Math 7330: Functional Analysis Notes Fall 2002

A. Sengupta

In the following H is a complex Hilbert space.

1 Orthogonal Projections

We shall study orthogonal projections onto closed subspaces of H. In summary, we show:

- If X is any closed subspace of H then there is a bounded linear operator $P: H \to H$ such that P = X and each element x can be written unquely as a sum a + b, with $a \in \text{Im}(P)$ and $b \in ker(P)$; explicitly, a = Px and b = x Px. The point Px is the point on X closest to x. The operator P satisfies $P^2 = P$ and is self-adjoint.
- Conversely, if P_1 is any bounded linear operator $H \to H$ for which $P_1^2 = P_1$ then the following are equivalent: (i) P_1 is an orthogonal projection onto a closed subspace, (ii) P_1 is self-adjoint, (iii) P_1 is normal, i.e. commutes with its adjoint P_1^* .

1.1 Point in a convex set closest to a given point

Let C be a closed convex subset of H. We will prove that

there is a unique point in C which is closest to the origin.

This will use convexity of C, that C is closed, the fact that the topology on H arises from an inner-product, and that this topology makes H a complete metric space.

Let

$$r = d(0,C) = \inf\{|x| : x \in C\}$$

The function

$$f: H \to \mathbf{R}: x \mapsto d(x, C) = \inf\{|x - y| : y \in C\}$$

is continuous because it satisfies

$$|f(x) - f(y)| \le d(x, y) \tag{1}$$

This inequality can be verified as follows: for any for any $a \in C$ the triangle inequality implies

$$f(x) \le d(x,a) \le d(x,y) + d(y,a)$$

and so taking inf over $a \in C$ gives $f(x) \leq d(x, y) + f(y)$; this implies $f(x) - f(y) \leq d(x, y)$, and then we can interchange x and y.

Since C is closed, there is a sequence of points $x_n \in C$ with $|x_n| \to r$ as $n \to \infty$. We will show that the sequence (x_n) is necessarily Cauchy. This uses the parallelogram property:

$$|x_n - x_m|^2 + |x_n + x_m|^2 = 2(|x_n|^2 + |x_m|^2)$$

which gives

$$|x_n - x_m|^2 = 2(|x_n|^2 + |x_m|^2) - 4\left|\frac{x_n + x_m}{2}\right|^2$$

Since C is convex, the midpoint $\frac{x_n+x_m}{2}$ lies in C. Since r is the closes distance of C from 0, it follows that $|\frac{x_n+x_m}{2}| \ge r$ and so

$$|x_n - x_m|^2 \le 2(|x_n|^2 + |x_m|^2) - 4r^2$$

If we let $n, m \to \infty$ the the right side approaches $2(r^2 + r^2) - 4r^2 = 0$, and so the sequence $(x_n)_n$ is Cauchy. Since H is complete, this sequence has a limit, say $\lim_{n\to\infty} x_n = a$. The continuity of the function f above implies that $d(a, C) = \lim_{n\to\infty} d(x_n, C) = r$. Thus a is a point in C closest to the origin. If b is also another such point then the parallelogram property gives:

$$|a-b|^2 \le 2(|a|^2+|b|^2) - 4r^2 = 2(r^2+r^2) - 4r^2 = 0$$

which shows that the point a is *unique*.

Now with C as above consider any point $x \in H$. The translate $x - C = \{x - c : c \in C\}$ is also a closed convex set and so there is a unique point c in C for which |x - c| is smallest. Thus

Proposition 1 If C is any non-empty closed convex subset of a Hilbert space H then there is a unique point in C closest to any given point x of H.

1.2 The orthogonal projection on a closed subspace

Now let X be a *closed subspace* of H ('subspace' here means a linear subspace). So X is a closed convex set.

Let x be any point of H. Then there is a unique point in X closest to x. Denote this point by Px.

We shall prove that x - Px is orthogonal to X.

Consider any $y \in X$. We will show that (x - Px, y) is 0. If y is 0 this is clear; so lets normalize and assume |y| = 1. Note that everything takes place now in the three-dimensional space spanned by x, Px, y and basically we are saying that x - Px is orthogonal to the subspace spanned by x and y. Let $\alpha \in \mathbf{C}$; then

$$|x - (Px + y)|^{2} = |(x - Px) - y|^{2} = |x - Px|^{2} - 2\operatorname{Re}[\alpha(x - Px, y)] + |\alpha|^{2}|y|^{2}$$

If we make the choice $\alpha = (y, x - Px)$ the right side becomes

$$|x - Px|^{2} - 2|(y, x - Px)|^{2} + |(y, x - Px)|^{2}|y|^{2} = |x - Px|^{2} - |(y, x - Px)|^{2}$$

Thus the distance of x from the point $Px + y \in X$ would be less than |x - Px| unless (y, x - Px) is 0. This completes the argument.

Finally we show that $P: H \to X: x \mapsto Px$ is a linear map.

Let us write

$$Qx = x - Px$$

for all $x \in X$. We have shown above that Qx is orthogonal to X. Let $x, y \in X$ and $\alpha, \beta \in \mathbf{C}$. Then we have

$$P(\alpha x + \beta y) + Q(\alpha x + \beta y) = \alpha x + \beta y$$

= $\alpha (Px + Qx) + \beta (Py + Qy)$
= $(\alpha Px + \beta Py) + (\alpha Qx + \beta Qy)$

Moving the P terms to the left and the Q terms to the right we get

$$P(\alpha x + \beta y) - (\alpha Px + \beta Py) = (\alpha Qx + \beta Qy) - Q(\alpha x + \beta y)$$

The left side is in X and the right side is orthogonal to X. Therefore both sides must be 0. This implies that P and Q are both *linear*.

In summary:

Theorem 2 . Let X be a closed subspace of a Hilbert space H. For each $x \in H$ there is a unique point Px in X closes to x. The mapping $P: H \to H: x \mapsto Px$ is linear. For any $x \in X$ there is a unique $a \in X$ and $b \in X^{\perp}$ such that x = a+b. In fact, a = Px and b = x - Px. Thus

$$H = X \oplus X^{\perp}$$

The only thing we didn't check is the uniqueness of the decomposition. But if x = a + b with $a \in X$ and $b \in X^{\perp}$ then writing x = Px + Qx we have a - Px = Qx - b, the left side being in X and the right side in X^{\perp} we conclude that a = Px and b = Qx.

The map P is called the *orthogonal projection* onto the closed subspace X. Note that for any $x \in H$ we have

$$|x|^2 = |Px|^2 + |Qx|^2$$

which implies, in particular, that P is a bounded linear map.

Proposition 3 Let X be a closed subspace of X and $j : X \to H : x \mapsto x$ the inclusion map. The the adjoint $j^* : H \to X$ is given by $j^*x = Px$ for every $x \in X$.

<u>Proof</u>. For any $a \in H$ and $x \in X$:

$$(j^*a, x) = (a, jx)$$

= (a, x)
= (Pa, x)

Since Pa, j^*a are in X and the above holds for all $x \in X$ it follows that $Pa = j^*a$ for all $a \in H$. QED

1.3 Projection operators

Let V be a vector space. A map $A:V\to V$ is a $projection\ operator$ if it is linear and satisfies

 $A^2 = A$

In this subsection we shall assume that $A: V \to V$ is a projection operator. Observe that I - A is also then a projection operator:

$$(I - A)^2 = I - 2A + A^2 = I - A$$

If a point y lies in the image of A then it is of the form Ax, for some $x \in V$, and so then $Ay = A(Ax) = A^2x = Ax = y$; thus

$$Ay = y$$
 if and only if y is in the image of A (2)

Put another way,

$$Im(A) = \ker(I - A) \tag{3}$$

Applying this result to the projection operator I - A gives

$$\ker(A) = \operatorname{Im}(I - A) \tag{4}$$

Any vector $x \in V$ can be expressed as

$$x = Ax + (I - A)x$$

where the first term Ax is clearly in the image of A while the second term is in $\ker(A)$. Furthermore, this decomposition is unique since any element y which is in both $\ker(A)$ and $\operatorname{Im}(A)$ must be 0 because $y \in \operatorname{Im}(A)$ implies y = Ay while $y \in \ker(A)$ means Ay = 0.

Thus V splits into a direct sum of the subspace Im(A) and ker(A):

$$V = \operatorname{Im}(A) \oplus \ker(A) \tag{5}$$

1.4 Characterization of orthogonal projections

We have shown in class that P is self-adjoint and satisfies $P^2 = P$.

We have also seen in class that for a bounded linear map $P: H \to H$ for which $P^2 = P$ the following are equivalent: (a) P is normal, (b) P is self-adjoint, (c) P is an orthogonal projection.

First let us prove a couple of useful facts:

Lemma 4 Let H be a complex vector space with a Hermitian inner-product (\cdot, \cdot) . Let $A : H \to H$ be a bounded linear map. Then:

- (i) If (Ax, x) = 0 for all $x \in H$ then A = 0
- (ii) the operator A is normal, i.e. satisfies AA* = A*A, if and only if |Ax| = |A*x| for every x ∈ H. In particular, if A is normal then ker(A) = ker(A*).

<u>Proof.</u> (i) Suppose (Ax, x) = 0 for all $x \in H$. Replacing x by x + y we get

$$(Ax, y) + (Ay, x) = 0 (6)$$

In this replace y by iy to get

$$-i(Ax, y) + i(Ay, x) = 0$$

which says

$$(Ax, y) - (Ay, x) = 0 (7)$$

Combining (6) and (7) we get

$$(Ax, y) = 0$$

for all $x, y \in H$. Taking y = Ax shows that $|Ax|^2 = 0$ for all $x \in H$, so Ax = 0 for all $x \in H$, i.e. A = 0.

The proof of (ii) now follows from:

$$\left((AA^* - A^*A)x, x \right) = (A^*x, A^*x) - (Ax, Ax) = |A^*x|^2 - |Ax|^2$$

which shows that $|Ax| = |A^*x|$ for all $x \in H$ if and only if $((AA^* - A^*A)x, x)$ is 0 for all $x \in H$. QED

Here is a useful characterization of orthogonal projections:

Proposition 5 Let $P : H \to H$ be a bounded linear map on the complex Hilbert space H such that $P^2 = P$. Then the following are equivalent:

- (i) P is self-adjoint
- (ii) P is normal
- (iii) x Px is orthogonal to Px for every $x \in H$.

If these conditions hold then P is the orthogonal projection onto its image.

Proof. If P is self-adjoint then of course P is normal.

Now suppose P is a normal operator which is a projection, i.e. satisfies $P^2 = P$. Then:

 $Im(P)^{\perp} = ker(P^*)$ true for any bounded linear operator = ker(P)because P is normal = Im(I - P)because P is a projection, by (4)

In particular, $(I - P)x \in \text{Im}(I - P)$ is orthogonal to $Px \in \text{Im}(P)$.

So now suppose $P: H \to H$ is a projection operator for which x - Px is orthogal to Px for all $x \in H$. Then

$$(x, (P - P^*P)x) = ((I - P)x, Px) = 0$$

for all $x \in H$. Since H is a *complex* Hilbert space, it follows that

$$P = P^*P$$

Taking the adjoint of this equation gives

$$P^* = P^*P$$

 So

$$P = P^*$$

Thus P is self-adjoint.

Assume P satisfies the conditions above. Then $\operatorname{Im}(P) = \ker(I-P)$ is a *closed* subspace. For every $x \in H$ we have the decomposition x = Px + (x - Px) with $Px \in \operatorname{Im}(P)$ and x - Px is orthogonal to $\operatorname{Im}(P)$, as shown above. This means that P is the orthogonal projection onto the closed subspace $\operatorname{Im}(P)$. QED