
Lecture 6. The Dynkin π − λ Theorem.

It is often the case that two measures which agree on a certain class of sets actually
agree on all sets in the relevant σ-algebra. There are a couple of standard tools to prove
that the measures are the same: the Monotone Class lemma and the Dynkin π−λ theorem.
They are essentially equivalent devices and it is largely a matter of taste which one to take
as standard equipment. We shall do the π − λ theorem and use it in the case of Lebesgue
measure.

Suppose that µ and µ′ are translation invariant measures on the Borel σ−algebra of
Rd both assigning the same (finite) measure to the unit box [0, 1]d. We will show that
then µ = µ′. Let L denote the set of all Borel sets A ⊂ Rn for which µ(A) = µ′(A). By
hypothesis, [0, 1]d ∈ L. It seems reasonable to conclude from this that the set P of all
boxes [a1, b1]× · · ·× [ad, bd], with rational ai and bi, would belong to L. Let us accept this
for now; i.e. suppose P ⊂ L. Now if we can show from this that L contains the σ−algebra
generated by P then we would be done, because the σ−algebra generated by π is the Borel
σ−algebra. (This follows from two observations : (i) each box in P is the intersection of
open sets :

[a1, b1] × · · · × [ad, bd] =
⋂

k≥1

(

a1 −
1

k
, b1 +

1

k

)

× · · · ×

(

ad −
1

k
, bd +

1

k

)

and (ii) every open U subset of Rd is the union of small boxes [a1, b1]× · · · × [ad, bd] with
rational endpoints and centered at the rational points in U .) Thus L would in fact be the
whole Borel σ−algebra. That is, µ(A) = µ′(A) for every Borel set A. Thus the key tool
would be the result that L contains the σ−algebra generated by P . This will, essentially,
be proved by the π − λ theorem. There are some technical problems involved which will
be settled later.

6.0. Definition. Let P and L be collections of subsets of a set X. The collection P
is called a π−system if it is closed under finite intersections; i.e. if A,B ∈ P then
A ∩ B ∈ P :

P is a π-system if A ∩ B ∈ P for all A,B ∈ P

The collection L is called a λ−system if the following hold :
(L1) ∅ ∈ L;
(L2) if A ∈ L then Ac ∈ L;
(L3) L is closed under countable disjoint unions; i.e. if A1, A2, ... ∈ L and if Ai∩Aj = ∅

for every i 6= j, then ∪∞
j=1Aj ∈ L.

6.1. Dynkin’s π − λ Theorem. Let P be a π-system of subsets of X,and L a

λ-system of subsets of X. Suppose also that P ⊂ L. Then :

σ(P ) ⊂ L,

i.e. L contains the σ-algebra σ(P ) generated by P .

We will do the proof later but let us apply it to prove the uniqueness of Lebesgue
measure.
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6.2. Proposition. Every translation-invariant Borel measure on R which assigns finite

measure to the unit interval is a constant multiple of Lebesgue measure.

Proof. Let µ be a translation-invariant Borel measure on R which assigns finite
measure to the unit interval. Let m be Lebesgue measure on R. Our first objective will
be to check that

µ
(

[a, b)
)

= km
(

[a, b)
)

for every rational a, b, where k is the finite constant

k = µ
(

[0, 1)
)

Then we shall show by a π − λ argument that µ(A) = km(A) holds for all sets A in the
sigma-algebra generated by the intervals [a, b), i.e. it holds for all Borel sets A.

For any positive integer p, the interval [0, p) is the union of p disjoint translates of
[0, 1), and so by translation-invariance of µ, we have

µ
(

[0, p)
)

= pµ
(

[0, 1)
)

= pk

By the same argument, for any positive integer p, we also have

µ
(

[0, p)
)

= qµ
(

[0, p/q)
)

Combining these two relations we have

µ
(

[0, p/q)
)

= k
p

q
= km

(

[0, p/q)
)

Then by translation-invariance it follows that

µ
(

[a, b)
)

= km
(

[a, b)
)

for all intervals [a, b) for which b − a is rational.
Thus µ is a constant multiple of Lebesgue measure m on intervals [a, b) with rational

endpoints. Now we use the π − λ theorem to jazz this up to all Borel sets. The first idea
would be take P to be the collection of all intervals [a, b) with rational endpoints, and L to
be the class of all Borel sets A for which µ(A) = km(A) holds. But there is a problem with
this: the collection L satisfies all properties of being a λ system except that we cannot
establish closure under complements, as the argument

µ(Ac) = µ(R) − µ(A) = ∞− km(A) = km(Ac)

is non-sense. The way to get around this problem with infinite measure is to focus down
to a finite interval [−N, N) and then let N ↑ ∞ at the end.

So, fix any positive integer N , and let

LN = {all Borel sets A fotr which µ
(

A ∩ [−N, N)
)

= km
(

A ∩ [−N, N)
)

}
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and
P = {all intervals [a, b) with a, b rational}

What we have proven before shows that

P ⊂ LN

It is clear that P is a π–system. It is also clear that L contains the empty set and is
closed under countable disjoint unions. To check closure under complements, consider any
A ∈ LN . Then

µ
(

Ac ∩ [−N,N)
)

= µ
(

[−N, N)
)

− µ(A) = km
(

[−N, N)
)

− km(A) = km
(

Ac ∩ [−N, N)
)

(The subtraction works because m([−N, N)) = 2N is finite.) This shows that Ac ∈ LN .
Thus LN is a λ-system.

By Dynkin’s theorem we conclude then that LN ⊃ σ(P ). But σ(P ) is the entire Borel
sigma-algebra. So, in fact, LN is the entire Borel sigma-algebra, and this means that for
any Borel set A we have the relation

µ
(

Ac ∩ [−N,N)
)

= km
(

Ac ∩ [−N, N)
)

Now let N ↑ ∞. Since
∪N≥1

(

Ac ∩ [−N,N)
)

= A

we conclude that
µ(A) = km(A)

for every Borel set A.
We can now move this result up to higher dimensions.
6.3. Proposition. Suppose µ is a translation-invariant measure on the Borel subsets

of Rd, for which k
def
= µ([0, 1]d) < ∞. Then

µ = k m

Proof. We will use essentially the same argument as in the one-dimensional case. Let
p1, ..., pd be positive integers. Note that [0, pj) is the union of pj translates [n, n+1), with
n ∈ {0, 1, ..., pj − 1}, of [0, 1). Taking products of these intervals we see that

[0, p1) × · · · × [0, pd)

is the union of of the boxes

[n1, n1 + 1) × · · · × [nd, nd + 1)

where n1, ..., nd ∈ {0, 1, ..., p−1}. Any pair of distinct boxes in this collection have at least
one ‘side’ disjoint, and so these boxes are disjoint. There are

p1 · · · pd
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of these boxes. So, by translation-invariance of the measure µ, we have

µ
(

[0, p1) × · · · × [0, pd)
)

= p1 · · · pdµ
(

[0, 1)d
)

= kp1 · · · pd

Again, by the same reasoning, for any positive integers q1, ..., qd, we have

µ
(

[0, p1) × · · · × [0, pd)
)

= q1 · · · qdµ
(

[0, p1/q1) × · · · [0, pd/qd)
)

Combining the preceding relations we have

µ(B) = km(B)

for the box B = [0, p1/q1) × · · · × [0, pd/qd). Translation invariance then shows that the
above equality holds for every box B with rational sides.

Let P be the collection of all boxes with rational corners. This is a π-system which
generates the Borel sigma-algebra of Rd. Fix any positive integer N and let LN be the
collection of all Borel sets A ⊂ Rd for which

µ(A ∩ BN ) = km(A ∩ BN )

where
BN = [−N, N)d

Then LN is a λ-system and, by what we have proven above, LN ⊃ P . Therefore, by the
π − λ theorem, LN ⊃ σ(P ). Since σ(P ) is the Borel sigma-algebra, it follows that

µ(A ∩ BN ) = km(A ∩ BN )

for every Borel set A. Now let N ↑ ∞ to conclude that

µ(A) = km(A)

for every Borel set A ⊂ Rd.
Finally, we turn to the proof of the π − λ theorem. There are a couple of simple

observations we will need :
6.4. Lemma. Let X be a set, and consider λ and π systems of subsets of X.
(i) A λ-system which also a π-system (i.e. is closed under finite intersections) is a

σ-algebra.
(ii) A λ system is closed under proper differences: if L is a λ−system and A,B ∈ L

with B ⊂ A, then A − B ∈ L.
Proof. (i) Suppose that the λ−system L is also a π system; i.e. if A,B ∈ L then

A ∩ B ∈ L. The only point we have to check is that L is closed under countable unions.
So let E1, E2, ... ∈ L, and set E = ∪jEj . Since we know that L is closed under countable
disjoint unions we need to write E as a disjoint union of sets in L. This is achieved as
follows. Let Hj be the set of all points in Ej which do not already belong to any of the
‘previous’ sets E1, ..., Ej−1. Then clearly the sets Hj are disjoint and E = ∪jHj . To see
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that Hj is in L we note that Hj = Ej ∩ Ec
j−1 ∩ . . . ∩ Ec

1 (this makes sense for j > 1; for
j = 1, H1 = E1 is already in L.) Since L is closed under complements (being a λ system)
and since we have also assumed that L is closed under finite intersections, we have Hj ∈ L.
Hence E ∈ L, as required.

(ii) If A,B ∈ L, and A ⊂ B, then A − B = A ∩ Bc can be expressed in the following
way :

A ∩ Bc = (Ac ∪ B)c.

Notice that the sets Ac and B are disjoint because A ⊂ B. So, since L is closed under
complements and finite disjoint unions, we see that A − B ∈ L.

For the next step towards the π-λ theorem, observe that the intersection of any family
of λ systems is again a λ system. If X is a set and P ⊂ P)(X), define l(P ) to be the
intersection of all λ systems which contain P as subset (for example, the power set P(X)
is a λ system ⊃ P ). Thus:

l(P )
def
= ∩{Λ : Λ is a λ system and Λ ⊃ P}

Thus l(P ) is the smallest λ system containing P as a subset.
6.4. Lemma. Let P be a π-system of subsets of a set X. Then l(P ) is a σ-algebra.
Proof. We have seen that a collection of subsets of X which is both a π system and a

λ system is actually a σ-algebra. Thus, it will suffice to prove that l(P ) is a π-system.
Let A,B ∈ l(P ). Our goal is to prove that A ∩ B is also in l(P ). We will do this by

establishing the following:
(1) for any fixed A ∈ l(P ), the collection of all B ⊂ X for which A ∩ B ∈ l(P ) is a λ

system;
(2) A ∩ B ∈ l(P ) whenever A ∈ P and B ∈ l(P );
(3) if A ∈ l(P ) and B ∈ l(P ) then A∩B ∈ l(P ). This would show that l(P ) is a π system.

For (1), fix any A ∈ l(P ), and let

lA = {B ⊂ X : A ∩ B ∈ l(P )}

It is clear that lA contains ∅ and is closed under countable disjoint unions. Next if B ∈ lA
then

A ∩ Bc = A − (A ∩ B)

is a proper difference of sets in the λ-system l(P ), and so is in l(P ). Thus, lA is a λ-system.
This establishes (1).

Now suppose A ∈ P . Then A ∩ B ∈ P ⊂ l(P ) for every B in the π system P . So
B ∈ lA. Thus, lA ⊃ P . Then, by definition of lP as the smallest λ system containing P ,
we have

lA ⊃ l(P )

Looking back at the definition of lA, we see that this means simply that A ∩ B ∈ l(P ) for
every B ∈ l(P ). This establishes (2).
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Now we’ll bootstrap ourselves up one level: using what has been established in (2)
and applying again essentially the same argument we will reach our goal (3). To this end,
now fix B ∈ l(P ), and think of

lB = {A ⊂ X : A ∩ B ∈ l(P )}

This is a λ-system, as we have already seen. In (2) we proved essentially that

lB ⊃ P

Then, by definition of l(P ) as the smallest λ-system containing P , we have

lB ⊃ l(P )

Glancing at the definition of lB we see that this means

A ∩ B ∈ l(P ) for every B ∈ l(P )

Since A is any element of l(P ) we have thus established our goal (3), i.e. l(P ) is a π system.
Proof of the π − λ theorem Let X be a set, and

P ⊂ L ⊂ P(X)

with P a π system and L a λ system. Then, by definition of l(P ) as the smallest λ system
containing P , we have

l(P ) ⊂ L

But l(P ) is a σ–algebra, and l(P ) ⊃ P . Therefore,

σ(P ) ⊂ l(P )

This completes the argument, since l(P ) ⊂ L. Note that since every sigma-algebra is also
a λ system it follows that l(P ) ⊂ σ(P ). Thus, in fact,

l(P ) = σ(P )

Problem Set

1. Let (X,F , µ) be a measure space with µ(X) = 1, and let A ∈ F . Show that the set
of all B ∈ F which satisfy

µ(A ∩ B) = µ(A)µ(B)

is a λ-system.

2. Find an example of a λ system which is not a σ-algebra.

3. Let k ∈ R and E a Borel subset of Rd. Prove that

m(kE) = |k|dm(E),

54


