
Math 7330: Functional Analysis Fall 2002
Homework 2 A. Sengupta

In the following, H is a complex Hilbert space with a Hermitian inner-product (·, ·).
All operators are operators on H.

1. Suppose P and Q are orthogonal projections.
(i) Show that if PQ = QP then PQ is an orthogonal projection.

(ii) Show that, conversely, if PQ is an orthogonal projection then PQ = QP .
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2. Let P and Q be orthogonal projections.
(i) Show that if PQ = P then PQ = QP and Im(P ) ⊂ Im(Q). Show that the same

conclusions hold if QP = P .

(ii) Show that if Im(P ) ⊂ Im(Q) then QP = P .
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3. Suppose A, B, C are mutually orthogonal closed subspaces of H, and let PA, PB , PC be
the orthogonal projections onto A, B, C, respectively. Let X = A+B and Y = C+B,
and let PX and PY be the orthogonal projections onto X and Y , respectively.
(i) Show that PXPY = PY PX .

(ii) Express PX and PY in terms of PA, PB and PC .

(iii) Express PA, PB and PC in terms of PX and PY .
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4. Suppose P and Q are orthogonal projections which commute, i.e. PQ = QP . The
goal is to show that then the geometric situation of the preceding problem holds, i.e.
there are mutually orthogonal closes subspaces A, B,C such that P is the orthogonal
projection onto A + B and Q is the orthogonal projection onto C + B. Let

R = PQ, S = P (I −Q), T = Q(I − P )

Observe that
P = S + R and Q = T + R

(i) Show that R, S, and T are orthogonal projections. [Note that if A is an orthogonal
projection then so is I −A, and B commutes with A then it also commutes with
I −A.]

(ii) Show that RS = SR = 0, RT = TR = 0, and ST = TS = 0.

(iii) Show that Im(R), Im(S), and Im(T ) are mutually orthogonal. Thus R, S, T are
orthogonal projections onto mutually orthogonal closed subspaces.
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5. Let x1, x2, x3, ... be a sequence of mutually orthogonal vectors in the Hilbert space H.
Let Sn = x1 + · · ·+ xn. Let S′n = |x1|2 + · · ·+ |xn|2.
(i) Show that for any integers m ≥ n,

|Sm − Sn|2 = S′m − S′n

(ii) Show that the series
∑∞

n=1 xn to converge in H if and only if the series
∑

n |xn|2
converges.
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Spectral Measures
In the following, Ω is a non-empty set, B is a σ–algebra of subsets of Ω. A spectral

measure is a mapping E from B to the set of all orthogonal projections on H satisfying
the following conditions:

(i) E(∅) = 0
(ii) E(Ω) = I
(iii) if A1, A2, ... ∈ B are mutually disjoint and their union is the set A then

(E(A)x, y) =
∑
n=1

(
E(An)x, y

)
(1)

for every x, y ∈ H
(iv) if A,B ∈ B then

E(A)E(B) = E(B)E(A) = E(A ∩B)

For x, y ∈ H define Ex,y : B → C by

Ex,y(A) def= (E(A)x, y)

Conditions (i) and (iii) say that Ex,y is a complex measure. If x = y we have

Ex,x(A) = (E(A)x, x) = |E(A)x|2 ≥ 0 (2)

where we used the fact if P is any orthogonal projection then any x ∈ H decomposes as
Px + x− Px with Px being perpendicular to x− Px and so

(Px, x) = (Px, Px + x− Px) = (Px, Px) + 0 = |Px|2 (3)

The non-negativity in (2) shows that

Ex,x is an (ordinary) measure on (Ω,B)

Recall that on the complex Hilbert space H any bounded linear operator A is determined
uniquely by the “diagonal values” (Ax, x). It follows that if E and E′ are spectral measures
for which Ex,x = E′

x,x for all x ∈ H then E = E′.
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6. Let E be a spectral measure on (Ω,B) with values being orthogonal projections in
the complex Hilbert space H. By a “measurable subset of Ω” we mean, of course, a
subset of Ω which belongs to the σ–algebra B.
(i) Show that if A and B are disjoint measurable subsets of Ω then E(A) and E(B)

are projections onto orthogonal subspaces, i.e. Im
(
E(A)

)
and Im

(
E(B)

)
are

orthogonal to each other.

(ii) Let A1, A2, ... be a sequence of disjoint measurable subsets of Ω (i.e. each Aj is
in B). Let A = ∪∞j=1Aj . Show that for every x ∈ H the series

∞∑
n=1

E(An)x

is convergent in H.
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(iii) With notation and hypotheses as before, show that

E(A)x =
∞∑

n=1

E(An)x

for every x ∈ H. [Hint: Take inner-product with any y ∈ H]

(iv) Suppose A1, A2, ... are as above but assume now also that infinitely many of the
projections E(An) are non-zero. Prove that the series

∑∞
n=1 E(An) does not

converge in operator norm. [Hint: Let sn = E(A1) + · · · + E(An), and suppose
s = limn→∞ sn exists. Then limn→∞(sn − sn−1) = s− s = 0. What is sn − sn−1

and what is the norm of a non-zero projection?]
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Measure Theory and Integration
We recall a few facts from measure theory and integration. In the following, Ω is a

non-empty set, B is a σ–algebra of subsets of Ω, and µ a measure on B.
(a) A function f : Ω → C is said to be measurable if f−1(U) is in B for every open set

U ⊂ C. Write f = u+ iv, where u and v are real-valued. Then f is measurable if
and only if u and v are measurable. Write u as u+ − u−, where u+ = max{u, 0}
and u− = −min{u, 0}. Then u is measurable if and only if u+ and u− are
measurable.

(b) A function s : Ω → C is a simple function if it has only finitely many values,
i.e. s(Ω) is a finite subset of Ω. If c1, ..., cn are all the distinct values of s and
Ai = s−1(ci) the set on which s has value ci, then

s =
n∑

j=1

cj1Aj

Here 1B denotes the indicator function of B, equal to 1 on B and 0 outside B. The
simple function s is measurable if and only if each of the sets Ai is measurable.

(c) Let F : Ω → [0,∞] be a non-negative function. For each positive integer n, divide
[0,∞] into intervals of length 1/2n, i.e. into the intervals [(k − 1)2−n, k2−n).
Define a function sn which is equal to the lower value (k − 1)2−n on the set
Ank = F−1[(k − 1)2−n, k2−n), for k = 1, ..., n2n, but cut off the value of sn at
the maximum value n at all points in the set A′n where F > n. The construction
ensures that 0 ≤ sn ≤ F , sn ≤ n, and that |F − sn| ≤ 2−n at all points where
F ≤ n. Thus if the function F is bounded then |F − sn| < 2−n holds for all n
large enough and so, in particular, sn(x) → F (x) uniformly in x ∈ Ω. If F is
measurable so is each of the sets Ank and A′n and so the function sn is then also
measurable. Now consider a function f : Ω → C. Writing f = u + iv, with u and
v real–valued, and then splitting u = u+ − u− and v = v+ − v−, it follows that
we can construct a sequence of simple functions sn such that |sn(x)| ≤ |f(x)| for
all x ∈ Ω, sn(x) → f(x) uniformly if f is bounded, and each sn is measurable if f
is measurable.

(d) If s is a measurable simple function and c1, ..., cn are all the distinct values of s
then ∫

s dµ
def=

n∑

j=1

cjµ([s = cj ])

where [s = cj ] is the set s−1(cj) of all points where s has value cj .
(e) If s and t are measurable simple functions then considering the number of ways

s+t can take a particular value, it follows that
∫

(s+t) dµ =
∫

s dµ+
∫

t dµ. Also,∫
αs dµ = α

∫
s dµ for every α ∈ C. The additivity property has the following

consequence: if s = a11A1 + · · · + am1Am , where A1, ..., Am are measurable but
may overlap then

∫
s dµ =

∑m
j=1 ajµ(Aj) still holds.
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7. Let E be a spectral measure on (Ω,B) with values being orthogonal projections in the
complex Hilbert space H. Let N be the set of all sets A ∈ B for which E(A) = 0.
Thus N consists of sets of E–measure 0.
(i) Show that if A and B are measurable sets and A ⊂ B and E(B) = 0 then

E(A) = 0.

(ii) Show that N is closed under countable unions.

(ii) Let f : Ω → C be a measurable function. Show that there is a largest open subset
U of C such that f−1(U) is in N .
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(iii) The essential range σf of f is the closed set given by the complement of the open
set U of (ii). The essential supremum of f , denoted |f |∞, is the radius of the
smallest closed ball (center 0) containing σf . Thus

|f |∞ = inf{r ≥ 0 : E[|f | > r] = 0}

Suppose f and g are measurable functions which are essentially bounded, i.e. |f |∞
and |g|∞ are finite. Then show

|f + g|∞ ≤ |f |∞ + |g|∞

and for every complex number α:

|αf |∞ = |α||f |∞
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8. Let E be a spectral measure on (Ω,B) with values being orthogonal projections in the
complex Hilbert space H.
(i) Let A1, ..., An, B1, ..., Bm ∈ B and a1, ..., an, b1, ..., bm ∈ C, and suppose

n∑

j=1

aj1Aj
=

n∑

j=m

bj1Bj

Show that
n∑

j=1

ajE(Aj) =
n∑

j=m

bjE(Bj) (4)

[Hint: Let s =
∑n

j=1 aj1Aj
=

∑n
j=m bj1Bj

, and consider the operators T =∑n
j=1 ajE(Aj) and R =

∑n
j=m bjE(Bj). Take any x ∈ H and show that both

(Tx, x) and (Rx, x) equal
∫

s dEx,x.] The common value in (4) will be denote

∫
s dE

(ii) Check that for any measurable simple function s on Ω:

((∫
s dE

)
x, x

)
=

∫
s dEx,x

holds for every x ∈ H.
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(iii) Let s, t be measurable simple functions on Ω and α, β ∈ C. Show that

∫
(αs + βt) dE = α

∫
s dE + β

∫
t dE

(iv) Let s, t be measurable simple functions on Ω. Show that

(∫
s dE

)(∫
t dE

)
=

∫
st dE

[Hint: Write out s and t in the usual forms
∑

j aj1Aj and
∑

k bj1Bk
and then

work out st and write out both sides of the above equation.]

(v) Let s be a measurable simple function on Ω. Show that

(∫
s dE

)∗
=

∫
s dE
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(vi) Let s be a measurable simple function on Ω. Show that

∣∣∣∣
∫

s dE

∣∣∣∣ ≤ |s|∞

[Hint: Let T be the operator
∫

s dE. Then |T | = sup|x|≤1 |Tx|. Now |Tx|2 =
(Tx, Tx) = (T ∗Tx, x). Show that (T ∗Tx, x) equals

∫ |s|2 dEx,x. Next use |s| ≤
|s|∞ almost-everywhere for the measure Ex.]

(vii) Let f : Ω → C be a bounded measurable function. We know that there exists
a sequence of measurable simple functions sn on Ω such that sn(x) → f(x), as
n → ∞, uniformly for x ∈ Ω and |sn(x)| ≤ |f(x)| for all x ∈ Ω. Part (vi) above
shows then that the sequence of operators

∫
sn dE is Cauchy in operator norm

and therefore converges in operator norm to a limit which we denote by
∫

f dE:

∫
f dE

def= lim
n→∞

∫
sn dE

where the limit is in operator norm. Now suppose s′n is another sequence of
measurable functions on Ω which converge to f in the sense that |s′n − f |∞ → 0
as n → ∞. Show that

∫
s′n dE also converges to

∫
f dE as n → ∞. [Hint: Use

(vi) for sn − s′n.] Thus the definition of
∫

f dE does not depend on the choice of
the sequence sn converging to f .
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(viii) Show that ((∫
f dE

)
x, x

)
=

∫
f dEx,x

for every bounded measurable function f and every x ∈ H.

(ix) Prove the analogs of (iii)-(vi) for bounded measurable functions.
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9. Let (Ω,B, µ) be a measure space. For any measurable functions f and g on Ω let
Mfg denote the function fg. If f is bounded and g ∈ L2(µ) then clearly Mfg is also
in L2(µ) and indeed Mf : L2(µ) → L2(µ) is a bounded linear operator with norm
|Mf | ≤ |f |∞ (in all practical cases |Mf | is actually equal to |f |∞). It is clear that
f 7→ Mf is linear and, moreover, Mfh = MfMh.
(i) Show that M∗

f = Mf . (Hint: Let g, h ∈ L2(µ) and work out (Mfg, h)L2 .)

(ii) Show that for any measurable set A, the operator M1A
is an orthogonal projection

operator.

(iii) Show that E : A 7→ M1A is a spectral measure. [Hint: The only non-trivial thing
to check is that for any g ∈ L2(µ) and disjoint measurable sets An whose union
is A we have

∑
n E(An)g = E(A)g with the sum

∑
n being L2–convergent. To

this end, let Gn =
∑n

j=1 E(Aj)g and look at what happens to
∫ |Gn − 1Ag|2 dµ

a n →∞.]
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(iv) For any measurable simple function s show that
∫

s dE = Ms, where E is as in
(iii).

(v) For any bounded measurable function f show that
∫

f dE = Mf , where E is
as in (iii). [Hint: Choose measurable simple sn converging uniformly to f , and
with |sn(x)| ≤ |f(x)| for all x ∈ Ω. Consider the norms of

∫
f dE − ∫

sn dE and
Mf −Msn .]
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10. Let E be a spectral measure for a measurable space (Ω,B) with values being orthogonal
projection operators in a complex Hilbert space H. Let f : Ω → C be a measurable
function not necessarily bounded). Let

Df = {x ∈ H :
∫
|f |2 dEx,x < ∞}

(i) For any x, y ∈ H and any measurable set A, show that

Ex+y,x+y(A) ≤ 2Ex,x(A) + 2Ey,y(A)

[Hint: First recall that Ev,v(B) = |E(B)v|2. Next, for any vectors a, b ∈ H we
have the Cauchy-Schwarz inequality |(a, b)| ≤ |a||b| which leads to the inequality
|a + b|2 ≤ |a|2 + |b|2 + 2|a||b|. This, together with (|a| − |b|)2 ≥ 0 implies that
|a + b|2 ≤ 2|a|2 + 2|b|2.]

(ii) Show that Df is a linear subspace of H, i.e. if x, y ∈ Df then x + y ∈ Df and
ax ∈ Df for every a ∈ C.

(iii) Let An = {p ∈ Ω : |f(p)| ≤ n}. Consider any vector x in the range of the
projection E(An). Show that

Ex,x(A) = Ex,x(A ∩An)

for every A ∈ B. [Hint: What is E(An)x ?]
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(iv) With notation as above, show that

∫
s dEx,x =

∫

An

s dEx,x

for every measurable simple function s on Ω.

(v) With notation as above, show that

∫
|f |2 dEx,x =

∫

An

|f |2 dEx,x

Note that the right side is ≤ n2Ex,x(Ω) = n2|x|2 < ∞, and so x ∈ Df .
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