
Chapter 5

Topological Vector Spaces

In this chapter V is a real or complex vector space.

5.1 Topological Vector Spaces

A complex vector space V equipped with a topology is a broad-sense topo-
logical vector space if the mappings

V × V → V : (x, y) 7→ x + y C× V → V : (λ, x) 7→ λx

are continuous. Observe that then, for each x ∈ V , the translation map

τx : V → V : y 7→ y + x

is continuous. Since τ−1
x = τ−x, it follows that τx is a homeomorphism.

The simple but important consequence of this is that V “looks the same
everywhere”, i.e. if a, b ∈ V then there is a homeomorphism, specifically
τb−a : V → V , which maps a to b. In particular, every neighborhood of
x ∈ V is a translate of a neighborhood of 0, i.e. of the form x + U for some
neighborhood U of 0. For this reason, we shall prove most of our results in
a neighborhood of 0.

By a topological vector space we shall mean a broad-sense topological
vector space which is Hausdorff, i.e. distinct points of disjoint neighborhoods.

Lemma 1 Let V be a broad-sense topological vector space, and W an open
set with 0 ∈ W . Then there is an open set U with 0 ∈ U , U = −U , and

U + U ⊂ W
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Proof. Since V × V → V : (x, y) 7→ x + y is continuous at 0, and W is a
neighborhood of 0, there is a neighborhood U1 of 0 such that

U1 + U1 ⊂ W

To get symmetry take
U = U1 ∩ (−U1)

Note that continuity of multiplication by scalars implies that x 7→ −x is a
homeomorphism and so −U1 is open when U1 is open. QED

Here is a simple but useful observation: if A is any subset of the broad-
sense topological vector space V and U an open subset of V then

the set A + U = {a + x : a ∈ A, x ∈ U} is open.

The reason is that A+U is the union of the translates a+U , with a running
over A, and each translate a + U is an open set.

If A and B are subsets of a vector space V then we shall write A−B to
mean the set of all a− b, with a running over a and b running over B. The
set difference of A and B, i.e. the set of all elements of A not in B, will be
denoted A \B.

The following observation shows that even without assuming Hausdorff-
ness one can still separate closed sets and points by open neighborhoods.

Lemma 2 Let V be a broad-sense topological vector space and W a neigh-
borhood of 0. Then there is a neighborhood U of 0 such that U ⊂ W . Equiv-
alently, if C is a closed subset if V and x a point of V outside C then there
are disjoint open sets U1 and U2 with x ∈ U1 and C ⊂ U2.

Proof. Let x be a point outside a closed set C ⊂ V . We we will produce an
open set U containing x with closure U disjoint from C; then U1 = U and
U2 = (U)c, the complement of the closure of U , are disjoint open sets with
x ∈ U1 and C ⊂ U2, as desired.

Since V looks the same everywhere, we may work with x = 0. Let W
be the complement of C. This is an open set with 0 ∈ W . By continuity
of addition V × V → V at 0, there is an open neighborhood U of 0 such
that U + U ⊂ W . This means that U + U is disjoint from C. Equivalently,
U is disjoint from C − U (for otherwise there would be an x ∈ U which
could be expressed as c− y with c ∈ C and y ∈ U , which would imply that
c = x + y ∈ U + U ⊂ W is in W ). Now the set −U is open because the map
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V → V : x 7→ (−1)x = −x is a homeomorphism, and hence so are all its
translates x− U . So the set

C − U = ∪c∈C(c− U)

is open, being the union of open sets.
Thus we have found an open set U containing 0 and an open set C − U ,

disjoint from U , with C ⊂ C − U . QED
An immediate consequence of this lemma shows how close a broad-sense

topological vector space is to being Hausdorff:

Proposition 1 Suppose that V is a broad-sense topological vector space and
suppose that there is a point x ∈ V such that the one-point set {x} is a closed
set. Then V is Hausdorff.

Proof. Suppose x ∈ V is such that {x} is a closed set. Since V looks the
same everywhere, it follows that each one-point set is closed in V . Let x and
y be distinct points of V . Since {y} is closed, the preceding result provides
disjoint open sets U1 and U2 with x ∈ U1 and {y} ⊂ U2, i.e. x and y have

disjoint open neighborhoods. QED

5.2 Continuous linear functionals

If X and Y are broad-sense topological vector spaces then linear mappings
X → Y which are continuous are of great interest. Because these spaces look
the same everywhere, continuity of linear mappings has interesting proper-
ties:

Proposition 2 Let X and Y be broad-sense topological vector spaces. Let
L : X → Y be a linear mapping. The following are equivalent:

(i) L is continuous at some point

(ii) L is continuous

(iii) L is uniformly continuous, i.e. if W is a neighborhood of 0 in Y then
there is a neighborhood U of 0 in X such that for any x1, x2 ∈ X, if
x1 − x2 ∈ U then L(x1)− L(x2) ∈ W .
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Proof. Let u ∈ X, and write v = Lu. The translations τu : X → X : x 7→
x + u and τ−v : Y → Y : y 7→ y − v are homeomorphisms, with τu(0) = u
and τ−v(v) = 0. For any x ∈ X:

(τ−v ◦ L ◦ τu)(x) = L(x + u)− v = Lx + Lu− v = Lx

which says that
τ−v ◦ L ◦ τu = L

Thus L is continuous at 0 if and only if it is continuous at u. Thus, for any
x, y ∈ X, the mapping L is continuous at x if and only if it is continuous at
y.

Equivalence of continuity and uniform continuity is an immediate conse-
quence of linearity of L. QED

A subset B of the topological vector space V is said to be bounded if for
any neighborhood U of 0 in V the set B lies in some dilated version of U ,
i.e. there is a real number t such that

B ⊂ tU

There is a close relationship between continuity and boundedness for lin-
ear mappings:

Proposition 3 Suppose L : X → Y is a linear mapping, where X and Y
are broad-sense topological vector spaces. Then:

(i) If L maps some open neighborhood of 0 in X to a bounded subset of Y
then L is continuous.

(ii) If L is continuous then it maps bounded sets to bounded sets.

Proof. Suppose U is an open neighborhood of 0 in X and L(U) is bounded.
Let W be any neighborhood of 0 in Y . We wish to show that there is an
open neighborhood of 0 in X which is mapped by L into a subset of W .
Since L(U) is bounded, there is a real number t such that L(U) ⊂ tW . If
t = 0 then L(U) = {0} ⊂ W . If t 6= 0 then t−1U is an open neighborhood of
0 in X and L(t−1U) ⊂ W . Thus, in either case, L maps a neighborhood of
0 in X into the given neighborhood W of 0 in Y , i.e. L is continuous at 0.
Therefore, L is continuous. This proves (i).

Now assume that L is continuous at 0. Let B be a bounded subset of X.
Our objective is to show that the image L(B) is a bounded subset of Y . Let



5.2. CONTINUOUS LINEAR FUNCTIONALS 5

W be any open neighborhood of 0 in Y . Since L is continuous at 0, and of
course L(0) = 0 since L is linear, there is an open neighborhood U of 0 in
X with L(U) ⊂ W . Since B is bounded there is a t ∈ R such that B ⊂ tU .
Then

L(B) ⊂ L(tU) = tL(U) ⊂ tW

Thus L(B) is bounded. This proves (ii). QED
From the definition of boundedness it is not apparent that the one-point

set {x} is bounded:

Proposition 4 Let X be a broad-sense topological vector space. Then:

(i) If U is any neighborhood of 0 then ∪t>0tU = X

(ii) every one-point set {x} in V is bounded.

Proof. For (i), we have to show that for any x ∈ X there is a t > 0 such that
t−1x belongs to the given neighborhood U of 0. Now the multiplication map

R×X → X : (λ, v) 7→ λv

is continuous, and so there is a neighboorhood N of 0 in R and a neighbor-
hood W of x such that sy ∈ U for every s ∈ N and y ∈ W . In particular,
picking a positive s in N and writing t for s−1 we have t−1x ∈ U , i.e. x ∈ tU .

(ii) follows directly from (i). QED


