.org/notices/200202/fea-lenstra.pdf
in the American Mathematical Society Notices.
A clear algorithm for solving Pell’s equation was stated by Euler (1770) using

the Euclidean algorithm (called the continued fraction method). Lagrange (1768)
published a proof showing that the continued fraction method always works, con-
firming a claim made earlier by Fermat.

Let D be a number which is not a perfect square. Lagrange proved that the
continued fraction for

√
D is periodic after a certain point. Let us take the simple

case in which the number
Z =

√
D

has a periodic continued fraction expression as

Z = [q0;q1, ...,qn,Z].

Then
Z =

Pn+1

Qn+1
=

ZPn +Pn−1

ZQn +Qn−1
,
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which implies:
DQn +Qn−1

√
D = Pn

√
D+Pn−1.

Bringing the rationals to one side and the irrationals to the other we have

DQn−Pn−1 = (Pn−Qn−1)
√

D.

Since a rational cannot be equal to an irrational, we conclude that

Pn = Qn−1, and Pn−1 = DQn.

We substitute these into the identity

PnQn−1−Pn−1Qn = (−1)n+1,

to obtain
P2

n −DQ2
n = (−1)n+1.

If n is odd then we have a solution to the Pell equation

x2−Dy2 = 1,

on taking x = Pn and y = Qn.

1.8 Solving Equations Using Continued Fractions
Consider a continued fraction

[q0;q1,q2, ...].

Let Pn and Qn be as before, with

Pn

Qn
= [q0;q1, ...,qn].

Recall the fundamental identity (we saw this in (1.17):

PnQn−1−Pn−1Qn = (−1)n+1. (1.26)

Observe that this implies that the gcd of Pn and Qn is 1: for if c is a number which
divides both Pn and Qn then the left side of (1.26) would be a multiple of c, which
would imply that c is a divisor of 1, and hence that c is 1.
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Thus,
gcd(Pn,Qn) = 1. (1.27)

Thus, the ratio
Pn

Qn

has no common factor between numerator and denominator (other than 1). Thus,
for example if we develop the rational number

28
35

in a continued fraction:

28
35

= 0+
1
35
28

= 0+
1

1+ 7
28

= 0+
1

1+ 1
4

.

Thus,
28
35

= [0;1,4].

The intermediate continued fractions are

0, [0;1],and [0;1,4].

The values are:
0,1,0+

1
1+ 1

4

=
4
5
.

Note that the continued fraction convergent produced at the end is

4
5

in place of the original
28
35

.

This is because, as we have seen,
Pn

Qn
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has no common factor between numerator and denominator (other than 1).
There is more provided by the relation (1.26):

PnQn−1−Pn−1Qn = (−1)n+1.

It provides numbers x and y which solve the equation

Pnx−Qny = 1,

if n is odd, with
x = Qn−1, and y = Pn−1.

If n is even we can move a step further, and using the same relation with n+1 in
place of n, we have

Pn+1Qn−PnQn+1 = (−1)n+2.

As an example, let us find x and y solving

152x−47y = 1.

Let us work out the continued fraction for 152/47:

152
47

= 3+
11
47

= 3+
1

47/11

= 3+
1

4+ 3
11

= 3+
1

4+ 1
3+ 2

3

= 3+
1

4+ 1
3+ 1

1+ 1
2

= [3;4,3,1,2]

= 3+
1

4+ 1
3+ 1

1+ 1
1+ 1

1

= [3;4,3,1,1,1].

Note that, as is true for every rational, we can terminate the continued fraction in
either an odd number of steps or an even number.

Let us work out the continued fractions leading to [3;4,3,1,1,1]:
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n qn Pn Qn

−1 1 0
0 3 3 1
1 4 13 4
2 3 42 13
3 1 55 17
4 1 97 30
5 1 152 47

From the general theory we know that

Qn−1Pn−Pn−1Qn = (−1)n−1.

Let’s take this with n = 5. Then we have:

(30×152)− (97×47) = (−1)5−1 = 1.

Thus we have a solution to
152x−47y = 1,

with
x = 30, y = 97.

1.9 Fibonacci Numbers and Euclid’s Algorithm
Consider the simplest continued fraction:

[1;1,1,1, ....] = 1+
1

1+ 1

1+
...

.

Let us work out the values of Pn and Qn in this case.
Recall the fundamental relations by which Pn and Qn are generated:

Pn = qnPn−1 +Pn−2

Qn = qnQn−1 +Qn−2,

starting with the initial values

P−1 = 1 Q−1 = 0
P0 = q0 Q0 = 1.
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We are working now with

[1;1,1, ...,1︸ ︷︷ ︸
n

] =
Pn

Qn
,

and so
all the qn are 1.

Consequently,

Pn = Pn−1 +Pn−2

Qn = Qn−1 +Qn−2,

Each Qn is the sum of the preceding two, beginning with the initial values 0 and
1. Thus, the Qn form the Fibonacci sequence:

F−1 = 0, F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

So
Qn = Fn.

For the Pn we have the same relation, that each term is the sum of the preceding
two, but the initial values are

P−1 = 1, P0 = 1,

which match with
F0 = 1, F1 = 1.

Consequently,
Pn = Fn+1.

Thus,
Pn

Qn
=

Fn+1

Fn
,

and so
[1;1, ...,1︸ ︷︷ ︸

n

] =
Fn+1

Fn
. (1.28)

We know that the infinite continued fraction

[1;1,1,1, ...]
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is the limit
lim
n→∞

[1;1, ...,1︸ ︷︷ ︸
n

].

Thus, we have

limk→∞
Fk+1
Fk

= [1;1,1,1, ...]. (1.29)

This number is called the Golden Ratio, and often denoted by φ.
Recalling the geometric representation of the Euclidean algorithm, we see that

if we form a rectangle whose sides are φ and 1, and apply the geometric Euclid
algorithm then we will produce a succession of rectangles, each proportional to
the original one.

By visual inspection of the continued fraction:

φ = 1+ 1
1+ 1

1+ 1
...

, (1.30)

it is clear that
φ = 1+

1
φ
. (1.31)

However, to be sure, this isn’t a real proof of this equation, because the
... in (1.30)

are just a picturesque way of expressing the real definition of φ, which is the limit
given in (1.29).

But let us proceed with (1.31) for now. Then

φ
2 = φ+1,

and so
φ

2−φ−1 = 0.

Solving this quadratic equation we get

φ =
1±

√
1+4

2
=

1±
√

5
2

.

Now φ is clearly positive, and so we have

φ = 1+
√

5
2 . (1.32)
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Now let us prove (1.31). We have

φ = lim
n→∞

Fn+1

Fn

= lim
n→∞

Fn +Fn−1

Fn

= lim
n→∞

(
1+

Fn−1

Fn

)
= 1+ lim

n→∞

1
Fn/Fn−1

= 1+
1
φ
.

Thus,

φ = 1+
1
φ
.

1.10 Continued Fractions: A Working Scheme
We will develop a scheme for working out the quantities qn,Pn,Qn for a given
positive real number T developed as a continued fraction.

Suppose
T = [q0;q1, ...,qn1,x],

where q0,q1, ...,qn the usual quotients, and x is a positive real number. Then

qn+1 = [x],

the integer part of x. Now we have

T =
xPn +Pn−1

xQn +Qn−1
(1.33)

Solving for x we obtain:

x =−T Qn−1−Pn−1

T Qn−Pn
.

Recall that
qn+1 = [x], (1.34)

the integer part of x.
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Take the case where T is a rational:

T =
A
B

,

where A and B are numbers. Then the expression of x can be rewritten as

x =−AQn−1−BPn−1

AQn−BPn
. (1.35)

Let us write
dn = AQn−BPn.

Then we can form a table using the scheme:

A B
n qn Pn Qn dn
−1 1 0 A ·0−B ·1 =−B
0 q0 = [A/B] q0 1 A ·1−Bq0
...

...
...

...
...

k qk = [−dk−2/dk−1] Pk = qkPk−1 +Pk−2 Qk = qkQk−1 +Qk−2 AQk−BPk

Let us implement this for
25
14

.

We have:

A = 25 B = 14
n qn Pn Qn dn
−1 1 0 −14
0 q0 = [25/14] = 1 1 1 11
1 q1 = [14/11] = 1 2 1 −3
2 3 7 4 2
2 1 9 5 −1
3 2 25 14 0

Notice how the numbers down the last column alternate in sign but decrease
in magnitude.

Reading down the first column, we have

25
14

= [1;1,3,1,2].
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From the penultimate row we see that

(25×5)− (14×9) =−1.

Thus, if are to solve the equation

25x+14y = 1 (1.36)

in integers x and y we obtain

x =−5, y = 9.

We can obtain other solutions of (1.36) by a simple trick:

x =−5+14k, y = 9−25k, (1.37)

for any integer k. We can see then

25(−5+14k)+14(9−25k) = 25(−5)+14(9)+(25×14k)− (14×25k)
= 25(−5)+14(9)
= 1.

As shown in class, (1.37) provides all solutions of the equation (1.36).

Problem Sets 1 and 2

1. Let p j denote the j-th prime. Thus,

p1 = 2, p2 = 3, p3 = 5, ....

Show that
pk+1 ≤ p1...pk−1,

for every k ∈ {2, ...}.

2. With notation as in the preceding problem, produce primes p1, ..., p j for
which 1+ p1...p j is not a prime.
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3. Here is another proof that there are infinitely many primes (really, just a
take-off on Euclid’s idea, but used much later by others such as Goldbach
(1730)). Let a and b be co-prime numbers, both > 1 (for example, a = 2
and b = 5). Consider the sequence of numbers given as follows

x1 = a,

x2 = a+b,

x3 = x2x1 +b,

x4 = x3x2x1 +b,

and so on, with xn+1 being the product x1...xn plus b. Note that xn’s keep
increasing, i.e. xn+1 > xn for each n.

(i) Show that x1 is co-prime to all the other xn (Hint: If y divides both x1
and xn then show that y must divide b; now recall that x1 is actually a).

(ii) Show that gcd(x2,b) = 1.

(iii) Show that x2 is co-prime to all other xn.

(iv) Show that x3 is co-prime to b (Hint: Look at x3 = x1x2 +b, and use (i)
and (iii), i.e. that x3 is co-prime to both x1 and x2.]

(v) Show that xn and xm are co-prime for n 6= m.

(vi) Prove that there are infinitely many primes. [Hint: Use the fact that
each xn has a prime divisor.]

4. A number is said to be square-free if it has no divisor, other than 1, which
is a square; thus, for example, 30 is square-free (its divisors, other than 1,
are 2,3,5,6,10,15,30, none of which is a square), but 48 is not square-free
since it has, for instance, 16 = 42 as divisor. The first few-square numbers
are:

1,2,3,5,6,7,10.

(i) Show that the number of square-free numbers which are divisible by
at most the first four primes (i.e. 2, 3, 5, and 7) is 24. [Hint: In such a
number each of the first four primes can either appear as a factor or not
appear as a factor.] Use this idea to show that there are 2k square-free
numbers having at most the first k primes as divisors.



38 Ambar N. Sengupta

(ii) Show that every number x can be expressed in the form

x = ab2,

where a and b are numbers and a is square-free.

(iii) Let p j denote the j-th primes; thus, p1 = 2, p2 = 3, p3 = 5, etc. Prove
the inequality

1+
1
2

+
1
3

+ · · ·+ 1
N
≤
(

1+
1
p1

)(
1+

1
p2

)
· · ·
(

1+
1

pN′

) N

∑
b=1

1
b2 ,

(1.38)
where pN′ is the largest prime≤N. [Hint: Show that the right side can
be expanded as a sum of terms each of which is of the form 1

ab2 , where
a is square-free, and both a and b are ≤ N.]

5. Suppose D is a number with a rational square-root
√

D. Show that D must
be a perfect square, i.e. the square of a natural number. [Hint: Suppose

√
D

is rational. Then D = (m/n)2, for some numbers m and n. By canceling
common factors, we may assume that m and n have no factor in common.
Show that this implies that m2 and n2 are also coprime. Now

m2 = Dn2.

Thus m2 divides the product of D and n2 and is co-prime to n2. Conclude,
by Proposition 1 (iii), that m2 divides D. But D also divides m2.]

6. Suppose x, y, and z are numbers such that

x2 + y2 = z2.

The goal of this problem is to obtain the complete solution to this. In fact
we will show that there are numbers u and v such that

x = (u2− v2)c, y = 2uvc, z = (u2 + v2)c,

for some number c. This formula for generating Pythagorean triples is given
in Euclid Book X, Proposition 29 (Lemma).

(i) If any two of the numbers x,y,z have a common divisor d, then d would
also divide the third number.
In view of (i), we can divide through by gcd(x,y,z) and may and will
assume that the numbers x,y,z are pairwise co-prime.
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(ii) Check that for any number n, the square n2, when divided by 4, leaves
a remainder of 1 if n is odd, and a remainder of 0 if n is even.

(iii) Apply (ii) to show that one of the numbers x and y must be even, the
other one odd, and z is also odd. (Recall that we are assuming that
these numbers are mutually co-prime.) Just to be definite, let’s say y
is even; then x and z are odd.

(iv) Check that (
y
2

)2

=
(

z+ x
2

)(
z− x

2

)
.

Let
a =

z+ x
2

and b =
z− x

2
.

Explain why each term y/2 and a,b is an integer.

(v) Show that gcd(a,b) = 1. [Hint: z = a+b and x = a−b.]

(vi) Explain why a and b are perfect squares, i.e.

a = u2 and b = v2,

for some positive integers u and v.

(vii) Show that
y = 2uv.

(viii) Show that
x = u2− v2 and z = u2 + v2.

7. Here is another solution to the Pythagorean-triples problem, following ideas
of Diophantus (around 200 AD).

(i) On the unit circle
x2 + y2 = 1,

consider the point (−1,0), and suppose (a,b) is another point on this
circle. Thus,

a2 +b2 = 1. (1.39)

Consider the straight line through (−1,0) and (a,b). Its slope is

m =
b−0

a− (−1)
=

b
a+1

.
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The equation of the line is

y = m(x+1).

Thus,
b = m(a+1).

Substitute this into (from (1.39))

b2 = 1−a2,

and show that

a =
1−m2

1+m2 .

[Hint: 1−a2 = (1−a)(1+a), and recall that, by assumption, a 6=−1.]

(ii) Conclude that if
a2 +b2 = 1,

where (a,b) 6= (−1,0), then

a =
1−m2

1+m2 b =
2m

m2 +1
,

where
m =

b
a+1

.

(iii) Show that a point (a,b), other than (−1,0), on the unit circle has ra-
tional coordinates if and only if

a =
u2− v2

u2 + v2 b =
2uv

u2 + v2 ,

for some integers u and v. (Note that we can cancel any common
factors and make u and v be co-prime in the end.)

(iv) Now show that if x, y and z are positive integers satisfying

x2 + y2 = z2,

then there are integers u, v (these being co-prime), and c, such that

x = (u2− v2)c, y = 2uvc, z = (u2 + v2)c.
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[Hint: If you use (iii) and figure out c, it works out to be z/(u2 + v2).
But it is difficult to see why this should be an integer. Write c as m/n,
where m and n are co-prime numbers. Then n is a divisor of both
u2 + v2 and u2 − v2, and so of both 2u2 = (u2 + v2) + (u2 − v2) and
2v2 = (u2 +v2)− (u2−v2). Since u and v are co-prime, it follows that
n is a divisor of 2. If n = 1 we are done. The only other possibility is
n = 2. ]

(v) Suppose (x1,y1) and (x2,y2) are points on the unit circle. Show that
the ‘product’ point

(x,y) = (x1x2− y1y2,x1y2 + x2y1)

is also on the unit circle.

8. Work out the continued fractions for:

(i) 577
408

(ii)
√

3.

9. Develop 3141
1000 in a continued fraction. Use the following scheme:

A = 3141 B = 1000
n qn Pn Qn dn
−1 1 0 −1000
0 q0 = [3141/1000] = 3 3 1 141
1
2
3
4

10. Find integers x and y such that

3141x+1000y = 1.

11. Find a number x such that when x is divided by 5 it leaves a remainder of 3,
when x is divided by 3 it leaves a remainder of 2, and when x is divided by
7 it leaves a remainder of 1.
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12. State the continued fraction form of the Golden Ratio. Draw rectangles to
illustrate why the Golden Ratio is irrational.

13. Explain why the Golden Ratio φ can be expressed as a series:

1+
1
1
− 1

1×2
+

1
2×3

− 1
3×5

+
1

5×8
− 1

8×13
+ · · ·

(Hard.)

14. Prove that the Golden Ratio φ is a solution of the equation

x = 1+
1
x
.

15. Show that in a regular pentagon the ratio of the diagonal to any one side is
φ.

16. Look up Euclid’s construction in Proposition 11 (Book 2) at

http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII11.
html

and explain how this involves the Golden Ratio.

17. Look through Euclid’s elements at

http://aleph0.clarku.edu/~djoyce/java/elements/toc.html

and state which result describes the construction of the icosahedron.

 http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII11.html
 http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII11.html
http://aleph0.clarku.edu/~djoyce/java/elements/toc.html


Chapter 2

Topics from the Theory of Equations

In this chapter we will study properties of polynomials and some theoretical re-
sults on solutions of polynomial equations.

In this version of the notes, methods of solving equations, such as the cubic
and quartic equations, are not covered.

2.1 Polynomials in One Variable

An example of a polynomial in a symbol X is an expression of the form

4X18−3X7 +2X −5

In this case, the coefficients 4,0,−3,2,−5 are all integers. In general we can draw
the coefficients also from some other system, such as the rationals or real numbers
or complex numbers. The degree of the preceding polynomal is 18.

More generally, a polynomial in X is an expression of the form

p(X) = anXn +an−1Xn−1 + · · ·+a1X +a0,

where the coefficients a0, ...,an are drawn from system of letters or numbers; if
an 6= 0 then we say that p(X) has degree n.

The polynomial 0 is a bit problematic when it comes to the notion of degree.
We could leave it undefined or define it to be −∞.

Note that even −X + 4 is called a polynomial, and so is the constant 4. A
constant k is a polynomial of degree 0 (unless that constant k itself if 0).

43
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Multiplying a cubic polynomial with a quadratic gives a fifth degree polyno-
mial. More generally,

deg(p(X)q(X)) = deg p(X)+degq(X).

The set of all polynomials in X with integer coefficients is denoted

Z[X ].

If we allow the coefficients to be rational, the set of such polynomials is denoted

Q[X ].

In this manner,

R[X ] is the set of all polynomials with real coefficients,

and
C[X ] is the set of all polynomials with complex coefficients.

Polynomials can be added and multiplied to yield polynomials. However, the
only polynomials in Q[X ] which have reciprocals (which are polynomials) are the
non-zero constants. In Z[X ] the only polynomials with inverses (in Z[X ]) are the
constants 1 and −1.

If we work inside Z[X ] then many things need to be handled with care, and
results for Z[X ] will be pointed out separately.

Consider the polynomial

r(X) =
10
3

x5− 25
6

x+
15
4

.

We can rewrite this in the form

r(X) =
5

12
(8x5−10x+9).

More generally, we can express any polynomial p(X) in Q[X ] in the form

p(X) = cp(anXn +an−1Xn−1 + · · ·+a1X +a0),

where cp is rational, and the coefficients a0, ...,an are integers with gcd equal to 1.
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2.2 The Division Algorithm for Polynomials
Our main concern here will be with dividing a polynomial by another. Let us look
at a simple example:

a(X) = 4X5−3X +6, b(X) = X2−2X +3

One this is clear: we should start out the quotient with 4X3. To this end we have

a(X)−4X3b(X) = 4X5−3X +6−4X5 +8X4−12X3

= 8X4−12X3−3X +6

So:
a(X) = 4X3b(X)+ 8X4−12X3−3X +6.

But it would be odd to regard 8X4− 12X3− 3X + 6 as the ‘remainder’ from the
division, because it is more complex than the divisor b(X). More precisely, it
has degree 4, whereas b(X) has only degree 2, so it doesn’t seem right to regard
8X4−12X3−3X +6 as the ‘remainder’. The point is that we can make b(X) go
into 8X4− 12X3− 3X + 6 again: to match the highest degree term, we multiply
b(X) by 8X2 and this would leave over

8X4−12X3−3X +6−8X2b(X) = 8X4−12X3−3X +6−8X4 +16X3−24X2

= 4X3−24X2−3X +6.

Putting together the preceding calculations we have

a(X) = (4X3 +8X2)b(X)+4X3−24X2−3X +6, (2.1)

but we still need to divide the ‘remainder’ term here by b(X). To match the highest
degree term we multiply b(X) by 4X , and left over piece is

4X3−24X2−3X +6−4Xb(X) = 4X3−24X2−3X +6−4X3 +8X2−12X

=−16X2−15X +6.

So
a(X) = (4X3 +8X2 +4X)b(X)−16X2−15X +6, (2.2)

which leaves just one more step to cut down the degree of the remainder: we
should multiply b(X) by −16 to match the X2 term and be left over with

−16X2−15X +6− (−16b(X)) =−47X +54.
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Thus, we finally have

a(X) = (4X3 +8X2 +4X −16)b(X)+(−47X +54) (2.3)

and this gives us the quotient and remainder as

q(X) = 4X3 +8X2 +4X −16, r(X) =−47X +54.

Although it is a long process, the method is simple and clear. It is possible to
write a program to exceute this process. It is also possible to be braver and just do
all the calculations in one non-stop chain, obtaining the quotient and remainder.
There are several other ways to organize the computation.

For us the main point to note is that the division algorithm works : if a(X)
by b(X) are polynomials, with b(X) not being the 0 polynomial, then there are
polynomials q(X) and r(X) such that

a(X) = q(X)b(X)+ r(X),

and the degree of r(X) is less than the degree of b(X). In the event that b(X) is a
divisor of a(X), the remainder is 0.

Note that the coefficients in q(X) and r(X) are obtained by addition, subtrac-
tion, multiplication, and division starting with the coefficients of a(X) and b(X).

2.3 The Greatest Common Divisor for Polynomials
Now that we know that the division algorithm works, we can conclude immedi-
ately that any two non-zero polynomials have a greatest common divisor, and that
this is obtained by the ‘pulverizing’ algorithm of repeatedly dividing and taking
the remainder, with the last non-zero remainder being the gcd.

In doing a gcd calculation it is best to keep in mind that for polynomials, if
p(X) is a divisor of q(X) then any constant multiple is a divisor of any constant
multiple of q(X) (the answer just gets multiplied by a constant). Thus, we can
multiply out by constants to avoid nasty fractions. You can multiply the gcd by
any constant and it will still be a gcd.

Let us work out
gcd
(
a(X),b(X)

)
,

where
a(X) = 4X5−3X +6, b(X) = X2−2X +3.
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We have already done the long calculation for the first divison:

a(X) = q(X)b(X)+(−47X +54).

Next we need to divide b(X) by −47X + 54. To avoid some, but not all, ugly
fractions, let’s just divide −47b(X) by −47X +54. We have then

−47X2 +94X −141 = (−47X +54)X ++40X −141

= (−47X +54)X +
(
−47X +54)

40
−47

+
54×40

47
−141.

(2.4)

Thus, the remainder is the constant

54×40
47

−141.

There is no point in working this out, for it just suffices to check that it isn’t 0.
The main thing is that it is a non-zero constant, and so it is certainly a divisor of
any polynomial. Thus,

gcd
(
a(X),b(X)

)
= 1.

Borrowing terminology from numbers we can say that the polynomials a(X) and
b(X) are co-prime.

Just as with numbers, the Euclidean algorithm can be used to express the gcd
as a combination of a(X) and b(X): there exist polynomials m(X) and n(X) such
that

gcd
(
a(X),b(X)

)
= m(X)a(X)+n(X)b(X). (2.5)

2.4 Prime Factorization
Let us say that a polynomial p(X) is prime if it is not constant and its only divisors
are p(X) and 1 (and constant multiples of them).

For Z[X ], we need to be careful: p(X) is prime inside Z[X ] if it is not equal to
±1 and its only divisors in Z[X ] are ±p(X) and ±1.

Thus, the constant 3, thought of as a polynomial is prime in Z[X ], but the
constant 4 is not prime in Z[X ]. Neither is prime in Q[X ].

A polynomial of degree ≥ 1 which cannot be factored into polynomials of
degree ≥ 1 is called irreducible.
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Thus, a first degree polynomial

3X −4

is irreducible.
The polynomial

X2−4

is not irreducible because

X2−4 = (X −2)(X +2).

But how about X2 − 2? If we stick to rational numbers as coefficients, then it
is irreducible. But if we allow irrational numbers (or at least

√
2 and all related

numbers) then X2−2 is reducible:

X2−2 = (X −
√

2)(X +
√

2).

Similarly,
X2 +1

is irreducible over reals but reducible when i =
√
−1 is included in the field of

allowed coefficients.
Exactly as with numbers, we have the following results:

(i) If a(X), b(X), and c(X) are polynomials such that a(X) is a divisor of
b(X)c(X),and a(X) is co-prime to b(X), then a(X) is a divisor of c(X).
Compare with Proposition 1.

(ii) Every polynomial is the product of prime polynomials in a unique way
(uniqueness only up to constant multiples). This is true also in Z[X ], with
uniqueness up to multiplication by ±1.

2.5 Descartes’ Theorem on Factors of Polynomials

There is another remarkable dividend we can draw from our efforts in proving
the division algorithm for polynomials. This is Descarte’s theorem on roots of
polynomial equations:
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Theorem 5 Let p(X) be a polynomial of degree ≥ 1. Then the equation

p(x) = 0

has a solution x = α if and only if X −α is a divisor of p(X).

To prove this, consider the division of p(X) by X −α:

p(X) = q(X)(X −α)+ r,

and the remainder r mult be a constant, because it has lower degree than X −α.
Now substitute in the value α for X to get:

p(α) = 0+ r.

Thus, the remainder r is actually the value of p(x) when x is set equal α. In
particular,

p(α) is 0 if and only if the remainder r is 0,

which is the same as saying that p(X) is divisible by X−α. This proves Descartes’
theorem.

René Descartes was on born March 31, 1596 in France. He is best known for
his contributions to mathematics and philosophy. He died on February 11, 1650,
in Sweden, of pneuomonia while working as tutor to the queen of Sweden (other
theories, involving arsenic poisoning have been proposed).

From Descartes’ theorem we see that an n-th degree polynomial equation can
have at most n roots, for the product of more than n terms like X −α would have
degree more than n.

Moreover, we also see that if p(X) factorizes completely as

p(X) = a(X −α1)...(X −αn),

where a is a non-zero constant, then the roots of

p(x) = 0

are α1, ...,αn.
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2.6 Newton Polynomials
Consider the product:

(X −α1)(X −α2) = X2−α1X −α2X +α1α2,

which we can write as

(X −α1)(X −α2) = X2− (α1 +α2)X +α1α2.

Next, we have

(X−α1)(X−α2)(X−α3)= X3−(α1+α2+α3)X2+(α1α2+α1α3+α2α3)X−α1α2α3.

Continuing in the vein, consider the product:

(X −α1)...(X −αn).

This works out to

Xn− (α1 + · · ·+αn)Xn−1 +(α1α2 + · · ·)Xn−2 + · · ·+(−1)n
α1...αn.

The coefficient of Xn−k is (−1)k times the sum of all products of k of the quantities
α1, ...,αn.

In view of this, it makes sense to introduce the following polynomials in n
variables T1, ...,Tn:

s1(T1, ...,Tn) = T1 + · · ·+Tn

s2(T1, ...,Tn) = T1T2 +T1T3 + · · ·+T1TN + · · ·+Tn−1Tn,

and so on till
sn(T1, ...,Tn) = T1...Tn.

More precisely,
sk(T1, ...,Tn) = ∑

1≤ j1<···< jk≤n
Tj1...Tjk . (2.6)

These polynomials are called Newton polynomials ( Isaac Newton ((4 January
1643 – 31 March 1727). The first thing to note about them is that they are sym-
metric in the variables T1, ...,Tn.

Secondly, we note that

(X−α1)...(X−αn) = Xn−s1(α1, ...,αn)Xn−1 + · · ·+(−1)nsn(α1, ...,αn). (2.7)
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To take a specific example, consider the equation

x3−4x2−5x−2 = 0.

Let α,β,γ be the roots of the equation. Then the Newton polynomials in these
roots have the values

s1(α,β,γ) = 4, s2(α,β,γ) =−5, s3(α,β,γ) =−2.

Note that for an equation such as

5x4−2x3 +6x+8 = 0,

we have to be careful about that coefficient 5and note that if the roots are α,β, ...
then

5X4−2X3 +6X +8 = 5(X −α)(X −β)....

= 5(X5− s1X4 + s2X3−·· ·).
(2.8)

Consequently, here

s1(α, ...) =
2
5
, ...

and so on, till s5 which is equal to −8/5.
In class we proved the following remarkable result:

Theorem 6 Every symmetric polynomial p(T1, ...,Tn) can be expressed as a poly-
nomial in the Newton polynomials.

For example, for two variables T1 and T2: we have

T 2
1 +T 2

2 = (T1 +T2)2−2T1T2 = s2
2−2s2.

2.7 The Discriminant
Now consider a quadratic (with 1 as leading coefficient):

p(X) = X2− s1X + s2 = (X −α)(X −β).

Let
∆ = α−β.
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The quantity
∆

2 = (α−β)2

is called the discrimininant of p(X). The point is that, the discriminant is 0 if and
only if the two roots of p(x) = 0 are equal.

Note that
∆ = α−β

flips to its negative if α and β are interchanged. So the square, ∆2 is symmetric in
α and β. Being a symmetric polynomial it can be rewritten in terms of Newton’s
polynomials. Indeed,

(α−β)2 = α
2−2αβ+β

2 = (α+β)2−4αβ.

Thus, the discriminant is
∆

2 = s2
2−4s2.

In more familiar language, the discriminant of

x2 +Bx+C

is
B2−4C.

If the leading coefficient is not 1, we define the discriminant of

A(X −α)(X −β)

to be
∆

2 = A2(α−β)2. (2.9)

Then for the quadratic

AX2 +BX +C = A(X −α)(X −β) = AX2−As1X +As2,

the discriminant works out to

A2(α−β)2 = A2

((
B
A

)2

−4
C
A

)
= B2−4AC,

the usual expression for the discriminant.
Now consider the cubic

AX3 +BX2 +CX +D = A(X −α)(X −β)(X − γ).
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The discriminant is defined to be the square of

∆ = A(α−β)(α− γ)(β− γ).

This ∆ is again anti-symmetric with repect to interchange of roots, and so the
discriminant is again a symmetric polynomial α,β,γ. Consequently, ∆2 can be
expressed in terms of the Newton polynomials in α,β,γ, and hence in terms of the
coefficients A, ...,D.

Thus, it possible to construct a polynomial in the coefficients A, ...,D such that
this vanishes if and only if the original cubic has two equal roots.

2.8 The Derivative
Introduce a new quantity ε with the property that

ε
2 = 0.

Let us work out some calculations with this, for polynomials.
First we have

(X + ε)2 = X2 +2εX + ε
2 = X2 +2εX .

Similarly,
(X + ε)3 = X3 +3X2

ε.

More generally,
(X + ε)n = Xn +nXn−1

ε.

For a polynomial

p(X) = anXn +an−1Xn−1 + · · ·+a1X +a0,

we then have
p(X + ε) = p(X)+ p′(X)ε,

where p′(X) is the derivative of p(X) defined to be

p′(X) = annXn−1 +an−1(n−1)Xn−2 + · · ·+a1.

We also write
Dp(X)
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for p′(X).
Consider now the effect of changing X to X + ε in the product of two polyno-

mials p(X) and q(X):

p(X + ε)q(X + ε) =
(

p(X)+ p′(X)ε
)(

q(X)+q′(X)ε
)

= p(X)q(X)+ [p′(X)q(X)+ p(X)q′(X)]ε+0.
(2.10)

This proves that

D[p(X)q(X)] = p′(X)q(X)+ p(X)q′(X) (2.11)

We have also seen in class that the chain rule holds:

D[p(q(X))] = p′(q(X))q′(X). (2.12)

2.9 Multiple Roots and the Derivative
Consider the equation

2x3−3x2 +1 = 0. (2.13)

As it happens,
2X3−3X2 +1 = (X −1)2(2X +1),

and so the equation (2.13) has roots 1,1,−1/2. The root 1 is repeated.
We will now determine a way to figure out that (2.13) has a repeated root,

without having to solve the equation. The method will work even for equations
such as

x15−7x8 +3x−4 = 0,

which cannot be solved exactly by the usual methods.
Let us write

a(X) = 2X3−3X2 +1

and suppose α,β,γ are the roots of (2.13). Then, by Decarte’s theorem, a(X)
factorizes as

a(X) = 2(X −α)(X −β)(X − γ).

Let us now look at the derivative

a′(X).
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This works out to be

a′(X) = 2[(X −β)(X − γ)+(X −α)(X − γ)+(X −α)(X −β)].

Observe that
a′(α) = 2(α−β)(α− γ).

Also,
a′(β) = 2(β−α)(β− γ),

and
a′(γ) = 2(γ−α)(γ−β).

To have a repeated root means that at least one pair of the roots α,β,γ are equal
to each other. But then, looking at the preceding expressions, that this is precisely
the condition that one of the values a′(α), a′(β), a′(γ) is 0.

Thus, the equation (2.13) has a repeated root if and only if that root is also a
root of the equation

a′(x) = 0.

Looking back at the expression for a(X), we have

a′(X) = 6X2−6X = 6X(X −1).

The roots of a′(x) = 0 are therefore x = 0 and x = 1. We can substitute 1 for X in
a(X) and find that

a(1) = 2−3+1 = 0,

and so indeed the equations a(x) = 0 and a′(x) = 0 share a common root 1. There-
fore, we can tell right away that this root must be a repeated root of a(x) = 0.

Before moving on to the general statement, let us note that to say that a(x) = 0
and a′(x) = 0 have a common root is equivalent to saying that there is some α such
that X −α is a divisor of both a(X) and a′(X). Thus, the condition of repeated
roots is that a(X) and a′(X) should have a common divisor of degree ≥ 1.

Everything we have done can be easily checked to hold for a general polyno-
mial p(X) of degree ≥ 1. Thus, we have

Theorem 7 If p(X) is a polynomial of degree ≥ 1 then the equation

p(x) = 0

has repeated roots if and only if gcd(p(X), p′(X)) has degree ≥ 1.
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Let us do a simple example. Consider the equation

x2 + x+1 = 0.

Does it have repeated roots? The derivative of

p(X) = X2 +X +1

is
p′(X) = 2X +1.

The gcd works out to
gcd
(

p(X), p′(X)
)

= 1.

(Note that the gcd is specified only up to constant multiples, and we could write
any non-zero constant in place of 1.) Thus,

x2 + x+1 = 0

has no repeated roots.
In this particular example, we could have easily solved the equation to see

that the roots are indeed different. We could also have seen that the solution of
p′(x) = 0 is x =−1/2 and this is not a solution of p(x) = 0.

Problem Sets 3 and 4
Problems 1-3 below are adapted, with some simplification, from Euler’s ‘Ele-
ments of Algebra’ (first published 1770).

1. Show that (
3
2

+
1
2

√
21
)3

is 27+6
√

2.

2. Carry out a transformation which turns the equation

x3−6x2 +13x−12 = 0

into a cubic equation of the form

y3 + y−2 = 0
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3. Use the Cardano method to find one solution of the equation

y3 = (−1)y+2.

Bring the solution to the form[
1+

6
27

√
21
]1/3

+
[

1− 6
27

√
21
]1/3

.

Use Problem 1 to simplify this expression to show that this gives the solu-
tion y = 1.

4. Find all three solutions of the equation

x3−6x2 +13x−12 = 0

5. Find a solution of

x4−10x3 +35x2−50x+24 = 0 (2.14)

by using Ferrari’s method as follows. The goal will be to find values for p,
q, and r such that

x4−10x3 +35x2−50x+24 = (x2−5x + p)2− (qx+ r)2. (2.15)

(i) Show that we should chooose p, q, and r to satisfy

q2 = 2(p−5)

r2 = p2−24
qr = 5(p−5).

(2.16)

(ii) Work out q2r2 and (qr)2 from the equations in (i), and show that p
satisfies the cubic equation

2(p−5)(p2−24)−25(p−5)2 = 0.

(iii) Take the solution p = 5 and work out corresponding values of q and r
from part (i).

(iv) Now substitute the values of p, q, and r, into equation (2.15), and find
all solutions of the original quartic equation

x4−10x3 +35x2−50x+24 = 0.
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6a. Suppose the polynomial p(X) = 3X3−2X2 +4 factors as

3X3−2X2 +4 = 3(X −α)(X −β)(X − γ)

(i) The value of α+β+ γ is:

(ii) The value of αβγ is:

(iii) The value of the Newton polynomial s2 is:

(iv) The derivative p′(X) is:

(v) If α = β what is the value of p′(α)?

6b. Suppose the polynomial p(X) = 7X5−5X3 +3 factors as

7X5−5X3 +3 = 7(X −α1)(X −α2) . . .(X −α7)

(i) The value of α1 + · · ·+α7 is:

(ii) The value of α1...α7 is:

(iii) The value of the Newton polynomial s4 is:

(iv) The derivative p′(X) is:

(v) If α1 = α3 what is the value of p′(α3)?

7. Work out the quotient and remainder for the following divisions:

(i) Divide X2−3X +3 by X −1.

(ii) Divide X3−2 by X +1.

(iii) Divide X3−2 by X2−X +1.

8. Work out the greatest common divisors for:

(i) X2−3X +3 and X −1.

(ii) X2−3X +2 and X3−3X2 +3X −1.

(iii) X12−2 and X11.

9. Work out the derivatives of:

(i) X2−3X +3.

(ii) X3−3X2 +3X −1.



Topics in Number Theory, Algebra, and Geometry 59

(iii) X12−2.

(iv) X3 +X2 +X +1.

(v) 4(X −3)(X −2)(X +7).

(vi) −3(X −2)(X −2)(X −3).

10. Determine which of the following equations have repeated roots:

(i) x2−6x+3 = 0.

(ii) x3 + x2− x−1 = 0.

(iii) x2 + x+1 = 0.

(iv) x5−1 = 0.

(v) x15−1 = 0.
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Chapter 3

Geometry

In this chapter, we shall take a quick look at the axiomatic construction of geome-
try. Our objective is not so much a study of the axioms, as an appreciation of how
they lead to number systems, and, in particular, the real number system. Euclid’s
geometric constructions, such as those involving similar triangles, implicitly de-
scribe a process of addition and, more importantly, multiplication of ratios of seg-
ments. Euclid’s results imply then that these operations satisfy the usual algebraic
laws: commutativity, associativity, and distributivity of multiplication over addi-
tion. If one agrees to adjoin to this system, the number 0 and ‘negatives’ (which,
of course, came much later in history) of all the segment ratios, then one obtains
a field. If one uses a sufficiently strong axiom of ‘completeness’, this yields the
entire real number system. Even without this strong completeness axiom, Euclid’s
constructions lead to what are now called extensions of the field of rationals.

A thorough and logical study of geometry was carried out by Greek mathe-
maticians. Some books from this era have survived, at least in fragmentary form,
often through later Arabic translations. The most famous of these works is Eu-
clid’s Elements. Great mathematical figures from this era include (the dates are
approximate):

• Thales of Miletus (624 BC-546 BC)

• Pythagoras ( 580 BC–500 BC)

• Eudoxus (410BC - 3550 BC)

• Euclid (325 BC–265 BC)

• Archimedes (287 BC - 212 BC)
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• Apollonius (262 BC–190 BC)

The geometric ideas of Thales and Pythagoras seem to have been influenced by
Egyptian mathematics. In the context of geometry, Eudoxus is best known for his
theory of proportions and the method of exhaustion, which are early precursors of
the modern theory of real numbers and integral calculus. Apollonius is best known
for his work on conic sections, possibly the deepest part of Greek mathematics.

Euclid’s development of geometry included:

• Definitions

• Axioms

• Theorems

• Geometric Constructions.

The topic of geometric constructions, using ruler and compass, is connected, in a
thread developed far later in history, to algebra and solutions of algebraic equa-
tions.

Euclid’s axiomatic treatment of geometry did have some unrecognized as-
sumptions. A complete logical development of geometry was provided by Hilbert
(1862-1943) in his book Grundlagen der Geometrie [1], first in 1899 and then
with many refinements and developments in succeding editions of the book.

3.1 Hilbert’s Axioms for Plane Geometry
Hilbert laid out the axiomatic development of three-dimensional Euclidean geom-
etry. Here we shall focus on two-dimensional geometry, drawing the axioms from
Hilbert [1].

There are two basic objects in plane geometry: points and lines.
Let P denote the set of all points, and L the set of all lines.

3.1.1 Axioms I: Incidence
The notion of a ‘point lying on a line’ is codified through a set I consisting of
ordered pairs (p, l), where p is a point and l a line. Thus, I is a subset of P ×L .
If (p, l)∈ I we say that ‘point p lies on the line l.’ We also say in this case that the
line l ‘passes through’ the point p. This relation is called the incidence relation.

The following are the axioms of incidence for plane geometry:
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I1. For any two distinct points, there is one and only one line that passes through
both of them.

I2. On any line, there exist at least two distinct points.

I3. There exist three points which are non-collinear, i.e. there is no line passing
through all of them.

Axiom I1 (which is split into two in Hilbert’s book) appears in a manner in
Book I of Euclid, and the others are taken for granted.

If two distinct lines both pass through a common point then we say that the
lines cross at this point. Because of I1, it follows that two distinct lines can have
at most one point of crossing.

Lines l and m are said to be parallel if either l = m or if l and m do not cross.
A set of points and lines, along with a collection I , is said to form an incidence

geometry, if Axioms I1, I2,I3 hold. Because of I3, any incidence geometry must
contains at least 3 points.

Thus, the simplest example of incidence geometry is given by P = {A,B,C},
with three lines, each specified uniquely by a pair of distinct points. Thus, we can
denote the lines by {A,B}, {A,C}, and {B,C}. The incidence relation is specified
in the obvious way: for example, point B lies on lines {A,B} and {B,C}.

Next, consider as P a set with four distinct elements A,B,C,D. Take as lines
all pairs of distinct points: {A,B}, {A,C},{A,D},{B,C},{B,D},{C,D}. This
gives the four-point incidence geometry.

3.1.2 Axioms II: Order
The next concept systematized by Hilbert is that of ‘betweenness’ or order. This
concept was implicit in Euclid’s Elements, and the axioms were used without
being recognized.

Betweenness is specified by a set B of ordered triples of points. If (A,B,C) ∈
B we read this as point B lies between points A and C.

The axioms for B are:

B1. If (A,B,C) ∈ B then A, B, and C are three distinct collinear points, i.e. they
all lie on one common line.

B2. If (A,B,C) ∈ B then (C,B,A) ∈ B , i.e. if B lies between A and C then B lies
between C and A.
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B3. If A and B are two distinct points on a line then there is a point C on this
line such that B lies between A and C.

B4. For any three distinct points on a line, at most one of them lies between the
other two. (See Theorem 9 below.)

B5. If A, B, C are three non-collinear points, and l a line not through any of
them, and if l passes through a point between A and C, then l passes through
a point between A and B or through a point between B and C.

The Axiom B5 is best understood by drawing a diagram of a triangle ABC and
a line cutting through the side AB. It should be clear that B5 works only on a
plane, so that a line has no way of ‘escaping’ off the triangle once it has crossed
into it through one side. This axiom was used in Euclid’s Elements without being
recognized as an assumption.

In the context of B5, it can be proved that the line l cannot pass through points
between A and B, between B and C, and between C and A.

Axiom B5 allows us to construct points between two points. This is formalized
in:

Theorem 8 Between any two distinct points lies at least one point.

Proof. First note that Axiom B5 provides the existence of a point in this con-
text, and so we should try to use this axiom. Thus, we should construct a triangle
ABC and a line which, by construction, passes through, say, a point between A
and C; this would imply that it passes through a point between A and B.

Let A and B be distinct points. By I3, there is a point D not on the line through
A and B. By B3, there is a point C such that D lies between A and C. Again, by
B3, there exists a point E such that B lies between C and E. Consider the line l
through D and E. This line passes through the point D. By B5, l passes through
a point between A and B or a point between A and C. But the latter possibility
would again imply that A, B, C all lie on l. Thus, l passes through a point between
A and B, and so there is a point between A and B. QED

Consequently, there are infinitely many points between any two distinct points.
In the first edition of Hilbert’s book the following result (proved later by E. H.

Moore) was taken as an axiom:

Theorem 9 For any three distinct points on a line, at least one of them lies be-
tween the other two.
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The following results says that a line partitions of all the points outside it into
two disjoint classes, called the two sides of the line:

Theorem 10 If l is a line then the set of all points not on l is the union of two
non-empty disjoint subsets, such that two points not on l lie in the same subset if
and only if l does not pass through a point between them.

A similar result holds for lines:

Theorem 11 If l is a line, and O a point on it, then the set of all points on l other
than O are partitioned into two disjoint subsets: two points of l other than O lie
in the same subset if and only if O does not lie between them.

3.1.3 Some Definitions: Segment, Ray, and Angle

The definitions here differ slightly from Hilbert’s. For example, we view the end-
points as being points on a segment, and we view the vertex of a ray as being part
of the ray.

If A and B are distinct points then the segment AB is the set consisting of points
A and B along with all points between A and B.

Consider a point O on a line l. The points on l, other than O, are partitioned
into two disjoint classes by O: for points X and Y on l other than O, we say that X
and Y are on opposite sides of O if O lies between them; we say that they are on
the same side of O if O does not lie between them.

Points A and B, not on a line l, lie on opposite sides of a line l if l contains a
point between A and B; otherwise, we say that A and B lie on the same side of l.

If A is a point on a line l then, for any other point B on l, the ray ~AB consists
of all points C on l on the same side of A as B, along with A itself. The vertex A of
the ray is identified as the unique point in the ray which does not lie between two
points on the ray.

Two rays are said to be opposite if they are of the form ~AB and ~AD, where D,
A and B are collinear, with A between D and B.

An angle with vertex X is a pair of distinct rays ~XY and ~XZ which are not on a
common line. (It is convenient, for the sake of a clean formulation of the axioms,
to exclude the ‘straight angles’.) This angle is denoted

〈ZXY .
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By definition, the order of the rays ~XY and ~XZ does not matter, and so

〈ZXY = 〈Y XZ.

A point P lies in the interior of the angle 〈XY Z if P does not lie on the rays
~Y Z and ~Y X and if P lies on the same side of the line Y Z as X and on the same side
of line Y X as Z. This is best understood through a picture.

We define a triangle to be a set of three non-collinear points called the vertices
of the triangle. A segment specified by any pair of the vertices is called a side of
the triangle.

3.1.4 Axioms III: Congruence
Next are introduced two relations of congruence.

Congruence of segments is given by a set C of ordered pairs of segments. If
(x,y) ∈ C we say that segment x is congruent to segment y. We denote this by

x ≡ y

CS1. If A and B are two points, and A′ a point, then on any ray with vertex A′ lies
a point B′ such that AB is congruent to A′B′.

CS2. If segment AB and segment CD are congruent to the same segment then AB
is congruent to CD.

CS3. If AB and BC are two segments on a line, with B the only point in common,
and if A′B′ and B′C′ be two segments on a line with B′ the only point in
common, and if, further, AB is congruent to A′B′ and if BC is congruent to
B′C′ then AC is congruent to A′C′.

Sometimes we will write just AB to mean the segment AB.
We can now check that congruence is an equivalence relation:

• Reflexivity: If AB is a segment, and A′ any point then, by CS1, there is a
segment A′B′ to which AB is congruent. Thus, trivially, AB and AB are both
congruent to A′B′, and so AB is congruent to itself.

• Symmetry: Next, if AB is congruent to CD then, since CD is also congruent
to CD, we see that both CD and AB are congruent to CD; then it follows by
CS2 that CD is congruent to AB.
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• Transitivity: Finally, suppose segment x is congruent to segment y, and y is
congruent to z; then, x and z are both congruent to y, and so x is congruent
to z.

The significance of axiom CS3 is that it allows us to add segments by placing
them ‘next to each other.’

Let us recall that a ray h is a set consisting of a point O, called the vertex of
h, another point B, and all points on the line through O and B which are on the
same side of O as B. In this case we denote h by ~OB. An angle is a pair {h,k} of
non-collinear rays with a common vertex. We denote this angle by

〈(h,k).

If h = ~OA and k = ~OB we write this same angle as

〈AOB,

or, when the rays ~OA and ~OB are understood from context, even as simply

〈O.

There is also a second notion of congruence which applies to angles, and we
use the same notation ≡ for angle congruence. The axioms for congruence of
angles are:

CA1. Given any angle x and a ray ~XY and a point P not on the line l through X
and Y , there is a unique ray ~XZ such that Z lies on the same side of l as P
and the angle 〈ZXY is congruent to x.

CA2. Every angle is congruent to itself.

CA3. If ABC and A′B′C′ are triangles such that segment AB is congruent segment
A′B′, and segment AC is congruent to segment A′C′, and also 〈BAC is con-
gruent to 〈B′A′C′, then 〈ABC is congruent to 〈A′B′C′.

A triangle T is said to be congruent to a triangle T ′ if the vertices of T can be
labeled ABC and the vertices of T ′ as A′B′C′ in such a way that

AB ≡ A′B′, BC ≡ B′C′, CA ≡C′A′

and
〈A ≡ 〈A′, 〈B ≡ 〈B′, 〈C ≡ 〈C′
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The axioms imply all the Euclidean results on congruence of triangles, and,
furthermore, also imply that congruence for angles as well as for triangles are
equivalence relations.

Two angles x and y are said to be supplementary if there is a point B between
two points A and C, and a point D outside the line through A and C, such that
x ≡ 〈DAC and y ≡ 〈DAB.

It may be proved that each angle has a unique supplementary angle, up to
congruence.

A right angle is an angle which is congruent to its supplementary angle.

3.1.5 Axiom of Parallelism

Lines l and l′ are parallel if either l = l′ or if l and l′ have no point in common.
We also say that ‘l is parallel to l′’.

Hilbert’s axiom of parallelism is:

HP. If l is a line and P a point not on it, then through P there is at most one line
parallel to l.

In contrast to this, Euclid’s axiom on parallelism states that through any point
outside a line l there exists a unique line parallel to l. Hilbert does not need to
assume the existence of a parallel line, because the existence of such a line can be
proved from the other axioms.

We can now state and prove our first theorem of geometry:

Theorem 12 If lines l and m are parallel, and lines m and n are parallel, then l
and n are parallel.

Proof. If, to the contrary, l and n were distinct and a point P were common to
them, then through P there would be two distinct lines, l and n, both parallel to
m. This is impossible by the Hilbert parallel axiom, and so l and n are parallel.
QED

Using HP, it can be proved that the three angles of a triangle ‘add up to 180
degrees’; more precisely, if ABC is a triangle, and O any point lying between two
points P and Q then there exists a point S outside the line PQ and a point T in the
interior of 〈QOS, such that

〈SOP ≡ 〈A, 〈TOS ≡ 〈B, 〈QOT ≡ 〈C.
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3.1.6 Axiom of Continuity or Completeness
A classical axiom fundamental to the real number system is:

AC. Axiom of Archimedes: If A, B, C are distinct points, then there is a positive
integer n ∈ {1,2,3, ...}, such that n times the segment AB exceeds the seg-
ment AC. In more detail, there are points P1, ...,Pn on the ray ~AC, such that
:(i) P1 lies between A and P2; (ii) for each k ∈ {2, ...,n−1}, the point Pk lies
between Pk−1 and Pk+1; (iii) each segment PkPk+1 and the segment AP1 is
congruent to AB; and (iv) the point C lies between A and Pn.

The preceding system of axioms do not uniquely specify the geometry, in the
sense that there are non-isomorphic systems of points and lines which satisy all
the preceding axioms. There is, of course, nothing wrong with having a system of
axioms covering a large array of examples.

Hilbert introduces a final axiom of maximality:

M. The set of points on a line cannot be enlarged in such a way that the larger
set of points also have an ordering and congruence for which all the axioms
mentioned above hold.

Of course, in principle this axiom could be inconsistent with the previous ax-
ioms. However, that is not the case. Indeed, the maximal geometry exists and
satisfies the Dedekind completeness property:

D. If the points of a line l are partitioned into two non-empty disjoint sets S and
S′ in such a way that no point of one set is between two points of the other
set then there exists a unique point P on l which lies between any point of S
(other than P) and any point of S′ (other than P).

3.2 Constructions with Ruler and Compass
An important enterprise within Euclidean geometry was the construction of ge-
ometrical figures using two devices: a straight edge (ruler) and a compass. The
ruler was used to draw straight lines and the compass to draw circles with given
center and radius.

The axioms of congruence of segments and angles include the fact that seg-
ments and angles can be transported:
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CS1. If A and B are two points, and A′ a point, then on any ray with vertex A′ lies
a point B′ such that AB is congruent to A′B′.

CA1. Given any angle x and a ray ~XY and a point P not on the line l through X
and Y , there is a unique ray ~XZ such that Z lies on the same side of l as P
and the angle 〈ZXY is congruent to x.

The traditional Paltonic instruments of ruler and compasses are vehicles for trans-
porting segments and angles to congruent copies. Thus, ruler and compass con-
structions are not simply some odd historical curiosity involving primitive devices
available at some period in history, but rather essential to the axiomatic framework
of geometry. The constructions of Euclid, starting from a given set of points,
produce lines and points which satisfy the axioms of geometry (except for the
Dedekind axiom) and thus, as we shall see later, produce an algebraic system
called a field.

A circle with center C and radius specified by a segment OR is the set of all
points P such that the segment CP is congruent to the given segment OR. If two
distinct points A and B lie on a circle with center C and if A, B, and C are collinear
then we say that the segment AB is a diameter of the circle, and the points A and
B are said to be diametrically opposite to each other.

An arc of a circle requires some more effort to define. Consider a circle with
center C, and suppose that P and Q are two distinct points on the circle which
don’t form a diameter. Then the arc P̂Q is the set of all points X on the circle such
that X lies on the same side of CQ as P and also on the same side of CP as Q.

Consider a set S of points.
Let us say that a line is directly constructible from S if it passes through two

points of S. We think of this as a line drawn by placing a ruler against the two
points of S.

Let us also say that a circle is directly constructible from S if it has center at a
point of S and has radius given by a segment OR for some points O and R of S.

Thus, starting with a set of points we have constructed, in one step, a set of
lines and circles. Now we can look at the set of all points where these lines and
circles intersect.

We shall say that a point is directly constructibe from a given set of lines and
circles if it lies on at least two of these figures (lines or circles). Such a point can
lie on two lines, two circles, or a line and a circle.

Thus, starting with a set of points we can carry out constructions as above,
obtaining sets of lines and circles, from which we generate another set of points,
which can again be used to generate more lines and circles.
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Any line or circle or segment or point which can be obtained by a finite se-
quence of constructions as above can thus be said to be constructible with ruler
and compasses from the initial given set S of points.

It is very important to realize that not all points on a constructible line are con-
structible. Only points where constructible lines or circles cross are constructible.

By a geometrical figure let us mean a finite set of points, lines, circles, seg-
ments, and arcs. For example, a pentagon is a geometrical figure. Euclid described
numerous constructions of geometrical figures.

There were three famous construction problems from the Greek era which
were not solved:

• Squaring the circle: constructing a square the same area as a given circle.

• Doubling the cube: constructing a cube with twice the volume of a given
cube.

• Trisecting the angle: dividing a given angle into three smaller angles all
congurent to each other.

The first two involve measures of area and volume which we have not examined
in these notes.

In 1796 Gauss (Carl Friedrich Gauss, 1777 –1855) constructed a regular 17-
gon and determined a criterion for constructibility of a regular n-gon based on
the prime factors of n. That Gauss’s method determined all constructible regular
polyons was proved by Wantzel in 1837. You can find Gauss’s construction online
(for example, at http://www.answers.com/topic/heptadecagon).

3.3 Theory of Proportions
A theory of proportions was developed by Eudoxus and appears in Euclid’s Ele-
ments. Proportions of ‘like magnitudes’ are considered; for example, proportions
between segments, or areas and volumes were considered. In our discussion here
we will focus on segments.

In this section we will denote a segment without the bar on top, i.e. as AB
instead of AB.

It will sometimes be convenient to identify congruent segments. The set of
all segments congruent to AB will be denoted [AB]. Let S be the set of all such
segment classes [AB].
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It makes sense to add segments: just lay them side by side. By the congruence
axiom CS4, this addition is a meaningful operation on S. If x,y ∈ S we can ‘add’
them to produce an element x+ y.

It may be checked that this addition has the basic nice properties:

x+ y = y+ x, and x+(y+ z) = (x+ y)+ z.

However, there is no natural way to ‘multiply’ two segments to produce an-
other segment. One insight behind the theory of proportions is that it creates in a
natural way, a system of quantities - ratios between segments - for which there is
both a meaningful addition operation and a multiplication operation. It will take
some work to see how this emerges.

If m is a positive integer ∈ {1,2,3, ...} we shall denote by mAB the segment
running from A to a point P such that between A and P there are points which
mark off m congruent segments (if m = 1 then we just have 1.AB=AB, by defini-
tion). On the set S we have a corresponding operation, producing positive integer
multiples 2x,3x, ... of any x ∈ S.

Let us agree to say that segment AB is greater than a segment PQ, if there is
a point C between A and B such that AC is congruent to PQ. In this case we shall
write

AB > PQ,

or
PQ < AB.

You can check that if AB>PQ then PQ is not greater than AB. Moreover,

if AB>CD and CD>EF then AB>EF.

Thus, we have an order relation x > y between elements x,y ∈ S.
If AB and CD are segments there is associated to this pair the proportion

AB : CD.

We can think of this simply as a new object, an ordered pair of segments.
In Elements Volume 5, Euclid defines when a ratio is equal to another. If

AB,CD,PQ,RS are segments we declare

AB : CD ' PQ : RS
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if a multiple of AB exceeds a multiple CD if and only if the corresponding multiple
of PQ exceeds the corresponding multiple of RS. Less cryptically,

if m and n are positive integers then mAB>nCD if and only if mPQ>nRS.

For x,y ∈ S pick segments AB and CD such that [AB] = x and [CD] = y. Define

x
y

to be the set of all ratios ' to AB:CD.
Passing to segments classes x,y,z,w ∈ S, we declare (Elements Book V, Defi-

nition 5) that
x
y
' w

z

if the following holds:

for positive integers m and n, the condition mx > ny holds if and only if mw > nz holds.

We define x/y is less or equal to w/z,

x
y
≤ w

z

if the following holds:

for positive integers m and n, if the condition mx > ny holds then mw > nz holds.

This is essentially Definition 7 in Euclid’s Elements Book V.
The notion of ratio of segments shows that there is a natural relation between

pairs of numbers (n,m) : we say that (n,m) and (p,q) correspond to the same
rational if they measure the ratio of the same pair of segments, i.e. there are
segments x and y such that

nx = my, and px = qy.

In fact we can just define the rational

n
m

to be the ratio x : y.
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Notice that a general ratio x : y, as described by Euclid, is specified by all
rationals greater than x : y and all rational less than x : y. This is the essential
first step in the construction of the real number system by Dedekind (1831 –1916).

Euclid presents numerous results concerning proportions. For example,

AB:CD=PQ:QR if and only if AB:PQ=CD:QR.

Moreover,

if AB:CD=PQ:RS and CD:EF=RS:TV then AB:EF=PQ:TV.

One of Euclid’s theorems on triangles declares that if two triangles ABC and
PQR have congruent angles, i.e. if 〈ABC = 〈PQR and 〈ACB = 〈PRQ, then the
sides are proportional, i.e.

AB:AC=PQ:PR, and AB:BC =PQ:QR, and AC:BC=PR:QR.

This is a key fact in the development of the algebra of proportions.
If x,y,z ∈ S consider a triangle ABC with two sides given by [AB] = x and

[AC] = y. On the ray ~AC there is a unique point D such that z = [AD]. Now let E
be the point on ~AB such that DE is parallel to BC. Then we define

x
y

z def= [AE].

Using this we can define the product of two ratios x/y and z/w as

x
y
· z

w
=

x
yz

w
. (3.1)

Now we can define the sum of two ratios:

x
y

+
z
w

=
x+ z

wy
y

. (3.2)

A lengthy set of arguments now establishes the usual properties of addition and
multiplication. Let 1 denote the ratio x/x:

1 def=
x
x

(3.3)
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for any x ∈ S. Then

s+ t = t + s
s+(t +u) = (s+ t)+u

st = ts
s(tu) = (st)y

s(t +u) = su+ tu
x
y
·1 =

x
y

x
y
· y

x
= 1.

(3.4)

In proving these, the similar-triangles theorem is invaluable.
It is now possible to adjoin to the collection of all ratios an element 0 serving

as additive identity:
s+0 = s

and the ‘negative’ −s for every ratio s. This yields a field.
With the Dedekind axiom of completeness (or, equivalently, the Hilbert maxi-

mality axiom) included, the field produced is identified as the real number system
R.

We refer also to Hilbert [1] for alternative constructions of the algebraic oper-
ations. It is important to observe that it is possible to construct a division algebra
structure (a field in all apsects except that multiplication is not necessarily com-
mutative) by avoiding the axioms of congruence and continuity.

Thus, the ‘pure geometry’ constructed with axioms leads to an algebraic sys-
tem.

Here are some summary observations:

1. By fixing any one segment AB as a ‘unit’, we can define the length of a
segment CD to be the ratio [CD]

[AB] .

2. We can establish a ‘coordinate system’ for the plane. Fix two distinct non-
opposite rays ~OA and ~OB, with a common vertex O, and a point A on ~OA.
Take [OA] as the unit segment to measure lengths, and think of ~OA and ~OB
as the x-axis and y-axis, respectively. Then the set of all points in the plane
is put into one-to-one correspondence with R2, the set of all ordered pairs
of real numbers.
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3. The operations of addition, subtraction, multiplication and division can be
executed through ruler and compass constructions. Thus, we can start with
any given set of points, say two points, consider all constructible points and
segments; the ratios of the latter yield a field.

4. As noted earlier, the Eudoxus method of ratios is for ‘like magnitudes’, not
only segments. Considering all rectangles R and S in the plane, we can
define R:S by, for example, decomposing S into small enough congruent
squares and counting how many copies of that can be used to approximate
R. As in Item 1, fix a ‘unit’ segment AB. We can measure the area of the
rectangle S by the ratio S : U , where U is the unit square, having sides
congruent to AB. There is a relationship between ratios of segments and
areas: a rectangle with sides given by segments x and y has the same area as
a rectangle with sides z and w if and only if x/w = z/y.

5. The method of measuring areas in Item 4 can be extended to other polygo-
nal figures, and even to other regions. Archimedes showed that the area
enclosed by a circle is proportional to th square of the radius (πr2), by
constructed polygonal figures contained inside, and containing, the circu-
lar region. Further refinement of this idea leads the the theory of Riemann
integration as well as of Lebesgue and Haudorff measures.

6. The ideas used for measuring areas go over to volumes, but there are greater
difficulties if one insists on using the method of decomposing a polyhedron
into other ones in order to measure volume. However, the Lebesgue mea-
sure theory works perfectly well in any (finite) dimension.

Problem Set 5
In the following, using the Hilbert axioms where needed. Do not use any other
axioms.

1. Show that in the incidence geometry for 3 points there are no parallel lines.

2. Show that in the incidence geometry for 5 points there exist three lines l,
m, and n, such that l||m, and m||n, but l 6 ||n. (The notation a||b means ‘a is
parallel to b.)

3. A pencil is a set consisting of a line along with all lines parallel to this.
Count the number of pencils in the geometry with 4 points.
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4. Using the axioms of incidence show that if A is a point and l a line not
through A then there is a point B on the other side of l from A (i.e. l crosses
the segment of AB).

5. Prove the following results about line segments:

(i) If AB is a segment then there is no point C between A and B for which
AC is congruent to AB.

(ii) If AB>CD then CD is not greater than AB.

(iii) If AB>CD and CD>EF then AB>EF.
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