Math 7330:	Functional Analysis	Fall 2002	
Homework 2			A. Sengupta

In the following, H is a complex Hilbert space with a Hermitian inner-product (\cdot, \cdot) . All operators are operators on H.

1. Suppose P and Q are orthogonal projections. (i) Show that if PQ = QP then PQ is an orthogonal projection.

(ii) Show that, conversely, if PQ is an orthogonal projection then PQ = QP.

- 2. Let P and Q be orthogonal projections.
- (i) Show that if PQ = P then PQ = QP and $Im(P) \subset Im(Q)$. Show that the same conclusions hold if QP = P.

(ii) Show that if $\operatorname{Im}(P) \subset \operatorname{Im}(Q)$ then QP = P.

3. Suppose A, B, C are mutually orthogonal closed subspaces of H, and let P_A, P_B, P_C be the orthogonal projections onto A, B, C, respectively. Let X = A+B and Y = C+B, and let P_X and P_Y be the orthogonal projections onto X and Y, respectively.
(i) Show that P_XP_Y = P_YP_X.

(ii) Express P_X and P_Y in terms of P_A , P_B and P_C .

(iii) Express P_A , P_B and P_C in terms of P_X and P_Y .

4. Suppose P and Q are orthogonal projections which commute, i.e. PQ = QP. The goal is to show that then the geometric situation of the preceding problem holds, i.e. there are mutually orthogonal closes subspaces A, B, C such that P is the orthogonal projection onto A + B and Q is the orthogonal projection onto C + B. Let

$$R = PQ, \qquad S = P(I - Q), \qquad T = Q(I - P)$$

Observe that

$$P = S + R$$
 and $Q = T + R$

(i) Show that R, S, and T are orthogonal projections. [Note that if A is an orthogonal projection then so is I - A, and B commutes with A then it also commutes with I - A.]

(ii) Show that RS = SR = 0, RT = TR = 0, and ST = TS = 0.

(iii) Show that Im(R), Im(S), and Im(T) are mutually orthogonal. Thus R, S, T are orthogonal projections onto mutually orthogonal closed subspaces.

- 5. Let $x_1, x_2, x_3, ...$ be a sequence of mutually orthogonal vectors in the Hilbert space H. Let $S_n = x_1 + \cdots + x_n$. Let $S'_n = |x_1|^2 + \cdots + |x_n|^2$. (i) Show that for any integers $m \ge n$,

$$|S_m - S_n|^2 = S'_m - S'_n$$

(ii) Show that the series $\sum_{n=1}^{\infty} x_n$ to converge in H if and only if the series $\sum_n |x_n|^2$ converges.

Spectral Measures

In the following, Ω is a non-empty set, \mathcal{B} is a σ -algebra of subsets of Ω . A spectral measure is a mapping E from \mathcal{B} to the set of all orthogonal projections on H satisfying the following conditions:

- (i) $E(\emptyset) = 0$
- (ii) $E(\Omega) = I$
- (iii) if $A_1, A_2, \ldots \in \mathcal{B}$ are mutually disjoint and their union is the set A then

$$(E(A)x,y) = \sum_{n=1} \left(E(A_n)x, y \right) \tag{1}$$

for every $x, y \in H$

(iv) if $A, B \in \mathcal{B}$ then

$$E(A)E(B) = E(B)E(A) = E(A \cap B)$$

For $x, y \in H$ define $E_{x,y} : \mathcal{B} \to \mathbf{C}$ by

$$E_{x,y}(A) \stackrel{\text{def}}{=} (E(A)x, y)$$

Conditions (i) and (iii) say that $E_{x,y}$ is a complex measure. If x = y we have

$$E_{x,x}(A) = (E(A)x, x) = |E(A)x|^2 \ge 0$$
(2)

where we used the fact if P is any orthogonal projection then any $x \in H$ decomposes as Px + x - Px with Px being perpendicular to x - Px and so

$$(Px, x) = (Px, Px + x - Px) = (Px, Px) + 0 = |Px|^2$$
(3)

The non-negativity in (2) shows that

 $E_{x,x}$ is an (ordinary) measure on (Ω, \mathcal{B})

Recall that on the complex Hilbert space H any bounded linear operator A is determined uniquely by the "diagonal values" (Ax, x). It follows that if E and E' are spectral measures for which $E_{x,x} = E'_{x,x}$ for all $x \in H$ then E = E'.

- 6. Let *E* be a spectral measure on (Ω, \mathcal{B}) with values being orthogonal projections in the complex Hilbert space *H*. By a "measurable subset of Ω " we mean, of course, a subset of Ω which belongs to the σ -algebra \mathcal{B} .
 - (i) Show that if A and B are disjoint measurable subsets of Ω then E(A) and E(B) are projections onto orthogonal subspaces, i.e. $\operatorname{Im}(E(A))$ and $\operatorname{Im}(E(B))$ are orthogonal to each other.

(ii) Let $A_1, A_2, ...$ be a sequence of disjoint measurable subsets of Ω (i.e. each A_j is in \mathcal{B}). Let $A = \bigcup_{j=1}^{\infty} A_j$. Show that for every $x \in H$ the series

$$\sum_{n=1}^{\infty} E(A_n)x$$

is convergent in H.

(iii) With notation and hypotheses as before, show that

$$E(A)x = \sum_{n=1}^{\infty} E(A_n)x$$

for every $x \in H$. [Hint: Take inner-product with any $y \in H$]

(iv) Suppose $A_1, A_2, ...$ are as above but assume now also that infinitely many of the projections $E(A_n)$ are non-zero. Prove that the series $\sum_{n=1}^{\infty} E(A_n)$ does not converge in operator norm. [Hint: Let $s_n = E(A_1) + \cdots + E(A_n)$, and suppose $s = \lim_{n \to \infty} s_n$ exists. Then $\lim_{n \to \infty} (s_n - s_{n-1}) = s - s = 0$. What is $s_n - s_{n-1}$ and what is the norm of a non-zero projection?]

<u>Measure Theory and Integration</u>

We recall a few facts from measure theory and integration. In the following, Ω is a non-empty set, \mathcal{B} is a σ -algebra of subsets of Ω , and μ a measure on \mathcal{B} .

- (a) A function $f: \Omega \to \mathbf{C}$ is said to be *measurable* if $f^{-1}(U)$ is in \mathcal{B} for every open set $U \subset \mathbf{C}$. Write f = u + iv, where u and v are real-valued. Then f is measurable if and only if u and v are measurable. Write u as $u^+ u^-$, where $u^+ = \max\{u, 0\}$ and $u^- = -\min\{u, 0\}$. Then u is measurable if and only if u^+ and u^- are measurable.
- (b) A function $s : \Omega \to \mathbf{C}$ is a simple function if it has only finitely many values, i.e. $s(\Omega)$ is a finite subset of Ω . If $c_1, ..., c_n$ are all the distinct values of s and $A_i = s^{-1}(c_i)$ the set on which s has value c_i , then

$$s = \sum_{j=1}^{n} c_j \mathbf{1}_{A_j}$$

Here 1_B denotes the *indicator function* of B, equal to 1 on B and 0 outside B. The simple function s is measurable if and only if each of the sets A_i is measurable.

- (c) Let $F: \Omega \to [0, \infty]$ be a non-negative function. For each positive integer n, divide $[0, \infty]$ into intervals of length $1/2^n$, i.e. into the intervals $[(k-1)2^{-n}, k2^{-n})$. Define a function s_n which is equal to the lower value $(k-1)2^{-n}$ on the set $A_{nk} = F^{-1}[(k-1)2^{-n}, k2^{-n})$, for $k = 1, ..., n2^n$, but cut off the value of s_n at the maximum value n at all points in the set A'_n where F > n. The construction ensures that $0 \leq s_n \leq F$, $s_n \leq n$, and that $|F s_n| \leq 2^{-n}$ at all points where $F \leq n$. Thus if the function F is bounded then $|F s_n| < 2^{-n}$ holds for all n large enough and so, in particular, $s_n(x) \to F(x)$ uniformly in $x \in \Omega$. If F is measurable so is each of the sets A_{nk} and A'_n and so the function s_n is then also measurable. Now consider a function $f: \Omega \to \mathbb{C}$. Writing f = u + iv, with u and v real-valued, and then splitting $u = u^+ u^-$ and $v = v^+ v^-$, it follows that we can construct a sequence of simple functions s_n such that $|s_n(x)| \leq |f(x)|$ for all $x \in \Omega$, $s_n(x) \to f(x)$ uniformly if f is bounded, and each s_n is measurable if f is measurable.
- (d) If s is a measurable simple function and $c_1, ..., c_n$ are all the distinct values of s then

$$\int s \, d\mu \stackrel{\text{def}}{=} \sum_{j=1}^n c_j \mu([s=c_j])$$

where $[s = c_j]$ is the set $s^{-1}(c_j)$ of all points where s has value c_j .

(e) If s and t are measurable simple functions then considering the number of ways s+t can take a particular value, it follows that $\int (s+t) d\mu = \int s d\mu + \int t d\mu$. Also, $\int \alpha s d\mu = \alpha \int s d\mu$ for every $\alpha \in \mathbf{C}$. The additivity property has the following consequence: if $s = a_1 1_{A_1} + \cdots + a_m 1_{A_m}$, where A_1, \ldots, A_m are measurable but may overlap then $\int s d\mu = \sum_{j=1}^m a_j \mu(A_j)$ still holds.

- 7. Let E be a spectral measure on (Ω, \mathcal{B}) with values being orthogonal projections in the complex Hilbert space H. Let \mathcal{N} be the set of all sets $A \in \mathcal{B}$ for which E(A) = 0. Thus \mathcal{N} consists of sets of E-measure 0.
 - (i) Show that if A and B are measurable sets and $A \subset B$ and E(B) = 0 then E(A) = 0.

(ii) Show that \mathcal{N} is closed under countable unions.

(ii) Let $f: \Omega \to \mathbf{C}$ be a measurable function. Show that there is a largest open subset U of \mathbf{C} such that $f^{-1}(U)$ is in \mathcal{N} .

(iii) The essential range σ_f of f is the closed set given by the complement of the open set U of (ii). The essential supremum of f, denoted $|f|_{\infty}$, is the radius of the smallest closed ball (center 0) containing σ_f . Thus

$$|f|_{\infty} = \inf\{r \ge 0 : E[|f| > r] = 0\}$$

Suppose f and g are measurable functions which are essentially bounded, i.e. $|f|_{\infty}$ and $|g|_{\infty}$ are finite. Then show

$$|f+g|_{\infty} \le |f|_{\infty} + |g|_{\infty}$$

and for every complex number α :

$$|\alpha f|_{\infty} = |\alpha| |f|_{\infty}$$

8. Let E be a spectral measure on (Ω, \mathcal{B}) with values being orthogonal projections in the complex Hilbert space H.

(i) Let $A_1, ..., A_n, B_1, ..., B_m \in \mathcal{B}$ and $a_1, ..., a_n, b_1, ..., b_m \in \mathbb{C}$, and suppose

$$\sum_{j=1}^{n} a_j 1_{A_j} = \sum_{j=m}^{n} b_j 1_{B_j}$$

Show that

$$\sum_{j=1}^{n} a_j E(A_j) = \sum_{j=m}^{n} b_j E(B_j)$$
(4)

[Hint: Let $s = \sum_{j=1}^{n} a_j 1_{A_j} = \sum_{j=m}^{n} b_j 1_{B_j}$, and consider the operators $T = \sum_{j=1}^{n} a_j E(A_j)$ and $R = \sum_{j=m}^{n} b_j E(B_j)$. Take any $x \in H$ and show that both (Tx, x) and (Rx, x) equal $\int s \, dE_{x,x}$.] The common value in (4) will be denote

$$\int s \, dE$$

(ii) Check that for any measurable simple function s on Ω :

$$\left(\left(\int s\,dE\right)x,x\right) = \int s\,dE_{x,x}$$

holds for every $x \in H$.

(iii) Let s, t be measurable simple functions on Ω and $\alpha, \beta \in \mathbf{C}$. Show that

$$\int (\alpha s + \beta t) \, dE = \alpha \int s \, dE + \beta \int t \, dE$$

(iv) Let s, t be measurable simple functions on Ω . Show that

$$\left(\int s\,dE\right)\left(\int t\,dE\right) = \int st\,dE$$

[Hint: Write out s and t in the usual forms $\sum_j a_j 1_{A_j}$ and $\sum_k b_j 1_{B_k}$ and then work out st and write out both sides of the above equation.]

(v) Let s be a measurable simple function on Ω . Show that

$$\left(\int s\,dE\right)^* = \int \overline{s}\,dE$$

(vi) Let s be a measurable simple function on Ω . Show that

$$\left| \int s \, dE \right| \le |s|_{\infty}$$

[Hint: Let T be the operator $\int s \, dE$. Then $|T| = \sup_{|x| \leq 1} |Tx|$. Now $|Tx|^2 = (Tx, Tx) = (T^*Tx, x)$. Show that (T^*Tx, x) equals $\int |s|^2 \, dE_{x,x}$. Next use $|s| \leq |s|_{\infty}$ almost-everywhere for the measure E_x .]

(vii) Let $f: \Omega \to \mathbf{C}$ be a bounded measurable function. We know that there exists a sequence of measurable simple functions s_n on Ω such that $s_n(x) \to f(x)$, as $n \to \infty$, uniformly for $x \in \Omega$ and $|s_n(x)| \leq |f(x)|$ for all $x \in \Omega$. Part (vi) above shows then that the sequence of operators $\int s_n dE$ is Cauchy in operator norm and therefore converges in operator norm to a limit which we denote by $\int f dE$:

$$\int f \, dE \stackrel{\text{def}}{=} \lim_{n \to \infty} \int s_n \, dE$$

where the limit is in operator norm. Now suppose s'_n is another sequence of measurable functions on Ω which converge to f in the sense that $|s'_n - f|_{\infty} \to 0$ as $n \to \infty$. Show that $\int s'_n dE$ also converges to $\int f dE$ as $n \to \infty$. [Hint: Use (vi) for $s_n - s'_n$.] Thus the definition of $\int f dE$ does not depend on the choice of the sequence s_n converging to f.

(viii) Show that

$$\left(\left(\int f \, dE\right)x, x\right) = \int f \, dE_{x,x}$$

for every bounded measurable function f and every $x \in H$.

(ix) Prove the analogs of (iii)-(vi) for bounded measurable functions.

9. Let (Ω, B, μ) be a measure space. For any measurable functions f and g on Ω let M_fg denote the function fg. If f is bounded and g ∈ L²(μ) then clearly M_fg is also in L²(μ) and indeed M_f : L²(μ) → L²(μ) is a bounded linear operator with norm |M_f| ≤ |f|_∞ (in all practical cases |M_f| is actually equal to |f|_∞). It is clear that f → M_f is linear and, moreover, M_{fh} = M_fM_h.
(i) Show that M^{*} = M_f (Hints Let a h ∈ L²(μ) and much out (M = h) =)

(i) Show that $M_f^* = M_{\overline{f}}$. (Hint: Let $g, h \in L^2(\mu)$ and work out $(M_f g, h)_{L^2}$.)

(ii) Show that for any measurable set A, the operator M_{1_A} is an orthogonal projection operator.

(iii) Show that $E: A \mapsto M_{1_A}$ is a spectral measure. [Hint: The only non-trivial thing to check is that for any $g \in L^2(\mu)$ and disjoint measurable sets A_n whose union is A we have $\sum_n E(A_n)g = E(A)g$ with the sum \sum_n being L^2 -convergent. To this end, let $G_n = \sum_{j=1}^n E(A_j)g$ and look at what happens to $\int |G_n - 1_A g|^2 d\mu$ a $n \to \infty$.]

(iv) For any measurable simple function s show that $\int s \, dE = M_s$, where E is as in (iii).

(v) For any bounded measurable function f show that $\int f dE = M_f$, where E is as in (iii). [Hint: Choose measurable simple s_n converging uniformly to f, and with $|s_n(x)| \leq |f(x)|$ for all $x \in \Omega$. Consider the norms of $\int f dE - \int s_n dE$ and $M_f - M_{s_n}$.]

10. Let *E* be a spectral measure for a measurable space (Ω, \mathcal{B}) with values being orthogonal projection operators in a complex Hilbert space *H*. Let $f : \Omega \to \mathbb{C}$ be a measurable function not necessarily bounded). Let

$$D_f = \{x \in H : \int |f|^2 \, dE_{x,x} < \infty\}$$

(i) For any $x, y \in H$ and any measurable set A, show that

$$E_{x+y,x+y}(A) \le 2E_{x,x}(A) + 2E_{y,y}(A)$$

[Hint: First recall that $E_{v,v}(B) = |E(B)v|^2$. Next, for any vectors $a, b \in H$ we have the Cauchy-Schwarz inequality $|(a,b)| \leq |a||b|$ which leads to the inequality $|a+b|^2 \leq |a|^2 + |b|^2 + 2|a||b|$. This, together with $(|a| - |b|)^2 \geq 0$ implies that $|a+b|^2 \leq 2|a|^2 + 2|b|^2$.]

(ii) Show that D_f is a *linear* subspace of H, i.e. if $x, y \in D_f$ then $x + y \in D_f$ and $ax \in D_f$ for every $a \in \mathbf{C}$.

(iii) Let $A_n = \{p \in \Omega : |f(p)| \le n\}$. Consider any vector x in the range of the projection $E(A_n)$. Show that

$$E_{x,x}(A) = E_{x,x}(A \cap A_n)$$

for every $A \in \mathcal{B}$. [Hint: What is $E(A_n)x$?]

(iv) With notation as above, show that

$$\int s \, dE_{x,x} = \int_{A_n} s \, dE_{x,x}$$

for every measurable simple function s on Ω .

(v) With notation as above, show that

$$\int |f|^2 \, dE_{x,x} = \int_{A_n} |f|^2 \, dE_{x,x}$$

Note that the right side is $\leq n^2 E_{x,x}(\Omega) = n^2 |x|^2 < \infty$, and so $x \in D_f$.