Math 7330: Functional Analysis Fall 2002
Homework 2 A. Sengupta

In the following, H is a complex Hilbert space with a Hermitian inner-product (-, ).
All operators are operators on H.

1. Suppose P and @ are orthogonal projections.
(i) Show that if PQ = QP then PQ is an orthogonal projection.

(ii) Show that, conversely, if PQ is an orthogonal projection then PQ = QP.



2. Let P and @) be orthogonal projections.
(i) Show that if PQQ = P then PQ = QP and Im(P) C Im(Q). Show that the same
conclusions hold if QP = P.

(ii) Show that if Im(P) C Im(Q) then QP = P.



3. Suppose A, B, C' are mutually orthogonal closed subspaces of H, and let P4, Pg, Pc be
the orthogonal projections onto A, B, C, respectively. Let X = A+ BandY = C+ B,
and let Px and Py be the orthogonal projections onto X and Y, respectively.

(1) Show that PXpy = Pypx.

(ii) Express Px and Py in terms of P4, Pp and Pc.

(iii) Express P4, Pg and P¢ in terms of Px and Py.



4. Suppose P and @ are orthogonal projections which commute, i.e. PQ = QP. The
goal is to show that then the geometric situation of the preceding problem holds, i.e.
there are mutually orthogonal closes subspaces A, B, C such that P is the orthogonal
projection onto A + B and (@ is the orthogonal projection onto C' + B. Let

R=PQ, S=P(I-Q), T=QU-P)

Observe that
P=S+R and Q=T+R

(i) Show that R, S, and T are orthogonal projections. [Note that if A is an orthogonal
projection then so is I — A, and B commutes with A then it also commutes with
I—-A]

(ii) Show that RS = SR=0, R’ =TR =0, and ST =TS = 0.

(iii) Show that Im(R), Im(S), and Im(7") are mutually orthogonal. Thus R, S, T are
orthogonal projections onto mutually orthogonal closed subspaces.



5. Let 1,9, 23, ... be a sequence of mutually orthogonal vectors in the Hilbert space H.
Let S, =21+ -+ +2,. Let S/, = |21 + - + |z, |
(i) Show that for any integers m > n,

|Sm - Sn|2 - S;n - S’II’L

(ii) Show that the series > -, z,, to converge in H if and only if the series Y |z, |?
converges.



Spectral Measures
In the following, €2 is a non-empty set, B is a o—algebra of subsets of ). A spectral
measure is a mapping E from B to the set of all orthogonal projections on H satisfying
the following conditions:
(i) E®)=0
(i) E(Q) =1
(iii) if Ay, As,... € B are mutually disjoint and their union is the set A then

(E(A)z,y) =Y (E(4,)z,y) (1)

n=1

for every x,y € H
(iv) if A, B € B then

For z,y € H define E, , : B — C by

E.y(A) € (B(A)z,y)

Conditions (i) and (iii) say that E, , is a complex measure. If z =y we have
By o(A) = (B(A)z,2) = |[E(A)z]* > 0 (2)

where we used the fact if P is any orthogonal projection then any x € H decomposes as
Px 4+ x — Px with Px being perpendicular to x — Px and so

(Pzx,z) = (Px, Px + x — Px) = (Pz, Px) + 0 = |Px|? (3)
The non-negativity in (2) shows that
E, ., is an (ordinary) measure on (2, B)
Recall that on the complex Hilbert space H any bounded linear operator A is determined

uniquely by the “diagonal values” (Az, x). It follows that if F and E’ are spectral measures
for which E, , = E; , for all z € H then £ = £’



6. Let E be a spectral measure on ({2, B) with values being orthogonal projections in
the complex Hilbert space H. By a “measurable subset of ()7 we mean, of course, a
subset of {2 which belongs to the c—algebra B.

(i) Show that if A and B are disjoint measurable subsets of 2 then F(A) and E(B)
are projections onto orthogonal subspaces, i.e. Im(E(A)) and Im(E(B)) are
orthogonal to each other.

(ii) Let A, A, ... be a sequence of disjoint measurable subsets of Q (i.e. each A, is
in B). Let A =U32;A;. Show that for every x € H the series

Z E(A,)z

is convergent in H.



(iii) With notation and hypotheses as before, show that
E(A)z =Y E(An)x
n=1

for every x € H. [Hint: Take inner-product with any y € H]|

(iv) Suppose Aj, Ag, ... are as above but assume now also that infinitely many of the
projections E(A,) are non-zero. Prove that the series Y - | E(A,) does not
converge in operator norm. [Hint: Let s, = F(A;) +--- + E(A,), and suppose
s = limy, o0 Sy, exists. Then lim, o0 (S, — Sp—1) = s — s =0. What is s, — s,,—1
and what is the norm of a non-zero projection?]



Measure Theory and Integration

We recall a few facts from measure theory and integration. In the following, Q2 is a
non-empty set, B is a o—algebra of subsets of {2, and 4 a measure on B.

(a)

A function f :  — C is said to be measurable if f~1(U) is in B for every open set
U C C. Write f = u+1v, where u and v are real-valued. Then f is measurable if
and only if u and v are measurable. Write u as u™ — u~, where u™ = max{u, 0}
and v~ = —min{u,0}. Then u is measurable if and only if vt and u~ are
measurable.

A function s : Q — C is a simple function if it has only finitely many values,
ie. s(2) is a finite subset of Q. If ¢y, ..., ¢, are all the distinct values of s and
A; = 57Y(c;) the set on which s has value c;, then

n
s = E ¢jla;
j=1

Here 15 denotes the indicator function of B, equal to 1 on B and 0 outside B. The
simple function s is measurable if and only if each of the sets A; is measurable.
Let F': Q — [0, 0] be a non-negative function. For each positive integer n, divide
[0,00] into intervals of length 1/2", i.e. into the intervals [(k — 1)27" k27™).
Define a function s, which is equal to the lower value (kK — 1)27™ on the set
App = F7YH(k —1)27™,k27"), for k = 1,...,n2", but cut off the value of s, at
the maximum value n at all points in the set A] where F' > n. The construction
ensures that 0 < s,, < F, s, < n, and that |F' — s,| < 27" at all points where
F < n. Thus if the function F' is bounded then |F — s,| < 27" holds for all n
large enough and so, in particular, s,(z) — F(z) uniformly in z € Q. If F is
measurable so is each of the sets A, and A/, and so the function s, is then also
measurable. Now consider a function f : Q@ — C. Writing f = u + v, with v and
v real-valued, and then splitting v = u™ —u~ and v = v™ — v, it follows that
we can construct a sequence of simple functions s,, such that |s,(z)| < |f(x)| for
all x € Q, s, (z) — f(x) uniformly if f is bounded, and each s,, is measurable if f
is measurable.

If s is a measurable simple function and ¢y, ..., ¢, are all the distinct values of s

then .
[ ™Y s =)

J=1

where [s = ¢;] is the set s7'(c;) of all points where s has value c;.

If s and t are measurable simple functions then considering the number of ways
s+t can take a particular value, it follows that [(s+¢)du = [ sdu+ [ tdp. Also,
Jasdp = a [ sdu for every a € C. The additivity property has the following
consequence: if s = ajla, + - -+ amla,,, where Ay, ..., A, are measurable but
may overlap then [ sdp = 377" aju(A;) still holds.



7. Let E be a spectral measure on (€2, B) with values being orthogonal projections in the
complex Hilbert space H. Let AN be the set of all sets A € B for which E(A) = 0.
Thus N consists of sets of E-measure 0.

(i) Show that if A and B are measurable sets and A C B and E(B) = 0 then
E(A) =0.

(ii) Show that N is closed under countable unions.

(ii)) Let f : © — C be a measurable function. Show that there is a largest open subset
U of C such that f~1(U) is in N.
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(iii) The essential range o¢ of f is the closed set given by the complement of the open
set U of (ii). The essential supremum of f, denoted |f|~, is the radius of the
smallest closed ball (center 0) containing o¢. Thus

|[floe = inf{r > 0: E[[f] > r] = 0}

Suppose f and g are measurable functions which are essentially bounded, i.e. |f|~
and |g|co are finite. Then show

|f+g|oo < |f|oo + |g|oo

and for every complex number «:

[ floo = |a|[floo
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8. Let E be a spectral measure on (€2, B) with values being orthogonal projections in the
complex Hilbert space H.

(i) Let Ay,...,An, B1,..., By, € B and aq, ..., an,b1, ..., by, € C, and suppose

n n
Zalej = Z blej
j=1 j=m

Show that

Z%E(Aj) = Y bE(B)) (4)

j=m

[Hint: Let s = Y77 a;la; = >0 bjlp;, and consider the operators T' =
> i—1a;E(Aj) and R = 377 b;E(B;). Take any x € H and show that both
(Tz,z) and (Rz,z) equal [ sdE, ;.] The common value in (4) will be denote

/sdE

(ii) Check that for any measurable simple function s on

((/sdE)a:,:z;) = [sa..

holds for every z € H.
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(iii) Let s,¢ be measurable simple functions on 2 and «, 3 € C. Show that

/(as+/3t)dE:a/sdE+/3/tdE

(iv) Let s,t be measurable simple functions on 2. Show that

(Jo)(fse) s

Hint: Write out s and t in the usual forms ca;la. and b;1p, and then
7 Ay kY1 bk
work out st and write out both sides of the above equation.]

(v) Let s be a measurable simple function on 2. Show that

(/sdE)* :/EdE
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(vi) Let s be a measurable simple function on 2. Show that

(vii)

’/sdE’ <[]0

[Hint: Let T be the operator [sdE. Then |T| = sup, <; |Tz|. Now |Tx|? =
(Tz,Tz) = (T*Tx,z). Show that (I*Tz,z) equals [ |s|>dE, ,. Next use |s| <
|s|co almost-everywhere for the measure £, .]

Let f : 2 — C be a bounded measurable function. We know that there exists
a sequence of measurable simple functions s, on € such that s,(x) — f(x), as
n — oo, uniformly for x € Q and |s,(z)| < |f(x)| for all x € Q. Part (vi) above
shows then that the sequence of operators [ s, dE is Cauchy in operator norm
and therefore converges in operator norm to a limit which we denote by [ fdE:

/de © Yim [ s, dE

n—oo

where the limit is in operator norm. Now suppose s/, is another sequence of
measurable functions on 2 which converge to f in the sense that |s], — f|oc — 0
as n — oo. Show that [ s, dE also converges to [ fdE as n — oo. [Hint: Use
(vi) for s, — s,,.] Thus the definition of [ f dE does not depend on the choice of
the sequence s,, converging to f.
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(viii) Show that

((/de)x,:c> :/dem,I

for every bounded measurable function f and every xz € H.

(ix) Prove the analogs of (iii)-(vi) for bounded measurable functions.
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9. Let (2,B, 1) be a measure space. For any measurable functions f and g on Q let
Mg denote the function fg. If f is bounded and g € L?(u) then clearly Myg is also
in L?(p) and indeed My : L?*(u) — L?(u) is a bounded linear operator with norm
|IM¢| < |f|oo (in all practical cases |My| is actually equal to |f|~). It is clear that
f + M;y is linear and, moreover, My, = M;Mj,.

(i) Show that M} = M. (Hint: Let g, h € L?(n) and work out (Mg, h)rz.)

(ii) Show that for any measurable set A, the operator M , is an orthogonal projection
operator.

(iii) Show that E : A — M, is a spectral measure. [Hint: The only non-trivial thing
to check is that for any g € L?(u) and disjoint measurable sets A,, whose union
is A we have Y. F(A,)g = E(A)g with the sum ) being L?*-convergent. To
this end, let G,, = 2?21 E(Aj)g and look at what happens to [ |G,, — 14g|? du
an— oo
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(iv) For any measurable simple function s show that [ sdE = M, where E is as in

(iii).

(v) For any bounded measurable function f show that [ fdE = My, where E is
as in (iii). [Hint: Choose measurable simple s,, converging uniformly to f, and
with [s, (z)| < |f(x)| for all z € Q. Consider the norms of [ fdE — [ s, dE and
Mf - MSn']
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10. Let E be a spectral measure for a measurable space (£2, B) with values being orthogonal
projection operators in a complex Hilbert space H. Let f : 2 — C be a measurable
function not necessarily bounded). Let

sz{xEH:/|f|2dEm,m<oo}

(i) For any z,y € H and any measurable set A, show that
Em+y,w+y (A) < 2F: (A) + 2Ey,y(A)

[Hint: First recall that E, ,(B) = |E(B)v|?. Next, for any vectors a,b € H we
have the Cauchy-Schwarz inequality |(a, b)| < |a||b| which leads to the inequality
la +b]? < |a|* + [b]? + 2|a||b|. This, together with (Ja| — |b[)? > 0 implies that
la+b]* < 2|al? +2[b* ]

(ii) Show that Dy is a linear subspace of H, i.e. if x,y € D then x +y € Dy and
ax € Dy for every a € C.

(iii) Let A, = {p € Q : |f(p)] < n}. Consider any vector = in the range of the
projection FE(A,). Show that

Eyn(A) = By 0(AN Ay)

El

for every A € B. [Hint: What is F(A4,,)x 7|
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(iv) With notation as above, show that

/sdE’gwlc :/ sdE; »
An

for every measurable simple function s on ).

(v) With notation as above, show that

/’f‘2dEﬂc,x :/A ‘f’2dE:r,m

Note that the right side is < n?E, , () = n?|z|*> < oo, and so x € Dy.
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