Chapter 1

Sigma-Algebras

1.1 Definition

Consider a set X.

A σ-algebra \mathcal{F} of subsets of X is a collection \mathcal{F} of subsets of X satisfying the following conditions:

(a) $\emptyset \in \mathcal{F}$

(b) if $B \in \mathcal{F}$ then its complement B^c is also in \mathcal{F}

(c) if $B_1, B_2, ...$ is a countable collection of sets in \mathcal{F} then their union $\cup_{n=1}^{\infty} B_n$

Sometimes we will just write “sigma-algebra” instead of “sigma-algebra of subsets of X.”

There are two extreme examples of sigma-algebras:

• the collection $\{\emptyset, X\}$ is a sigma-algebra of subsets of X

• the set $\mathcal{P}(X)$ of all subsets of X is a sigma-algebra

Any sigma-algebra \mathcal{F} of subsets of X lies between these two extremes:

$$\{\emptyset, X\} \subset \mathcal{F} \subset \mathcal{P}(X)$$

An atom of \mathcal{F} is a set $A \in \mathcal{F}$ such that the only subsets of A which are also in \mathcal{F} are the empty set \emptyset and A itself.
A partition of X is a collection of disjoint subsets of X whose union is all of X. For simplicity, consider a partition consisting of a finite number of sets A_1, \ldots, A_N. Thus

$$A_i \cap A_j = \emptyset \quad \text{and} \quad A_1 \cup \cdots \cup A_N = X$$

Then the collection \mathcal{F} consisting of all unions of the sets A_j forms a σ-algebra.

Here are a few simple observations:

Proposition 1 Let \mathcal{F} be a sigma-algebra of subsets of X.

(i) $X \in \mathcal{F}$

(ii) If $A_1, \ldots, A_n \in \mathcal{F}$ then $A_1 \cup \cdots \cup A_n \in \mathcal{F}$

(iii) If $A_1, \ldots, A_n \in \mathcal{F}$ then $A_1 \cap \cdots \cap A_n \in \mathcal{F}$

(iv) If A_1, A_2, \ldots is a countable collection of sets in \mathcal{F} then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$

(v) If $A, B \in \mathcal{F}$ then $A - B \in \mathcal{F}$.

Proof Since $\emptyset \in \mathcal{F}$ and

$$X = \emptyset^c$$

it follows that $X \in \mathcal{F}$.

For (ii) we have

$$A_1 \cup \cdots \cup A_n = A_1 \cup \cdots \cup A_n \cup \emptyset \cup \emptyset \cup \cdots \in \mathcal{F}$$

Then (iii) follows by complementation:

$$A_1 \cap \cdots \cap A_n = (A_1^c \cup \cdots \cup A_n^c)^c$$

which is in \mathcal{F} because each $A_i^c \in \mathcal{F}$ and, by (i), \mathcal{F} is closed under finite unions. Similarly, (iv) follows by taking complements:

$$\bigcap_{n=1}^{\infty} A_n = [\bigcup_{n=1}^{\infty} A_n^c]^c$$

which belongs to \mathcal{F} because \mathcal{F} is closed under complements and countable unions.

Finally,

$$A - B = A \cap B^c$$

is in \mathcal{F}, because $A, B^c \in \mathcal{F}$. \[\text{QED} \]
1.2 Generated Sigma-algebra $\sigma(\mathcal{B})$

Let X be a set and \mathcal{B} a non-empty collection of subsets of X. The smallest σ–algebra containing all the sets of \mathcal{B} is denoted

$$\sigma(\mathcal{B})$$

and is called the sigma-algebra generated by the collection \mathcal{B}.

The term “smallest” here means that any sigma-algebra containing the sets of \mathcal{B} would have to contain all the sets of $\sigma(\mathcal{B})$ as well.

We need to check that such a smallest sigma-algebra exists. To this end observe first the following fact:

- If G is any non-empty collection of sigma-algebras of subsets of X then the intersection $\cap G$ is also a sigma-algebra of subsets of X. Here

$$\cap G = \{ A \subset X | A \in \mathcal{F} \text{ for every } \mathcal{F} \in G \}$$

consists of all sets A which belong to each sigma-algebra \mathcal{F} of G.

The verification of this statement is left as an (easy) exercise.

Given a collection \mathcal{B} of subsets of X, let $G_\mathcal{B}$ be the collection of all sigma-algebras containing all the sets of \mathcal{B}. Note that

$$\mathcal{P}(X) \in G_\mathcal{B}$$

and so $G_\mathcal{B}$ is not empty. Then

$$\cap G_\mathcal{B}$$

is a sigma-algebra, contains all the sets of \mathcal{B}, and is minimal among such sigma-algebras. Minimality here means that if \mathcal{F} is a sigma-algebra such that

$$\mathcal{B} \subset \mathcal{F}$$

then

$$\cap G_\mathcal{B} \subset \mathcal{F}$$

Thus $\cap G_\mathcal{B}$ is the sigma-algebra generated by \mathcal{B}:

$$\sigma(\mathcal{B}) = \cap G_\mathcal{B}$$

If \mathcal{B} is itself a sigma-algebra then of course $\sigma(\mathcal{B}) = \mathcal{B}$.
1.3 The Dynkin $\pi - \lambda$ Theorem

Let X be a set.

A collection P of subsets of X is a π-system if

$$(\pi) \ P \text{ is closed under finite intersections: if } A, B \in P \text{ then } A \cap B \in P$$

Note that by the usual induction argument, this condition implies that if $A_1, ..., A_n$ are a finite number of sets in P then their intersection $A_1 \cap \cdots \cap A_n$ is also in P.

A collection L of subsets of X is called a λ-system if

$$(\lambda_1) \ L \text{ contains the empty set } \emptyset$$

$$(\lambda_2) \ L \text{ is closed under complements: if } A \in L \text{ then } A^c \in L$$

$$(\lambda_3) \ L \text{ is closed under countable disjoint union: if } A_1, A_2, ... \in L \text{ and } A_i \cap A_j = \emptyset \text{ for every } i \neq j, \text{ then } \bigcup_{n=1}^{\infty} A_n \in L$$

Unlike a σ-algebra, the notions of π-system and λ-system are not in themselves fundamental. Their significance is contained in the following theorem which will be of great use later in proving uniqueness of measures:

Theorem 1 The Dynkin $\pi - \lambda$ theorem If P is a π-system and L a λ-system of subsets of X then

$$\sigma(P) \subset L,$$

i.e. the sigma-algebra generated by P is contained in L.

The proof of this result is long but can be broken up into simple little pieces.

As a first step, we have

Lemma 1 A λ-system is closed under proper differences, i.e. if $A, B \in L$, where L is a λ-system, and $A \subset B$ then the difference $B - A$ is also in L.

Proof. It is best to draw a little diagram illustrating the fact that $A \subset B$. From this you can see that $B - A$ is the complement of the set $A \cup B^c$, and the latter, being the disjoint union of $A \in L$ and $B^c \in L$, is in L; thus $B - A \in L$. More formally,

$$B - A = B \cap A^c = (B^c \cup A)^c$$
is in L because it is the complement of the set $B^c \cup A$ which is in L because it is the union of two disjoint sets A and B^c both of which are in L. \[QED\]

The next step is more substantial:

Lemma 2 A family which is both a π–system and a λ–system is a σ–algebra.

Proof. Let S be a collection of subsets of X which is both a π system and a λ system. To prove that S is a σ–algebra it will be enough to show that S is closed under countable unions (not just disjoint countable unions).

Let $A_1, A_2, ... \in S$. We have to show that their union $\bigcup_{n=1}^{\infty} A_n$ is in S. The trick (and it is a very useful trick) is to rewrite $\bigcup_{n=1}^{\infty} A_n$ as a countable union of disjoint sets:

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$$

where $B_1 = A_1$ and, for $n \geq 1$,

$$B_n = A_n - (A_1 \cup A_2 \cup \cdots \cup A_{n-1}) = A_n \cap A_1^c \cap A_2^c \cap \cdots \cap A_n^c \quad (1.1)$$

Thus B_n consists of all elements of A_n which do not appear in any “previous” A_i.

It is clear that the sets $B_1, B_2, ...$ are mutually disjoint. Since S is a λ–system, each complement A_i^c is in S, and since S is a π–system it follows then that B_n, which is a finite intersection of sets in S, is also in S. \[QED\]

As further preparation for the proof of the main theorem let us make one more observation, though its significance will only become clear later:

Lemma 3 Suppose L' is a λ–system of subsets of X. For any set $A \in L'$, let S_A be the set of all $B \subseteq X$ for which $A \cap B \in L'$. Then S_A is a λ–system.

Proof. First note that $\emptyset \in S_A$, because $A \cap \emptyset = \emptyset \in L'$.

It is also clear that S_A is closed under countable disjoint unions.

The last thing we have to show is that S_A is closed under complements. To this end, let $B \in S_A$ and observe that

$$A \cap B^c = A - B = A - (A \cap B)$$

The utility in writing the difference $A - B$ as the proper difference $A - (A \cap B)$ lies in the fact that $A \cap B \subseteq A$ and we can appeal to Lemma 1, along with the facts that A and $A \cap B$ are both in L', to conclude that $A - (A \cap B)$ is in L'. \[QED\]
Now we return to the proof of the main theorem. As before, P is a π-system and L a λ-system, with $P \subset L$. Our objective is to show that the sigma-algebra $\sigma(P)$ generated by P is contained in L. The strategy will be to produce a sigma-algebra which lies between P and L, i.e. contains P and is contained in L. This will imply that $\sigma(P)$, which is the smallest sigma-algebra containing P, is contained in L.

We look at $l(P)$, the intersection of all λ-systems containing P. Clearing $l(P)$ is itself also a λ-system and contains P, and is thus the minimal λ-system containing P. This means that any λ system which contains P must also contain $l(P)$.

The objective will be to show that the λ-system $l(P)$ is also a π-system. This would imply that $l(P)$ is a sigma-algebra. It contains P and, being the minimal λ-system containing P, is a subset of L. This would provide our sigma-algebra lying between P and L. So the last piece of the argument is:

Lemma 4 $l(P)$ is a π-system.

The proof of this uses a “bootstrap” argument which is often useful in measure theory. We start with a set $A \in P$ and show that $A \cap B$ is in $l(P)$ for every $B \in l(P)$; then we turn around and use this to show that if A and B are in $l(P)$ then so is their intersection.

Proof. Let $A \in P$, and let S_A be the set of all sets $B \subset X$ for which $A \cap B$ is in $l(P)$. We have already proven that S_A is a λ-system. Moreover, it is clear that every element of P is in S_A. Thus S_A is a λ-system with $P \subset S_A$. Therefore, $l(P) \subset S_A$. Which means that we have proven that for any $A \in P$ and any $B \in l(P)$ the intersection $A \cap B$ is in $l(P)$.

So now consider a $B \in l(P)$, and look at S_B. The preceding paragraph proves that $P \subset S_B$. On the other hand, by Lemma 3, S_B is a λ-system. Therefore, $l(P) \subset S_B$. Which means: for any $A \in l(P)$, the intersection $A \cap B$ is in $l(P)$. Thus, $l(P)$ is a π-system. \[\text{QED}\]

Putting all of the strands together, we have:

Proof of Dynkin’s theorem. We have proven that the λ-system $l(P)$ is also a π-system, and is therefore a σ-algebra. On the other hand, we also know that

$$P \subset l(P) \subset L$$
1.3. THE DYNKIN $\pi - \lambda$ THEOREM

because $l(P)$ is the intersection of all λ–systems containing P, and L is just one λ–system containing P. Thus we have produced a sigma-algebra $l(P)$ lying between P and L. Therefore,

\[P \subset \sigma(P) \subset l(P) \subset L \]

since $\sigma(P)$ is the intersection of all sigma-algebras which contain P. \blacksquare

There are several other similar results which can substitute for the Dynkin $\pi - \lambda$ theorem. The best known alternative is the monotone class lemma, but we shall not go into this.