Mean Value, Taylor, and all that

Ambar N. Sengupta
Louisiana State University

November 2009
Careful: Not proofread!
Derivative

Recall the definition of the derivative of a function f at a point p:

$$f'(p) = \lim_{w \to p} \frac{f(w) - f(p)}{w - p}$$ (1)
Thus, to say that
\[f'(p) = 3 \]
means that if we take any neighborhood \(U \) of 3, say the interval \((1, 5)\), then the ratio
\[\frac{f(w) - f(p)}{w - p} \]
falls inside \(U \) when \(w \) is close enough to \(p \), i.e. in some neighborhood of \(p \). (Of course, we can’t let \(w \) be equal to \(p \), because of the \(w - p \) in the denominator.)
So if
\[f'(p) = 3 \]

then the ratio
\[\frac{f(w) - f(p)}{w - p} \]

lies in (1, 5) when \(w \) is close enough to \(p \), i.e. in some neighborhood of \(p \), but not equal to \(p \).
So if \(f'(p) = 3 \)

then the ratio

\[
\frac{f(w) - f(p)}{w - p}
\]

lies in \((1, 5)\) when \(w \) is close enough to \(p \), i.e. in some neighborhood of \(p \), but not equal to \(p \).

In particular,

\[
\frac{f(w) - f(p)}{w - p} > 0 \quad \text{if } w \text{ is close enough to } p, \text{ but } \neq p.
\]
From $f'(p) = 3$ we found that

$$\frac{f(w) - f(p)}{w - p} > 0$$

if w is close enough to p, but $\neq p$.

Looking at this you see that:

• when $w > p$, but near p, the value $f(w)$ is $> f(p)$.

• when $w < p$, but near p, the value $f(w)$ is $< f(p)$.
Derivative

From $f'(p) = 3$ we found that

$$\frac{f(w) - f(p)}{w - p} > 0 \quad \text{if } w \text{ is close enough to } p, \text{ but } \neq p.$$

Looking at this you see that:

- when $w > p$, but near p, the value $f(w)$ is $> f(p)$.

Derivative

From \(f'(p) = 3 \) we found that

\[
\frac{f(w) - f(p)}{w - p} > 0 \quad \text{if } w \text{ is close enough to } p, \text{ but } \neq p.
\]

Looking at this you see that:

- when \(w > p \), but near \(p \), the value \(f(w) \) is > \(f(p) \).

- when \(w < p \), but near \(p \), the value \(f(w) \) is < \(f(p) \).
Looking back at the argument, we see that the only thing about the value 3 for $f'(p)$ which made it all work is that it is > 0.

Thus:

Theorem

If $f'(p) > 0$ then:

- the values of f to the right of p, but close to p, are $> f(p)$,
- and the values of f to the left of p, but close to p, are $< f(p)$.

Looking back at the argument, we see that the only thing about the value 3 for \(f'(p) \) which made it all work is that it is \(> 0 \). Thus:

Theorem

If \(f'(p) > 0 \) then:

The values of \(f \) to the right of \(p \), but close to \(p \), are \(> f(p) \),

and the values of \(f \) to the left of \(p \), but close to \(p \), are \(< f(p) \).
Looking back at the argument, we see that the only thing about the value 3 for \(f'(p) \) which made it all work is that it is \(> 0 \). Thus:

Theorem

If \(f'(p) > 0 \) then:

\[
\text{the values of } f \text{ to the right of } p, \text{ but close to } p, \text{ are } > f(p),
\]
Positive Derivative and Increasing behavior

Looking back at the argument, we see that the only thing about the value 3 for $f'(p)$ which made it all work is that it is > 0. Thus:

Theorem

If $f'(p) > 0$ then:

the values of f to the right of p, but close to p, are $> f(p)$,

and
Positive Derivative and Increasing behavior

Looking back at the argument, we see that the only thing about the value 3 for $f'(p)$ which made it all work is that it is > 0. Thus:

Theorem

If $f'(p) > 0$ then:

- the values of f to the right of p, but close to p, are $> f(p)$,

and

- the values of f to the left of p, but close to p, are $< f(p)$.
Negative Derivative and Decreasing behavior

Similarly,

Theorem

If \(f'(p) < 0 \) then:

- The values of \(f \) to the right of \(p \), but close to \(p \), are \(< f(p)\),
- The values of \(f \) to the left of \(p \), but close to \(p \), are \(> f(p) \).
Negative Derivative and Decreasing behavior

Similarly,

Theorem

If \(f'(p) < 0 \) *then:*

the values of \(f \) *to the right of* \(p \), *but close to* \(p \), *are* \(< f(p) \),
Negative Derivative and Decreasing behavior

Similarly,

Theorem

If \(f'(p) < 0 \) *then :

the values of \(f \) *to the right of* \(p \), *but close to* \(p \), *are* \(< f(p) \),

and
Similarly,

Theorem

If $f'(p) < 0$ then:

the values of f to the right of p, but close to p, are $< f(p)$,

and

the values of f to the left of p, but close to p, are $> f(p)$.
Local Maxima and Minima

A function f is said to have a *local maximum* at a point p if there is a neighborhood U of p such that for all $x \in U$ in the domain of f, the value $f(x)$ is $\geq f(p)$.

A function f is said to have a *local minimum* at a point p if there is a neighborhood U of p such that for all $x \in U$ in the domain of f, the value $f(x)$ is $\leq f(p)$.
Local Maxima and Minima

Figure: Local Maxima and Minima
The local Maxima/Minima theorem

Theorem
Suppose f is defined in a neighborhood of a point $p \in \mathbb{R}$, and
The local Maxima/Minima theorem

Theorem

Suppose f is defined in a neighborhood of a point $p \in \mathbb{R}$, and $f(p) \geq f(x)$ for all x in a neighborhood of p. Then $f'(p)$ must be 0. If $f(p) \leq f(x)$ for all x in a neighborhood of p, and $f'(p)$ exists, then $f'(p)$ is 0.

Note that we are requiring that f be defined in a neighborhood of p, and so on both sides of p.
The local Maxima/Minima theorem

Theorem

Suppose f is defined in a neighborhood of a point $p \in \mathbb{R}$, and $f(p) \geq f(x)$ for all x in a neighborhood of p. Suppose also that $f'(p)$ exists.

The local Maxima/Minima theorem

Theorem
Suppose f is defined in a neighborhood of a point $p \in \mathbb{R}$, and $f(p) \geq f(x)$ for all x in a neighborhood of p. Suppose also that $f'(p)$ exists. Then $f'(p)$ must be 0.
The local Maxima/Minima theorem

Theorem

Suppose f is defined in a neighborhood of a point $p \in \mathbb{R}$, and $f(p) \geq f(x)$ for all x in a neighborhood of p. Suppose also that $f'(p)$ exists. Then $f'(p)$ must be 0.

If $f(p) \leq f(x)$ for all x in a neighborhood of p, and $f'(p)$ exists, then $f'(p)$ is 0.
The local Maxima/Minima theorem

Theorem
Suppose \(f \) is defined in a neighborhood of a point \(p \in \mathbb{R} \), and \(f(p) \geq f(x) \) for all \(x \) in a neighborhood of \(p \). Suppose also that \(f'(p) \) exists. Then \(f'(p) \) must be 0.

If \(f(p) \leq f(x) \) for all \(x \) in a neighborhood of \(p \), and \(f'(p) \) exists, then \(f'(p) \) is 0.

Note that we are requiring that \(f \) be defined in a neighborhood of \(p \), and so on both sides of \(p \).
Proof of the Local Max/Min Theorem

Proof Suppose $f'(p)$ exists but is not 0. Then $f'(p)$ is either > 0 or < 0.
If $f'(p) > 0$ then we know that to the right of p, but close to p, the values of f are $> \text{ than } f(p)$,
Proof of the Local Max/Min Theorem

Proof Suppose $f'(p)$ exists but is not 0. Then $f'(p)$ is either > 0 or < 0. If $f'(p) > 0$ then we know that to the right of p, but close to p, the values of f are $> f(p)$, and to the left of p, but close to p, the values are $< f(p)$. Therefore, $f'(p)$ must be 0.
Proof of the Local Max/Min Theorem

Proof Suppose $f'(p)$ exists but is not 0. Then $f'(p)$ is either > 0 or < 0.
If $f'(p) > 0$ then we know that to the right of p, but close to p, the values of f are $> f(p)$, and to the left of p, but close to p, the values are $< f(p)$.

But this would mean that p is neither a local maximum nor a local minimum for f.
Proof Suppose $f'(p)$ exists but is not 0. Then $f'(p)$ is either > 0 or < 0.
If $f'(p) > 0$ then we know that to the right of p, but close to p, the values of f are $> f(p)$, and to the left of p, but close to p, the values are $< f(p)$.

But this would mean that p is neither a local maximum nor a local minimum for f.

Thus, $f'(p) > 0$ is ruled out.
Proof of the Local Max/Min Theorem

Proof Suppose $f'(p)$ exists but is not 0. Then $f'(p)$ is either > 0 or < 0.
If $f'(p) > 0$ then we know that to the right of p, but close to p, the values of f are $> f(p)$, and to the left of p, but close to p, the values are $< f(p)$.

But this would mean that p is neither a local maximum nor a local minimum for f.

Thus, $f'(p) > 0$ is ruled out.

Similarly, $f'(p) < 0$ is also not possible.
Proof of the Local Max/Min Theorem

Proof Suppose \(f'(p) \) exists but is not 0. Then \(f'(p) \) is either \(> 0 \) or \(< 0 \).
If \(f'(p) > 0 \) then we know that to the right of \(p \), but close to \(p \), the values of \(f \) are \(> \) than \(f(p) \), and to the left of \(p \), but close to \(p \), the values are \(< f(p) \).

But this would mean that \(p \) is neither a local maximum nor a local minimum for \(f \).

Thus, \(f'(p) > 0 \) is ruled out.

Similarly, \(f'(p) < 0 \) is also not possible.

Thus, \(f'(p) \) must be 0.
Rolle’s Theorem

Theorem
Consider a function

\[f : [a, b] \to \mathbb{R} \]

where \(a, b \in \mathbb{R} \) with \(a < b \). Suppose

- \(f \) is continuous function
- \(f \) is differentiable on \((a, b)\)
Rolle’s Theorem

Theorem
Consider a function

\[f : [a, b] \rightarrow \mathbb{R} \]

where \(a, b \in \mathbb{R} \) with \(a < b \). Suppose

- \(f \) is continuous function
- \(f \) is differentiable on \((a, b) \)
- \(f(a) = f(b) \).

Then there is a point \(c \) strictly between \(a \) and \(b \) where the derivative of \(f \) is 0:

\[f'(c) = 0 \text{ for some } c \in (a, b). \]
Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact intervals says that \(h \) reaches a maximum value and a minimum value in the interval \([a, b]\).
Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact intervals says that h reaches a maximum value and a minimum value in the interval $[a, b]$.

Assume for the moment that at least one of the max or min values of h occurs in the interior (a, b).
Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact intervals says that h reaches a maximum value and a minimum value in the interval $[a, b]$.

Assume for the moment that at least one of the max or min values of h occurs in the interior (a, b). But then we know that h' must be 0 there, by the previous theorem, and so we would be done.
Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact intervals says that \(h \) reaches a maximum value and a minimum value in the interval \([a, b]\).

Assume for the moment that at least one of the max or min values of \(h \) occurs in the interior \((a, b)\). But then we know that \(h' \) must be 0 there, by the previous theorem, and so we would be done.

The only other possibility is that both the max and the min value occur at the end points \(a \) and \(b \).
A fundamental theorem about continuous functions on compact intervals says that h reaches a maximum value and a minimum value in the interval $[a, b]$.

Assume for the moment that at least one of the max or min values of h occurs in the interior (a, b). But then we know that h' must be 0 there, by the previous theorem, and so we would be done.

The only other possibility is that both the max and the min value occur at the end points a and b. But h has the same value at a and at b.
A fundamental theorem about continuous functions on compact intervals says that h reaches a maximum value and a minimum value in the interval $[a, b]$.

Assume for the moment that at least one of the max or min values of h occurs in the interior (a, b). But then we know that h' must be 0 there, by the previous theorem, and so we would be done.

The only other possibility is that both the max and the min value occur at the end points a and b. But h has the same value at a and at b. So then the max and the min value must be the same.
Proof of Rolle’s Theorem

A fundamental theorem about continuous functions on compact intervals says that h reaches a maximum value and a minimum value in the interval $[a, b]$.

Assume for the moment that at least one of the max or min values of h occurs in the interior (a, b). But then we know that h' must be 0 there, by the previous theorem, and so we would be done.

The only other possibility is that both the max and the min value occur at the end points a and b. But h has the same value at a and at b. So then the max and the min value must be the same. Thus in this case h is constant
A fundamental theorem about continuous functions on compact intervals says that \(h \) reaches a maximum value and a minimum value in the interval \([a, b]\).

Assume for the moment that at least one of the max or min values of \(h \) occurs in the interior \((a, b)\). But then we know that \(h' \) must be 0 there, by the previous theorem, and so we would be done.

The only other possibility is that both the max and the min value occur at the end points \(a \) and \(b \). But \(h \) has the same value at \(a \) and at \(b \). So then the max and the min value must be the same. Thus in this case \(h \) is constant and so its derivative is 0 everywhere.
Useful consequence Rolle’s Theorem

Suppose now that f and g are functions on a compact interval $[a, b]$, and are differentiable in (a, b).

Next suppose also that f and g have the same value at a, and also the same value at b:

\[f(a) = g(a), \quad \text{and} \quad f(b) = g(b). \]
Useful consequence Rolle’s Theorem

Suppose now that f and g are functions on a compact interval $[a, b]$, and are differentiable in (a, b).

Next suppose also that f and g have the same value at a, and also the same value at b:

$$f(a) = g(a), \quad \text{and} \quad f(b) = g(b).$$

Then f' and g' agree at some point c between a and b:

$$f'(c) = g'(c) \quad \text{for some } c \in (a, b).$$
Useful consequence Rolle’s Theorem

Suppose now that \(f \) and \(g \) are functions on a compact interval \([a, b]\), and are differentiable in \((a, b)\).

Next suppose also that \(f \) and \(g \) have the same value at \(a \), and also the same value at \(b \):

\[
f(a) = g(a), \quad \text{and} \quad f(b) = g(b).
\]

Then \(f' \) and \(g' \) agree at some point \(c \) between \(a \) and \(b \):

\[
f'(c) = g'(c) \quad \text{for some} \ c \in (a, b).
\]

To see this simply apply Rolle’s theorem to the function \(h = f - g \).
Mean Value Theorem

Theorem

Suppose f is continuous on a compact interval $[a, b]$ and differentiable in (a, b). Then there is a point c in (a, b) where

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees with f at the points a and b:

$$L(a) = f(a), \quad L(b) = f(b),$$

and the slope of L is constant given by

$$\frac{L(b) - L(a)}{b - a} = \frac{f(b) - f(a)}{b - a}$$
Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees with f at the points a and b:

$$L(a) = f(a), \quad L(b) = f(b),$$

and the slope of L is constant given by

$$\frac{L(b) - L(a)}{b - a} = \frac{f(b) - f(a)}{b - a}$$

As consequence of Rolle’s theorem we see that there is a point $c \in (a, b)$ where the derivatives of f and L agree. But the derivative of L at any point is the constant value given above.
Proof of Mean Value Theorem

Proof Compare f with the straight line function L which agrees with f at the points a and b:

\[L(a) = f(a), \quad L(b) = f(b), \]

and the slope of L is constant given by

\[\frac{L(b) - L(a)}{b - a} = \frac{f(b) - f(a)}{b - a} \]

As consequence of Rolle’s theorem we see that there is a point $c \in (a, b)$ where the derivatives of f and L agree. But the derivative of L at any point is the constant value given above. Hence:

\[f'(c) = L'(c) = \frac{f(b) - f(a)}{b - a} \]
Polynomials: coefficients and derivatives at 0

Consider a polynomial

\[P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \]

Observe that

\[P'(x) = a_1 + 2a_2 x + 3a_3 x^2 \]
\[P^{(2)}(x) = 2a_1 + 3 \times 2a_3 x \]
\[P^{(3)}(x) = 3 \times 2 \times 1 a_3 \]

Of course, \(P^{(3)}(x) \) is constant for all \(x \).
Polynomials: coefficients and derivatives at 0

Consider a polynomial

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Observe that

$$P'(x) = a_1 + 2a_2 x + 3a_3 x^2$$

$$P^{(2)}(x) = 2a_1 + 3 \times 2a_3 x$$

$$P^{(3)}(x) = 3 \times 2 \times 1 a_3$$

Observe now that if we put in $x = 0$ we can recover the values of a_0, a_1, a_2, a_3:

$$a_0 = P(0)$$
$$a_1 = P'(0)$$
$$a_2 = \frac{1}{2!} P^{(2)}(0)$$
$$a_3 = \frac{1}{3!} P^{(3)}(0)$$

Of course, $P^{(3)}(x)$ is constant for all x.
In general, we have for any polynomial of degree n:

$$P(x) = P(0) + P'(0)x + \frac{P^{(2)}(0)}{2!}x^2 + \ldots + \frac{P^{(n)}(0)}{n!}x^n$$ \hspace{1cm} (2)
Polynomials with specified derivatives derivatives at 0

In general, we have for any polynomial of degree n:

$$P(x) = P(0) + P'(0)x + \frac{P''(0)}{2!}x^2 + \ldots + \frac{P^{(n)}(0)}{n!}x^n$$ \hspace{1cm} (2)

Moreover, the n-th derivative of this polynomial is a constant.
Polynomials with specified derivatives derivatives at 0

Exercise. Find a polynomial function P for which

\[P(0) = 1, \quad P'(0) = 1, \quad P''(0) = -2, \quad P^{(3)}(0) = 12 \]

Solution: The simplest choice is

\[1 + 1.x + \frac{-2}{2!}x^2 + \frac{12}{3!}x^3 \]
Polynomials with specified derivatives derivatives at 0

Exercise. Find a polynomial function P for which

$$P(0) = 1, \quad P'(0) = 1, \quad P''(0) = -2, \quad P^{(3)}(0) = 12$$

Solution: The simplest choice is

$$1 + 1 \cdot x + \frac{-2}{2!} x^2 + \frac{12}{3!} x^3$$

We could also take, for instance,

$$1 + 1 \cdot x + \frac{-2}{2!} x^2 + \frac{12}{3!} x^3 + \frac{K}{4!} x^4,$$

where K is any constant.
Polynomials with specifications

Exercise. Find a polynomial function P for which

$$P(0) = -4, \quad P'(0) = 3, \quad P''(0) = -4, \quad P^{(3)}(0) = 6$$

and also

$$P(1) = 5$$

Solution: To satisfy the conditions at 0 we can take the polynomial

$$P(x) = -4 + 3x + \frac{-4}{2!}x^2 + \frac{6}{3!}x^3 + \frac{K}{4!}x^4,$$

where K is any constant.
Polynomials with specifications

Exercise. Find a polynomial function P for which

$$P(0) = -4, \quad P'(0) = 3, \quad P''(0) = -4, \quad P^{(3)}(0) = 6$$

and also

$$P(1) = 5$$

Solution: To satisfy the conditions at 0 we can take the polynomial

$$P(x) = -4 + 3x + \frac{-4}{2!} x^2 + \frac{6}{3!} x^3 + \frac{K}{4!} x^4,$$

where K is any constant.

Now tune the constant K to the requirement that $P(1)$ be 5,
Polynomials with specifications

Exercise. Find a polynomial function P for which

$$P(0) = -4, \quad P'(0) = 3, \quad P''(0) = -4, \quad P^{(3)}(0) = 6$$

and also

$$P(1) = 5$$

Solution: To satisfy the conditions at 0 we can take the polynomial

$$P(x) = -4 + 3x + \frac{-4}{2!} x^2 + \frac{6}{3!} x^3 + \frac{K}{4!} x^4,$$

where K is any constant.

Now tune the constant K to the requirement that $P(1)$ be 5, i.e. choose K in such a way that

$$5 = -4 + 3 \times 1 + \frac{-4}{2!} 1^2 + \frac{6}{3!} 1^3 + \frac{K}{4!} 1^4,$$

which we can solve for K.
Taylor Polynomial of a Function

Consider a function f defined in a neighborhood of 0, and differentiable 15 times.

We know that we can choose a polynomial function P whose value and derivatives at 0 up to order the 14th order match those for f:

$P(0) = f(0), \quad P'(0) = f'(0), \ldots, \quad P^{(14)}(0) = f^{(14)}(0)$

For instance, we can take

$P(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(14)}(0)}{14!}x^{14} + K\frac{1}{15!}x^{15}$

where K is any constant (could be 0 too in the simplest case).
Consider a function f defined in a neighborhood of 0, and differentiable 15 times.

We know that we can choose a polynomial function P whose value and derivatives at 0 up to order the 14th order match those for f:

$$P(0) = f(0), \quad P'(0) = f'(0), \quad \ldots, \quad P^{(14)}(0) = f^{(14)}(0)$$

For instance, we can take

$$P(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(14)}(0)}{14!}x^{14} + \frac{K}{15!}x^{15} \quad (3)$$

where K is any constant (could be 0 too in the simplest case).
Taylor Polynomial of a Function

We could put in an additional requirement, say that

\[P(4) = f(4) \]

This would let us pin down the constant \(K \).
Taylor Polynomial of a Function

We could put in an additional requirement, say that

\[P(4) = f(4) \]

This would let us pin down the constant \(K \).

We can also get a description of the constant \(K \) by repeatedly applying Rolle’s theorem:
Taylor Polynomial of a Function

We could put in an additional requirement, say that

\[P(4) = f(4) \]

This would let us pin down the constant \(K \).

We can also get a description of the constant \(K \) by repeatedly applying Rolle's theorem:

Since \(f(x) \) and \(P(x) \) agree at \(x = 0 \) and \(x = 4 \), their derivatives agree at some point \(c_1 \) strictly between 0 and 4:

\[f'(c_1) = P'(c_1) \]
Taylor Polynomial of a Function

We could put in an additional requirement, say that

\[P(4) = f(4) \]

This would let us pin down the constant \(K \).

We can also get a description of the constant \(K \) by repeatedly applying Rolle’s theorem:

Since \(f(x) \) and \(P(x) \) agree at \(x = 0 \) and \(x = 4 \), their derivatives agree at some point \(c_1 \) strictly between 0 and 4:

\[f'(c_1) = P'(c_1) \]

But then... \(f' \) and \(P' \) agree at both 0 and \(c_1 \),
Taylor Polynomial of a Function

We could put in an additional requirement, say that

\[P(4) = f(4) \]

This would let us pin down the constant \(K \).

We can also get a description of the constant \(K \) by repeatedly applying Rolle’s theorem:

Since \(f(x) \) and \(P(x) \) agree at \(x = 0 \) and \(x = 4 \), their derivatives agree at some point \(c_1 \) strictly between 0 and 4:

\[f'(c_1) = P'(c_1) \]

But then... \(f' \) and \(P' \) agree at both 0 and \(c_1 \), hence their derivatives agree at a point \(c_2 \) in between:

\[f^{(2)}(c_2) = P^{(2)}(c_2) \]
Taylor Polynomial of a Function

We could put in an additional requirement, say that

$$P(4) = f(4)$$

This would let us pin down the constant K.

We can also get a description of the constant K by repeatedly applying Rolle’s theorem:

Since $f(x)$ and $P(x)$ agree at $x = 0$ and $x = 4$, their derivatives agree at some point c_1 strictly between 0 and 4:

$$f'(c_1) = P'(c_1)$$

But then... f' and P' agree at both 0 and c_1, hence their derivatives agree at a point c_2 in between:

$$f^{(2)}(c_2) = P^{(2)}(c_2)$$

and on and on until ...
Taylor Polynomial of a Function

we have a point c, of course still between 0 and 4, where $f^{(15)}$ and $P^{(15)}$ agree:

$$f^{(15)}(c) = P^{(15)}(c)$$

Now if you look back at (3) to see what $P(x)$ was, you can see that the 15th-derivative of P is the constant K:

$$P^{(15)}(x) = \frac{K}{15!} 15! x^0 = K$$

Hence,

$$K = f^{(15)}(c)$$

Thus, the constant K happens to be the 15-th derivative of f at some point c between 0 and 4.
There is nothing special about 15. The general result is:

\[
\text{Taylor’s Theorem} \\
\text{Suppose } f \text{ is a function defined in a neighborhood of } 0 \\
\text{and is } n \text{ times differentiable on this neighborhood, where } n \text{ is some positive integer (i.e. } n \in \{1, 2, 3, \ldots \}).
\]

Then for any } x \text{ in this neighborhood there is a point } c \text{ lying between } 0 \text{ and } x \text{ such that}

\[
f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + f^{(n)}(c)\frac{x^n}{n!}
\]

The main point here is the remainder or error term \(R_n \) when } f \text{ is approximated by the Taylor polynomial}

\[
f(0) + f'(0)x + f''(0)x^2 + \cdots + f^{(n-1)}(0)x^{n-1}
\]
Taylor’s Theorem

There is nothing special about 15. The general result is:

Theorem

Suppose f is a function defined in a neighborhood of 0 and is n times differentiable on this neighborhood, where n is some positive integer (i.e. $n \in \{1, 2, 3, \ldots\}$).
Taylor’s Theorem

There is nothing special about 15. The general result is:

Theorem

Suppose f is a function defined in a neighborhood of 0 and is n times differentiable on this neighborhood, where n is some positive integer (i.e. $n \in \{1, 2, 3, \ldots\}$). Then for any x in this neighborhood there is a point c lying between 0 and x such that

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{f^{(n)}(c)}{n!}x^n$$

(4)
Taylor’s Theorem

There is nothing special about 15. The general result is:

Theorem

Suppose f is a function defined in a neighborhood of 0 and is n times differentiable on this neighborhood, where n is some positive integer (i.e. $n \in \{1, 2, 3, \ldots \}$). Then for any x in this neighborhood there is a point c lying between 0 and x such that

$$f(x) = f(0) + f'(0)x + \frac{f^{(2)}(0)}{2!}x^2 + \cdots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{f^{(n)}(c)}{n!}x^n$$

(4)

The main point here is the *remainder* or *error* term

$$R_n = \frac{f^{(n)}(c)}{n!}x^n$$

when f is approximated by the *Taylor polynomial*

$$f(0) + f'(0)x + \frac{f^{(2)}(0)}{2!}x^2 + \cdots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1}$$
Some functions are very special: for them *the error term in the Taylor approximation goes to the limit 0 when* $n \to \infty$.
Some functions are very special: for them *the error term in the Taylor approximation goes to the limit 0 when* \(n \to \infty \).

Thus for such functions \(f \) we have, for \(x \) in some neighborhood of 0,

\[
f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k
\]

The function \(f \) for which this holds for all \(x \) in a neighborhood \(U \) of 0 is said to be *analytic* on \(U \).
Analytic Functions

In class, we proved that the functions e^x and $\sin x$ are analytic, by showing that the Taylor remainder goes to 0 in each case. Polynomials are, of course, analytic, because the remainder term becomes 0 for them eventually.