
Math 7330: Functional Analysis Fall 2002
Notes A. Sengupta

In the following H is a complex Hilbert space.

1 Orthogonal Projections

We shall study orthogonal projections onto closed subspaces of H. In summary,
we show:

• If X is any closed subspace of H then there is a bounded linear operator
P : H → H such that P = X and each element x can be written unqiuely
as a sum a + b, with a ∈ Im(P ) and b ∈ ker(P ); explicitly, a = Px and
b = x − Px. The point Px is the point on X closest to x. The operator
P satisfies P 2 = P and is self-adjoint.

• Conversely, if P1 is any bounded linear operator H → H for which P 2
1 = P1

then the following are equivalent: (i) P1 is an orthogonal projection onto
a closed subspace, (ii) P1 is self-adjoint, (iii) P1 is normal, i.e. commutes
with its adjoint P ∗1 .

1.1 Point in a convex set closest to a given point

Let C be a closed convex subset of H. We will prove that

there is a unique point in C which is closest to the origin.

This will use convexity of C, that C is closed, the fact that the topology on
H arises from an inner-product, and that this topology makes H a complete
metric space.

Let
r = d(0, C) = inf{|x| : x ∈ C}

The function

f : H → R : x 7→ d(x,C) = inf{|x− y| : y ∈ C}

is continuous because it satisfies

|f(x)− f(y)| ≤ d(x, y) (1)

This inequality can be verified as follows: for any for any a ∈ C the triangle
inequality implies

f(x) ≤ d(x, a) ≤ d(x, y) + d(y, a)

and so taking inf over a ∈ C gives f(x) ≤ d(x, y) + f(y); this implies f(x) −
f(y) ≤ d(x, y), and then we can interchange x and y.
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Since C is closed, there is a sequence of points xn ∈ C with |xn| → r as
n → ∞. We will show that the sequence (xn) is necessarily Cauchy. This uses
the parallelogram property:

|xn − xm|2 + |xn + xm|2 = 2(|xn|2 + |xm|2)

which gives

|xn − xm|2 = 2(|xn|2 + |xm|2)− 4
∣∣xn + xm

2

∣∣2
Since C is convex, the midpoint xn+xm

2 lies in C. Since r is the closes distance
of C from 0, it follows that |xn+xm

2 | ≥ r and so

|xn − xm|2 ≤ 2(|xn|2 + |xm|2)− 4r2

If we let n, m → ∞ the the right side approaches 2(r2 + r2) − 4r2 = 0, and
so the sequence (xn)n is Cauchy. Since H is complete, this sequence has a
limit, say limn→∞ xn = a. The continuity of the function f above implies that
d(a,C) = limn→∞ d(xn, C) = r. Thus a is a point in C closest to the origin. If
b is also another such point then the parallelogram property gives:

|a− b|2 ≤ 2(|a|2 + |b|2)− 4r2 = 2(r2 + r2)− 4r2 = 0

which shows that the point a is unique.
Now with C as above consider any point x ∈ H. The translate x − C =

{x− c : c ∈ C} is also a closed convex set and so there is a unique point c in C
for which |x− c| is smallest. Thus

Proposition 1 If C is any non-empty closed convex subset of a Hilbert space
H then there is a unique point in C closest to any given point x of H.

1.2 The orthogonal projection on a closed subspace

Now let X be a closed subspace of H (‘subspace’ here means a linear subspace).
So X is a closed convex set.

Let x be any point of H. Then there is a unique point in X closest to x.
Denote this point by Px.

We shall prove that x− Px is orthogonal to X.
Consider any y ∈ X. We will show that (x−Px, y) is 0. If y is 0 this is clear;

so lets normalize and assume |y| = 1. Note that everything takes place now in
the three-dimensional space spanned by x, Px, y and basically we are saying
that x−Px is orthogonal to the subspace spanned by x and y. Let α ∈ C; then

|x− (Px + y)|2 = |(x− Px)− y|2 = |x− Px|2 − 2Re[α(x− Px, y)] + |α|2|y|2

If we make the choice α = (y, x− Px) the right side becomes

|x− Px|2 − 2|(y, x− Px)|2 + |(y, x− Px)|2|y|2 = |x− Px|2 − |(y, x− Px)|2
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Thus the distance of x from the point Px + y ∈ X would be less than |x− Px|
unless (y, x− Px) is 0. This completes the argument.

Finally we show that P : H → X : x 7→ Px is a linear map.
Let us write

Qx = x− Px

for all x ∈ X. We have shown above that Qx is orthogonal to X. Let x, y ∈ X
and α, β ∈ C. Then we have

P (αx + βy) + Q(αx + βy) = αx + βy

= α(Px + Qx) + β(Py + Qy)
= (αPx + βPy) + (αQx + βQy)

Moving the P terms to the left and the Q terms to the right we get

P (αx + βy)− (αPx + βPy) = (αQx + βQy)−Q(αx + βy)

The left side is in X and the right side is orthogonal to X. Therefore both sides
must be 0. This implies that P and Q are both linear.

In summary:

Theorem 2 . Let X be a closed subspace of a Hilbert space H. For each x ∈ H
there is a unique point Px in X closes to x. The mapping P : H → H : x 7→ Px
is linear. For any x ∈ X there is a unique a ∈ X and b ∈ X⊥ such that x = a+b.
In fact, a = Px and b = x− Px. Thus

H = X ⊕X⊥

The only thing we didn’t check is the uniqueness of the decomposition. But
if x = a + b with a ∈ X and b ∈ X⊥ then writing x = Px + Qx we have
a−Px = Qx− b, the left side being in X and the right side in X⊥ we conclude
that a = Px and b = Qx.

The map P is called the orthogonal projection onto the closed subspace X.
Note that for any x ∈ H we have

|x|2 = |Px|2 + |Qx|2

which implies, in particular, that P is a bounded linear map.

Proposition 3 Let X be a closed subspace of X and j : X → H : x 7→ x the
inclusion map. The the adjoint j∗ : H → X is given by j∗x = Px for every
x ∈ X.

Proof. For any a ∈ H and x ∈ X:

(j∗a, x) = (a, jx)
= (a, x)
= (Pa, x)

Since Pa, j∗a are in X and the above holds for all x ∈ X it follows that Pa = j∗a

for all a ∈ H. QED
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1.3 Projection operators

Let V be a vector space. A map A : V → V is a projection operator if it is linear
and satisfies

A2 = A

In this subsection we shall assume that A : V → V is a projection operator.
Observe that I −A is also then a projection operator:

(I −A)2 = I − 2A + A2 = I −A

If a point y lies in the image of A then it is of the form Ax, for some x ∈ V ,
and so then Ay = A(Ax) = A2x = Ax = y; thus

Ay = y if and only if y is in the image of A (2)

Put another way,
Im(A) = ker(I −A) (3)

Applying this result to the projection operator I −A gives

ker(A) = Im(I −A) (4)

Any vector x ∈ V can be expressed as

x = Ax + (I −A)x

where the first term Ax is clearly in the image of A while the second term is in
ker(A). Furthermore, this decomposition is unique since any element y which is
in both ker(A) and Im(A) must be 0 because y ∈ Im(A) implies y = Ay while
y ∈ ker(A) means Ay = 0.

Thus V splits into a direct sum of the subspace Im(A) and ker(A):

V = Im(A)⊕ ker(A) (5)

1.4 Characterization of orthogonal projections

We have shown in class that P is self-adjoint and satisfies P 2 = P .
We have also seen in class that for a bounded linear map P : H → H for

which P 2 = P the following are equivalent: (a) P is normal, (b) P is self-adjoint,
(c) P is an orthogonal projection.

First let us prove a couple of useful facts:

Lemma 4 Let H be a complex vector space with a Hermitian inner-product
(·, ·). Let A : H → H be a bounded linear map. Then:

(i) If (Ax, x) = 0 for all x ∈ H then A = 0

(ii) the operator A is normal, i.e. satisfies AA∗ = A∗A, if and only if |Ax| =
|A∗x| for every x ∈ H. In particular, if A is normal then ker(A) =
ker(A∗).

4



Proof. (i) Suppose (Ax, x) = 0 for all x ∈ H. Replacing x by x + y we get

(Ax, y) + (Ay, x) = 0 (6)

In this replace y by iy to get

−i(Ax, y) + i(Ay, x) = 0

which says
(Ax, y)− (Ay, x) = 0 (7)

Combining (6) and (7) we get

(Ax, y) = 0

for all x, y ∈ H. Taking y = Ax shows that |Ax|2 = 0 for all x ∈ H, so Ax = 0
for all x ∈ H, i.e. A = 0.

The proof of (ii) now follows from:(
(AA∗ −A∗A)x, x

)
= (A∗x,A∗x)− (Ax, Ax) = |A∗x|2 − |Ax|2

which shows that |Ax| = |A∗x| for all x ∈ H if and only if
(
(AA∗ − A∗A)x, x

)
is 0 for all x ∈ H. QED

Here is a useful characterization of orthogonal projections:

Proposition 5 Let P : H → H be a bounded linear map on the complex Hilbert
space H such that P 2 = P . Then the following are equivalent:

(i) P is self-adjoint

(ii) P is normal

(iii) x− Px is orthogonal to Px for every x ∈ H.

If these conditions hold then P is the orthogonal projection onto its image.

Proof. If P is self-adjoint then of course P is normal.
Now suppose P is a normal operator which is a projection, i.e. satisfies

P 2 = P . Then:

Im(P )⊥ = ker(P ∗) true for any bounded linear operator
= ker(P ) because P is normal
= Im(I − P ) because P is a projection, by (4)

In particular, (I − P )x ∈ Im(I − P ) is orthogonal to Px ∈ Im(P ).
So now suppose P : H → H is a projection operator for which x − Px is

orthgonal to Px for all x ∈ H. Then(
x, (P − P ∗P )x

)
=

(
(I − P )x, Px

)
= 0
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for all x ∈ H. Since H is a complex Hilbert space, it follows that

P = P ∗P

Taking the adjoint of this equation gives

P ∗ = P ∗P

So
P = P ∗

Thus P is self-adjoint.
Assume P satisfies the conditions above. Then Im(P ) = ker(I−P ) is a closed

subspace. For every x ∈ H we have the decomposition x = Px + (x−Px) with
Px ∈ Im(P ) and x − Px is orthogonal to Im(P ), as shown above. This means
that P is the orthogonal projection onto the closed subspace Im(P ). QED
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