In the following, H is a complex Hilbert space with a Hermitian inner-product (\cdot, \cdot). All operators are operators on H.

1. Suppose P and Q are orthogonal projections.
 (i) Show that if $PQ = QP$ then PQ is an orthogonal projection.
 (ii) Show that, conversely, if PQ is an orthogonal projection then $PQ = QP$.

2. Let P and Q be orthogonal projections.

(i) Show that if $PQ = P$ then $PQ = QP$ and $\text{Im}(P) \subset \text{Im}(Q)$. Show that the same conclusions hold if $QP = P$.

(ii) Show that if $\text{Im}(P) \subset \text{Im}(Q)$ then $QP = P$.

3. Suppose A, B, C are mutually orthogonal closed subspaces of H, and let P_A, P_B, P_C be the orthogonal projections onto A, B, C, respectively. Let $X = A + B$ and $Y = C + B$, and let P_X and P_Y be the orthogonal projections onto X and Y, respectively.

(i) Show that $P_X P_Y = P_Y P_X$.

(ii) Express P_X and P_Y in terms of P_A, P_B and P_C.

(iii) Express P_A, P_B and P_C in terms of P_X and P_Y.
4. Suppose P and Q are orthogonal projections which commute, i.e. $PQ = QP$. The goal is to show that then the geometric situation of the preceding problem holds, i.e. there are mutually orthogonal closes subspaces A, B, C such that P is the orthogonal projection onto $A + B$ and Q is the orthogonal projection onto $C + B$. Let

$$R = PQ, \quad S = P(I - Q), \quad T = Q(I - P)$$

Observe that

$$P = S + R \quad \text{and} \quad Q = T + R$$

(i) Show that $R, S, \text{and } T$ are orthogonal projections. [Note that if A is an orthogonal projection then so is $I - A$, and B commutes with A then it also commutes with $I - A$.]

(ii) Show that $RS = SR = 0$, $RT = TR = 0$, and $ST = TS = 0$.

(iii) Show that $\text{Im}(R), \text{Im}(S), \text{and } \text{Im}(T)$ are mutually orthogonal. Thus R, S, T are orthogonal projections onto mutually orthogonal closed subspaces.
5. Let x_1, x_2, x_3, \ldots be a sequence of mutually orthogonal vectors in the Hilbert space H. Let $S_n = x_1 + \cdots + x_n$. Let $S'_n = |x_1|^2 + \cdots + |x_n|^2$.

(i) Show that for any integers $m \geq n$,
\[|S_m - S_n|^2 = S'_m - S'_n \]

(ii) Show that the series $\sum_{n=1}^{\infty} x_n$ to converge in H if and only if the series $\sum_{n=1}^{\infty} |x_n|^2$ converges.
Spectral Measures

In the following, Ω is a non-empty set, \mathcal{B} is a σ–algebra of subsets of Ω. A spectral measure is a mapping E from \mathcal{B} to the set of all orthogonal projections on H satisfying the following conditions:

(i) $E(\emptyset) = 0$

(ii) $E(\Omega) = I$

(iii) if $A_1, A_2, \ldots \in \mathcal{B}$ are mutually disjoint and their union is the set A then

$$(E(A)x, y) = \sum_{n=1}^\infty (E(A_n)x, y)$$

for every $x, y \in H$

(iv) if $A, B \in \mathcal{B}$ then

$E(A)E(B) = E(B)E(A) = E(A \cap B)$

For $x, y \in H$ define $E_{x,y} : \mathcal{B} \to \mathbb{C}$ by

$$E_{x,y}(A) \overset{\text{def}}{=} \langle E(A)x, y \rangle$$

Conditions (i) and (iii) say that $E_{x,y}$ is a complex measure. If $x = y$ we have

$$E_{x,x}(A) = \langle E(A)x, x \rangle = |E(A)x|^2 \geq 0$$

where we used the fact if P is any orthogonal projection then any $x \in H$ decomposes as $Px + x - Px$ with Px being perpendicular to $x - Px$ and so

$$\langle Px, x \rangle = \langle Px, Px + x - Px \rangle = \langle Px, Px \rangle + 0 = |Px|^2$$

The non-negativity in (2) shows that

$E_{x,x}$ is an (ordinary) measure on (Ω, \mathcal{B})

Recall that on the complex Hilbert space H any bounded linear operator A is determined uniquely by the “diagonal values” $\langle Ax, x \rangle$. It follows that if E and E' are spectral measures for which $E_{x,x} = E'_{x,x}$ for all $x \in H$ then $E = E'$.
6. Let E be a spectral measure on (Ω, \mathcal{B}) with values being orthogonal projections in the complex Hilbert space H. By a “measurable subset of Ω” we mean, of course, a subset of Ω which belongs to the σ–algebra \mathcal{B}.

(i) Show that if A and B are disjoint measurable subsets of Ω then $E(A)$ and $E(B)$ are projections onto orthogonal subspaces, i.e. $\text{Im}(E(A))$ and $\text{Im}(E(B))$ are orthogonal to each other.

(ii) Let A_1, A_2, \ldots be a sequence of disjoint measurable subsets of Ω (i.e. each A_j is in \mathcal{B}). Let $A = \bigcup_{j=1}^{\infty} A_j$. Show that for every $x \in H$ the series

$$\sum_{n=1}^{\infty} E(A_n)x$$

is convergent in H.
(iii) With notation and hypotheses as before, show that

\[E(A)x = \sum_{n=1}^{\infty} E(A_n)x \]

for every \(x \in H \). [Hint: Take inner-product with any \(y \in H \)]

(iv) Suppose \(A_1, A_2, \ldots \) are as above but assume now also that infinitely many of the projections \(E(A_n) \) are non-zero. Prove that the series \(\sum_{n=1}^{\infty} E(A_n) \) does not converge in operator norm. [Hint: Let \(s_n = E(A_1) + \cdots + E(A_n) \), and suppose \(s = \lim_{n \to \infty} s_n \) exists. Then \(\lim_{n \to \infty}(s_n - s_{n-1}) = s - s = 0 \). What is \(s_n - s_{n-1} \) and what is the norm of a non-zero projection?]
Measure Theory and Integration

We recall a few facts from measure theory and integration. In the following, \(\Omega \) is a non-empty set, \(\mathcal{B} \) is a \(\sigma \)-algebra of subsets of \(\Omega \), and \(\mu \) a measure on \(\mathcal{B} \).

(a) A function \(f: \Omega \to \mathbb{C} \) is said to be measurable if \(f^{-1}(U) \) is in \(\mathcal{B} \) for every open set \(U \subset \mathbb{C} \). Write \(f = u + iv \), where \(u \) and \(v \) are real-valued. Then \(f \) is measurable if and only if \(u \) and \(v \) are measurable. Write \(u \) as \(u^+ - u^- \), where \(u^+ = \max\{u, 0\} \) and \(u^- = -\min\{u, 0\} \). Then \(u \) is measurable if and only if \(u^+ \) and \(u^- \) are measurable.

(b) A function \(s: \Omega \to \mathbb{C} \) is a simple function if it has only finitely many values, i.e. \(s(\Omega) \) is a finite subset of \(\Omega \). If \(c_1, \ldots, c_n \) are all the distinct values of \(s \) and \(A_i = s^{-1}(c_i) \) the set on which \(s \) has value \(c_i \), then

\[
s = \sum_{j=1}^{n} c_j 1_{A_j}
\]

Here \(1_B \) denotes the indicator function of \(B \), equal to 1 on \(B \) and 0 outside \(B \). The simple function \(s \) is measurable if and only if each of the sets \(A_i \) is measurable.

(c) Let \(F: \Omega \to [0, \infty] \) be a non-negative function. For each positive integer \(n \), divide \([0, \infty] \) into intervals of length \(1/2^n \), i.e. into the intervals \([(k-1)2^{-n}, k2^{-n}) \). Define a function \(s_n \) which is equal to the lower value \((k-1)2^{-n} \) on the set \(A_{nk} = F^{-1}[(k-1)2^{-n}, k2^{-n}) \), for \(k = 1, \ldots, n2^n \), but cut off the value of \(s_n \) at the maximum value \(n \) at all points in the set \(A'_n \) where \(F > n \). The construction ensures that \(0 \leq s_n \leq F \), \(s_n \leq n \), and that \(|F - s_n| \leq 2^{-n} \) at all points where \(F \leq n \). Thus if the function \(F \) is bounded then \(|F - s_n| < 2^{-n} \) holds for all \(n \) large enough and so, in particular, \(s_n(x) \to F(x) \) uniformly in \(x \in \Omega \). If \(F \) is measurable so is each of the sets \(A_{nk} \) and \(A'_n \) and so the function \(s_n \) is then also measurable. Now consider a function \(f: \Omega \to \mathbb{C} \). Writing \(f = u + iv \), with \(u \) and \(v \) real-valued, and then splitting \(u = u^+ - u^- \) and \(v = v^+ - v^- \), it follows that we can construct a sequence of simple functions \(s_n \) such that \(|s_n(x)| \leq |f(x)| \) for all \(x \in \Omega \), \(s_n(x) \to f(x) \) uniformly if \(f \) is bounded, and each \(s_n \) is measurable if \(f \) is measurable.

(d) If \(s \) is a measurable simple function and \(c_1, \ldots, c_n \) are all the distinct values of \(s \) then

\[
\int s \, d\mu \overset{\text{def}}{=} \sum_{j=1}^{n} c_j \mu([s = c_j])
\]

where \([s = c_j] \) is the set \(s^{-1}(c_j) \) of all points where \(s \) has value \(c_j \).

(e) If \(s \) and \(t \) are measurable simple functions then considering the number of ways \(s + t \) can take a particular value, it follows that \(\int (s + t) \, d\mu = \int s \, d\mu + \int t \, d\mu \). Also, \(\int \alpha s \, d\mu = \alpha \int s \, d\mu \) for every \(\alpha \in \mathbb{C} \). The additivity property has the following consequence: if \(s = a_1 1_{A_1} + \cdots + a_m 1_{A_m} \), where \(A_1, \ldots, A_m \) are measurable but may overlap then \(\int s \, d\mu = \sum_{j=1}^{m} a_j \mu(A_j) \) still holds.
7. Let E be a spectral measure on (Ω, \mathcal{B}) with values being orthogonal projections in the complex Hilbert space H. Let \mathcal{N} be the set of all sets $A \in \mathcal{B}$ for which $E(A) = 0$. Thus \mathcal{N} consists of sets of E–measure 0.

(i) Show that if A and B are measurable sets and $A \subset B$ and $E(B) = 0$ then $E(A) = 0$.

(ii) Show that \mathcal{N} is closed under countable unions.

(ii) Let $f : \Omega \to \mathbb{C}$ be a measurable function. Show that there is a largest open subset U of \mathbb{C} such that $f^{-1}(U)$ is in \mathcal{N}.
(iii) The essential range σ_f of f is the closed set given by the complement of the open set U of (ii). The essential supremum of f, denoted $|f|_\infty$, is the radius of the smallest closed ball (center 0) containing σ_f. Thus

$$|f|_\infty = \inf\{r \geq 0 : E[|f| > r] = 0\}$$

Suppose f and g are measurable functions which are essentially bounded, i.e. $|f|_\infty$ and $|g|_\infty$ are finite. Then show

$$|f + g|_\infty \leq |f|_\infty + |g|_\infty$$

and for every complex number α:

$$|\alpha f|_\infty = |\alpha||f|_\infty$$
8. Let E be a spectral measure on (Ω, \mathcal{B}) with values being orthogonal projections in the complex Hilbert space H.

(i) Let $A_1, ..., A_n, B_1, ..., B_m \in \mathcal{B}$ and $a_1, ..., a_n, b_1, ..., b_m \in \mathbb{C}$, and suppose

$$\sum_{j=1}^{n} a_j 1_{A_j} = \sum_{j=m}^{n} b_j 1_{B_j}$$

Show that

$$\sum_{j=1}^{n} a_j E(A_j) = \sum_{j=m}^{n} b_j E(B_j)$$

[Hint: Let $s = \sum_{j=1}^{n} a_j 1_{A_j} = \sum_{j=m}^{n} b_j 1_{B_j}$, and consider the operators $T = \sum_{j=1}^{n} a_j E(A_j)$ and $R = \sum_{j=m}^{n} b_j E(B_j)$. Take any $x \in H$ and show that both (Tx, x) and (Rx, x) equal $\int s \, dE_{x,x}$.] The common value in (4) will be denote

$$\int s \, dE$$

(ii) Check that for any measurable simple function s on Ω:

$$\left(\left(\int s \, dE \right)x, x \right) = \int s \, dE_{x,x}$$

holds for every $x \in H$.

12
(iii) Let s, t be measurable simple functions on Ω and $\alpha, \beta \in \mathbb{C}$. Show that

$$\int (\alpha s + \beta t) \, dE = \alpha \int s \, dE + \beta \int t \, dE$$

(iv) Let s, t be measurable simple functions on Ω. Show that

$$\left(\int s \, dE \right) \left(\int t \, dE \right) = \int st \, dE$$

[Hint: Write out s and t in the usual forms $\sum_{j} a_{j}1_{A_{j}}$ and $\sum_{k} b_{j}1_{B_{k}}$ and then work out st and write out both sides of the above equation.]

(v) Let s be a measurable simple function on Ω. Show that

$$\left(\int s \, dE \right)^{*} = \int \overline{s} \, dE$$
(vi) Let \(s \) be a measurable simple function on \(\Omega \). Show that

\[
\left| \int s \, dE \right| \leq |s|_\infty
\]

[Hint: Let \(T \) be the operator \(\int s \, dE \). Then \(|T| = \sup_{|x| \leq 1} |Tx| \). Now \(|Tx|^2 = (Tx, Tx) = (T^*Tx, x) \). Show that \((T^*Tx, x) \) equals \(\int |s|^2 \, dE_{x,x} \). Next use \(|s| \leq |s|_\infty \) almost-everywhere for the measure \(E_x \).

(vii) Let \(f : \Omega \to \mathbb{C} \) be a bounded measurable function. We know that there exists a sequence of measurable simple functions \(s_n \) on \(\Omega \) such that \(s_n(x) \to f(x) \), as \(n \to \infty \), uniformly for \(x \in \Omega \) and \(|s_n(x)| \leq |f(x)| \) for all \(x \in \Omega \). Part (vi) above shows then that the sequence of operators \(\int s_n \, dE \) is Cauchy in operator norm and therefore converges in operator norm to a limit which we denote by \(\int f \, dE \):

\[
\int f \, dE \overset{\text{def}}{=} \lim_{n \to \infty} \int s_n \, dE
\]

where the limit is in operator norm. Now suppose \(s'_n \) is another sequence of measurable functions on \(\Omega \) which converge to \(f \) in the sense that \(|s'_n - f|_\infty \to 0 \) as \(n \to \infty \). Show that \(\int s'_n \, dE \) also converges to \(\int f \, dE \) as \(n \to \infty \). [Hint: Use (vi) for \(s_n - s'_n \).] Thus the definition of \(\int f \, dE \) does not depend on the choice of the sequence \(s_n \) converging to \(f \).
(viii) Show that
\[\left(\int f \, dE \right)_x, x = \int f \, dE_{x,x} \]
for every bounded measurable function \(f \) and every \(x \in H \).

(ix) Prove the analogs of (iii)-(vi) for bounded measurable functions.
9. Let \((\Omega, \mathcal{B}, \mu)\) be a measure space. For any measurable functions \(f\) and \(g\) on \(\Omega\) let \(M_{fg}\) denote the function \(fg\). If \(f\) is bounded and \(g \in L^2(\mu)\) then clearly \(M_{fg}\) is also in \(L^2(\mu)\) and indeed \(M_f : L^2(\mu) \to L^2(\mu)\) is a bounded linear operator with norm \(|M_f| \leq |f|_{\infty}\) (in all practical cases \(|M_f|\) is actually equal to \(|f|_{\infty}\)). It is clear that \(f \mapsto M_f\) is linear and, moreover, \(M_{fh} = M_f M_h\).

(i) Show that \(M_f^* = M_{T_f}\). (Hint: Let \(g, h \in L^2(\mu)\) and work out \((M_{fg}, h)_{L^2}\).)

(ii) Show that for any measurable set \(A\), the operator \(M_{1_A}\) is an orthogonal projection operator.

(iii) Show that \(E : A \mapsto M_{1_A}\) is a spectral measure. [Hint: The only non-trivial thing to check is that for any \(g \in L^2(\mu)\) and disjoint measurable sets \(A_n\) whose union is \(A\) we have \(\sum_n E(A_n)g = E(A)g\) with the sum \(\sum_n\) being \(L^2\)-convergent. To this end, let \(G_n = \sum_{j=1}^n E(A_j)g\) and look at what happens to \(\int |G_n - 1_A g|^2 \, d\mu\) as \(n \to \infty\).]
(iv) For any measurable simple function s show that $\int s \, dE = M_s$, where E is as in (iii).

(v) For any bounded measurable function f show that $\int f \, dE = M_f$, where E is as in (iii). [Hint: Choose measurable simple s_n converging uniformly to f, and with $|s_n(x)| \leq |f(x)|$ for all $x \in \Omega$. Consider the norms of $\int f \, dE - \int s_n \, dE$ and $M_f - M_{s_n}$.]
10. Let E be a spectral measure for a measurable space (Ω, \mathcal{B}) with values being orthogonal projection operators in a complex Hilbert space H. Let $f : \Omega \to \mathbb{C}$ be a measurable function not necessarily bounded. Let

$$D_f = \{ x \in H : \int |f|^2 \, dE_{x,x} < \infty \}$$

(i) For any $x, y \in H$ and any measurable set A, show that

$$E_{x+y,x+y}(A) \leq 2E_{x,x}(A) + 2E_{y,y}(A)$$

[Hint: First recall that $E_{v,v}(B) = |E(B)v|^2$. Next, for any vectors $a, b \in H$ we have the Cauchy-Schwarz inequality $|\langle a, b \rangle| \leq |a||b|$ which leads to the inequality $|a + b|^2 \leq |a|^2 + |b|^2 + 2|a||b|$. This, together with $(|a| - |b|)^2 \geq 0$ implies that $|a + b|^2 \leq 2|a|^2 + 2|b|^2$.]

(ii) Show that D_f is a linear subspace of H, i.e. if $x, y \in D_f$ then $x + y \in D_f$ and $ax \in D_f$ for every $a \in \mathbb{C}$.

(iii) Let $A_n = \{ p \in \Omega : |f(p)| \leq n \}$. Consider any vector x in the range of the projection $E(A_n)$. Show that

$$E_{x,x}(A) = E_{x,x}(A \cap A_n)$$

for every $A \in \mathcal{B}$. [Hint: What is $E(A_n)x$?]
(iv) With notation as above, show that

\[\int s \, dE_{x,x} = \int_{A_n} s \, dE_{x,x} \]

for every measurable simple function \(s \) on \(\Omega \).

(v) With notation as above, show that

\[\int |f|^2 \, dE_{x,x} = \int_{A_n} |f|^2 \, dE_{x,x} \]

Note that the right side is \(\leq n^2 E_{x,x}(\Omega) = n^2 |x|^2 < \infty \), and so \(x \in D_f \).