Homework 1

- 1. Let X be a non-empty set, and \mathcal{F} a σ -algebra of subsets of X. Assume that \mathcal{F} is finite, i.e. contains finitely many subsets of X. For each $x \in X$, let $\mathcal{F}_x = \{A \in \mathcal{F} | x \in A\}$, and $A_x = \cap \mathcal{F}_x$, the intersection of all the sets of \mathcal{F}_x . The set A_x will be called the atom of \mathcal{F} at the point x.
 - (i) Show that $A_x \in \mathcal{F}$.
 - (ii) If $x \neq y$ show that either $A_x = A_y$ or A_x is disjoint from A_y .
 - (iii) Show that each set in \mathcal{F} is a union of atoms.
 - (iv) Let \mathcal{A} be the set of all atoms. Show that there is a bijection from \mathcal{F} onto $2^{\mathcal{A}}$, where $2 = \{0, 1\}$.
 - (v) Show that there is no σ -algebra of subsets of X which contains a countable infinity of sets.[Hint: Do (i)-(iv) under the assumption that \mathcal{F} is countably infinite and arrive at a contradiction in (iv).]