
Math 7330: Functional Analysis Fall 2002
Notes 7: The Spectral Theorem A. Sengupta

Let B be a complex, commutative B∗ algebra, with ∆ its Gelfand spectrum. Then,
as we have seen in class,
(i) the Gelfand transform B → C(∆) : x 7→ x̂ satisfies

x̂∗ = x̂

for every x ∈ B;
(ii) the spectral radius ρ(x) equals the norm |x| for every x ∈ B.

Fact (ii) was proven first for hermitian elements in any B∗ algebra and then, using the
Gelfand transform, for all elements in a commutative B∗ algebra. If a ∈ B is hermitian
then

ρ(a) = lim
n→∞

|an|1/n

while |a2| = |aa∗| = |a|2 which implies |a2k | = |a|2k

, and so, letting n →∞ through powers
of 2 we get

ρ(a) = |a|
for every hermitian a in any B∗ algebra. For a commutative B∗ algebra B we have for a
general x ∈ B,

ρ(xx∗) = | ˆxx∗)|sup ≤ |x̂|sup|x̂∗|sup = ρ(x)ρ(x∗) ≤ ρ(x)|x∗|

Since xx∗ is hermitian, ρ(xx∗) = |xx∗|, which is equal to |x||x∗|. So we have

|x| ≤ ρ(x)

But we already know the opposite inequality. So ρ(x) = |x|.
By (i) and (ii) and other properties we have studied before, the Gelfand transform

is a ∗–algebra homomorphism and is also an isometry. Its image B̂ in C(∆) is therefore
a subalgebra of C(∆) which is preserved under conjugation. Moreover, since the Gelfand
transform is an isometry it follows that B̂ is a closed subset of C(∆): for if xn ∈ B are such
that x̂n → f for some f ∈ C(∆) then (x̂n)n is Cauchy in C(∆) and so, by isometricity,
(xn)n is Cauchy in B and so is convergent, say to x and then by continuity ofˆit follows
that f = x̂, and so f is in the image of the Gelfand transform. Finally, B̂ separates points
of ∆ because if h1 and h2 are distinct elements of ∆, then, by definition of ∆, there must
be some x ∈ B for which h1(x) 6= h2(x), i.e. x̂(h1) 6= ĥ(x2).

The Stone-Weierstrass theorem now implies that

B̂ = C(∆)

This proves the Gelfand-Naimark theorem:
Theorem. For a complex commutative B∗–algebra B, the Gelfand transform is an

isometric isomorphism of B onto C(∆), where ∆ is the Gelfand spectrum of B.
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1. Let H be a complex vector space and F : H ×H → C a mapping such that F (x, y)
is linear in x and conjugate-linear in y.
(i) Prove the polarization formula

F (x, y) =
1
4
F (x+y, x+y)− 1

4
F (x−y, x−y)+

i

4
F (x+iy, x+iy)− i

4
F (x−iy, x−iy)

(1)

(ii) Use this to prove that

sup
x,y∈H,|x|,|y|≤1

|F (x, y)| ≤ 4 sup
v∈H,|v|≤1

|F (v, v)| (2)

[Hint: In (1), the first term equals F (a, a) with a = (x + y)/2 and |a| ≤ 1 if
|x|, |y| ≤ 1. Similarly for the other terms.]
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(iii) If y ∈ H then show that
sup

v∈H,|v|≤1

|(y, v)| = |y|

(iv) If T : H → H is a linear map for which supv∈H,|v|≤1 |(Tv, v)| < ∞, show that T
is a bounded linear map and

|T | ≤ 4 sup
v∈H,|v|≤1

|(Tv, v)|

(Recall that the norm of T is |T | = supx∈H,|x|≤1 |Tx|.)
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2. Let H be a complex Hilbert space and F : H × H → C a map such that F (x, y) is
linear in x, conjugate linear in y, and supx,y∈H,|x|,|y|≤1 |F (x, x)| < ∞.
(i) Fix x ∈ H, and consider

φx : H → C : y 7→ F (x, y).

Show that this is a bounded linear functional. Consequently, there exists a unique
element Tx ∈ H such that φx(y) = (Tx, y) for every y ∈ H. Thus for each x ∈ H
there exists a unique element Tx ∈ H such that

F (x, y) = (Tx, y) for all y ∈ H

(ii) Let x, x′ ∈ H and a, b ∈ C. Show that

(aTx + bTx′, y) = F (ax + bx′, y) for all y ∈ H

Then by the uniqueness property noted in (i) it follows that

T (ax + bx′) = aTx + bTx′

Thus T : H → H is linear.

(iii) Show that the map T : H → H is a bounded linear map. [Hint: Use 1(iii) and
(ii).]
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3. Let X be a non-empty set and B a σ–algebra of subsets of X.
(i) Suppose λ1, ..., λn and λ′1, ..., λ

′
m are finite measures on B and a1, ..., an, a′1, ..., a

′
m

are complex numbers such that

n∑

j=1

ajλj =
m∑

j=1

a′jλ
′
j

Then show that for any bounded B–measurable function f : X → C,

n∑

j=1

aj

∫

X

f dλj =
m∑

j=1

a′j

∫

X

f dλ′j

[Hint: There is a sequence of measurable simple functions sN such that sN (x) →
f(x) uniformly for x ∈ X as N →∞.] If µ is the complex measure given by

µ =
n∑

j=1

ajλj

then we define ∫
f dµ

def=
n∑

j=1

aj

∫

X

f dλj

for all bounded measurable functions f on X. The fact proven above says that
this definition is independent of the particular choice of aj and λj used to express
µ.
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(ii) If b1, ..., bk are complex numbers and µ1, ..., µk are complex measures, each of the
type described in (i), and µ is the complex measure given by

µ =
n∑

j=1

bj µj

then show that ∫
f dµ =

n∑

j=1

bj

∫
f dµj

for all bounded measurable functions f on X.

(iii) Suppose now that X is a compact Hausdorff space and B is the Borel σ–algebra.
Let µ1, µ2 be complex measures on B, each µi being a complex linear combination
of finite regular Borel measures λij on B. Show that if

∫
f dµ1 =

∫
f dµ2 for all f ∈ C(X)

then
µ1 = µ2

Hint: Write µ1 =
∑

j ajλj and µ2 =
∑

i a′iλ
′
i, where the ai, a

′
j are complex

numbers and λi, λ
′
j are finite regular Borel measures. The λ =

∑
i λi +

∑
j λ′j is a

finite regular Borel measure. Let g be any bounded Borel function. Then there is
a sequence of continuous functions gn ∈ C(X) such that gn(x) → g(x) for λ–a.e.
x and |gn|sup ≤ |g|sup. Then the same holds a.e. for each λi and each λ′j . Now
use the dominated convergence theorem. Finally, set g = 1A for any Borel set
A ⊂ X.

6



4. Let H be a complex Hilbert space, X a compact Hausdorff space, B its Borel σ–
algebra. Suppose that for each x we have a finite regular Borel measure µx,x on B.
Define, for every x, y ∈ H,

µx,y =
1
4
µx+y,x+y − 1

4
µx−y,x−y +

i

4
µx+iy,x+iy − i

4
µx−iy,x−iy (3)

This is a complex measure which is a linear combination of finite regular Borel mea-
sures. Assume that

∫
f dµx,y is linear in x and conjugate linear in y for every

f ∈ C(X).
(i) Show that µx,y is linear in x and conjugate linear in y.

Hint: Let x, x′, y ∈ H and a ∈ C. Then, by hypothesis,
∫

f dµax+x′,y equals
a

∫
f dµx,y +

∫
f dµx′,y, for every f ∈ C(X), i.e.

∫
f dµax+x′,y =

∫
f d

(
aµx,y +

µx′,y
)

for every f ∈ C(X). Now use 3(iii).

(ii) Show that

sup
x,y∈H,|x|,|y|≤1

∣∣∣
∫

g dµx,y

∣∣∣ ≤ 4|g|sup sup
v∈H,|v|≤1

µv,v(X)

for every bounded Borel function g on X.
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(iii) Assume that supv∈H,|v|≤1 µv,v(X) < ∞. Show that for every bounded Borel
function g on X there is a unique bounded linear operator Φ(g) : H → H such
that (

Φ(g)x, y
)

=
∫

X

g dµx,y

(iv) Assume that supv∈H,|v|≤1 µv,v(X) < ∞. Show that the mapping g 7→ Φ(g) is
linear. Hint: Let g, h be bounded Borel functions and a any complex num-
ber. Show that

(
Φ(ag + h)x, y

)
equals a

(
Φ(g)x, y

)
+

(
Φ(h)x, y

)
, i.e. is equal to(

[aΦ(g) + Φ(h)]x, y
)
. Now use the uniqueness of Φ(ag + h).

(v) Assume that supv∈H,|v|≤1 µv,v(X) < ∞. Assume also that Φ(f) = Φ(f)∗ and
Φ(fg) = Φ(f)Φ(g) hold for all f, g ∈ C(X). Show that for any x ∈ H, the linear
mapping

C(X) → H : f 7→ Φ(f)x

satisfies
|Φ(f)x| = |f |L2(µx,x)

for all f ∈ C(X). Hint: |Φ(f)x|2 =
(
Φ(f)x, Φ(f)x

)
=

(
Φ(f)∗Φ(f)x, x

)
.

(vi) Assume the hypotheses of (v). Since C(X) is a dense subspace of L2(µx,x), it
follows from (v) that Φ extends to a linear isometry

L2(X, µx,x) → H : g 7→ Φ(g)x
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(vii) Assume the hypotheses of (v) and assume also that Φ(fg) = Φ(f)Φ(g) for all
f, g ∈ C(X). Now let h, k be bounded Borel functions on X. Let x ∈ H. Then
h, k ∈ L2(µx,x) and so there exist sequences of functions hn, kn ∈ C(X) con-
verging pointwise µx,x–a.e. to h, k, respectively, and within |hn|sup ≤ |h|sup and
|kn|sup ≤ |k|sup. Then, by dominated convergence, hn, kn converge in L2(µx,x) to
h, k, respectively. Moreover, hnkn also converges µx,x–a.e. to hk and |hnkk|sup ≤
|h|sup|k|sup. Then, by dominated convergence, hn, kn, hnkn converge in L2(µx,x)
to h, k, hk, respectively. Similarly, hn converges to h. Consider

(Φ(hn)x, x) = (x, Φ(hn)∗x) =
(
x, Φ(hn)x

)

and
(Φ(hnkn)x, x) = (Φ(hn)Φ(kn)x, x) =

(
Φ(kn)x, Φ(hn)x

)

Let n →∞ to show that
Φ(h) = Φ(h)∗

and
Φ(hk) = Φ(h)Φ(k)

for all bounded Borel functions h, k on X.

(viii) All hypotheses as before. For any Borel set A ⊂ X show that the operator

E(A) def= Φ(1A)

is an orthogonal projection. From the isometry property in (vi) it follows that E
is a projection-valued measure on the Borel σ–algebra of X.

(ix) All hypotheses as before. Now (iii) shows that

µx,y(A) = (E(A)x, y)

By definition, if g is a bounded Borel function on X then
∫

g dE is the unique
operator on H for which

((∫
g dE

)
x, x

)
equals

∫
g dEx,x. Therefore, by (iii),∫

g dE = Φ(g)
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5. Let H be a complex Hilbert space, B(H) the algebra of bounded linear operators on
H, X a compact Hausdorff space, B its Borel σ–algebra, and suppose that

Φ : C(X) → B(H) : f 7→ Φ(f)

is an algebra homomorphism with Φ(f) = Φ(f)∗ and |Φ(f)| = |f |sup for all f ∈ C(X).
For each x ∈ H, let Lx,x : C(X) → C the mapping given by

Lx,x : C(X) → C : f 7→x,x f
def=

(
Φ(f)x, x

)

Clearly, Lx,x is a linear functional.
(i) Check that

Lx,x(f) = Lx,xf

for all x ∈ H and f ∈ C(X). Thus if f is real-valued then Lx,xf is a real number,
and so Lx,x restricts to a real-linear map Creal(X) → R.

(ii) Show that if f ∈ C(X) is non-negative then Lx,xf ≥ 0 for all x ∈ H. Hint: Show
that Lx,xf = |Φ(f1/2)|2.
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(iii) From the observations noted above it follows by the Riesz-Markov theorem that
for each x ∈ H there is a unique regular Borel measure µx,x on X such that

∫
f dµx,x =

(
Φ(f)x, x

)
(4)

for every f ∈ Creal(X). Because both sides of (4) are complex-linear in f it
follows that (4) holds for all f ∈ C(X).
Now for any x, y ∈ H let µx,y be the complex measure on B given by

µx,y =
1
4
µx+y,x+y − 1

4
µx−y,x−y +

i

4
µx+iy,x+iy − i

4
µx−iy,x−iy (5)

Show that then ∫
f dµx,y =

(
Φ(f)x, y

)
(6)

for every f ∈ C(X).
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6. Let H be a complex Hilbert space and B a commutative subalgebra of B(H) such that
T ∗ ∈ B for every T ∈ B and B is a closed subset of B(H) (in the norm topology).
Then B is itself a commutative B∗–algebra. Let ∆ be its Gelfand spectrum. By
Gelfand-Naimark, the Gelfand transform

B → C(∆) : T 7→ T̂

is an isometric ∗–isomorphism. Let

Φ : C(∆) → B : f 7→ Φ(f)

be its inverse. Applying the preceding results to this situation we see that there is a
projection valued measure E on the Borel σ–algebra of ∆ such that

Φ(f) =
∫

f dE

for every continuous function f on ∆. Thus

T =
∫

∆

T̂ dE

for every T ∈ B. This is the spectral resolution of the operator T . Note that since T
and T ∗ both belong to the commutative algebra B, the operator T must be normal.
Conversely, for any bounded normal operator T on H we can take B to be the closure
of the set of all operators which can be expressed as polynomials p(T, T ∗) in T and
T ∗.

7. Let the setting be as in Problem 6. Suppose E′ is also a projection valued measure
on the Borel sigma-algebra of ∆ such that

Φ(f) =
∫

f dE′

for every continuous function f on ∆. Assume that E′ is regular in the sense that
E′

x,x is a regular Borel measure for each x ∈ H. Show that E′ = E. [Hint: Show that
E′

x,x = Ex,x for every x ∈ H, and then see what this says about
(
E′(A)x, x

)
.]
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