
Chapter 12

The Hahn-Banach Theorem

In this chapter V is a real or complex vector space. The scalars will be taken
to be real until the very last result, the comlex-version of the Hahn-Banach
theorem.

12.1 The geometric setting

If A is a subset of V then the translate of A by a vector x ∈ V is the set

x + A = {x + a : a ∈ A}

If A and B are subsets of V and t any real number we use the notation

tA = {ta : a ∈ A} and A + B = {a + b : a ∈ A, b ∈ B}

If x, y ∈ V then the segment xy is the set of all points on the line running
from x to y:

xy = {tx + (1− t)y : 0 ≤ t ≤ 1}
A subset C of V is convex if for any two point P,Q ∈ C the segment PQ

is contained in C. Equivalently, C is convex if

λC + (1− λ)C ⊂ C

for every λ ∈ [0, 1].
It is clear that the translate of any convex set is convex, and indeed if C

is a convex set then so is a + tC for any a ∈ V and t ∈ R.

1



2 CHAPTER 12. THE HAHN-BANACH THEOREM

A subspace W of V has codimension 1 if there is a vector x ∈ V \W such
that W +Rx = V . This is equivalent to saying that the quotient space V/W
has dimension 1.

A hyperplane is a set of the form W +x where W is any codimension one
subspace and x is any vector.

Let W be a codimension 1 subspace of V , and v any vector outside W .
Then V can be expressed as the union of W with two open half-spaces:

V = W ∪ (W + {tv : t > 0}) ∪ (W − {tv : t > 0})

If x is any vector in V then the hyperplane W + x specifies two closed half-
spaces:

W + x + {tv : t ≥ 0} and W + x− {tv : t ≥ 0}
whose intersection is the hyperplane W + x and whose union is all of V . We
shall refer to these closed half-spaces as the two sides of the hyperplane.

We will prove the following geometrically intuitive fact:

• If C is a convex subset of V and p ∈ V a point outside C then there is
a hyperplane H such that C is a subset of one side of H and p lies on
the other side.

Though it is possible to prove this by “purely geometric” reasoning, it
will be both more convenient and more useful for our purposes to use an
algebraic approach.

It will be convenient to use the infinities ∞ and −∞. We require that
−∞ < ∞, and−∞ < x < ∞ for all real numbers x. The following arithmetic
operations with ∞ will be defined:

t +∞ = ∞+ t = ∞, k∞ = ∞k = ∞, 0∞ = ∞0 = 0

for all k > 0 and all t ∈ R ∪ {∞}.

12.2 The algebraic formulation

Let C be a non-empty convex subset of V . If C is non-empty then we can
translate C appropriately to ensure that 0 ∈ C. For this section, we assume
that the origin 0 belongs to C, i.e. 0 ∈ C. The “size” of a vector v ∈ V
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relative to C is the “smallest” non-negative number t ≥ 0 such that v lies in
the tC; more precisely, define

pC(v) = inf{t ≥ 0 : v ∈ tC}

where the infimum of the empty set is taken to be ∞. The function

pC : V → [0,∞]

is the Minkowski functional for the set C.
Note that

pC(0) = 0

but it might be the case that pC(v) is 0 for some non-zero v.

Proposition 1 Let C be a convex set containing 0. Then

(i) for any v ∈ V , the set {t ≥ 0 : v ∈ tC} is an interval, either equal to
[pC(v),∞) or (pC(v),∞)

(ii) pC(tv) = tpC(v) for every v ∈ V and t ≥ 0

(iii) if x, y ∈ V then

pC(x + y) ≤ pC(x) + pC(y)

This is the “triangle inequality.”

Proof. (i) Suppose s is a real number > pC(v). We want to show that v lies
in sC. The definition of pC(v) implies that there is some t ∈ [0, s) such that
v ∈ tC and so v = tx for some x ∈ C. Hence

v = s
[
t

s
x +

(
1− t

s

)
0
]
∈ sC

by convexity of C.
(ii) For any real s > 0 we have

{t ≥ 0 : sv ∈ tC} = {sr : r ≥ 0, and v ∈ rC} = s{r ≥ 0 : v ∈ rC}

which implies pC(sv) = spC(v). If s = 0 then this is clear (note that 0∞ = 0).
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(iii) If either pC(x) or pC(y) is ∞ then pC(x + y) is automatically ≤
pC(x) + pC(y). So suppose pC(x) < ∞ and pC(y) < ∞. Let t, s be real
numbers with t > pC(x) and s > pC(y). Then x ∈ tC and y ∈ sC and so

x + y ∈ tC + sC = (t + s)
(

t

t + s
C +

s

t + s
C

)
⊂ (t + s)C,

the last subset relation following from convexity of C. So pC(x + y) ≤ t + s.

Taking inf over t and then over s gives pC(x + y) ≤ pC(x) + pC(y). QED

The definition of the Minkowski functional pC implies that pC(x) ≤ 1 for
every x ∈ C, i.e.

C ⊂ {v ∈ V : pC(v) ≤ 1}
but C may not actually be equal to the “closed ball” {v ∈ V : pC(v) ≤ 1}.

There is a converse construction of a convex set from a functional p:

Proposition 2 Suppose p : V → [0,∞] is a map satisfying the following
conditions:

(a) p(0) = 0

(b) p(tx) = tp(x) for all x ∈ V and real t ≥ 0

(c) p(x + y) ≤ p(x) + p(y) for every x, y ∈ V

Let
C = {v ∈ V : p(v) ≤ 1}

Then C is a convex set containing 0 and the Minkowski functional of C is p,
i.e. pC = p.

Proof. It is readily checked that C is a convex set and contains 0.
Note that for any real t > 0 we have

x ∈ tC if and only if p(x) ≤ t

(However, the set {x ∈ V : p(x) = 0} may contain non-zero elements). So

{t ∈ R : t > 0, x ∈ tC} = {t : p(x) ≤ t} = [p(x),∞)

Taking the infimum gives

pC(x) = p(x) QED
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Next we formulate an algebraic equivalent of a hyperplane.
Let W be a codimension 1 subspace of V . Then there is a vector n 6∈ W

such that
V = W + Rn

This sum is a direct sum, for if x ∈ W ∩Rn then x = tn ∈ W for some real
number t, and so t must be zero for otherwise n = t−1x would be in W . So
the map

W ⊕Rn → V : (w, tn) 7→ w + tn

is a linear isomorphism. Thus the map

L : V → R : w + tn 7→ t

is linear and its kernel is exactly the subspace W .
Conversely, if f : V → R is a non-zero linear map then the kernel ker f

is a codimension 1 subspace of V , for ker f + Rn = V , where n is any vector
for which f(n) = 1. If f and g are two non-zero linear maps V → R, then
ker f = ker g if and only if f is a non-zero multiple of g.

A hyperplane in V is specified by the level set of a linear functional, i.e.
if H is a hyperplane then there is a non-zero linear functional L : V → R
and a real number t ∈ R such that L−1(t) = H.

Thus we have found algebraic equivalents for the geometric notions of
convex sets and hyperplanes.

12.3 The Hahn-Banach Theorem

Theorem 1 . Let V be a real vector space. Suppose p : V → [0,∞] is a
mapping satisfying the following conditions:

(a) p(0) = 0

(b) p(tx) = tp(x) for all x ∈ V and real t ≥ 0

(c) p(x + y) ≤ p(x) + p(y) for every x, y ∈ V

Assume, furthermore, that for each x ∈ V , either both p(x) and p(−x) are
∞ or that both are finite.

Let a ∈ V and α a real number with 0 ≤ α ≤ p(a). Then there is a linear
functional

f : V → R
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such that f(a) = α and
f(x) ≤ p(x)

for all x ∈ V .
More generally, if W is a subspace of V and g : W → R a linear mapping

satisfying g(x) ≤ p(x) for all x ∈ W then there is a linear mapping f : V →
R such that f ≤ p and f |W = g.

Proof Let us first show that the first statement follows from the second. Let
W = Ra and on W define g : W → R : ta 7→ tα. This is a linear map and
satisfies g(ta) = tα ≤ tp(a) = p(ta) when t ≥ 0 and g(ta) = tα ≤ 0 ≤ p(ta)
when t < 0.

To prove the existence of the extension f we can use a Zorn’s lemma
argument applied to all extensions of g which are bounded by p. If V is finite
dimensional then of course this reduces to an induction argument.

Thus it will suffice to show how to extend g to a subspace W + Rv,
where v is any vector outside W . Note that each element of W + Rv can be
expressed uniquely in the form w + tv with w ∈ W and t ∈ R.

If p is finite-valued then the proof proceeds smoothly, but taking into
account points where p is ∞ makes the argument complicated.

The linear map h : W + Rv → R : w + tv 7→ g(w) restricts to g on W . If
it so happens that p(x) = ∞ for all x ∈ W +Rv outside W then h ≤ p holds
automatically on W + Rv. So we may and shall assume that the particular
vector v outside W is chosen such that p(v) < ∞.

Define h : W + Rv → R by

h(w + tv) = g(w) + th(v)

for all w ∈ W and t ∈ R, where h(v) is a real number chosen to satisfy

h(w − sv) = g(w)− sh(v) ≤ p(w − sv) for all w ∈ W and real s ≥ 0
(12.1)

and

h(w + tv) = g(w) + th(v) ≤ p(w + tv) for all w ∈ W and real t ≥ 0
(12.2)

That such a choice of h(v) is possible will be shown below. Note that h(w) =
g(w) for all w ∈ W . The preceding inequalities together imply

h(x) ≤ p(x) holds for all x ∈ W + Rv.
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Thus h gives the desired extension of g.
To complete the proof, we need to show that a real number h(v) can be

chosen which is ≥ g(w)−p(w−sv)
s

and ≤ p(w+tv)−g(w)
t

for every w ∈ W , and all
real numbers s, t > 0. This means that we have to show that

sup
s>0,w∈W

g(w)− p(w − sv)

s
≤ inf

t>0,w∈W

p(w + tv)− g(w)

t
(12.3)

and that this inequality isn’t reading ∞ ≤∞ or −∞ ≤ −∞.
The inequality (12.3) is equivalent to

g(w)− p(w − sv)

s
≤ p(w + tv)− g(w)

t
(12.4)

holding for all w ∈ W and all s, t > 0. If either p(w − sv) or p(w + tv) is ∞
then (12.4) holds automatically. So suppose both p(w − sv) and p(w + tv)
are finite. Then, after rearranging terms, (12.4) is equivalent to

g((t + s)w) ≤ p(sw + stv) + p(tw − tsv)

and this is indeed true since

g((t + s)w) ≤ p((t + s)w) ≤ p(sw + stv) + p(tw − tsv)

The infinites don’t occur: for (i) the right side of (12.3) is seen, upon
taking w = 0, to be bounded above by p(v) which has been assumed to be
finite; and (ii) the left side of (12.3) is bounded below by −p(−v).

So we may choose a real number h(v) satisfying:

sup
s>0,w∈W

g(w)− p(w − sv)

s
≤ h(v) ≤ inf

t>0,w∈W

p(w + tv)− g(w)

t
(12.5)

This proves the existence of a linear function

h : W + Rv → R

which restricts to g on W and which satisfies h ≤ p on W + Rv.
The Zorn’s lemma procedure is now routine. Let X be the set of all pairs

(S, h)
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where S is a subspace of V with W ⊂ S and h : S → R is a linear mapping
satisfying h|W = g and h ≤ p|S. Define the relation < on X by

(S1, h1) < (S2, h2)

to mean S1 ⊂ S2 and h2|S1. This is a partial ordering with the property that
any totally ordered subset has a maximal element. Zorn’s lemma says then
that X has a maximal element (S∗, h∗). If S∗ were a proper subspace of V ,
i.e. S∗ 6= V , then the argument given before produces an extension of h to a
larger subspace S∗ + Rv, contradicting the maximality of (S∗, h∗). QED

There is a complex-scalars version of the Hahn-Banach theorem. Before
looking at this we make a quick observation:

Lemma 1 Let V be a complex vector space and suppose G : V → R is a real–
linear mapping. Then there is a unique complex–linear mapping f : V → C
such that G = Re(f); explicitly,

f(x) = G(x)− iG(ix)

for every x ∈ V .

Proof. Suppose h : V → C is a complex–linear mapping, and denote by u
its real part and by v its imaginary part:

h(x) = u(x) + iv(x)

for all x ∈ V . Using complex-linearity of h we have

u(ix) + iv(ix) = h(ix) = −v(x) + iu(x)

which yields v in terms of u:

v(x) = −u(ix)

Thus a complex–linear mapping h is uniquely determined by its real part.
We can reconstruct the full map from the real part:

h(x) = u(x) + iv(x) = u(x)− iu(ix)

Using this as guide, we define f : V → C by

f(x) = G(x)− iG(ix)

for all x ∈ V . Then f is clearly real–linear and we check readily that

f(ix) = G(ix)− iG(−x) = i [G(x)− iG(ix)] = if(x)

for every x ∈ V . So f is complex–linear. QED
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Theorem 2 Let V be a complex vector space. Suppose p : V → [0,∞] is a
mapping satisfying the following conditions:

(a) p(0) = 0

(b) p(αx) = |α|p(x) for all x ∈ V and all α ∈ C

(c) p(x + y) ≤ p(x) + p(y) for every x, y ∈ V

Let a ∈ V and s a complex number with 0 ≤ |s| ≤ p(a). Then there is a
complex–linear functional

f : V → C

such that f(a) = s and
|f(x)| ≤ p(x)

for all x ∈ V .
More generally, if W is a subspace of V and g : W → C a complex–linear

mapping satisfying g(x) ≤ p(x) for all x ∈ W then there is a complex–linear
mapping f : V → C such that |f(x)| ≤ p(x) for all x ∈ V and f |W = g.

Proof. Viewing V as a real vector space, the previous theorem gives us
a real–linear mapping G : V → R satisfying G|W = Re(g) and G ≤ p. Let
f : V → C be the complex–linear map whose real part is G. Then f |W = g.
Let x ∈ V . Then there is a complex number λ of modulus 1 for which

λf(x) = |f(x)|

So
|f(x)| = λf(x) = f(λx)

which implies that f(λx) is real and hence equal to G(λx). So

|f(x)| = G(λx) ≤ p(λx) = |λ|p(x) = p(x)

Thus f satisfies all the desired properties. QED


