Lecture 6. The Dynkin 7 — A Theorem.

It is often the case that two measures which agree on a certain class of sets actually
agree on all sets in the relevant o-algebra. There are a couple of standard tools to prove
that the measures are the same: the Monotone Class lemma and the Dynkin 7 — A theorem.
They are essentially equivalent devices and it is largely a matter of taste which one to take
as standard equipment. We shall do the m — A theorem and use it in the case of Lebesgue
measure.

Suppose that x4 and ' are translation invariant measures on the Borel o—algebra of
R¢ both assigning the same (finite) measure to the unit box [0,1]%. We will show that
then p = u'. Let L denote the set of all Borel sets A C R™ for which u(A) = u'(A). By
hypothesis, [0, 1]d € L. Tt seems reasonable to conclude from this that the set P of all
boxes [a1,b1] X - -+ X [ag, bg], with rational a; and b;, would belong to L. Let us accept this
for now; i.e. suppose P C L. Now if we can show from this that L contains the oc—algebra
generated by P then we would be done, because the o—algebra generated by 7 is the Borel
o—algebra. (This follows from two observations : (i) each box in P is the intersection of
open sets :

1 1 1 1
[ar,b1] x -+ x [aa, ba] = () <a1_§’b1+E> X e X (ad_E:bd—f—E)

k>1

and (ii) every open U subset of R? is the union of small boxes [a1,b;] X - - - X [ag, bg] With
rational endpoints and centered at the rational points in U.) Thus L would in fact be the
whole Borel o—algebra. That is, u(A) = p'(A) for every Borel set A. Thus the key tool
would be the result that L contains the oc—algebra generated by P. This will, essentially,
be proved by the m — A theorem. There are some technical problems involved which will
be settled later.

6.0. Definition. Let P and L be collections of subsets of a set X. The collection P

is called a m—system if it is closed under finite intersections; i.e. if A, B € P then

ANBeP:

P is a m-system if ANB € P for all A,B € P

The collection L is called a A—system if the following hold :

(L1) 0 € L;

(L2) if A € L then A° € L;

(L3) L is closed under countable disjoint unions; i.e. if Ay, Ay, ... € Land if A;NA; =0
for every i # j, then U2, A; € L.

6.1. Dynkin’s 1 — A Theorem. Let P be a m-system of subsets of X,and L a

A-system of subsets of X. Suppose also that P C L. Then :

o(P)C L,

i.e. L contains the o-algebra o(P) generated by P.

We will do the proof later but let us apply it to prove the uniqueness of Lebesgue
measure.
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6.2. Proposition. Every translation-invariant Borel measure on R which assigns finite

measure to the unit interval is a constant multiple of Lebesgue measure.

Proof. Let p be a translation-invariant Borel measure on R which assigns finite
measure to the unit interval. Let m be Lebesgue measure on R. Our first objective will

be to check that
u((a.)) = km((a,b))
for every rational a, b, where k is the finite constant
k= p([0,1))

Then we shall show by a m — A argument that pu(A) = km(A) holds for all sets A in the
sigma-algebra generated by the intervals [a, b), i.e. it holds for all Borel sets A.

For any positive integer p, the interval [0,p) is the union of p disjoint translates of
[0,1), and so by translation-invariance of u, we have

1(10,p)) = pu([0,1)) = pk

By the same argument, for any positive integer p, we also have

1([0,p)) = qu([0,p/q))

Combining these two relations we have
p
u(0.p/a) = k' = km([0.p/q))

Then by translation-invariance it follows that

p((a.) = km((a, b))

for all intervals [a, b) for which b — a is rational.

Thus p is a constant multiple of Lebesgue measure m on intervals [a, b) with rational
endpoints. Now we use the m — A theorem to jazz this up to all Borel sets. The first idea
would be take P to be the collection of all intervals [a, b) with rational endpoints, and L to
be the class of all Borel sets A for which p(A) = km(A) holds. But there is a problem with
this: the collection L satisfies all properties of being a A system except that we cannot
establish closure under complements, as the argument

n(A?) = w(R) — p(A) = oo — km(A) = km(A°)
is non-sense. The way to get around this problem with infinite measure is to focus down
to a finite interval [-N, N) and then let N T oo at the end.
So, fix any positive integer N, and let

Ly = {all Borel sets A fotr which u(AN[—-N,N)) =km(AN[-N,N))}
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and
P = {all intervals [a,b) with a,b rational}

What we have proven before shows that
PCLy

It is clear that P is a wm—system. It is also clear that L contains the empty set and is
closed under countable disjoint unions. To check closure under complements, consider any
A€ Ly. Then

pw(A°N[=N,N)) = u([-N,N)) — p(A) = km([-N,N)) — km(A) = km(A°N [-N, N))

(The subtraction works because m([—N, N)) = 2N is finite.) This shows that A° € Ly.
Thus Ly is a A-system.

By Dynkin’s theorem we conclude then that Ly D o(P). But o(P) is the entire Borel
sigma-algebra. So, in fact, Ly is the entire Borel sigma-algebra, and this means that for
any Borel set A we have the relation

p(A°N[=N,N)) = km(A°N [N, N))

Now let N T co. Since
UNZl(AC N [—N, N)) =A

we conclude that

p(A) = km(A)

for every Borel set A. B
We can now move this result up to higher dimensions.
6.3. Proposition. Suppose u is a translation-invariant measure on the Borel subsets

of RY, for which k % ([0, 1]%) < oo. Then
uw=km

Proof. We will use essentially the same argument as in the one-dimensional case. Let
P1, ..., Pa be positive integers. Note that [0, p;) is the union of p; translates [n,n+ 1), with
n€{0,1,...,p; — 1}, of [0,1). Taking products of these intervals we see that

[Oap1> X X [prd)
is the union of of the boxes
[n1,m1 +1) X -+ X [ng,nqg + 1)

where nq,...,nq € {0,1,...,p—1}. Any pair of distinct boxes in this collection have at least
one ‘side’ disjoint, and so these boxes are disjoint. There are

P1--Pd
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of these boxes. So, by translation-invariance of the measure u, we have

1([0,p1) x -+ % [0,pa)) = p1 -+ pap([0, 1)) = kp1 -+ pa

Again, by the same reasoning, for any positive integers ¢, ..., ¢4, we have

1([0,p1) X -+ x [0,pa)) = q1 -+~ qape ([0, p1/q1) X -+ [0,pa/qa))

Combining the preceding relations we have
u(B) = km(B)

for the box B = [0,p1/q1) X -+ x [0,p4/qq). Translation invariance then shows that the
above equality holds for every box B with rational sides.

Let P be the collection of all boxes with rational corners. This is a m-system which
generates the Borel sigma-algebra of R?. Fix any positive integer N and let Ly be the
collection of all Borel sets A € R for which

M(Aﬁ BN) = k:m(Aﬂ BN)

where
By = [-N,N)*

Then Ly is a A-system and, by what we have proven above, Ly D P. Therefore, by the
7w — A theorem, Ly D o(P). Since o(P) is the Borel sigma-algebra, it follows that

/L(A N BN) = km(A n BN)
for every Borel set A. Now let N T oo to conclude that
H(A) = km(4)

for every Borel set A c R%. m

Finally, we turn to the proof of the # — A\ theorem. There are a couple of simple
observations we will need :

6.4. Lemma. Let X be a set, and consider \ and 7 systems of subsets of X.

(i) A A-system which also a m-system (i.e. is closed under finite intersections) is a
o-algebra.

(ii) A X system is closed under proper differences: if L is a A—system and A, B € L

with B C A, then A — B € L.

Proof. (i) Suppose that the A—system L is also a 7 system; i.e. if A, B € L then
AN B € L. The only point we have to check is that L is closed under countable unions.
So let Fy, Fs,... € L, and set F = U;E;. Since we know that L is closed under countable
disjoint unions we need to write E as a disjoint union of sets in L. This is achieved as
follows. Let H; be the set of all points in E; which do not already belong to any of the
‘previous’ sets Eq, ..., /;_1. Then clearly the sets H; are disjoint and E' = U;H;. To see

52



that H; is in L we note that H; = E; N E7_; N ... N EY (this makes sense for j > 1; for
j=1, HH = E; is already in L.) Since L is closed under complements (being a A system)
and since we have also assumed that L is closed under finite intersections, we have H; € L.
Hence F € L, as required.
(ii)) If A,B € L, and A C B, then A — B = AN B can be expressed in the following
way :
ANB°=(A°UB)°.

Notice that the sets A° and B are disjoint because A C B. So, since L is closed under
complements and finite disjoint unions, we see that A — B L. R

For the next step towards the -\ theorem, observe that the intersection of any family
of X\ systems is again a A system. If X is a set and P C P)(X), define I(P) to be the
intersection of all A systems which contain P as subset (for example, the power set P(X)
is a A system D P). Thus:

I(P) e N{A: Ais a X system and A D P}

Thus I(P) is the smallest \ system containing P as a subset.
6.4. Lemma. Let P be a w-system of subsets of a set X. Then I(P) is a o-algebra.
Proof. We have seen that a collection of subsets of X which is both a 7 system and a

A system is actually a o-algebra. Thus, it will suffice to prove that [(P) is a w-system.
Let A, B € [(P). Our goal is to prove that AN B is also in [(P). We will do this by

establishing the following:

(1) for any fixed A € [(P), the collection of all B C X for which AN B € I(P) is a A
system;

(2) AN B €l(P) whenever A € P and B € [(P);

(3) if A€ l(P)and B € I(P) then ANB € [(P). This would show that [(P) is a 7 system.
For (1), fix any A € [(P), and let

la={BCX:ANBel(P)}

It is clear that I4 contains () and is closed under countable disjoint unions. Next if B € [4
then

ANB¢=A—(ANB)

is a proper difference of sets in the A-system [(P), and so is in [(P). Thus, 14 is a A-system.
This establishes (1).

Now suppose A € P. Then AN B € P C [(P) for every B in the 7 system P. So
B €ls. Thus, lg D P. Then, by definition of [p as the smallest A system containing P,
we have

laD Z(P)

Looking back at the definition of {4, we see that this means simply that AN B € [(P) for
every B € [(P). This establishes (2).
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Now we’ll bootstrap ourselves up one level: using what has been established in (2)
and applying again essentially the same argument we will reach our goal (3). To this end,
now fix B € [(P), and think of

Ip={ACX:ANBel(P)}
This is a A-system, as we have already seen. In (2) we proved essentially that
I D P
Then, by definition of I(P) as the smallest \-system containing P, we have
g DIU(P)
Glancing at the definition of [z we see that this means

AN B € l(P) for every B € I(P)

Since A is any element of [( P) we have thus established our goal (3), i.e. I(P) is a 7 system.
Proof of the m — A theorem Let X be a set, and

PcLcPX)

with P a 7 system and L a A system. Then, by definition of [(P) as the smallest A system
containing P, we have

(P)C L
But [(P) is a o—algebra, and [(P) D P. Therefore,

o(P) C I(P)

This completes the argument, since [(P) C L. Note that since every sigma-algebra is also
a A system it follows that I[(P) C o(P). Thus, in fact,

I(P)=c(P)m

Problem Set
1. Let (X,F, ) be a measure space with p(X) = 1, and let A € F. Show that the set
of all B € F which satisfy

(AN B) = p(A)u(B)
is a A-system.
2. Find an example of a A\ system which is not a o-algebra.
3. Let k € R and E a Borel subset of R%. Prove that

m(kE) = |k|"m(E),

o4



