Math 7330: Functional Analysis

Fall 2002

 $\underline{\text{Homework } 1}$

A. Sengupta

In the following, V is a finite-dimensional complex vector space with a Hermitian inner-product (\cdot,\cdot) , and $A:V\to V$ a linear map.

- 1. Let $e_1, ..., e_n$ be an orthonormal basis of V.
 - (i) Show that the matrix for A relative to the basis $e_1, ..., e_n$ has $A_{ij} = (Ae_j, e_i)$ as the entry at the *i*-th row and *j*-th column.

(ii) Show that for the matrix of A^* ,

$$(A^*)_{ij} = \overline{A}_{ji}$$

2. Suppose that A is a normal operator, i.e. it commutes with its adjoint:

$$AA^* = A^*A$$

Show that

$$|Ax| = |A^*x|$$

for all $x \in V$.

- 3. Show that for a complex number $\lambda \in \mathbf{C}$ the following are equivalent:
 - $A \lambda I$ is not invertible
 - there is a non-zero vector $x \in V$ for which $Ax = \lambda x$
 - $\det(A \lambda I) = 0$

If $k \in \mathbb{C}$ and non-zero $y \in V$ satisfy Ay = ky then k is an eigenvalue of A and y is an eigenvector corresponding to the eigenvalue k. In general, we shall use the notation

$$M_k = \{v \in V : Av = kv\} = \ker(A - kI)$$

The set of all $\lambda \in \mathbf{C}$ for which $A - \lambda I$ is not invertible is called the *spectrum* of A.

4. Determine the spectrum of A if its matrix $[A_{ij}]$ is diagonal

$$\begin{bmatrix} d_1 & 0 & \cdots & 0 & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{bmatrix}$$

5.	that the $n = \dim$	spectrum V .	$\sigma(A)$	of A is	non-em	npty and	l contair	ns at m	ost n el	lements,

6. Suppose A is normal. Show that

$$Ax = \lambda x \quad \Leftrightarrow \quad A^*x = \overline{\lambda}x$$

7. Suppose A is normal. Show that M_{λ} and M_{μ} are orthogonal if $\lambda \neq \mu$. (Hint: Let $x \in M_{\lambda}$ and $y \in M_{\mu}$, and consider $(x, Ay) = (A^*x, y)$.)

8. Suppose $X \subset V$ a subspace such that $A(X) \subset X$. Show that

$$A^*(X^\perp) \subset X^\perp$$

where X^{\perp} is the orthogonal complement of X in V.

9. Suppose A is normal, and let X be the subspace spanned by all the subspaces M_{λ} :

$$X = \sum_{\lambda \in \sigma(A)} M_{\lambda}$$

Show that X = V. [Hint: Use several Problems 8,5 and 6.]

10. **Spectral Theorem** in finite dimensions: Suppose that the operator $A: V \to V$ is normal. Let $P_{\lambda}: V \to V$ be the *orthogonal projection* onto M_{λ} . This is the linear operator which satisfies $P_{\lambda}x = x$ if $x \in M_{\lambda}$ and $P_{\lambda}x = 0$ if $x \in M_{\lambda}^{\perp}$. Show that

$$A = \sum_{\lambda \in \mathbf{C}} \lambda P_{\lambda}$$

Let $e_1, ..., e_n$ be any orthonormal basis of V made up of bases of the subspaces M_{λ} (for $\lambda \in \mathbb{C}$). Show that the matrix of A relative to such a basis is diagonal. Conversely, show that if there is an orthonormal basis relative to which the matrix of a certain operator is diagonal then that operator is normal.