1. Let \(R \) be a commutative ring with multiplicative identity \(e \). A subset \(S \subset R \) is an ideal of \(R \) if :
(a) \(0 \in S \),
(b) \(x + y \in S \) for every \(x, y \in S \), and
(c) \(rx \in S \) for every \(r \in R \) and \(x \in S \). The ideal \(S \) is a proper ideal if \(S \neq R \). It is a maximal ideal if it is a proper ideal and if the only ideals containing \(S \) are \(S \) itself and the whole ring \(R \). The ideal \(S \) is a prime ideal if for every \(x, y \in S \) if \(xy \in S \) then at least one of \(x \) and \(y \) must be in \(S \).

(i) Let \(I \) be an ideal of \(R \). For any \(x \in R \) we write \(x + I \) be the set of all elements of the form \(x + i \) with \(i \) running over \(I \). Let \(R/I \) be the set of all sets of the form \(x + I \) with \(x \) running over \(R \):

\[
R/I \overset{\text{def}}{=} \{ x + I : x \in R \}
\]

Let

\[
p : R \to R/I : x \mapsto x + I
\]

For any elements \(a, b \in R \) we have

\[
p(a) = p(b) \text{ if and only if } a - b \in I
\]

Show that if \(x, x', y, y' \in R \) are such that \(p(x) = p(x') \) and \(p(y) = p(y') \) then \(p(x + x') = p(y + y') \) and \(p(xy) = p(yy') \).

Thus there are well-defined operations of addition and multiplication on \(R/I \) given by

\[
p(x) + p(y) \overset{\text{def}}{=} p(x + y), \quad p(x)p(y) \overset{\text{def}}{=} p(xy)
\]

As is readily checked, these operations make \(R/I \) a ring and, of course, \(p : R \to R/I \) is a ring homomorphism. Commutativity of \(R \) implies that \(R/I \) is commutative. If \(e \in R \) is the identity of \(R \) then \(p(e) \) is the multiplicative identity in \(R/I \).
(ii) Suppose I is a maximal ideal of R. Show that then the commutative ring R/I is a field, i.e. every non-zero element has an inverse. Hint: Let $x \in R$ be such that $p(x)$ is a non-zero element of R/I, i.e. $x \in R$ is not in the ideal I. The set

$$Rx + I = \{rx + y : r \in R, y \in I\}$$

is clearly an ideal of R which contains I. Moreover, $Rx + I$ contains the element x which is not in I and so $Rx + I \neq I$. Since I is maximal, it follows then that $Rx + I$ equals the whole ring R. In particular, there is an element $y \in R$ and an element $a \in I$ such that $yx + a = e$. Apply p to this.

(iii) Let I be a ideal in R such that the quotient ring R/I is a field in which the multiplicative identity is not equal to 0. Show that I is maximal. Hint: Since $R/I \neq \{0\}$, the ideal I is proper. Let S be an ideal with $R \supset S \supset I$ and $S \neq I$. Choose $x \in S$ not in I. Then $p(x)$ is a non-zero element of R/I, where $p : R \to R/I : x \mapsto x + I$ is the projection map. So it has an inverse. Thus there is an element $y \in R$ such that $p(x)p(y) = p(e)$. This means $e - xy \in I$ and so $e - xy \in S$. But then $e = e - xy + xy \in S$.

In the following B is a complex Banach algebra which is assumed also to be commutative. An ideal in B is a subset $I \subset B$ which satisfies: (a) $x + y \in B$ for all $x, y \in I$, (b) $bx \in I$ for all $b \in B$ and $x \in I$. Note that taking $b = \lambda e$ for $\lambda \in \mathbb{C}$ in (b) shows, together with (a), that an ideal I is automatically a linear subspace of B. Recall the quotient

$$B/I = \{x + I : x \in B\}$$

and the projection map

$$p : B \to B/I : x \mapsto x + I$$

We have seen that B/I has a ring structure which makes p a ring homomorphism, and $p(e)$ is the identity element in B/I. Then the quotient B/I is also a complex vector space with multiplication by complex scalars λ defined by

$$\lambda p(x) \overset{\text{def}}{=} p(\lambda x)$$

This is well-defined because if $p(x) = p(y)$ then $x-y \in I$ and so $\lambda x - \lambda y = \lambda(x-y) \in I$ which means $p(\lambda x) = p(\lambda y)$. It is clear that B/I does become a vector space and indeed, together with the multiplication, B/I is a complex algebra and $p : B \to B/I$ a homomorphism of algebras (i.e. p is linear and $p(xy) = p(x)p(y)$ for all $x, y \in B$; $p(e)$ is the identity).

Any element B/I is of the form $p(x) = x + I$, for some $x \in B$. Thus it is a translate of the subspace I. Define

$$|p(x)| \overset{\text{def}}{=} \inf_{y \in p(x)} |y|,$$

the distance of $x + I$ from the origin. Since x itself belongs to $x + I$ it follows that

$$|p(x)| \leq |x|$$

2. We prove that if I is a closed proper ideal in B then \cdot is a norm on B/I making it a complex Banach algebra.

(i) For any $x, y \in B$,

$$|p(x) + p(y)| \leq |p(x)| + |p(y)|$$

Proceed as follows: Pick any $x' \in p(x) = x + I$ and $y' \in p(y) = y + I$. Then $p(x) = p(x')$ and $p(y) = p(y')$ and so $p(x + y) = p(x) + p(y) = p(x') + p(y') = p(x' + y')$. Therefore, $|p(x) + p(y)| = |p(x' + y')|$. So

$$|p(x) + p(y)| \leq |x' + y'| \leq |x'| + |y'|$$

Now take infimum over $x' \in p(x)$ and then over $y' \in p(y)$.

3
(ii) For any \(x \in B \) and \(\lambda \in C \),
\[
|\lambda p(x)| = |\lambda||p(x)|
\]
Hint: Work as in (i), taking any \(x' \in p(x) \) and showing that \(|\lambda p(x)| = |p(\lambda x')| \leq |\lambda||x'| \) and taking inf over all \(x' \in p(x) = x + I \). This shows \(|\lambda p(x)| \leq |\lambda||p(x)| \).
Now, for non-zero \(\lambda \), write \(p(x) \) on the right as \((1/\lambda)p(x)\).

(iii) Show that
\[
|p(x)p(y)| \leq |p(x)||p(y)|
\]
for every \(x, y \in B \).

(iv) Show that if \(I \neq B \) then \(|p(e)| \neq 0 \). Hint: Since \(I \) is a proper ideal it does not contain any invertible elements. The open ball of radius 1 around \(e \) consists entirely of invertible elements and so does not intersect \(I \). So \(e + I \) does not the open ball of radius 1 centered at 0. So \(|p(e)| \geq ? \).
(v) Show that if \(I \neq B \) then \(|p(e)| = 1\)

Hint: Combine the observation obtained in proving (iv) with the inequality \(|p(e)| \leq |e| = 1\). [Note also that if in (iii) we put \(x = y = e \) then \(|p(e)| \geq 1\) or \(|p(e)| = 0\).]

(vi) Suppose that \(I \) is a closed ideal in \(B \), i.e. suppose that \(I \) is an ideal and it is closed as a subset of \(B \). If \(|p(x)| = 0\) show that \(p(x) = 0\). (Hint: If \(|p(x)| = 0\) then every neighborhood of 0 contains a point of \(x + I \), and so every neighborhood of \(x \) contains a point of \(I \).)

The preceding parts show that if \(I \) is a closed ideal in \(B \) then the definition of \(|p(x)|\) establishes a norm on the complex algebra \(B/I \), and the map \(p : B \to B/I \) is continuous.

(vii) Let \(\epsilon > 0 \) and \(a, b \in B \). Suppose \(|p(a) - p(b)| < \epsilon\). Then there is a \(b' \in B \) such that \(p(b') = p(b) \) and \(|a - b'| < \epsilon\). Hint: Since \(|p(a - b)| < \epsilon\), there is an element \(x \in p(a - b) = a - b + I \) such that \(|x| < \epsilon\). Since \(x \in a - b + I \) there is an element \(y \in I \) such that \(x = a - b + y = a - (b - y)\).

(viii) Let \(I \) be a closed proper ideal in \(B \). Suppose \(a_1, a_2, ... \) is a Cauchy sequence in \(B/I \). Then there is a subsequence \(a_{j_1}, a_{j_2}, ... \) such that \(|a_{j_r} - a_{j_{r+1}}| < 2^{-r}\) for every \(r \in \{1, 2, 3, ...\} \). Pick \(x_1, x_2, ... \in B \) such that \(p(x_i) = a_i \) for all \(i \). Check that by (vii) we can choose \(x'_{j_1}, x'_{j_2}, ... \) such that \(p(x'_{j_r}) = p(x_{j_r}) \) for all \(r \in \{1, 2, 3, ...\} \) and such that

\[|x'_{j_{r+1}} - x'_{j_r}| < 2^{-r} \]
Since B is a Banach space, the sequence $(x'_j)_r$ converges. Since $p : B \to B/I$ is continuous it follows then that the sequence $(p(x'_j))_r$ is convergent in B/I. Note that $p(x'_j) = a_j$, and so we have proven that the original Cauchy sequence (a_j) in B/I has a convergent subsequence. Since (a_j) is Cauchy and has a convergent subsequence it follows that (a_j) is itself convergent. Thus B/I is a Banach space, i.e. B/I is a complex Banach algebra.