Math 7330: Functional Analysis Fall 2002
Notes 7: The Spectral Theorem A. Sengupta

Let B be a complex, commutative B* algebra, with A its Gelfand spectrum. Then,

as we have seen in class,
(i) the Gelfand transform B — C(A) : x — & satisfies

~

r* =

S

for every x € B;

(ii) the spectral radius p(x) equals the norm |z| for every z € B.

Fact (ii) was proven first for hermitian elements in any B* algebra and then, using the
Gelfand transform, for all elements in a commutative B* algebra. If a € B is hermitian
then

pla) = lim |a"|/"

n—oo

while |a?| = |aa*| = |a|? which implies |a2k| = |a|2k, and so, letting n — oo through powers

of 2 we get
pla) = |al

for every hermitian a in any B* algebra. For a commutative B* algebra B we have for a
general z € B,

plaz®) = |z2*)|sup < |2fsup| 2" |sup = p(2)p(27) < p(2)|2”]

Since zz* is hermitian, p(xx*) = |xa*|, which is equal to |z||z*|. So we have

|z < p(x)

But we already know the opposite inequality. So p(x) = |z|.

By (i) and (ii) and other properties we have studied before, the Gelfand transform
is a *-algebra homomorphism and is also an isometry. Its image B in C (A) is therefore
a subalgebra of C'(A) which is preserved under conjugation. Moreover, since the Gelfand
transform is an isometry it follows that B is a closed subset of C(A): for if x,, € B are such
that &, — f for some f € C(A) then (Z,), is Cauchy in C(A) and so, by isometricity,
(xn)n is Cauchy in B and so is convergent, say to x and then by continuity of " it follows
that f = 2, and so f is in the image of the Gelfand transform. Finally, B separates points
of A because if hy and ho are distinct elements of A, then, by definition of A, there must
be some x € B for which hy(x) # he(x), i.e. &(h1) # h(xs).

The Stone-Weierstrass theorem now implies that

B=C(A)

This proves the Gelfand-Naimark theorem:
Theorem. For a complex commutative B*—algebra B, the Gelfand transform is an
isometric isomorphism of B onto C(A), where A is the Gelfand spectrum of B.



1. Let H be a complex vector space and F' : H x H — C a mapping such that F(x,y)
is linear in x and conjugate-linear in y.
(i) Prove the polarization formula

1 1 1 7
(1)

(ii) Use this to prove that

sup  [F(z,y)| <4 sup [F(v,v)] (2)
vy€H, |o| [yl <1 vEH,|v|<1

[Hint: In (1), the first term equals F(a,a) with a = (x 4+ y)/2 and |a| < 1 if
||, |y| < 1. Similarly for the other terms.]



(iii) If y € H then show that

sup  |(y,v)| = |yl
veH,|v|<1

(iv) f T': H — H is a linear map for which sup,¢ g |, <1 [(Tv,v)| < oo, show that T
is a bounded linear map and

T <4 sup |(Twv,v)
vEH,|v[<1

(Recall that the norm of T is |T'| = sup,cp,|4<1 | T].)



2. Let H be a complex Hilbert space and F' : H x H — C a map such that F(z,y) is
linear in x, conjugate linear in y, and sup,, ,e r (u),1y1<1 1F (2, )| < 0.
(i) Fix x € H, and consider

¢z H— C:yr F(z,y).
Show that this is a bounded linear functional. Consequently, there exists a unique
element Tx € H such that ¢,(y) = (T'z,y) for every y € H. Thus for each x € H

there exists a unique element Tx € H such that

F(z,y) = (Tx,y) forally e H

(ii) Let 2,2’ € H and a,b € C. Show that
(aTx + VT’ ,y) = F(ax + bx',y) forally e H
Then by the uniqueness property noted in (i) it follows that
T(ax + bz') = aTx + 0T’

Thus T : H — H is linear.

(iii) Show that the map T': H — H is a bounded linear map. [Hint: Use 1(iii) and
(if)



3. Let X be a non-empty set and B a o—algebra of subsets of X.

i) Suppose Aq, ..., A\, and N}, ..., A\’ are finite measures on B and a, ..., a,, a}, ...
) ) 1 » ‘\m I ) y Y1

are complex numbers such that

n m
§ _ § 1 \/
Jj=1 Jj=1

Then show that for any bounded B—measurable function f : X — C,

[Hint: There is a sequence of measurable simple functions sy such that sy(z) —

f(z) uniformly for x € X as N — o0.] If i is the complex measure given by

n
p=D ik
j=1

then we define

/fdu(gg:laj/xfﬁj

for all bounded measurable functions f on X. The fact proven above says that
this definition is independent of the particular choice of a; and \; used to express

L.



(i)

(iii)

If by, ..., by, are complex numbers and 1, ..., 4 are complex measures, each of the
type described in (i), and p is the complex measure given by

n
p= b
j=1

then show that .
/fduzzbj/fduj
j=1

for all bounded measurable functions f on X.

Suppose now that X is a compact Hausdorff space and B is the Borel o—algebra.
Let p1, o be complex measures on B, each p; being a complex linear combination
of finite regular Borel measures \;; on B. Show that if

/fd,ulz/fdug for all f € C(X)

then
M1 = p2

Hint: Write p1 = > ;a;A; and p2 = 37, ajA;, where the a;,a; are complex
numbers and A;, A} are finite regular Borel measures. The A =37, A\;+> ;A is a
finite regular Borel measure. Let g be any bounded Borel function. Then there is
a sequence of continuous functions g, € C(X) such that g, (z) — g(x) for A-a.e.
x and |gn|sup < |g|sup- Then the same holds a.e. for each \; and each )\;-. Now
use the dominated convergence theorem. Finally, set ¢ = 14 for any Borel set

AcCX.



4. Let H be a complex Hilbert space, X a compact Hausdorff space, B its Borel o—
algebra. Suppose that for each  we have a finite regular Borel measure p, , on B.
Define, for every z,y € H,

1 1 1 1
,ua:,y - Zﬂx—&-y,x—l—y - Z_l,uac—y,ac—y + Z,Um—l—iy,x—i—iy - Zﬂx—iy,x—z’y (3)

This is a complex measure which is a linear combination of finite regular Borel mea-
sures. Assume that [ fdp,, is linear in x and conjugate linear in y for every

feC(X).
(i) Show that p, is linear in  and conjugate linear in y.
Hint: Let z,2/,y € H and a € C. Then, by hypothesis, | fduaztqary equals

af fdusy + [ fdpa .y, for every f € C(X), ie. [ fdpgatay = [ fFd(apa,y +
[ery) for every f € C(X). Now use 3(iii).

(ii) Show that

sup ‘/gdﬂw,y’ §4‘g’sup SUp  fyw(X)
z,y€H,|z|,|ly|<1 veH,|v|<1

for every bounded Borel function g on X.



(iii) Assume that sup,ep jyj<1 fo,0(X) < 0o. Show that for every bounded Borel
function g on X there is a unique bounded linear operator ®(g) : H — H such
that

((I)(g)$7y) :/ng,um,y

(iv) Assume that sup,ep <1 to,o(X) < 00. Show that the mapping g — ®(g) is
linear. Hint: Let g,h be bounded Borel functions and a any complex num-
ber. Show that (®(ag + h)z,y) equals a(®(g)z,y) + (®(h)z,y), i.e. is equal to
([a®(g) + ®(h)]z,y). Now use the uniqueness of ®(ag + h).

(v) Assume that sup,cp |y|<1 Hoo(X) < 00. Assume also that ®(f) = ®(f)" and
O(fg) = @(f)P(g) hold for all f,g € C(X). Show that for any x € H, the linear

mapping
CX)—H:f—d(f)x

satisfies
1@(f)x] = |flr2(ua.0)

for all f € C(X). Hint: |®(f)z|? = (®(f)z, ®(f)z) = (®(f)*O(f)z, z).

(vi) Assume the hypotheses of (v). Since C'(X) is a dense subspace of L*(piyz), it
follows from (v) that ® extends to a linear isometry

L*(X, pgn) — H : g ®(g)z



(vii)

(viii)

Assume the hypotheses of (v) and assume also that ®(fg) = ®(f)P(g) for all
f,g € C(X). Now let h,k be bounded Borel functions on X. Let x € H. Then
h,k € L*(u, ) and so there exist sequences of functions hy,,k, € C(X) con-
verging pointwise p, ,—a.e. to h, k, respectively, and within |hy,|sup < |h|sup and
|knlsup < |K|sup- Then, by dominated convergence, hy,, k,, converge in L (i, ) to
h, k, respectively. Moreover, h,k, also converges ji, ,—a.e. to hk and |hpkg|sup <
|h|sup|k|sup- Then, by dominated convergence, R, kn, hyk, converge in L2 (g o)
to h, k, hk, respectively. Similarly, h,, converges to h. Consider
(®(hy)z,z) = (z, ®(hy)*z) = (2, ®(hy)T)
and o
(®(hnkn)z,z) = (®(hy)®(kn)z,z) = ((kp)z, ®(hy)2)
Let n — oo to show that _
®(h) = ®(h)"
and
O(hk) = ®(h)P(k)
for all bounded Borel functions h, k on X.

All hypotheses as before. For any Borel set A C X show that the operator

E(A) ¥ (1)

is an orthogonal projection. From the isometry property in (vi) it follows that E
is a projection-valued measure on the Borel o—algebra of X.

All hypotheses as before. Now (iii) shows that

fa,y(A) = (E(A)z,y)
By definition, if g is a bounded Borel function on X then [ gdFE is the unique
operator on H for which (( / ng)x,x) equals [ gdE, .. Therefore, by (iii),

[ 9aE =2



5. Let H be a complex Hilbert space, B(H) the algebra of bounded linear operators on
H, X a compact Hausdorff space, B its Borel c—algebra, and suppose that

®:C(X)— B(H): f— ®(f)

is an algebra homomorphism with ®(f) = ®(f)* and |®(f)| = | f|sup for all f € C(X).
For each x € H, let L, , : C(X) — C the mapping given by

Lyr:C(X)—=C:frogaf def (@(f)m,x)

Clearly, L, , is a linear functional.
(i) Check that

Lw,w(f) - Lw,mf

forall z € H and f € C(X). Thus if f is real-valued then L, , f is a real number,
and so L, restricts to a real-linear map C*™*(X) — R.

(ii) Show that if f € C'(X) is non-negative then L, , f > 0 for all x € H. Hint: Show
that Ly . f = |®(f1/?)[%

10



(iii) From the observations noted above it follows by the Riesz-Markov theorem that
for each « € H there is a unique regular Borel measure pi, , on X such that

/ f dpto.e = (8(f)2, ) (4)

for every f € C™(X). Because both sides of (4) are complex-linear in f it
follows that (4) holds for all f € C'(X).

Now for any =,y € H let p, , be the complex measure on B given by

1 1 1 1
,U/:c,y - Zﬂx—i—y,m—l—y - Z,U/x—y,x—y + Z/fbw—i—iy,x—‘riy - Z,U/x—iy,m—iy (5)

Show that then
[ #dues = (@(2.0) (6)

for every f € C(X).

11



6. Let H be a complex Hilbert space and B a commutative subalgebra of B(H) such that
T* € B for every T' € B and B is a closed subset of B(H) (in the norm topology).
Then B is itself a commutative B*—algebra. Let A be its Gelfand spectrum. By
Gelfand-Naimark, the Gelfand transform

B—C(A):T—T
is an isometric *—isomorphism. Let

¢:C(A)— B: f— O(f)

be its inverse. Applying the preceding results to this situation we see that there is a
projection valued measure E on the Borel o—algebra of A such that

o(f) = [ 1aE

for every continuous function f on A. Thus

T:/TdE
A

for every T € B. This is the spectral resolution of the operator T. Note that since T’
and T both belong to the commutative algebra B, the operator 7" must be normal.
Conversely, for any bounded normal operator T on H we can take B to be the closure

of the set of all operators which can be expressed as polynomials p(7,7*) in T" and
T,

7. Let the setting be as in Problem 6. Suppose E’ is also a projection valued measure
on the Borel sigma-algebra of A such that

o(f) = [ saE

for every continuous function f on A. Assume that E’ is regular in the sense that
E; , is a regular Borel measure for each € H. Show that £’ = E. [Hint: Show that

E! , = E, for every z € H, and then see what this says about (E'(A)z,x).]
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