Math 7330: Functional Analysis Fall 2002
Notes A. Sengupta
In the following H is a complex Hilbert space.

1 Orthogonal Projections

We shall study orthogonal projections onto closed subspaces of H. In summary,
we show:

e If X is any closed subspace of H then there is a bounded linear operator
P : H — H such that P = X and each element x can be written unqgiuely
as a sum a + b, with @ € Im(P) and b € ker(P); explicitly, a = Pz and
b =x — Px. The point Pz is the point on X closest to x. The operator
P satisfies P? = P and is self-adjoint.

e Conversely, if P; is any bounded linear operator H — H for which P = P,
then the following are equivalent: (i) P; is an orthogonal projection onto
a closed subspace, (i) P; is self-adjoint, (iii) P; is normal, i.e. commutes
with its adjoint Py.

1.1 Point in a convex set closest to a given point

Let C be a closed convex subset of H. We will prove that
there is a unique point in C' which is closest to the origin.

This will use convexity of C, that C is closed, the fact that the topology on
H arises from an inner-product, and that this topology makes H a complete
metric space.
Let
r=4d(0,C) = inf{|z| : x € C}

The function
f:H—-R:z—dxzC)=inf{lz—y|l:yeC}

is continuous because it satisfies

[f(z) = f(y)| < d(z,y) (1)

This inequality can be verified as follows: for any for any a € C the triangle
inequality implies
fx) < d(z,a) < d(2,y) + d(y, a)

and so taking inf over a € C gives f(x) < d(z,y) + f(y); this implies f(x) —
f(y) <d(z,y), and then we can interchange = and y.



Since C' is closed, there is a sequence of points z, € C with |x,| — r as
n — oo. We will show that the sequence (x,,) is necessarily Cauchy. This uses
the parallelogram property:

1Zn — T + [Tn + T2 = 2(|20]? + |20 [?)

which gives
Ty + T ’2

2

Since C' is convex, the midpoint I"*% lies in C'. Since r is the closes distance
of C from 0, it follows that % > r and so

|z — xm|2 = 2(|xn|2 + |xm|2) - 4’

|20 — 2 |* < 2(J2nl? + |2m[?) — 472

If we let n,m — oo the the right side approaches 2(r? + r?) — 472 = 0, and
so the sequence (x,), is Cauchy. Since H is complete, this sequence has a
limit, say lim, .o, £, = a. The continuity of the function f above implies that
d(a,C) = lim,— o d(zy,C) = 7. Thus a is a point in C closest to the origin. If
b is also another such point then the parallelogram property gives:

la —b* < 2(|la]* + |b]*) —4r® =2(r* +7%) — 412 =0

which shows that the point a is unique.

Now with C as above consider any point x € H. The translate z — C =
{x —c:ce C} is also a closed convex set and so there is a unique point ¢ in C
for which |z — ¢| is smallest. Thus

Proposition 1 If C is any non-empty closed convex subset of a Hilbert space
H then there is a unique point in C' closest to any given point x of H.

1.2 The orthogonal projection on a closed subspace

Now let X be a closed subspace of H (‘subspace’ here means a linear subspace).
So X is a closed convex set.

Let x be any point of H. Then there is a unique point in X closest to z.
Denote this point by Px.

We shall prove that x — Px is orthogonal to X.

Consider any y € X. We will show that (z — Pz, y) is 0. If y is 0 this is clear;
so lets normalize and assume |y| = 1. Note that everything takes place now in
the three-dimensional space spanned by z, Pz, y and basically we are saying
that © — Pz is orthogonal to the subspace spanned by x and y. Let a € C; then

| — (P +y)* = |(z — Pz) — y|* = |z — Pa|* — 2Re[a(z — Pz,y)] + |af*|y[
If we make the choice a = (y,z — Pz) the right side becomes

[« — Paf? = 2(y,x — Pa)[> + |(y,& — Pa) Pyl = |2 — Paf> — |(y,2 — Pa)P?



Thus the distance of = from the point Px +y € X would be less than |z — Pz|
unless (y,x — Px) is 0. This completes the argument.
Finally we show that P: H — X : z +— Pz is a linear map.
Let us write
Qr=x— Px

for all x € X. We have shown above that Qz is orthogonal to X. Let x,y € X
and «, 8 € C. Then we have

Plax + By) + Qlax + By) = ax+ Py
= a(Pz+ Q)+ B(Py + Qy)
= (aPz+ BPy) + (aQz + fQy)
Moving the P terms to the left and the @ terms to the right we get

Plaz + By) — (aPz + BPy) = (aQx + BQy) — Q(azx + By)

The left side is in X and the right side is orthogonal to X. Therefore both sides
must be 0. This implies that P and @ are both linear.
In summary:

Theorem 2 . Let X be a closed subspace of a Hilbert space H. For each x € H
there is a unique point Pz in X closes to . The mapping P: H — H : © — Px
is linear. For anyx € X there is a unique a € X andb € X+ such that v = a-+b.
In fact, a = Px and b =x — Px. Thus

H=XaoXx*t

The only thing we didn’t check is the uniqueness of the decomposition. But
ifx =a+bwitha € X and b € X' then writing + = Pz + Qx we have
a — Pz = Qx — b, the left side being in X and the right side in X we conclude

that ¢ = Pz and b = Qx.
The map P is called the orthogonal projection onto the closed subspace X.
Note that for any x € H we have

j2f* = |Pa|* +|Qz/?
which implies, in particular, that P is a bounded linear map.

Proposition 3 Let X be a closed subspace of X and j : X — H : x — x the
inclusion map. The the adjoint j7* : H — X 1is given by j*x = Px for every
reX.

Proof. For any a € H and z € X:
(Ga,z) = (a,jz)

= (a,2)
= (Pa,z)

Since Pa, j*a are in X and the above holds for all z € X it follows that Pa = j*a

forall a € H.



1.3 Projection operators

Let V be a vector space. A map A : V — V is a projection operator if it is linear
and satisfies
A2 =A

In this subsection we shall assume that A : V' — V is a projection operator.
Observe that I — A is also then a projection operator:

(I-A?*=T-2A+A*=T-A

If a point y lies in the image of A then it is of the form Az, for some z € V,
and so then Ay = A(Az) = A%z = Az = y; thus
Ay =y if and only if y is in the image of A (2)

Put another way,

Im(A) = ker(I — A) (3)
Applying this result to the projection operator I — A gives

ker(A) = Im(I — A) (4)
Any vector z € V can be expressed as

r=Az+ (I —-A)x

where the first term Az is clearly in the image of A while the second term is in
ker(A). Furthermore, this decomposition is unique since any element y which is
in both ker(A4) and Im(A) must be 0 because y € Im(A) implies y = Ay while
y € ker(A) means Ay = 0.

Thus V splits into a direct sum of the subspace Im(A4) and ker(A):

V =Im(A) @ ker(A4) (5)

1.4 Characterization of orthogonal projections

We have shown in class that P is self-adjoint and satisfies P? = P.

We have also seen in class that for a bounded linear map P : H — H for
which P? = P the following are equivalent: (a) P is normal, (b) P is self-adjoint,
(c) P is an orthogonal projection.

First let us prove a couple of useful facts:

Lemma 4 Let H be a complex vector space with a Hermitian inner-product
(+,-). Let A: H— H be a bounded linear map. Then:

(i) If (Az,z) =0 for allx € H then A=0

(ii) the operator A is normal, i.e. satisfies AA* = A*A, if and only if |Ax| =
|A*x| for every x € H. In particular, if A is normal then ker(A) =
ker(A*).



Proof. (i) Suppose (Az,x) =0 for all x € H. Replacing = by = + y we get
(Az,y) + (Ay,z) = 0 (6)
In this replace y by iy to get
—i(Az,y) + i(Ay,z) =0

which says

Combining (6) and (7) we get
(Az,y) =0

for all x,y € H. Taking y = Az shows that |Az|?> =0 for all x € H, so Ax =0
forallx € H,ie. A=0.
The proof of (ii) now follows from:

((AA* — A*A)z,z) = (A*z, A*2) — (Az, Az) = |A"2|* — |Az|?

which shows that |Az| = |A*z| for all z € H if and only if ((AA* — A*A)z, z)

isOforalleH.

Here is a useful characterization of orthogonal projections:

Proposition 5 Let P: H — H be a bounded linear map on the complex Hilbert
space H such that P?2 = P. Then the following are equivalent:

(i) P is self-adjoint
(ii) P is normal
(iii) & — Px is orthogonal to Px for every x € H.

If these conditions hold then P is the orthogonal projection onto its image.

Proof. If P is self-adjoint then of course P is normal.
Now suppose P is a normal operator which is a projection, i.e. satisfies
P? = P. Then:

Im(P)* = ker(P*) true for any bounded linear operator

ker(P) because P is normal

= Im(I - P) because P is a projection, by (4)

In particular, (I — P)x € Im(I — P) is orthogonal to Px € Im(P).
So now suppose P : H — H is a projection operator for which z — Pz is
orthgonal to Pz for all x € H. Then

(z,(P—P*P)z) = ((I — P)z,Pz) =0



for all x € H. Since H is a complex Hilbert space, it follows that
P=PpPP
Taking the adjoint of this equation gives
P*=P*P
So
pP=p"

Thus P is self-adjoint.

Assume P satisfies the conditions above. Then Im(P) = ker(I—P) is a closed
subspace. For every x € H we have the decomposition x = Px + (z — Px) with
Pz € Im(P) and = — Pz is orthogonal to Im(P), as shown above. This means

that P is the orthogonal projection onto the closed subspace Im(P).



