
Math 7330: Functional Analysis Fall 2002
Notes/Homework 4: Commutative Banach Algebras I A. Sengupta

1. Let R be a commutative ring with multiplicative identity e. A subset S ⊂ R is an
ideal of R if :(a) 0 ∈ S, (b) x + y ∈ S for every x, y ∈ S, and (c) rx ∈ S for every
r ∈ R and x ∈ S. The ideal S is a proper ideal if S 6= R. It is a maximal ideal if it is
a proper ideal and if the only ideals containing S are S itself and the whole ring R.
The ideal S is a prime ideal if for every x, y ∈ S if xy ∈ S then at least one of x and
y must be in S.
(i) Let I be an ideal of R. For any x ∈ R we write x + I be the set of all elements of

the form x + i with i running over I. Let R/I be the set of all sets of the form
x + I with x running over R:

R/I
def= {x + I : x ∈ R}

Let
p : R → R/I : x 7→ x + I

For any elements a, b ∈ R we have

p(a) = p(b) if and only if a− b ∈ I

Show that if x, x′, y, y′ ∈ R are such that p(x) = p(x′) and p(y) = p(y′) then
p(x + x′) = p(y + y′) and p(xy) = p(yy′).

Thus there are well-defined operations of addition and multiplication on R/I
given by

p(x) + p(y) def= p(x + y), p(x)p(y) def= p(xy)

As is readily checked, these operations make R/I a ring and, of course, p : R →
R/I is a ring homomorphism. Commutativity of R implies that R/I is commu-
tative. If e ∈ R is the identity of R then p(e) is the multiplicative identity in
R/I.
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(ii) Suppose I is a maximal ideal of R. Show that then the commutative ring R/I is
a field, i.e. every non-zero element has an inverse. Hint: Let x ∈ R be such that
p(x) is a non-zero element of R/I, i.e. x ∈ R is not in the ideal I. The set

Rx + I = {rx + y : r ∈ R, y ∈ I}

is clearly an ideal of R which contains I. Moreover, Rx + I contains the element
x which is not in I and so Rx + I 6= I. Since I is maximal, it follows then that
Rx + I equals the whole ring R. In particular, there is an element y ∈ R and an
element a ∈ I such that yx + a = e. Apply p to this.

(iii) Let I be a ideal in R such that the quotient ring R/I is a field in which the
multiplicative identity is not equal to 0. Show that I is maximal. Hint: Since
R/I 6= {0}, the ideal I is proper. Let S be an ideal with R ⊃ S ⊃ I and
S 6= I. Choose x ∈ S not in I. Then p(x) is a non-zero element of R/I, where
p : R → R/I : x 7→ x + I is the projection map. So it has an inverse. Thus there
is an element y ∈ R such that p(x)p(y) = p(e). This means e − xy ∈ I and so
e− xy ∈ S. But then e = e− xy + xy ∈ S.
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In the following B is a complex Banach algebra which is assumed also to be commu-
tative. An ideal in B is a subset I ⊂ B which satisfies: (a) x + y ∈ B for all x, y ∈ I, (b)
bx ∈ I for all b ∈ B and x ∈ I. Note that taking b = λe for λ ∈ C in (b) shows, together
with (a), that an ideal I is automatically a linear subspace of B. Recall the quotient

B/I = {x + I : x ∈ B}

and the projection map
p : B → B/I : x 7→ x + I

We have seen that B/I has a ring structure which makes p a ring homomorphism, and
p(e) is the identity element in B/I. Then the quotient B/I is also a complex vector space
with multiplication by complex scalars λ defined by

λp(x) def= p(λx)

This is well-defined because if p(x) = p(y) then x−y ∈ I and so λx−λy = λ(x−y) ∈ I which
means p(λx) = p(λy). It is clear that B/I does become a vector space and indeed, together
with the multiplication, B/I is a complex algebra and p : B → B/I a homomorphism of
algebras (i.e. p is linear and p(xy) = p(x)p(y) for all x, y ∈ B; p(e) is the identity).

Any element B/I is of the form p(x) = x + I, for some x ∈ B. Thus it is a translate
of the subspace I. Define

|p(x)| def= inf
y∈p(x)

|y|,

the distance of x + I from the origin. Since x itself belongs to x + I it follows that

|p(x)| ≤ |x|

2. We prove that if I is a closed proper ideal in B then | · | is a norm on B/I making it
a complex Banach algebra.
(i) For any x, y ∈ B,

|p(x) + p(y)| ≤ |p(x)|+ |p(y)|
Proceed as follows: Pick any x′ ∈ p(x) = x + I and y′ ∈ p(y) = y + I. Then
p(x) = p(x′) and p(y) = p(y′) and so p(x + y) = p(x) + p(y) = p(x′) + p(y′) =
p(x′ + y′). Therefore, |p(x) + p(y)| = |p(x′ + y′)|. So

|p(x) + p(y)| ≤ |x′ + y′| ≤ |x′|+ |y′|

Now take infimum over x′ ∈ p(x) and then over y′ ∈ p(y).
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(ii) For any x ∈ B and λ ∈ C,
|λp(x)| = |λ||p(x)|

Hint: Work as in (i), taking any x′ ∈ p(x) and showing that |λp(x)| = |p(λx′)| ≤
|λ||x′| and taking inf over all x′ ∈ p(x) = x + I. This shows |λp(x)| ≤ |λ||p(x)|.
Now, for non-zero λ, write p(x) on the right as (1/λ)λp(x).

(iii) Show that
|p(x)p(y)| ≤ |p(x)||p(y)|

for every x, y ∈ B.

(iv) Show that if I 6= B then |p(e)| 6= 0. Hint: Since I is a proper ideal it does
not contain any invertible elements. The open ball of radius 1 around e consists
entirely of invertible elements and so does not intersect I. So e + I does not the
open ball of radius 1 centered at 0. So |p(e)| ≥?.
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(v) Show that if I 6= B then
|p(e)| = 1

Hint: Combine the observation obtained in proving (iv) with the inequality
|p(e)| ≤ |e| = 1. [Note also that if in (iii) we put x = y = e then |p(e)| ≥ 1
or |p(e)| = 0.]

(vi) Suppose that I is a closed ideal in B, i.e. suppose that I is an ideal and it is
closed as a subset of B. If |p(x)| = 0 show that p(x) = 0. (Hint: If |p(x)| = 0 then
every neighborhood of 0 contains a point of x + I, and so every neighborhood of
x contains a point of I.)

The preceding parts show that if I is a closed ideal in B then the definition of
|p(x)| establishes a norm on the complex algebra B/I, and the map p : B → B/I
is continuous.

(vii) Let ε > 0 and a, b ∈ B. Suppose |p(a) − p(b)| < ε. Then there is a b′ ∈ B such
that p(b′) = p(b) and |a− b′| < ε. Hint: Since |p(a− b)| < ε, there is an element
x ∈ p(a− b) = a− b + I such that |x| < ε. Since x ∈ a− b + I there is an element
y ∈ I such that x = a− b + y = a− (b− y).

(viii) Let I be a closed proper ideal in B. Suppose a1, a2, ... is a Cauchy sequence in
B/I. Then there is a subsequence aj1 , aj2 , ... such that |ajr − ajr+1 | < 2−r for
every r ∈ {1, 2, 3, ...}. Pick x1, x2, ... ∈ B such that p(xi) = ai for all i. Check that
by (vii) we can choose x′j1 , x

′
j2

, ... such that p(x′jr
) = p(xjr ) for all r ∈ {1, 2, 3, ...}

and such that
|x′jr+1

− x′jr
| < 2−r
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Since B is a Banach space, the sequence (x′jr
)r converges. Since p : B → B/I is

continuous it follows then that the sequence (p(x′jr
))r is convergent in B/I. Note

that p(x′jr
) = ajr

and so we have proven that the original Cauchy sequence (aj)
in B/I has a convergent subsequence. Since (aj) is Cauchy and has a convergent
subsequence it follows that (aj) is itself convergent. Thus B/I is a Banach space,
i.e. B/I is a complex Banach algebra.
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