Chapter 5

Topological Vector Spaces

In this chapter V is a real or complex vector space.

5.1 Topological Vector Spaces

A complex vector space V equipped with a topology is a *broad-sense topological vector space* if the mappings

$$V \times V \to V : (x, y) \mapsto x + y$$
 $\mathbf{C} \times V \to V : (\lambda, x) \mapsto \lambda x$

are continuous. Observe that then, for each $x \in V$, the translation map

$$\tau_x: V \to V: y \mapsto y + x$$

is continuous. Since $\tau_x^{-1} = \tau_{-x}$, it follows that τ_x is a homeomorphism. The simple but important consequence of this is that V "looks the same everywhere", i.e. if $a, b \in V$ then there is a homeomorphism, specifically $\tau_{b-a} : V \to V$, which maps a to b. In particular, every neighborhood of $x \in V$ is a translate of a neighborhood of 0, i.e. of the form x + U for some neighborhood U of 0. For this reason, we shall prove most of our results in a neighborhood of 0.

By a *topological vector space* we shall mean a broad-sense topological vector space which is *Hausdorff*, i.e. distinct points of disjoint neighborhoods.

Lemma 1 Let V be a broad-sense topological vector space, and W an open set with $0 \in W$. Then there is an open set U with $0 \in U$, U = -U, and

$$U+U\subset W$$

<u>Proof.</u> Since $V \times V \to V : (x, y) \mapsto x + y$ is continuous at 0, and W is a neighborhood of 0, there is a neighborhood U_1 of 0 such that

$$U_1 + U_1 \subset W$$

To get symmetry take

$$U = U_1 \cap (-U_1)$$

Note that continuity of multiplication by scalars implies that $x \mapsto -x$ is a homeomorphism and so $-U_1$ is open when U_1 is open. QED

Here is a simple but useful observation: if A is any subset of the broadsense topological vector space V and U an open subset of V then

the set
$$A + U = \{a + x : a \in A, x \in U\}$$
 is open.

The reason is that A + U is the union of the translates a + U, with a running over A, and each translate a + U is an open set.

If A and B are subsets of a vector space V then we shall write A - B to mean the set of all a - b, with a running over a and b running over B. The set difference of A and B, i.e. the set of all elements of A not in B, will be denoted $A \setminus B$.

The following observation shows that even without assuming Hausdorffness one can still separate closed sets and points by open neighborhoods.

Lemma 2 Let V be a broad-sense topological vector space and W a neighborhood of 0. Then there is a neighborhood U of 0 such that $\overline{U} \subset W$. Equivalently, if C is a closed subset if V and x a point of V outside C then there are disjoint open sets U_1 and U_2 with $x \in U_1$ and $C \subset U_2$.

<u>Proof</u>. Let x be a point outside a closed set $C \subset V$. We we will produce an open set U containing x with closure \overline{U} disjoint from C; then $U_1 = U$ and $U_2 = (\overline{U})^c$, the complement of the closure of U, are disjoint open sets with $x \in U_1$ and $C \subset U_2$, as desired.

Since V looks the same everywhere, we may work with x = 0. Let W be the complement of C. This is an open set with $0 \in W$. By continuity of addition $V \times V \to V$ at 0, there is an open neighborhood U of 0 such that $U + U \subset W$. This means that U + U is disjoint from C. Equivalently, U is disjoint from C - U (for otherwise there would be an $x \in U$ which could be expressed as c - y with $c \in C$ and $y \in U$, which would imply that $c = x + y \in U + U \subset W$ is in W). Now the set -U is open because the map $V \to V : x \mapsto (-1)x = -x$ is a homeomorphism, and hence so are all its translates x - U. So the set

$$C - U = \bigcup_{c \in C} (c - U)$$

is open, being the union of open sets.

Thus we have found an open set U containing 0 and an open set C - U, disjoint from U, with $C \subset C - U$. QED

An immediate consequence of this lemma shows how close a broad-sense topological vector space is to being Hausdorff:

Proposition 1 Suppose that V is a broad-sense topological vector space and suppose that there is a point $x \in V$ such that the one-point set $\{x\}$ is a closed set. Then V is Hausdorff.

<u>Proof.</u> Suppose $x \in V$ is such that $\{x\}$ is a closed set. Since V looks the same everywhere, it follows that *each one-point set is closed* in V. Let x and y be distinct points of V. Since $\{y\}$ is closed, the preceding result provides disjoint open sets U_1 and U_2 with $x \in U_1$ and $\{y\} \subset U_2$, i.e. x and y have disjoint open neighborhoods. QED

5.2 Continuous linear functionals

If X and Y are broad-sense topological vector spaces then linear mappings $X \to Y$ which are *continuous* are of great interest. Because these spaces look the same everywhere, continuity of linear mappings has interesting properties:

Proposition 2 Let X and Y be broad-sense topological vector spaces. Let $L: X \to Y$ be a linear mapping. The following are equivalent:

- (i) L is continuous at some point
- (ii) L is continuous
- (iii) L is uniformly continuous, i.e. if W is a neighborhood of 0 in Y then there is a neighborhood U of 0 in X such that for any $x_1, x_2 \in X$, if $x_1 - x_2 \in U$ then $L(x_1) - L(x_2) \in W$.

<u>Proof.</u> Let $u \in X$, and write v = Lu. The translations $\tau_u : X \to X : x \mapsto x + u$ and $\tau_{-v} : Y \to Y : y \mapsto y - v$ are homeomorphisms, with $\tau_u(0) = u$ and $\tau_{-v}(v) = 0$. For any $x \in X$:

$$(\tau_{-v} \circ L \circ \tau_u)(x) = L(x+u) - v = Lx + Lu - v = Lx$$

which says that

$$\tau_{-v} \circ L \circ \tau_u = L$$

Thus L is continuous at 0 if and only if it is continuous at u. Thus, for any $x, y \in X$, the mapping L is continuous at x if and only if it is continuous at y.

Equivalence of continuity and uniform continuity is an immediate consequence of linearity of L. QED

A subset B of the topological vector space V is said to be *bounded* if for any neighborhood U of 0 in V the set B lies in some dilated version of U, i.e. there is a real number t such that

 $B \subset tU$

There is a close relationship between continuity and boundedness for linear mappings:

Proposition 3 Suppose $L : X \to Y$ is a linear mapping, where X and Y are broad-sense topological vector spaces. Then:

- (i) If L maps some open neighborhood of 0 in X to a bounded subset of Y then L is continuous.
- (ii) If L is continuous then it maps bounded sets to bounded sets.

<u>Proof.</u> Suppose U is an open neighborhood of 0 in X and L(U) is bounded. Let W be any neighborhood of 0 in Y. We wish to show that there is an open neighborhood of 0 in X which is mapped by L into a subset of W. Since L(U) is bounded, there is a real number t such that $L(U) \subset tW$. If t = 0 then $L(U) = \{0\} \subset W$. If $t \neq 0$ then $t^{-1}U$ is an open neighborhood of 0 in X and $L(t^{-1}U) \subset W$. Thus, in either case, L maps a neighborhood of 0 in X into the given neighborhood W of 0 in Y, i.e. L is continuous at 0. Therefore, L is continuous. This proves (i).

Now assume that L is continuous at 0. Let B be a bounded subset of X. Our objective is to show that the image L(B) is a bounded subset of Y. Let W be any open neighborhood of 0 in Y. Since L is continuous at 0, and of course L(0) = 0 since L is linear, there is an open neighborhood U of 0 in X with $L(U) \subset W$. Since B is bounded there is a $t \in \mathbf{R}$ such that $B \subset tU$. Then

$$L(B) \subset L(tU) = tL(U) \subset tW$$

Thus L(B) is bounded. This proves (ii). QED

From the definition of boundedness it is not apparent that the one-point set $\{x\}$ is bounded:

Proposition 4 Let X be a broad-sense topological vector space. Then:

- (i) If U is any neighborhood of 0 then $\cup_{t>0} tU = X$
- (ii) every one-point set $\{x\}$ in V is bounded.

<u>Proof.</u> For (i), we have to show that for any $x \in X$ there is a t > 0 such that $t^{-1}x$ belongs to the given neighborhood U of 0. Now the multiplication map

$$\mathbf{R} \times X \to X : (\lambda, v) \mapsto \lambda v$$

is continuous, and so there is a neighborhood N of 0 in **R** and a neighborhood W of x such that $sy \in U$ for every $s \in N$ and $y \in W$. In particular, picking a positive s in N and writing t for s^{-1} we have $t^{-1}x \in U$, i.e. $x \in tU$.

(ii) follows directly from (i). QED