Lecture 6. The Dynkin $\pi - \lambda$ Theorem.

It is often the case that two measures which agree on a certain class of sets actually agree on all sets in the relevant σ -algebra. There are a couple of standard tools to prove that the measures are the same: the Monotone Class lemma and the Dynkin $\pi - \lambda$ theorem. They are essentially equivalent devices and it is largely a matter of taste which one to take as standard equipment. We shall do the $\pi - \lambda$ theorem and use it in the case of Lebesgue measure.

Suppose that μ and μ' are translation invariant measures on the Borel σ -algebra of \mathbf{R}^d both assigning the same (finite) measure to the unit box $[0,1]^d$. We will show that then $\mu = \mu'$. Let L denote the set of all Borel sets $A \subset \mathbb{R}^n$ for which $\mu(A) = \mu'(A)$. By hypothesis, $[0,1]^d \in L$. It seems reasonable to conclude from this that the set P of all boxes $[a_1, b_1] \times \cdots \times [a_d, b_d]$, with rational a_i and b_i , would belong to L. Let us accept this for now; i.e. suppose $P \subset L$. Now if we can show from this that L contains the σ -algebra generated by P then we would be done, because the σ -algebra generated by π is the Borel σ -algebra. (This follows from two observations : (i) each box in P is the intersection of open sets :

$$[a_1, b_1] \times \dots \times [a_d, b_d] = \bigcap_{k \ge 1} \left(a_1 - \frac{1}{k}, b_1 + \frac{1}{k} \right) \times \dots \times \left(a_d - \frac{1}{k}, b_d + \frac{1}{k} \right)$$

and (ii) every open U subset of \mathbf{R}^d is the union of small boxes $[a_1, b_1] \times \cdots \times [a_d, b_d]$ with rational endpoints and centered at the rational points in U.) Thus L would in fact be the whole Borel σ -algebra. That is, $\mu(A) = \mu'(A)$ for every Borel set A. Thus the key tool would be the result that L contains the σ -algebra generated by P. This will, essentially, be proved by the $\pi - \lambda$ theorem. There are some technical problems involved which will be settled later.

6.0. <u>Definition</u>. Let P and L be collections of subsets of a set X. The collection P is called a π -system if it is closed under finite intersections; i.e. if $A, B \in P$ then $A \cap B \in P$:

P is a π -system if $A \cap B \in P$ for all $A, B \in P$

The collection L is called a λ -system if the following hold :

(L1) $\emptyset \in L$;

- (L2) if $A \in L$ then $A^c \in L$;
- (L3) *L* is closed under countable *disjoint* unions; i.e. if $A_1, A_2, ... \in L$ and if $A_i \cap A_j = \emptyset$ for every $i \neq j$, then $\bigcup_{i=1}^{\infty} A_j \in L$.

6.1. **Dynkin's** $\pi - \lambda$ **Theorem**. Let *P* be a π -system of subsets of *X*, and *L* a λ -system of subsets of *X*. Suppose also that $P \subset L$. Then :

$$\sigma(P) \subset L,$$

i.e. L contains the σ -algebra $\sigma(P)$ generated by P.

We will do the proof later but let us apply it to prove the uniqueness of Lebesgue measure.

6.2. <u>Proposition</u>. Every translation-invariant Borel measure on \mathbf{R} which assigns finite measure to the unit interval is a constant multiple of Lebesgue measure.

<u>Proof.</u> Let μ be a translation-invariant Borel measure on **R** which assigns finite measure to the unit interval. Let m be Lebesgue measure on **R**. Our first objective will be to check that

$$u([a,b)) = km([a,b))$$

for every rational a, b, where k is the finite constant

$$k = \mu([0,1))$$

Then we shall show by a $\pi - \lambda$ argument that $\mu(A) = km(A)$ holds for all sets A in the sigma-algebra generated by the intervals [a, b), i.e. it holds for all Borel sets A.

For any positive integer p, the interval [0, p) is the union of p disjoint translates of [0, 1), and so by translation-invariance of μ , we have

$$\mu\bigl([0,p)\bigr) = p\mu\bigl([0,1)\bigr) = pk$$

By the same argument, for any positive integer p, we also have

$$\mu\big([0,p)\big) = q\mu\big([0,p/q)\big)$$

Combining these two relations we have

$$\mu\bigl([0,p/q)\bigr) = k\frac{p}{q} = km\bigl([0,p/q)\bigr)$$

Then by translation-invariance it follows that

$$\mu\bigl([a,b)\bigr) = km\bigl([a,b)\bigr)$$

for all intervals [a, b) for which b - a is rational.

Thus μ is a constant multiple of Lebesgue measure m on intervals [a, b) with rational endpoints. Now we use the $\pi - \lambda$ theorem to jazz this up to all Borel sets. The first idea would be take P to be the collection of all intervals [a, b) with rational endpoints, and L to be the class of all Borel sets A for which $\mu(A) = km(A)$ holds. But there is a problem with this: the collection L satisfies all properties of being a λ system except that we cannot establish closure under complements, as the argument

$$\mu(A^c) = \mu(\mathbf{R}) - \mu(A) = \infty - km(A) = km(A^c)$$

is non-sense. The way to get around this problem with infinite measure is to focus down to a finite interval [-N, N) and then let $N \uparrow \infty$ at the end.

So, fix any positive integer N, and let

$$L_N = \{ \text{all Borel sets } A \text{ forr which } \mu(A \cap [-N, N)) = km(A \cap [-N, N)) \}$$

and

$$P = \{ \text{all intervals } [a, b) \text{ with } a, b \text{ rational} \}$$

What we have proven before shows that

 $P \subset L_N$

It is clear that P is a π -system. It is also clear that L contains the empty set and is closed under countable disjoint unions. To check closure under complements, consider any $A \in L_N$. Then

$$\mu(A^{c} \cap [-N,N)) = \mu([-N,N)) - \mu(A) = km([-N,N)) - km(A) = km(A^{c} \cap [-N,N))$$

(The subtraction works because m([-N, N)) = 2N is finite.) This shows that $A^c \in L_N$. Thus L_N is a λ -system.

By Dynkin's theorem we conclude then that $L_N \supset \sigma(P)$. But $\sigma(P)$ is the entire Borel sigma-algebra. So, in fact, L_N is the entire Borel sigma-algebra, and this means that for any Borel set A we have the relation

$$\mu(A^c \cap [-N,N)) = km(A^c \cap [-N,N))$$

Now let $N \uparrow \infty$. Since

$$\bigcup_{N\geq 1} \left(A^c \cap \left[-N, N \right) \right) = A$$

we conclude that

$$\mu(A) = km(A)$$

for every Borel set A.

We can now move this result up to higher dimensions. 6.3. <u>Proposition</u>. Suppose μ is a translation-invariant measure on the Borel subsets of \mathbf{R}^d , for which $k \stackrel{\text{def}}{=} \mu([0, 1]^d) < \infty$. Then

$$\mu = k m$$

<u>Proof.</u> We will use essentially the same argument as in the one-dimensional case. Let $p_1, ..., p_d$ be positive integers. Note that $[0, p_j)$ is the union of p_j translates [n, n+1), with $n \in \{0, 1, ..., p_j - 1\}$, of [0, 1). Taking products of these intervals we see that

$$[0, p_1) \times \cdots \times [0, p_d)$$

is the union of of the boxes

$$[n_1, n_1+1) \times \cdots \times [n_d, n_d+1)$$

where $n_1, ..., n_d \in \{0, 1, ..., p-1\}$. Any pair of distinct boxes in this collection have at least one 'side' disjoint, and so these boxes are disjoint. There are

$$p_1 \cdots p_d$$

of these boxes. So, by translation-invariance of the measure μ , we have

$$\mu([0,p_1)\times\cdots\times[0,p_d)) = p_1\cdots p_d\mu([0,1)^d) = kp_1\cdots p_d$$

Again, by the same reasoning, for any positive integers $q_1, ..., q_d$, we have

$$\mu([0,p_1)\times\cdots\times[0,p_d)) = q_1\cdots q_d\mu([0,p_1/q_1)\times\cdots[0,p_d/q_d))$$

Combining the preceding relations we have

 $\mu(B) = km(B)$

for the box $B = [0, p_1/q_1) \times \cdots \times [0, p_d/q_d)$. Translation invariance then shows that the above equality holds for every box B with rational sides.

Let P be the collection of all boxes with rational corners. This is a π -system which generates the Borel sigma-algebra of \mathbf{R}^d . Fix any positive integer N and let L_N be the collection of all Borel sets $A \subset \mathbf{R}^d$ for which

$$\mu(A \cap B_N) = km(A \cap B_N)$$

where

$$B_N = [-N, N)^d$$

Then L_N is a λ -system and, by what we have proven above, $L_N \supset P$. Therefore, by the $\pi - \lambda$ theorem, $L_N \supset \sigma(P)$. Since $\sigma(P)$ is the Borel sigma-algebra, it follows that

$$\mu(A \cap B_N) = km(A \cap B_N)$$

for every Borel set A. Now let $N \uparrow \infty$ to conclude that

$$\mu(A) = km(A)$$

for every Borel set $A \subset \mathbf{R}^d$.

Finally, we turn to the proof of the $\pi - \lambda$ theorem. There are a couple of simple observations we will need :

6.4. Lemma. Let X be a set, and consider λ and π systems of subsets of X.

- (i) A λ -system which also a π -system (i.e. is closed under finite intersections) is a σ -algebra.
- (ii) A λ system is closed under proper differences: if L is a λ -system and $A, B \in L$ with $B \subset A$, then $A B \in L$.

<u>Proof.</u> (i) Suppose that the λ -system L is also a π system; i.e. if $A, B \in L$ then $A \cap B \in L$. The only point we have to check is that L is closed under countable unions. So let $E_1, E_2, \ldots \in L$, and set $E = \bigcup_j E_j$. Since we know that L is closed under countable disjoint unions we need to write E as a disjoint union of sets in L. This is achieved as follows. Let H_j be the set of all points in E_j which do not already belong to any of the 'previous' sets E_1, \ldots, E_{j-1} . Then clearly the sets H_j are disjoint and $E = \bigcup_j H_j$. To see

that H_j is in L we note that $H_j = E_j \cap E_{j-1}^c \cap \ldots \cap E_1^c$ (this makes sense for j > 1; for $j = 1, H_1 = E_1$ is already in L.) Since L is closed under complements (being a λ system) and since we have also assumed that L is closed under finite intersections, we have $H_j \in L$. Hence $E \in L$, as required.

(ii) If $A, B \in L$, and $A \subset B$, then $A - B = A \cap B^c$ can be expressed in the following way :

$$A \cap B^c = (A^c \cup B)^c.$$

Notice that the sets A^c and B are disjoint because $A \subset B$. So, since L is closed under complements and finite disjoint unions, we see that $A - B \in L$.

For the next step towards the π - λ theorem, observe that the intersection of any family of λ systems is again a λ system. If X is a set and $P \subset \mathcal{P}(X)$, define l(P) to be the intersection of all λ systems which contain P as subset (for example, the power set $\mathcal{P}(X)$ is a λ system $\supset P$). Thus:

$$l(P) \stackrel{\text{def}}{=} \cap \{\Lambda : \Lambda \text{ is a } \lambda \text{ system and } \Lambda \supset P\}$$

Thus l(P) is the smallest λ system containing P as a subset.

6.4. Lemma. Let P be a π -system of subsets of a set X. Then l(P) is a σ -algebra.

<u>Proof.</u> We have seen that a collection of subsets of X which is both a π system and a λ system is actually a σ -algebra. Thus, it will suffice to prove that l(P) is a π -system.

Let $A, B \in l(P)$. Our goal is to prove that $A \cap B$ is also in l(P). We will do this by establishing the following:

- (1) for any fixed $A \in l(P)$, the collection of all $B \subset X$ for which $A \cap B \in l(P)$ is a λ system;
- (2) $A \cap B \in l(P)$ whenever $A \in P$ and $B \in l(P)$;
- (3) if $A \in l(P)$ and $B \in l(P)$ then $A \cap B \in l(P)$. This would show that l(P) is a π system. For (1), fix any $A \in l(P)$, and let

$$l_A = \{ B \subset X : A \cap B \in l(P) \}$$

It is clear that l_A contains \emptyset and is closed under countable disjoint unions. Next if $B \in l_A$ then

$$A \cap B^c = A - (A \cap B)$$

is a proper difference of sets in the λ -system l(P), and so is in l(P). Thus, l_A is a λ -system. This establishes (1).

Now suppose $A \in P$. Then $A \cap B \in P \subset l(P)$ for every B in the π system P. So $B \in l_A$. Thus, $l_A \supset P$. Then, by definition of l_P as the smallest λ system containing P, we have

$$l_A \supset l(P)$$

Looking back at the definition of l_A , we see that this means simply that $A \cap B \in l(P)$ for every $B \in l(P)$. This establishes (2).

Now we'll bootstrap ourselves up one level: using what has been established in (2) and applying again essentially the same argument we will reach our goal (3). To this end, now fix $B \in l(P)$, and think of

$$l_B = \{A \subset X : A \cap B \in l(P)\}$$

This is a λ -system, as we have already seen. In (2) we proved essentially that

 $l_B \supset P$

Then, by definition of l(P) as the smallest λ -system containing P, we have

 $l_B \supset l(P)$

Glancing at the definition of l_B we see that this means

$$A \cap B \in l(P)$$
 for every $B \in l(P)$

Since A is any element of l(P) we have thus established our goal (3), i.e. l(P) is a π system. Proof of the $\pi - \lambda$ theorem Let X be a set, and

$$P \subset L \subset \mathcal{P}(X)$$

with P a π system and L a λ system. Then, by definition of l(P) as the smallest λ system containing P, we have

 $l(P) \subset L$

But l(P) is a σ -algebra, and $l(P) \supset P$. Therefore,

 $\sigma(P) \subset l(P)$

This completes the argument, since $l(P) \subset L$. Note that since every sigma-algebra is also a λ system it follows that $l(P) \subset \sigma(P)$. Thus, in fact,

$$l(P) = \sigma(P) \blacksquare$$

Problem Set

1. Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) = 1$, and let $A \in \mathcal{F}$. Show that the set of all $B \in \mathcal{F}$ which satisfy

$$\mu(A \cap B) = \mu(A)\mu(B)$$

is a λ -system.

- 2. Find an example of a λ system which is not a σ -algebra.
- 3. Let $k \in \mathbf{R}$ and E a Borel subset of \mathbf{R}^d . Prove that

$$m(kE) = |k|^d m(E),$$