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Preface

Geometry is nothing but an expression of a symmetry group. Fortunately,
geometry escaped this stifling straitjacket description, an urban legend for-
mulation of Felix Klein’s Erlangen Program. Nonetheless, there is a valuable
ge(r)m of truth in this vision of geometry. Arithmetic and geometry have
been intertwined since Euclid’s development of arithmetic from geometric
constructions. A group, in the abstract, is a set of elements, devoid of con-
crete form, with just one operation satisfying a minimalist set of axioms.
Representation theory is the study of how such an abstract group appears
in different avatars as symmetries of geometries over number fields or more
general fields of scalars. This book is an initiating journey into this subject.

A large part of the route we take passes through the representation theory
of semisimple algebras. We will also make a day-tour out of the realm of
finite groups to look at the representation theory of unitary groups. These
are infinite, continuous groups, but their representation theory is intricately
interlinked with the representation theory of the permutation groups, and
hence it seemed a worthwhile detour from the main route of this book.

Our navigation system is set to avoiding speedways as well as slick short-
cuts. Efficiency and speed are not high priorities in this journey. For many of
the ideas we view the same set of results from several vantage points. Some-
times we pause to look back at the territory covered or to peer into what lies
ahead. We stop to examine glittering objects - specific examples - up close.

The role played by the characteristic of the field underlying a representa-
tion is described carefully in each result. We stay almost always within the
semisimple territory, etched out by the requirement that the characteristic
of the field does not divide the number of elements of the group. A reason-
able alternative choice would be to work with an algebraically closed field
of characteristic zero, or even to simply work with Q, the algebraic closure
of Q, for the entire book except for the chapter on representations of U(N)
where the complex field is needed.

Authors generally threaten readers with the admonishment that they
must do the exercises to appreciate the text. This could give rise to in-
somnia if one wishes to peruse parts of this text at bedtime. However, for
daytime readers, there are several exercises to engage in, some of which may
call for breaking intellectual sweat, if the eyes glaze over from simply reading.

The style of presentation I have used is uncoventional in some ways. Aside
from the very informal tone, and cultural (not always high-brow) and polit-
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ical allusions, I have departed from rigid mathematical custom by repeating
definitions on occasion instead of sending the reader scurrying back and forth
to consult them. I have also included all hypotheses (such as those on the
ground field F of a representation) in the statement of every result, instead
of stating them at the beginnings of sections or chapters. The latter practice
is easier for the author to do, but can lead to serious confusion for the reader
who wishes to take just a quick look at some result (or sees the statement
on a sample page online).

For whom is this book? For students, graduate and undergraduate, for
teachers, researchers, and also, hopefully, for many who want to simply ex-
plore this beautiful subject for itself. This book is an introduction to the
subject; at the end, or even part way through, the reader will have enough
equipment and experience to take up more specialized monographs to pursue
roads not traveled here.

A disclaimer on originality needs to be stated. To the best of my knowl-
edge, there is no result in this book not already “known.” Mathematical
results evolve in form, from original discovery through mutations and cul-
tural forces, and I have added historical remarks or references only for some
of the major results. It has been very enjoyable for me to explore some of
the original papers and letters of the creators of this subject, but the reader
interested in a more thorough historical analysis should consult works by
historians of the subject.

Acknowledgment for much is due to many. To friends, family, strangers,
colleagues, students, and a large number of fellow travelers in life and math-
ematics, I owe thanks for comments, corrections, criticism, encouragement
and discouragement. Many discussions with Thierry Lévy have influenced my
view of topics in representation theory. It would be unfair not to thank the
referees whose comments, ranging from the insightful to the infuriating, led
to innumerable improvements in presentation and content. Vaishali Damle,
my editor at Springer-Verlag, was a calm and steady guide all through the
process of turning the original rough notes to the final form of the book. Fi-
nancial support for my research program from both Louisiana State Univer-
sity, Baton Rouge, and US National Science Foundation Grant DMS-0601141
is gratefully acknowledged. Here I need to add the required disclaimer: Any
opinions, findings and conclusions or recomendations expressed in this ma-
terial are those of the author and do not necessarily reflect the views of the
National Science Foundation. Beyond all this, I thank Ingeborg for support
that can neither be quantified in numbers nor articulated in words.
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Chapter 1

Concepts and Constructs

A group is an abstract mathematical object, a set with elements and an op-
eration satisfying certain axioms. A representation of a group realizes the
elements of the group concretely as geometric symmetries. The same group
may have many different such representations. A group that arises natu-
rally as a specific set of symmetries may have representations as geometric
symmetries at different levels.

In quantum physics the group of rotations in three dimensional space
gives rise to symmetries of a complex Hilbert space whose rays represent
states of a physical system; the same abstract group appears once, classically,
in the avatar of rotations in space and then expresses itself at the level of a
more ‘implicate order’ in the quantum theory as unitary transformations on
Hilbert spaces.

In this chapter we acquaint ourselves with the basic concepts, defining
group representations, irreducibility and characters. We work through cer-
tain useful standard constructions with representations, and explore a few
results that follow very quickly from the basic notions.

All through this chapter G denotes a group, and F a field. We will work
with vector spaces, usually denoted V , W , or Z, over the field F. There are
no standing hypotheses on G or F, and any conditions needed will be stated
where needed.

11
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1.1 Representations of Groups

A representation ρ of a group G on a vector space V associates to each
element g ∈ G a linear map

ρ(g) : V → V : v �→ ρ(g)v

such that

ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G, and

ρ(e) = I,
(1.1)

where I : V → V is the identity map. Here our vector space V is over a field
F, and we denote by

EndF(V )

the set of all endomorphisms of V . A representation ρ of G on V is thus a
map

ρ : G → EndF(V )

satisfying (1.1). The homomorphism condition (1.1), applied with h = g
−1,

implies that each ρ(g) is invertible and

ρ(g−1) = ρ(g)−1 for all g ∈ G.

A representation ρ of G on V is said to be faithful if ρ(g) �= I when g is
not the identity element in G. Thus, a faithful representation ρ provides an
isomorphic copy ρ(G) of G sitting inside EndF(V ).

A complex representation is a representation on a vector space over the
field C of complex numbers.

The vector space V on which the elements ρ(g) operate is the represen-
tation space of ρ. We will often say ‘the representation V ’ instead of ‘the
representation ρ on the vector space V ’. Sometimes we write Vρ for the
representation space of ρ.

If V is finite dimensional then, on choosing a basis b1, ..., bn, the endo-
morphism ρ(g) is encoded in the matrix





ρ(g)11 ρ(g)12 . . . ρ(g)1n
ρ(g)21 ρ(g)22 . . . ρ(g)2n

...
...

...
...

ρ(g)n1 ρ(g)n2 . . . ρ(g)nn




. (1.2)
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Indeed, when a fixed basis has been chosen in a context, we will often not
make a distinction between ρ(g) and its matrix form.

As an example, consider the group Sn of permutations of [n] = {1, ..., n}.
This group has a natural action on the vector space F

n by permutation of
coordinates:

Sn × F
n → F

n

�
σ, (v1, ..., vn)

�
�→ R(σ)(v1, ..., vn)

def
= (vσ−1(1), ..., vσ−1(n)).

(1.3)

Another way to understand this is by specifying

R(σ)ej = eσ(j) for all j ∈ [n].

Here ej is the j-th vector in the standard basis of Fn; it has 1 in the j-th
entry and 0 in all other entries. Thus, for example, for S4 acting on F

4, the
matrix for R

�
(134)

�
relative to the standard basis of F4 is

R
�
(134)

�
=





0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0



 .

For a transposition (j k), we have

R((j k))ej = ek, R((j k))ek = ej

R((j k))ei = ei if i /∈ {jk}.

We can think of R((j k)) geometrically as reflection across the hyperplane
{v ∈ F

n : vj = vk}. Writing a general permutation σ ∈ Sn as a product of
transpositions, R(σ) is a product of such reflections. The determinant

�(σ) = detR(σ) (1.4)

is −1 on transpositions, and hence is just the signature of σ, being +1 if σ is
a product of an even number of transpositions, and −1 otherwise. The signa-
ture map � is itself a representation of Sn, a one dimensional representation,
when each �(σ) is viewed as the linear map F → F : c �→ �(σ)c.

Exercise 1.3 develops the idea contained in the representation R a step
further to explore a way to construct more representations of Sn.
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The term ‘representation’ will, for us, always mean representation on a
vector space. However, we will occasionally notice that a particular complex
representation ρ on a vector space V has a striking additional feature: there
is a basis in V relative to which all the matrices ρ(g) have integer entries,
or that all entries lie inside some other subring of C. This is a glimpse of
another territory: representations on modules over rings. We will not explore
this theory, but will cast an occasional glance at it.

1.2 Representations and their Morphisms

If ρ1 and ρ2 are representations of G on vector spaces V1 and V2 over F, and

T : V1 → V2

is a linear map such that

ρ2(g) ◦ T = T ◦ ρ1(g) for all g ∈ G (1.5)

then we consider T to be a morphism from the representation ρ1 to the
representation ρ2. For instance, the identity map I : V1 → V1 is a morphism
from ρ1 to itself. The condition (1.5) is also described by saying that T is an
intertwining operator between the representations ρ1 and ρ2.

The composition of two morphisms is clearly also a morphism, and the in-
verse of an invertible morphism is again a morphism. An invertible morphism
of representations is called an isomorphism or equivalence of representations.
Thus, representations ρ1 and ρ2 are equivalent if there is an invertible inter-
twining operator from one to the other.

1.3 Direct Sums and Tensor Products

If ρ1 and ρ2 are representations of G on V1 and V2, respectively, then we have
the direct sum

ρ1 ⊕ ρ2

representation on V1 ⊕ V2:

(ρ1 ⊕ ρ2)(g) = (ρ1(g), ρ2(g)) ∈ EndF(V1 ⊕ V2). (1.6)
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If bases are chosen in V1 and V2 then the matrix for (ρ1 ⊕ ρ2)(g) is block
diagonal, with the blocks ρ1(g) and ρ2(g) on the diagonal:

g �→
�
ρ1(g) 0
0 ρ2(g)

�
.

This notion clearly generalizes to a direct sum (or product) of any family
of representations.

We also have the tensor product ρ1 ⊗ ρ2 of the representations, acting on
V1 ⊗ V2, specified through

(ρ1 ⊗ ρ2)(g) = ρ1(g)⊗ ρ2(g). (1.7)

1.4 Change of Field

There is a more subtle operation on vector spaces, involving change of the
ground field over which the vector spaces are defined. Let V be a vector
space over a field F, and let F1 ⊃ F be a field that contains F as a subfield.
Then V specifies an F1-vector-space

VF1 = F1 ⊗F V. (1.8)

Here we have, on the surface, a tensor product of two F-vector-spaces: F1,
treated as a vector space over the subfield F, and V itself. But VF1 acquires
the structure of a vector space over F1 by the multiplication rule

c(a⊗ v) = (ca)⊗ v,

for all c, a ∈ F1 and v ∈ V . More concretely, if V �= 0 has a basis B then VF1

can be taken to be the F1-vector-space with the same set B as basis but now
using coefficients from the field F1.

Now suppose ρ is a representation of a group G on a vector space V over
F. Then a representation ρF1 on VF1 arises as follows:

ρF1(g)(a⊗ v) = a⊗ ρ(g)v (1.9)

for all a ∈ F1, v ∈ V , and g ∈ G.
To get a concrete feel for ρF1 let us look at the matrix form. Choose a

basis b1, ..., bn for V , assumed finite-dimensional and non-zero. Then, almost
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by definition, this is also a basis for VF1 , only now with scalars to be drawn
from F1. Thus,

the matrix for ρF1(g) is exactly the same as the matrix for ρ(g)

for every g ∈ G. The difference is only that we should think of this matrix
now as a matrix over F1 whose entries happen to lie in the subfield F.

This raises a fundamental question: given a representation ρ, is it possible
to find a basis of the vector space such that all entries of all the matrices
ρ(g) lie in some proper subfield of the field we started with? A deep result of
Brauer [7] shows that all irreducible complex representations of a finite group
can be realized over a field obtained by adjoining suitable roots of unity to
the field Q of rationals.

1.5 Invariant Subspaces and Quotients

A subspace W ⊂ V is said to be invariant under ρ if

ρ(g)W ⊂ W for all g ∈ G.

In this case,

ρ|W : g �→ ρ(g)|W ∈ EndF(W )

is a representation of G on W . It is a subrepresentation of ρ. Put another
way, the inclusion map

W → V : w �→ w

is a morphism from ρ|W to ρ.
If W is invariant, then a representation on the quotient space

V/W

is obtained by setting

ρV/W (g) : v +W �→ ρ(g)v +W, for all v ∈ V , (1.10)

for all g ∈ G.
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1.6 Dual Representations

For a vector space V over a field F, let V
� be the dual space of all linear

mappings of V into F:
V

� = HomF(V,F). (1.11)

If ρ is a representation of a group G on V , the dual representation ρ
� on

V
� is defined as follows:

ρ
�(g)f = f ◦ ρ(g)−1 for all g ∈ G, and f ∈ V

�. (1.12)

It is readily checked that this does indeed specify a representation ρ
� of G on

V
�.
The adjoint of A ∈ EndF(V ) is the element A� ∈ EndF(V �) given by

A
�
f = f ◦ A. (1.13)

Thus,
ρ
�(g) = ρ(g−1)� (1.14)

for all g ∈ G.
Suppose now that V is finite dimensional. For a basis b1, . . . , bn of V , the

corresponding dual basis in V
� consists of the sequence of elements b�1, . . . , b

�
n
∈

V
� specified by the requirement

b
�
j
(bk) = δjk

def
=

�
1 if j = k;

0 if j �= k.
(1.15)

It is a pleasant little exercise to check that b�1, . . . , b
�
n
do indeed form a basis

of V �; a consequence is that V � is also finte dimensional and

dimF V
� = dimF V,

under the assumption that this is finite.
Proceeding further with the finite basis b1, . . . , bn of V , for any A ∈

EndF(V ), the matrix of A� relative to the dual basis {b�
i
} is related to the

matrix of A relative to {bi} as follows:

A
�
jk

def
= (A�

b
�
k
)(bj)

= b
�
k
(Abj)

= Akj.

(1.16)
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Thus, the matrix for A� is the transpose of the matrix for A. For this reason,
the adjoint A� is also denoted as At or Atr:

A
t = A

tr = A
�
.

From all this we see that the matrix for ρ�(g) is the transpose of the matrix
for ρ(g−1):

ρ
�(g) = ρ(g−1)tr, for all g ∈ G, as matrices, (1.17)

relative to dual bases.
Here is an illustration of the interplay between a vector space V and its

dual V �. The annihilator W 0 in V
� of a subspace W of V is

W
0 = {f ∈ V

� : f(u) = 0 for all u ∈ W}. (1.18)

This is clearly a subspace in V
�. Running in the opposite direction, for any

subspace N of V � we have its annihilator in V :

N0 = {u ∈ V : f(u) = 0 for all f ∈ N}. (1.19)

The association W �→ W
0, from subspaces of V to subspaces of V �, reverses

inclusion and has some other nice features that we package into:

Lemma 1.6.1 Let V be a vector space a field F, W and Z subspaces of V ,
and N a subspace of V �. Then

(W 0)0 = W, (1.20)

and W
0 ⊂ Z

0 if and only if Z ⊂ W . If A ∈ EndF(V ) maps W into itself
then A

� maps W
0 into itself. If A� maps N into itself then A(N0) ⊂ N0. If

ι : W → V is the inclusion map, and

r : V � → W
� : f �→ f ◦ ι

the restriction map, then r induces an isomorphism of vector spaces

r∗ : V
�
/W

0 → W
� : f +W

0 �→ r(f). (1.21)

When V is finite dimensional,

dimZ
0 = dimV − dimZ

dimN0 = dimV − dimN.
(1.22)
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Proof. Clearly W ⊂ (W 0)0. Now consider a vector v ∈ V outside the
subspace W . Choose a basis B of V with v ∈ B and such that B contains a
basis of W . Let f be the linear functional on V for which f(y) is equal to 0
on all vectors y ∈ B except for y = v on which f(v) = 1; then f ∈ W

0 is not
0 on v, and so v is not in (W 0)0. Hence, (W 0)0 ⊂ W . This proves (1.20).

The mappings M → M
0 and L �→ L0 are clearly inclusion reversing. If

W
0 ⊂ Z

0 then (W 0)0 ⊃ (Z0)0, and so Z ⊂ W .
If A(W ) ⊂ W and f ∈ W

0 then A
�
f = f ◦A is 0 on W , and so A

�(W 0) ⊂
W

0. Similarly, if A�(N) ⊂ N and v ∈ N0 then for any f ∈ N we have

f(Av) = (A�
f)(v) = 0,

which means Av ∈ N0.
Now, turning to the restriction map r, first observe that ker r = W

0.
Next, if f ∈ W

� then choose a basis of W and extend it to a basis of V , and
define f1 ∈ V

� by requiring it to agree with f on the basis vectors in W and
setting it to 0 on all basis vectors outside W ; then r(f1) = f . Thus, r is a
surjection onto W

�, and so induces the isomorphism (1.21).
We will prove the dimension result (1.22) using bases, just to illustrate

working with dual bases. Choose a basis b1, . . . , bm of Z and extend to a basis
b1, . . . , bn of the full space V (so 0 ≤ m ≤ n). Let {b�

j
} be the dual basis in

V
�. Then f ∈ V

� lies in Z
0 if and only if f(bi) = 0 for i ∈ {1, ...,m}, and this,

in turn, is equivalent to f lying in the span of b�
i
for i ∈ {m+1, ..., n}. Thus,

a basis of Z
0 is formed by b

�
m+1, ..., b

�
n
, and this proves the first equality

in (1.22). The second equality in (1.22) now follows by viewing the finite
dimensional vector space V as the dual of V

� (see the discussion below).
QED

The mapping
V

� × V → F : (f, v) �→ f(v)

specifies the linear functional f on V when f is held fixed, and specifies a
linear functional v∗ on V

�, when v is held fixed:

v∗ : V
� → F : f �→ f(v).

The map
V → (V �)� : v �→ v∗ (1.23)

is clearly linear as well as injective. If V is finite dimensional then V
� and

hence (V �)� both have the same dimension as V , and this forces the injective



20 Ambar N. Sengupta

linear map v �→ v∗ to be an isomorphism. Thus, a finite dimensional vector
space V is isomorphic to its double dual (V �)� via the natural isomorphism
(1.23).

When working with a vector space and its dual, there is a visually appeal-
ing notation due to Dirac often used in quantum physics. (If you find this
notation irritating, you will be relieved to hear that we will use this notation
very rarely, mainly in a couple of sections in Chapter 7.) A vector in V is
denoted

|v�

and is called a ‘ket’, while an element of the dual V � is denoted

�f |

and called a ‘bra.’ The evaluation of the bra on the ket is then, conveniently,
the ‘bra-ket’

�f |v� ∈ F.

If |b1�, . . . , |bn� is a basis of V then the dual basis is denoted �b1|, ..., �bn| ∈ V
�;

hence:

�bj|bk� = δjk
def
=

�
1 if j = k;

0 if j �= k.
(1.24)

There is one small spoiler: the notation �bj| wrongly suggests that it is
determined solely by the vector |bj�, when in fact one needs the full basis
|b1�, ..., |bn� to give meaning to it.

1.7 Irreducible Representations

A representation ρ on V is irreducible if V �= 0 and the only invariant sub-
spaces of V are 0 and V . The representation ρ is reducible if V is 0 or has a
proper, nonzero invariant subspace.

A starter example of an irreducible representation of the symmetric group
Sn can be extracted from the representation R of Sn as a reflection group
in an n-dimensional space we looked at back in (1.3). For any σ ∈ Sn, the
linear map R(σ) : Fn → F

n is specified by

R(σ)ej = eσ(j) for all j ∈ {1, ..., n},
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where e1, ..., en is the standard basis of Fn. In terms of coordinates, R is
specified by

Sn × F
n → F

n : (σ, v) �→ R(σ)v = v ◦ σ−1
, (1.25)

where v ∈ F
n is to be thought of as a map v : {1, ..., n} → F : j �→ vj. The

subspaces
E0 = {(v1, ..., vn) ∈ F

n : v1 + · · ·+ vn = 0} (1.26)

and
D = {(v, v, ..., v) : v ∈ F} (1.27)

are clearly invariant subspaces. Thus, R itself is reducible (if n ≥ 2). If n1F �=
0 in F then the subspaces D and E0 have in common only the zero vector, and
provide a decomposition of Fn into a direct sum of proper invariant nonzero
subspaces. In fact, R restricts to irreducible representations on the subspaces
D and E0 (work this out in Exercise 1.2.)

As we will see later, for a finite group G, for which |G| �= 0 in the field F,
every representation is a direct sum of irreducible representations.

A one dimensional representation is automatically irreducible. Our defi-
nitions allow the the zero space V = {0} as a representation space as well,
and we have to try to be careful everywhere to exclude, or include, this case
as necessary.

Even with the little technology at hand, we can prove something inter-
esting:

Theorem 1.7.1 Let V be a finite dimensional representation of a group G,
and equip V

� with the dual representation. Then V is irreducible if and only
if V � is irreducible.

Proof. This is an application of Lemma 1.6.1. If W is an invariant suspace
of V then the annihilator W 0 is an invariant subspace of V �, and if W is a
proper, nonzero, invariant subspace of V then W

0 is also a proper, nonzero,
invariant subspace of V �. In the other direction, for any subspace N ⊂ V

�,
the annihilator N0 is invariant as a subspace of V if N is invariant in V

�.
Comparing dimensions by using the second dimensional identity in (1.22),
N0 is a proper, nonzero, invariant subspace of V if N is a proper, nonzero,
invariant subspace of V �. QED

Here is another little useful observation:

Proposition 1.7.1 Any irreducible representation of a finite group is finite
dimensional.



22 Ambar N. Sengupta

Proof. Let ρ be an irreducible representation of the finite group G on a vector
space V . Pick any nonzero v ∈ V and observe that the linear span of the
finite set {ρ(g)v : g ∈ G} is a nonzero invariant subspace of V and so, by
irreducibility, must be all of V . Thus V is finite dimensional. QED

1.8 Schur’s Lemma

The following fundamental result of Schur [66, §2.I] is called Schur’s Lemma.
We will revisit and reformulate it several times.

Theorem 1.8.1 A morphism between irreducible representations is either an
isomorphism or 0. In more detail, if ρ1 and ρ2 are irreducible representations
of a group G on vector spaces V1 and V2, over an arbitrary field F, and if
T : V1 → V2 is a linear map for which

Tρ1(g) = ρ2(g)T for all g ∈ G, (1.28)

then T is either invertible or is 0.
If ρ is an irreducible representation of a group G on a finite dimensonal

vector space V over an algebraically closed field F and S : V → V is a linear
map for which

Sρ(g) = ρ(g)S for all g ∈ G, (1.29)

then S = cI for some scalar c ∈ F.

Proof. Let ρ1, ρ2, and T be as stated. From the intertwining property (1.28)
it follows readily that kerT is invariant under the action of the group. Then,
by irreducibility of ρ1, it follows that kerT is either {0} or V1. So, if T �= 0
then T is injective. Next, applying the same reasoning to ImT ⊂ V2, we see
that if T �= 0 then T is surjective. Thus, either T = 0 or T is an isomorphism.

Now suppose F is algebraically closed, V is finite dimensional, and S :
V → V is an intertwining operator from the irreducible representation ρ on
V to itself. The polynomial equation in λ given by

det(S − λI) = 0

has a solution λ = c ∈ F. Then S − cI ∈ EndF(E) is not invertible. Note
that S− cI intertwines ρ with itself (that is, (1.29 holds with S− cI in place
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of S). So, by the first half of the result, S − cI is 0. Thus, S = cI, a scalar
multiple of the identity. QED

We will repeat the argument used above in proving that S = λI a couple
times again later.

Since the conclusion of Schur’s Lemma for the algebraically closed case is
so powerful, it is meaningful to isolate it as a hypothesis, or concept, in itself.
A field F is called a splitting field for a finite group G if for every irreducible
representation ρ of G the only intertwining operators between ρ and itself
are the scalar multiples cI of the identity map I : Vρ → Vρ.

Schur’s Lemma is the Incredible Hulk of representation theory. Despite
its innocent face-in-the-crowd appearance, it rises up with enormous power
to overcome countless challenges. We will see many examples of this, but for
now here a somewhat off-label use of Schur’s Lemma to prove a simple but
significant result first established by Wedderburn. A division algebra D over
a field F is an F-algebra with a multiplicative identity 1D �= 0 in which every
nonzero element has a multiplicative inverse.

Theorem 1.8.2 If D is a finite dimensional division algebra over an alge-
braically closed field F then D = F1D.

Proof. Consider the representation l of the multiplicative group D
× = {d ∈

D : d �= 0} on D, viewed as a vector space over F, given by

l(u) : D → D : v �→ uv,

for all u ∈ D
×. This is an irreducible representation since for any nonzero

u1, u ∈ D we have l(u1u
−1)u = u1, which implies that any nonzero invariant

subspace of D contains every nonzero u1 ∈ D and hence is all of D. Next, for
any c ∈ D, the map

rc : D → D : v �→ vc

is F-linear and commutes with the action of each l(u):

l(u)rcv = uvc = rcl(u)v for all v ∈ D and u ∈ D
×.

Then by Schur’s Lemma (second part of Theorem 1.8.1), there is a c0 ∈ F

such that rcv = c0v for all v ∈ D; taking v = 1D shows that c = c01D. QED
The preceding proof can, of course, be stripped of its use of Schur’s

Lemma: for any c ∈ D, the linear map rc : D → D : v �→ cv, with D
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viewed as a finite dimensional vector space over the algebraically closed field
F, has an eigenvalue c0 ∈ F, which means that there is a nonzero y ∈ D for
which (c − c01D)y = rcy − c0y = 0, which implies that c = c01D ∈ F. This
beautiful argument was shared with me anonymously. A longer formulation
of the proof can be extracted from the proof of Theorem 5.1.2, which is yet
another rendition of Schur’s Lemma.

1.9 The Frobenius-Schur Indicator

A bilinear mapping
S : V ×W → F

where V andW are vector spaces over the field F, is said to be non-degenerate
if

S(v, w) = 0 for all w implies that v = 0;

S(v, w) = 0 for all v implies that w = 0.
(1.30)

The following result of Frobenius and Schur [35, Section 3] is an illustration
of the power of Schur’s Lemma.

Theorem 1.9.1 Let ρ be an irreducible representation of a group G on a
finite dimensional vector space V over an algebraically closed field F. Then
there exists an element cρ in F whose value is 0 or ±1,

cρ ∈ {0, 1,−1},

such that the following holds: if

S : V × V → F

is bilinear and satisfies

S(ρ(g)v, ρ(g)w) = S(v, w) for all v, w ∈ V , and g ∈ G , (1.31)

then
S(v, w) = cρS(w, v) for all v, w ∈ V . (1.32)

If ρ is not equivalent to the dual representation ρ
� then cρ = 0, and thus, in

this case, the only G-invariant bilinear form on the representation space of
ρ is 0.
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If ρ is equivalent to ρ
� then cρ �= 0 and there is a non-degenerate bilinear

S, invariant under the G-action as in (1.31), and all nonzero bilinear S

satisfying (1.31) are non-degenerate and multiples of each other. Thus if
there is a nonzero bilinear form on V that is invariant under the action of G
then that form is nondegenerate and either symmetric or skew-symmetric.

When the group G is finite, every irreducible representation is finite di-
mensional and so the finite dimensionality hypothesis is automatically satis-
fied. The assumption that the field F is algebraically closed may be replaced
by the requirement that it be a splitting field for G. The scalar cρ is called
the Frobenius-Schur indicator of ρ. We will eventually obtain a simple for-
mula expressing cρ in terms of the character of ρ; fast-forward to (7.109) for
this.
Proof. Define Sl, Sr : V → V

�, where V
� is the dual vector space to V , by

Sl(v) : w �→ S(v, w)

Sr(v) : w �→ S(w, v)
(1.33)

for all v, w ∈ V . The invariance condition (1.31) translates to

Slρ(g) = ρ
�(g)Sl

Srρ(g) = ρ
�(g)Sr,

(1.34)

for all g ∈ G, where ρ
� is the dual representation on V

� given by ρ
�(g)φ =

φ ◦ ρ(g)−1. Now recall from Theorem 1.7.1 that ρ� is also irreducible, since
ρ is irreducible. Then by Schur’s Lemma, the intertwining condition (1.34)
implies that either Sl is 0 or it is an isomorphism.

If Sl = 0 then S = 0, and so the claim (1.32) holds on taking cρ = 0 for
the case where ρ is not equivalent to its dual.

Next, suppose ρ is equivalent to ρ
�. Schur’s Lemma and the intertwining

conditions (1.34) imply that Sl is either 0 or an isomorphism. The same holds
for Sr. Thus, if S �= 0 then Sl and Sr are both isomorphisms and hence a look
back at (1.30) shows that S is nondegenerate. Moreover, Schur’s Lemma also
implies that Sl is a scalar multiple of Sr; thus there exists kS ∈ F such that

Sl = kSSr. (1.35)

Note that since S is not 0, the scalar kS is uniquely determined by S, but, at
least at this stage, could potentially depend on S. The equality (1.35) spells
out to:

S(v, w) = kSS(w, v) for all v, w ∈ V ,
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and so, applying this twice, we have

S(v, w) = kSS(w, v) = k
2
S
S(v, w)

for all v, w ∈ V . Since S is not 0, it follows then that k
2
S

= 1 and so
kS ∈ {1,−1}. It remains just to show that kS is independent of the choice of
S. Suppose T : V ×V → F is also a nonzero G-invariant bilinear map. Then
the argument used above for Sl and Sr, when applied to Sl and Tl implies
that there is a scalar kST ∈ F such that

T = kSTS.

Then

T (v, w) = kSTS(v, w)

= kSTkSS(w, v) = kSkSTS(w, v)

= kST (w, v),

(1.36)

for all v, w ∈ V , which shows that kT = kS. Thus we can set cρ to be kS for
any choice of nonzero G-invariant bilinear S : V × V → F.

To finish up, observe that ρ � ρ
� means that there is a linear isomorphism

T : V → V
�, which intertwines ρ and ρ

�. Take S(v, w) to be T (v)(w), for all
v, w ∈ V . Clearly, S is bilinear, G-invariant, and, since T is a bijection, S is
non-degenerate. QED

Exercise 1.18 explores the consequences of the behavior of the bilinear
map S in the preceding result.

1.10 Character of a Representation

The trace of a square matrix is the sum of the diagonal entries. The trace
of an endomorphism A ∈ EndF(V ), where V is a finite dimensional vector
space, is the trace of the matrix of A relative to any basis of V :

TrA =
n�

j=1

Ajj, (1.37)

where [Ajk] is the matrix of A relative to a basis b1, . . . , bn. It is a basic but
remarkable fact that the trace is independent of the choice of basis used in
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(1.37). Closely related to this is the fact that the trace is invariant under
conjugation:

Tr (CAC
−1) = TrA, (1.38)

for all A,C ∈ EndF(V ), with C invertible. More generally,

Tr (AB) = Tr (BA) (1.39)

for all A,B ∈ EndF(V ). As we have seen in (1.16), the matrix of the adjoint
A

� is just the transpose of the matrix of A, relative to dual bases, and so the
trace, being the sum of the common diagonal terms, is the same for both A

and A
�:

TrA = TrA�
. (1.40)

Proofs of these results and more information on the trace are in sections
12.11 and 12.12.

The character χρ of a representation of a group G on a finite dimensional
vector space V is the function on G given by

χρ(g)
def
= Tr ρ(g) for all g ∈ G. (1.41)

For the simplest representation, where ρ(g) is the identity I on V for all
g ∈ G, the character is the constant function with value dimF V . (For the
case of V = {0}, we can set the character to be 0.)

It may seem odd to single out the trace, and not, say, the determinant
or some other such natural function of ρ(g). But observe that if we know
the trace of ρ(g), with g running over all the elements of G, then we know
the traces of ρ(g2), ρ(g3), etc., which means that we know the traces of all
powers of ρ(g), for every g ∈ G. This is clearly a lot of information about a
matrix. Indeed, as we shall see later in Proposition 1.11.2, ρ(g) can, in the
cases of interest, be written as a diagonal matrix with respect to some basis
(generally dependent on g). Then knowing traces of all powers of ρ(g) would
mean that we know this diagonal matrix, with diagonal entries λ1, . . . ,λn

completely, up to permutation of the λj; this is because, by the traditional
Newton identities for roots of equations, elements λ1, . . . ,λn in a field can be
recovered from the values of the power sums

�
n

j=1 λ
k

j
for k ∈ {1, . . . , n}. For

a good computational procedure for this, work out Exercise 1.21 after you
have read section 1.11 below.

Thus, knowledge of the character of ρ specifies each ρ(g) up to basis
change. In other words, under some simple assumptions, if ρ1 and ρ2 are
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finite dimensional non-zero representations with the same character then for
each g, there are bases relative to which the matrix of ρ1(g) is the same as the
matrix of ρ2(g). This leaves open the possibility, however, that the special
choice of bases might depend on g. Remarkably, this is not so! As we see
much later, in Theorem 7.1.2, the character determines the representation
up to equivalence. For now we will be satisfied with a simple observation:

Proposition 1.10.1 If ρ1 and ρ2 are equivalent representations of a group
G on finite dimensional vector spaces then

χρ1(g) = χρ2(g) for all g ∈ G. (1.42)

Proof. Let v1, ..., vd be a basis for the representation space V for ρ1 (if this
space is {0} then the result is obviously and trivially true, and so we discard
this case). Then in the representation space W for ρ2, the vectors wi = Tvi

form a basis, where T is any isomorphism V → W . We take for T the
isomorphism that intertwines ρ1 and ρ2:

ρ2(g) = Tρ1(g)T
−1 for all g ∈ G.

Then, for any g ∈ G, the matrix for ρ2(g) relative to the basis w1, ..., wd is
the same as the matrix of ρ1(g) relative to the basis v1, ..., vd. Hence, the
trace of ρ2(g) equals the trace of ρ1(g). QED

The following observations are readily checked by using bases:

Proposition 1.10.2 If ρ1 and ρ2 are representations of a group on finite
dimensional vector spaces then

χρ1⊕ρ2 = χρ1 + χρ2

χρ1⊗ρ2 = χρ1χρ2

(1.43)

Let us work out the character of the representation R of the permutation
group Sn on F

n, and on the subspaces D and E0 given in (1.26) and (1.27),
discussed earlier in section 1.7. Recall that for σ ∈ Sn, and any standard-
basis vector ej of Fn,

R(σ)ej
def
= eσ(j).

Hence,
χR(σ) = number of fixed points of σ. (1.44)
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Now consider the restriction RD of this action to the ‘diagonal’ subspace
D = F(e1 + · · · + en). Clearly, RD(σ) is the identity map for every σ ∈ Sn,
and so the character of RD is given by

χD(σ) = 1 for all σ ∈ Sn.

Then the character χ0 of the representation R0 = R(·)|E0 is given by:

χ0(σ) = χR(σ)− χD(σ) = |{j : σ(j) = j}|− 1. (1.45)

Characters can get confusing when working with representations over
different fields at the same time. Fortunately there is no confusion in the
simplest natural situation:

Proposition 1.10.3 If ρ is a representation of a group G on a finite dimen-
sional vector space V over a field F, and ρF1 is the corresponding represen-
tation on VF1, where F1 is a field containing F as a subfield, then

χρF1
= χρ. (1.46)

Proof. As seen in section 1.4, ρF1 has exactly the same matrix as ρ, relative
to suitable bases. Hence the characters are the same as well. QED

If ρ1 is a one dimensional representation of a group G then, for each
g ∈ G, the operator ρ1(g) is simply multiplication by a scalar, denoted again
by ρ1(g). Then the character of ρ1 is ρ1 itself! In the converse direction, if χ
is a homomorphism of G into the multiplicative group of invertible elements
in the field then χ provides a one dimensional representation.

1.11 Diagonalizability

Let G be a finite group and ρ a representation of G on a finite dimensional
vector space V over a field F. Remarkably, under some mild conditions on
the field F as described below in Proposition 1.11.1, every element ρ(g) can
be expressed as a diagonal matrix relative to some basis (depending on g) in
V , with the diagonal entries being roots of unity in F:

ρ(g) =





ζ1(g) 0 0 ... 0
0 ζ2(g) 0 . . . 0
...

...
... · · · ...

0 0 0 · · · ζd(g)




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where each ζj(g), when raised to the |G|-th power, gives 1.
An m-th root of unity in a field F is an element ζ ∈ F for which ζ

m = 1.
There are m distinct m-th roots of unity in an extension of F if and only if
m is not divisible by the characteristic of F (Theorem 12.6.1).

Proposition 1.11.1 Suppose F is a field that contains m distinct m-th roots
of unity, for some m ∈ {1, 2, 3, ..}. If V �= 0 is a vector space over F and
S : V → V is a linear map for which S

m = I, then there is a basis of V
relative to which the matrix for S is diagonal and each diagonal entry is an
m-th root of unity.

Proof. Let η1, ..., ηm be the distinct elements of F for which the polynomial
X

m − 1 factors as

X
m − 1 = (X − η1)...(X − ηm).

Then
(S − η1I)...(S − ηmI) = S

m − I = 0.

A result from linear algebra (Theorem 12.8.1) assures us that V has a basis
with respect to which the matrix for S is diagonal, with entries drawn from
the ηi. QED

As consequence we have:

Proposition 1.11.2 Suppose G is a group in which g
m = e for all g ∈ G,

for some positive integer m; for instance, G is finite of order m. Let F be a
field containing m distinct m-th roots of unity. Then, for any representation
ρ of G on a vector space Vρ �= 0 over F, for each g ∈ G there is a basis of Vρ

with respect to which the matrix of ρ(g) is diagonal and the diagonal entries
are each m-th roots of unity in F.

When the representation space is finite dimensional this gives us an un-
expected and intriguing piece of information about characters:

Theorem 1.11.1 Suppose G is a group in which g
m = e for all g ∈ G, for

some positive integer m; for instance, G may be finite of order m. Let F be a
field containing m distinct m-th roots of unity. Then the character χ of any
representation of G on a finite dimensional vector space over F is a sum of
m-th roots of unity.
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A form of this result was proved by Maschke [56], and raised the question
as to when there is a basis of the vector space relative to which all ρ(g) have
entries in some number field generated by a root of unity.

There is a way to bootstrap our way up to a stronger form of the preceding
result. Suppose that it is not the field F, but rather an extension, a larger
field F1 ⊃ F which contains m distinct m-th roots of unity; for instance, F
might be the reals R and F1 is the field C. The representation space V can
be dressed up to V1 = F1 ⊗F V , which is a vector space over F1, and then a
linear map T : V → V produces an F1-linear map

T1 : V1 → V1 : 1⊗ v �→ 1⊗ Tv. (1.47)

If B is a basis of V then {1⊗ w : w ∈ B} is a basis of V1, and the matrix of
T1 relative to this basis is the same as the matrix of T relative to B, and so

TrT1 = TrT. (1.48)

(We have seen this before in (1.46).) Consequently, if in Theorem 1.11.1 we
require simply that there be an extension field of F in which there are m

distinct m-th roots of unity and ρ is a finite dimensional representation over
F then the values of the character χρ are again sums of m-th roots of unity
in F1 (which, themselves, need not lie in F).

Suppose the field F has an automorphism, call it conjugation,

F → F : z �→ z

that takes each root of unity to its inverse; let us call self-conjugate elements
real. For instance, if F is a subfield of C then the usual complex conjugation
provides such an automorphism. Then, under the hypotheses of Proposition
1.11.2, for each g ∈ G and representation ρ of G on a finite dimensional
vector space Vρ �= 0, there is a basis of Vρ relative to which the matrix of
ρ(g) is diagonal with entries along the diagonal being roots of unity; hence,
ρ(g−1), relative to the same basis, has a diagonal matrix, with the diagonal
entries being the conjugates of those for ρ(g). Hence

χρ(g
−1) = χρ(g). (1.49)

In particular, if an element of G is conjugate to its inverse, then the value of
any character on such an element is real. In the symmetric group Sn, every
element is conjugate to its own inverse, and so:



32 Ambar N. Sengupta

the characters of all complex representations of Sn are real-valued.

This is an amazing, specific result about a familiar concrete group that falls
out immediately from some of the simplest general observations. Later, with
greater effort, it will become clear that, in fact, the characters of Sn have
integer values!

1.12 Unitarity

Suppose now that our field F is a subfield of C, the field of complex numbers,
and G is a finite group.

Consider any hermitian inner product �·, ·� on V , a vector space over F.
This is a map

V × V → F : (v, w) �→ �v, w�
such that

�av1 + v2, w� = a�v1, w�+ �v2, w�
�v, aw1 + w2� = a�v, w1�+ �v, w2�

�v, v� ≥ 0 (in particular, �v, v� is real)
�v, v� = 0 if and only if v = 0,

(1.50)

for all v, w, v1, v2, w1, w2 ∈ V and a ∈ F. The norm ||v|| of any v ∈ V is
defined by

||v|| =
�

�v, v�. (1.51)

Note that in (1.50) we used the complex conjugation z �→ z. If F is the field
R of real numbers then the conjugation operation is just the identity map.

It is a bit sad that mathematical convention has chosen �v, w� to be linear
in v and conjugate linear in w. The physics literature generally takes exactly
the opposite convention, requiring that w �→ �v, w� be linear. This appears
even more sensible in the bra-ket notation

�v| : |w� �→ �v|w�

is linear in the physics convention (which we do not use).
Let us modify the inner product so that it sees all ρ(g) equally; this is

done by averaging:

�v, w�0 =
1

|G|
�

g∈G

�ρ(g)v, ρ(g)w� (1.52)
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for all v, w ∈ V . Then it is clear that

�ρ(h)v, ρ(h)w�0 = �v, w�0,

for all h ∈ G and all v, w ∈ V . You can quickly check through all the
properties needed to certify �·, ·�0 as an inner product on V .

Thus we have proved:

Proposition 1.12.1 Let G be a finite group and ρ a representation of G on
a vector space V over a subfield F of C. Then there is a hermitian inner
product �·, ·�0 on V such that for every g ∈ G the operator ρ(g) is unitary in
the sense that

�ρ(g)v, ρ(g)w�0 = �v, w�0 for all v, w ∈ V and g ∈ G.

In matrix algebra one knows that a unitary matrix can be diagonalized
by choosing a suitable orthonormal basis in the space. Then our result here
gives an alternative way to understand Proposition 1.11.2.

1.13 Rival Reads

There are many books on representation theory, even for finite groups, rang-
ing from elementary introductions to extensive expositions. An encyclopedic,
yet readable, volume is the work of Curtis and Reiner [16]. The book of Burn-
side [9] (2nd edition), from the early years of the theory, is still worth explor-
ing, as is the book of Littlewood [55]. Among modern books, Weintraub [75]
provides an efficient and extensive development of the theory, especially the
arithmetic aspects of the theory and the behavior of representations under
change of the ground field. The book of Serre [70] is a classic. With a very
different flavor, Simon [71] is a fast paced exposition and crosses the bridge
from finite to compact groups. For the representation theory of compact
groups, for which there is a much larger library of literature, we recommend
Hall [40]. Another introduction which bridges finite and compact groups,
and explores a bit of the non-compact group SL2(R) as well, is the slim vol-
ume of Thomas [72]. Returning to finite groups, Alperin and Bell [1] and
James and Liebeck [48] offer introductions with a view to understanding the
structure of finite groups. Hill [43] is an elegant and readable introduction
which pauses to examine many enlightening examples. Lang’s Algebra [53]
includes a rapid but readable account of finite group representation theory,
covering the basics and some deeper results.
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1.14 Afterthoughts: Lattices

Logic and geometry interweave in an elegant, and abstract, lattice frame-
work developed by von Neumann and Birkhoff [4] for classical and quantum
physics. There is an extensive exposition of this theory, and much more, in
Varadarajan [73].

A symmetry transforms one entity to another, preserving certain features
of interest. The minimal setting for such a transformation is simply as a
mapping of a set into itself. An action of a group G on a set S is a mapping

G× P → P : (g, p) �→ Lg(p) = g · p,

for which e · p = p for all p ∈ P , where e is the identity in G, and g · (h · p) =
(gh) · p for all g, h ∈ G, and p ∈ P . Taking h to be g

−1 shows that each
mapping Lg : p �→ g · p is a bijection of S into itself. As a physical example,
think of S as the set of states of some physical system; for instance, S could
be the phase space of a classical dynamical system. If instead of a single
point p of S we consider a subset A ⊂ S, the action of g ∈ G carries A into
the subset Lg(A). Thus,

A �→ Lg(A)

specifies an action of G on the set P(S) of all subsets of S. Unlike S, the set
P(S) does have some structure: it has a partial ordering given by inclusion
A ⊂ B, and there is a minimum element 0 = ∅ and a maximum element
1 = S. This partial order relation makes P(S) a lattice in the sense that
any A,B ∈ P(S) have both an infimum A ∧ B = A ∩ B and a supremum
A ∨ B = A ∪ B. This lattice structure has several additional nice features;
for one thing, it is distributive:

(P ∪M) ∩ B = (P ∩ B) ∪ (M ∩ B)

P ∪ (M ∩ B) = (P ∪M) ∩ (P ∪ B),
(1.53)

for all P,M,B ∈ P(S). Moreover, the complementation A �→ A
c specified

by
A ∩ A

c = ∅ and A ∪ A
c = S, (1.54)

is an order-reversing bijection of P(S) into itself, and is an involution, in the
sense that (Ac)c = A for all A ∈ P(S). The action of G on P(S) clearly
preserves the partial order relation and hence the lattice structure, given by
infimum and supremum, as well as complements. Conversely, at least for a
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finite set S, if a group G acts on P(S), preserving its partial ordering, then
this action arises from an action of G on the underlying set S.

Birkhoff and von Neumann [4] proposed that in quantum theory classical
Boolean logic, an example of which is the lattice structure of P(S), is replaced
by a different lattice, encoding the ‘logic of quantum mechanics’. This is a
lattice L(H) of subspaces of a vector space H, with additional properties of
the lattice being reflected in the nature of F and an inner product on H. The
set of subspaces is ordered by inclusion, the infimum is again the intersection,
but the supremum of subspaces A,B ∈ L(H) is the minimal subspace in L(H)
containing the sum A+B. Unlike the Boolean lattice P(S), the distributive
laws do not hold; a weaker form, the modular law does hold:

(P +M) ∩B = (P ∩B) +M if M ⊂ B. (1.55)

(We will meet this again later in (5.29)).
The construction of the field F and the vector space H is part of classical

projective geometry. The inner product arises from logical negation, which
is expressed as a complementation in L(H): Birkhoff and von Neumann [4,
Appendix] show how a complementation A �→ A

⊥ in the lattice L(H) induces,
when dimH > 3, an inner product on H for which A

⊥ is the orthogonal
complement of A. In the standard form of quantum theory F is the field C

of complex numbers, and L(H) is the lattice of closed subspaces of a Hilbert
space H. More broadly, one could consider the scalars to be drawn from
a division ring, such as the quaternions. Consider now a set A of closed
subspaces of H such that any two distinct elements of A are orthogonal to
each other, and the closed sum of elements ofA is all of H. Then the set L(A)
of all subspaces that are direct sums of elements of A is a Boolean algebra,
corresponding to a classical physical system, unlike the full lattice L(H) that
describes a quantum system. The simplest instance of this is seen for H =
C

2, with two complementary atoms, which are orthogonal one dimensional
subspaces, that is the model Hilbert space of a ‘single qubit’ quantum system.
Aside from the lattice framework, an analytically more useful structure is the
algebra of operators obtained as suitable (strong) limits of complex linear
combinations of projection operators onto the closed subspaces of H. This
is a quantum form of the commutative algebra formed by using only the
subspaces in the Boolean algebra L(A).

A symmetry of the physical system in this framework is an automorphism
of the complemented lattice L(H) and, combining fundamental theorems
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from projective geometry and a result of Wigner, such a symmetry is realized
by a linear or conjugate-linear unitary mapping H → H (see Varadarajan [73]
for details and more). If ρ is a unitary representation of a finite group G on
a finite dimensional inner product space H, then ρg : A �→ ρ(g)A, for A ∈
L(H), is an automorphism of the complemented lattice L(H), and thus such
a representation ρ of G provides a group of symmetries of a quantum system.
The requirement that ρ be a representation may be weakened, requiring only
that it be a projective representation, where ρ(g)ρ(h) must only be a multiple
of ρ(gh), for it to produce a group of symmetries of L(H).

Exercises

1. Let G be a finite group, P a nonempty set on which G acts; this means
that there is a map

G× P → P : (g, p) �→ g · p,

for which e · p = p for all p ∈ P , where e is the identity in G, and
g · (h · p) = (gh) · p for all g, h ∈ G, and p ∈ P . The set P , along
with the action of G, is called a G-set. Now suppose V is a vector
space over a field F, with P as basis. Define, for each g ∈ G, the map
ρ(g) : V → V to be the linear map induced by permutation of the basis
elements by the action of g:

ρ(g) : V → V :
�

p∈P

app �→
�

p∈P

apg · p.

Show that ρ is a representation ofG. Interpret the character value χρ(g)
in terms of the action of g on P . Next, if P1 and P2 are G-sets with
corresponding representations ρ1 and ρ2, interpret the representation
ρ12 corresponding to the natural action of G on the product P1 ×P2 in
terms of the tensor product ρ1 ⊗ ρ2.

2. Let n ≥ 2 be a positive integer, F a field in which n1F �= 0, and consider
the representation R of Sn on F

n given by

R(σ)(v1, ..., vn) = (vσ−1(1), . . . , vσ−1(n))

for all (v1, . . . , vn) ∈ F
n and σ ∈ Sn.

Let
D = {(v, ..., v) : v ∈ F} ⊂ F

n
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and
E0 = {(v1, . . . , vn) ∈ F

n : v1 + · · ·+ vn = 0}.

Show that:

(i) no nonzero vector in E0 is in D (since n ≥ 2, E0 does contain a
nonzero vector!);

(ii) each vector e1 − ej lies in the span of {R(σ)w : σ ∈ Sn}, for any
w ∈ E0;

(iii) the restriction R0 of R to the subspace E0 is an irreducible repre-
sentation of Sn.

3. Let Pn be the set of all partitions of [n] = {1, . . . , n} into k disjoint
nonempty subsets, where k ∈ [n]. For σ ∈ Sn and p ∈ Pk, let σ · p =
{σ(B) : B ∈ p}. In this way Sn acts on Pk. Now let Vk be the vector
space, over a field F, with basis Pk, and let Rk : Sn → EndF(Vk) be
the corresponding representation given by the method of Exercise 1.1.
What is the relationship of this to the representation R in Exercise 1.2?

4. Determine all one-dimensional representations of Sn over any field.

5. Prove Proposition 1.10.2.

6. Let n ∈ {3, 4, ...}, and F a field of characteristic 0. Denote by R0 the
restriction of the representation of Sn on F

n to the subspace E0 = {x ∈
F
n : x1 + · · ·+ xn = 0}. Let � be the one-dimensional representation of

Sn on F given by the signature, where σ ∈ Sn acts by multiplication by
the signature �(σ) ∈ {+1,−1}. Show that R1 = R0⊗� is an irreducible
representation of Sn. Show that R1 is not equivalent to R0.

7. Consider S3, which is generated by the cyclic permutation c = (123)
and the transposition r = (12), subject to the relations

c
3 = ι, r

2 = ι, rcr
−1 = c

2
.

Let F be a field. The group S3 acts on F
3 by permutation of coordinates,

and preserves the subspace E0 = {(x1, x2, x3) : x1 + x2 + x3 = 0}; the
restriction of the action to E0 is a 2-dimensional representation R0 of
S3. Work out the matrices for R0(·) relative to the basis u1 = (1, 0,−1)



38 Ambar N. Sengupta

and u2 = (0, 1,−1) of E0. Then work out the values of the character
χ0 on all the six elements of S3. Compute the sum

�

σ∈S3

χ0(σ)χ0(σ
−1).

8. Consider A4, the group of even permutations on {1, 2, 3, 4}, acting
through permutation of coordinates of F4, where F is a field. This action
restricts to a representation R0 on the subspace E0 = {(x1, x2, x3, x4) ∈
F
4 : x1 + x2 + x3 + x4 = 0}. Work out the values of the character of

R0 on all elements of A4.

9. Give an example of a representation ρ of a finite group G on a finite
dimensional vector space V over a field of characteristic 0, such that
there is an element g ∈ G for which ρ(g) is not diagonal in any basis
of V .

10. Explore the validity of the statement of Theorem 1.7.1 when V is infi-
nite dimensional.

11. Let V and W be finite dimensional representations of a group G, over
the same field. Show that: (i) V �� � V and (ii) V � W if and only if
V

� � W
�, where � denotes equivalence of representations.

12. Suppose ρ is an irreducible representation of a finite group G on a
vector space V over a field F. If F1 ⊃ F is an extension field of F, is
the representation ρF1 on VF1 necessarily irreducible?

13. If H is a normal subgroup of a finite group G, and ρ a representation
of the group G/H, then let ρG be the representation of G specified by

ρG(g) = ρ(gH) for all g ∈ G.

Show that ρG is irreducible if and only if ρ is irreducible. Work out the
character of ρG in terms of the character of ρ.

14. Let ρ be a representation of a group G on a finite dimensional vector
space V �= 0.

(i) Show that there is a subspace of V on which ρ restricts to an
irreducible representation.
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(ii) Show that there is a chain of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vm = V ,
such that (a) each Vj is invariant under the action of ρ(G), (b)
the representation ρ|V1 is irreducible, and (c) the representation
obtained from ρ on the quotient Vj/Vj−1 is irreducible, for each
j ∈ {2, ...,m}.

15. Let ρ be a representation of a group G on a vector space V over a field
F, and suppose b1, ..., bn is a basis of V . There is then a representation
τ of G on EndF(V ) given by:

τ(g)A = ρ(g) ◦ A for all g ∈ G and A ∈ EndF(V ).

Let
S : EndF(V ) → V ⊕ · · ·⊕ V : A �→ (Ab1, . . . , Abn).

Show that S is an equivalence from τ to ρ⊕ · · ·⊕ ρ (n-fold direct sum
of ρ with itself).

16. Let ρ1 and ρ2 be representations of a group G on vector spaces V1

and V2, respectively, over a common field F. For g ∈ G, let ρ12(g) :
Hom(V1, V2) → Hom(V1, V2) be given by

ρ12(g)T = ρ2(g)Tρ1(g)
−1
.

Show that ρ12 is a representation of G. Taking V1 and V2 to be finite
dimensional, show that this representation is equivalent to the tensor
product representation ρ

�
1 ⊗ ρ2 on V

�
1 ⊗ V2.

17. Let ρ be a representation of a group G on a finite dimensional vector
space V over a field F. There is then a representation σ of G × G on
EndFV given by:

σ(g, h)A = ρ(g) ◦ A ◦ ρ(h)−1 for all g ∈ G and A ∈ EndF(V ).

Let
B : V � ⊗ V → EndF(V ) → �f |⊗ |v� �→ |v��f |,

where |v��f | is the map V → V carrying any vector |w� ∈ V to
�f |w��v|. Show that B is an equivalence from σ to the representation
θ of G×G on V

� ⊗ V specified by

θ(g, h)�f |⊗ |v� = ρ
�(h)�f |⊗ ρ(g)|v�,

where ρ
� is the dual representation on V

�.
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18. Let G be a group and ρ an irreducible representation of G on a finite
dimensional complex vector space V . Assume that there is a hermitian
inner product �·, ·� on V that is invariant under G, thus making ρ

a unitary representation. Assume, moreover, that there is a nonzero
symmetric bilinear mapping

S : V × V → C,

which is G-invariant:

S
�
ρ(g)v, ρ(g)w

�
= S(v, w) for all v, w ∈ V and g ∈ G.

For v ∈ V let S∗(v) be the unique element of V for which

�w, S∗(v)� = S(w, v) for all w ∈ V . (1.56)

(i) Check that S∗ : V → V is conjugate linear, in the sense that

S∗(av + w) = aS∗(v) + S∗(w)

for all v, w ∈ V and a ∈ C. Consequently, S2
∗ is linear. Check

that
S∗(ρ(g)v) = ρ(g)(S∗v)

and
S
2
∗ρ(g) = ρ(g)S2

∗

for all g ∈ G and v ∈ V .

(ii) Show from the symmetry of S that S2
∗ is a hermitian operator:

�S2
∗w, v� = �S∗v, S∗w� = �w, S2

∗v�

for all v, w ∈ V .

(iii) Since S
2
∗ is hermitian, there is an orthonormal basis B of V rela-

tive to which S
2
∗ has all off-diagonal entries 0. Show that all the

diagonal entries are positive.

(iv) Let S0 be the unique linear operator V → V that, relative to the
basis B in (iii), has matrix which has all off diagonal entries 0
and the diagonal entries are the positive square roots of the cor-
responding entries for the matrix of S2

∗ . Thus, S0 = (S2
∗)

1/2 in the
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sense that S2
0 = S

2
∗ and S0 is hermitian and positive: �S0v, v� ≥ 0

with equality if and only if v = 0. Show that

S0ρ(g) = ρ(g)S0 for all g ∈ G,

and also that S0 commutes with S∗.

(v) Let
C = S∗S

−1
0 (1.57)

Check that C : V → V is conjugate linear, C2 = I, the identity
map on V , and Cρ(g) = ρ(g)C for all g ∈ V .

(vi) By writing any v ∈ V as

v =
1

2
(v + Cv) + i

1

2i
(v − Cv),

show that
V = VR ⊕ iVR,

where VR is the real vector space consisting of all v ∈ V for which
Cv = v.

(vii) Show that ρ(g)VR ⊂ VR for all g ∈ G. Let ρR be the representation
of G on the real vector space VR give by the restriction of ρ. Show
that ρ is the complexification of ρR. In particular, there is a basis
of V relative to which all matrices ρ(g) have all entries real.

(viii) Conversely, show that if there is a basis of V for which all entries
of all the matrices ρ(g) are real then there is a nonzero symmetric
G-invariant bilinear form on V .

(ix) Prove that for an irreducible complex character χ of a finite group,
the Frobenius-Schur indicator has value 0 if the character is not
real-valued, has value 1 if the character arises from the complexi-
fication of a real representation, and has value −1 if the character
is real-valued but does not arise from the complexification of a
real representation.

19. Let ρ be a representation of a group G on a vector space V over a
field F. Show that the subspace V

⊗̂2 consisting of symmetric tensors
in V ⊗ V is invariant under the tensor product representation ρ ⊗ ρ.
Assume that G is finite, containing m elements, and the field F has



42 Ambar N. Sengupta

characteristic �= 2 and contains m distinct m-th roots of unity. Work
out the character of the representation ρs that is given by the restriction
of ρ⊗ ρ to V

⊗̂2. (Hint: Diagonalize.)

20. Let ρ be an irreducible complex representation of a finite group G on
a space of dimension dρ, and χρ its character. If g is an element of G
for which |χρ(g)| = dρ, show that ρ(g) is of the form cI for some root
of unity c.

21. Let χ be the character of a representation ρ of a finite group G on a
finite dimensional complex vector space V �= 0. Dixon [24] describes
a computationally convenient way to recover the diagonalized form of
ρ(g) from the values of χ on the powers of g; in fact, he explains how
to recover the diagonalized form of ρ(g), and hence also the value of
χ(g), given only approximate values of the character. Here is a pathway
through these ideas:

(i) Suppose U is an n×n complex diagonal matrix such that Ud = I,
where d is a positive integer. Let ζ be any d-th root of unity.
Show that

1

d

d−1�

k=0

Tr(Uk)ζ−k

= number of times ζ appears on the diagonal of U .

(1.58)

(Hint: If wd = 1, where d is a positive integer, then 1 +w +w
2 +

· · ·+ w
d−1 is 0 of w �= 1, and is d if w = 1.)

(ii) If all the values of the character χ are known, use (i) to explain how
the diagonalized form of ρ(g) can be computed for every g ∈ G.

(iii) Now consider g ∈ G, and let d be a positive integer for which
g
d = e. Suppose we know the values of χ on the powers of g within

an error margin < 1/2. In other words, suppose we have complex
numbers z1, ..., zd with |zj − χ(gj)| < 1/2 for all j ∈ {1, ..., d}.
Show that, for any d-th root of unity ζ, the integer closest to
d
−1

�
d

k=1 zkζ
−k is the multiplicity of ζ in the diagonalized form

of ρ(g). Thus, the values z1, ..., zk can be used to compute the
diagonalized form of ρ(g) and hence also the exact value of χ on
the powers of g. Modify to allow for approximate values of the
powers of ζ as well.
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A Reckoning

He sits in a seamless room

staring

into the depths

of a wall that is not a wall,

opaque,

unfathomable.

Though deep understanding

lies

just beyond that wall,

the vision he desires

can be seen

only from within the room.

Sometimes a sorrow transports him

through the door that is not a door,

down stairs that are not stairs

to the world beyond the place of seeking:

down fifty steps

hand carved into the mountains stony side

to a goat path that leads to switchbacks,

becoming a trail that becomes a road;

and thus he wanders to the town beyond.

Though barely dusk,

the night lights brighten

guiding him

to the well known place of respite.

They were boisterous within,

but they respect him as the one who seeks,

and so they sit subdued,

waiting,

hoping for the revelation that never comes.

Amidst the quiet clinking of glasses

and the softly whispered reverence,

a woman approaches,

escorts him to their accustomed place.

They speak with words that are not words

about ideas that are not ideas

enshrouded by a silence that is not silence.

His presence stifles their gaiety,

her gaiety,

and so he soon grows restless

and desires to return to his hopeless toil.

The hand upon his cheek,

the tear glistening in her eye,

the whispered words husband mine,

will linger with him

until he once again attains

his room that is not a room.

As he leaves,

before the door can slam behind him,

he hears their voices

rise

once again

in blessed celebration,

hers distinctly above the others.

But he follows his trail

and his switchbacks

and his goat path

and the fifty steps

to his seamless world

prepared once again

to let his god

who is not a god

take potshots at his soul.

Charlie Egedy



Chapter 2

Basic Examples

We will work our way through examples in this chapter, looking at represen-
tations and characters of some familiar finite groups. We focus on complex
representations, but any algebraically closed field of characteristic zero (for
instance, the algebraic closure Q of the rationals) could be substituted for C.

Recall that the character χρ of a finite dimensional representation ρ of a
group G is the function on the group specified by

χρ(g) = Tr ρ(g). (2.1)

Characters are invariant under conjugation and so χρ takes a constant value
χρ(C) on any conjugacy class C. As we have seen before in (1.49),

χρ(g
−1) = χρ(g) for all g ∈ G, (2.2)

for any complex representation ρ. We say that a character is irreducible if it
is the character of an irreducible representation. A complex character is the
character of a complex representation.

It will be useful to keep at hand some facts (proofs are in Chapter 7) about
complex representations of any finite group G: (i) there are only finitely
many inequivalent irreducible complex representations of G and these are all
finite dimensional; (ii) two finite dimensional complex representations of G
are equivalent if and only if they have the same character; (iii) a complex
representation of G is irreducible if and only if its character χρ satisfies

�

g∈G

|χρ(g)|2 =
�

C∈CG

|C||χρ(C)|2 = |G|; (2.3)

45
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and (iv) the number of inequivalent irreducible complex representations of G
is equal to the number of conjugacy classes in G.

We denote by RG a maximal set of inequivalent irreducible complex rep-
resentations of G. Let CG be the set of all conjugacy classes in G. If C is a
conjugacy class then we denote by C

−1 the conjugacy class consisting of the
inverses of the elements in C.

In going through the examples in this chapter we will sometimes pause to
use or verify some standard properties of complex characters of a fnite group
G (again, proofs are in Chapter 7). These properties are summarized in the
orthogonality relations among complex characters:

�

h∈G

χρ(gh)χρ1(h
−1) = |G|χρ(g)δρ ρ1 ,

�

ρ∈RG

χρ(C
�)χρ(C

−1) =
|G|
|C|δC

� C ,

(2.4)

where δa b is 1 if a = b and is 0 otherwise, the relations above being valid
for all ρ, ρ1 ∈ RG, all conjugacy classes C,C � ∈ CG, and all elements g ∈ G.
Specializing this to specific cases (such as ρ = ρ1, or g = e), we have:

�

ρ∈RG

(dim ρ)2 = |G|,

�

ρ∈RG

dim ρχρ(g) = 0 if g �= e,

�

g∈G

χρ1(g)χρ2(g
−1) = |G|δρ1 ρ2 dim ρ for ρ1, ρ2 ∈ RG.

(2.5)

2.1 Cyclic Groups

Let us work out all irreducible representations of a cyclic group Cn containing
n elements. Being cyclic, Cn contains a generator c, which is an element such
that Cn consists exactly of the powers c, c2, ..., cn, where c

n is the identity e

in the group.

Let ρ be a representation of Cn on a complex vector space V �= 0. By
Proposition 1.11.2, there is a basis of V relative to which the matrix of ρ(c)
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Figure 2.1: A picture for the cyclic group C8

is diagonal, with each entry being an n-th root of unity:

matrix of ρ(c) =





η1 0 0 . . . 0
0 η2 0 . . . 0
...

...
... . . .

...
0 0 0 . . . ηd





Since c generates the full group Cn, the matrix for ρ is diagonal on all the
elements c

j in Cn. Thus, V is a direct sum of one dimensional subspaces,
each of which provides a representation of Cn. Of course, any one dimensional
representation is automatically irreducible.

Let us summarize our observations:

Theorem 2.1.1 Let Cn be a cyclic group of order n ∈ {1, 2, ...}. Every
complex representation of Cn is a direct sum of irreducible representations.
Each irreducible complex representation of Cn is one dimensional, specified
by the requirement that a generator element c ∈ G act through multiplication
by an n-th root of unity. Each n-th root of unity provides, in this way,
an irreducible complex representation of Cn, and these representations are
mutually inequivalent.

Thus, there are exactly n inequivalent irreducible complex representations
of Cn.

Everything we have done here goes through for representations of Cn over
a field containing n distinct roots of unity.

Let us now take a look at what happens when the field does not contain
the requisite roots of unity. Consider, for instance, the representations of



48 Ambar N. Sengupta

C3 over the field R of real numbers. There are three geometrically apparent
representations:

(i) the one dimensional ρ1 representation that associates the identity op-
erator (multiplication by 1) to every element of C3;

(ii) the two dimensional representation ρ
+
2 on R

2 in which c is associated
with rotation by 1200;

(iii) the two-dimensional representation ρ
−
2 on R

2 in which c is associated
with rotation by −1200.

These are clearly all irreducible. Moreover, any irreducible representation of
C3 on R

2 is clearly either (ii) or (iii).
Now consider a general real vector space V on which C3 has a represen-

tation ρ. Choose a basis B in V , and let VC be the complex vector space
with B as basis (put another way, VC is C⊗R V , viewed as a complex vector
space). Then ρ gives, naturally, a representation of C3 on VC. Then VC is a
direct sum of complex one dimensional subspaces, each invariant under the
action of C3. Since a complex one dimensional vector space is a real two
dimensional space, and we have already determined all two dimensional real
representations of C3, we are done with classifying all real representations of
C3. Too fast, you say? Then proceed to Exercise 2.6.

Finite abelian groups are products of cyclic groups. This could give the
impression that nothing much interesting lies in the representations of such
groups. But even a very simple representation can be of great use. For
any prime p, the nonzero elements in Zp = Z/pZ form a group Z

∗
p
under

multiplication. Then for any a ∈ Z
∗
p
define

λp(a) = a
(p−1)/2

,

this being 1 in the case p = 2. Since its square is ap−1 = 1, λp(a) is necessarily
±1. Clearly,

λp : Z
∗
p
→ {1,−1}

is a group homomorphism, and hence gives a 1-dimensional representation,
which is the same as a 1-dimensional character of Z∗

p
. The Legendre symbol�

a

p

�
is defined for any integer a by

�
a

p

�
=

�
λp(amod p) if a is coprime to p

0 if a is divisible by p.
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The celebrated law of quadratic reciprocity, conjectured by Euler and Leg-
endre and proved first, and many times over, by Gauss, states that

�
p

q

��
q

p

�
= (−1)(p−1)/2(−1)(q−1)/2

,

if p and q are odd primes. For an extension of these ideas using the character
theory of general finite groups, see the paper of Duke and Hopkins [25].

2.2 Dihedral Groups

The dihedral group Dn, for n any positive integer, is a group of 2n elements
generated by two elements c and r, where c has order n, r has order 2, and
conjugation by r turns c into c

−1:

c
n = e, r

2 = e, rcr
−1 = c

−1
. (2.6)

Geometrically, think of c as counterclockwise rotation in the plane by the
angle 2π/n and r as reflection across a fixed line through the origin. The
distinct elements of Dn are

e, c, c
2
, . . . , c

n−1
, r, cr, c

2
r, . . . , c

n−1
r.

Figure 2.2: A picture for the dihedral group D4

The geometric view of Dn immediately yields a real two dimensional
representation: let c act on R

2 through counterclockwise rotation by angle
2π/n and r through reflection across the x-axis. Complexifying this and going
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over to a different basis gives a two dimensional complex representation ρ1

on C
2:

ρ1(c) =

�
η 0
0 η

−1

�
, ρ1(r) =

�
0 1
1 0

�
, (2.7)

where η is a primitive n-th root of unity, say

η = e
2πi/n

.

More generally, we have the representation ρm specified by requiring

ρm(c) =

�
η
m 0
0 η

−m

�
, ρm(r) =

�
0 1
1 0

�

for any m ∈ Z; of course, to avoid repetition, we may focus on m ∈
{1, 2, ..., n− 1}. The values of ρm on all elements of Dn are given by:

ρm(c
j) =

�
η
mj 0
0 η

−mj

�
, ρm(c

j
r) =

�
0 η

mj

η
−mj 0

�

(Having written this, we notice that this representation makes sense over any
field F containing n-th roots of unity. However, we stick to the ground field
C, or at least Q with any primitive n-th root of unity adjoined.)

Clearly, ρm repeats itself whem m changes by multiples of n. Thus we
need only focus on ρ1, ..., ρn−1.

Is ρm reducible? Yes if, and only if, there is a non-zero vector v ∈ C
2

fixed by ρm(r) and ρm(c). Being fixed by ρm(r) means that such a vector
must be a multiple of (1, 1) in C

2. But C(1, 1) is also invariant under ρm(c)
if and only if ηm is equal to η

−m.
Thus, ρm, for m ∈ {1, ..., n− 1}, is irreducible if n �= 2m, and is reducible

if n = 2m.
Are we counting things too many times? Indeed, the representations

ρm are not all inequivalent. Interchanging the two axes, converts ρm into
ρ−m = ρn−m. Thus, we can narrow our focus onto ρm for 1 ≤ m < n/2.

We have now identified n/2− 1 irreducible two dimensional complex rep-
resentations if n is even, and (n− 1)/2 irreducible two dimensional complex
representations if n is odd.

The character χm of ρm is obtained by taking the trace of ρm on the
elements of the group Dn:

χm(c
j) = η

mj + η
−mj

, χm(c
j
r) = 0.
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Now consider a one dimensional complex representation θ of Dn. First,
from θ(r)2 = 1, we see that θ(r) = ±1. Applying θ to the relation that
rcr

−1 equals c−1 it follows that θ(c) must also be ±1. But then, from c
n = e,

it follows that θ(c) can be −1 only if n is even. Thus, we have the one
dimensional representations specified by:

θ+,±(c) = 1, θ+,±(r) = ±1 if n is even or odd

θ−,±(c) = −1, θ−,±(r) = ±1 if n is even.
(2.8)

This gives us 4 one dimensional complex representations if n is even, and 2
if n is odd. (Indeed, the reasoning here works for any ground field.)

Thus, for n even we have identified a total of 3+n/2 irreducible represen-
tations, and for n odd we have identified (n+3)/2 irreducible representations.

As noted in the first equation in (2.5), the sum
�

χ∈RG
d
2
χ
over all distinct

complex irreducible characters of a finite group G is the total number of
elements in G. In this case the sum should be 2n. Working out the sum over
all the irreducible characters χ we have determined, we obtain:

�
n

2
− 1

�
22 + 4 = 2n for even n;

�
n− 1

2

�
22 + 2 = 2n for odd n.

(2.9)

Thus, our list of irreducible complex representations contains all irreducible
complex representations, up to equivalence.

Our next objective is to work out all complex characters of Dn. Since
characters are constant on conjugacy classes, let us first determine the con-
jugacy classes in Dn.

Since rcr
−1 is c−1, it follows that

r(cjr)r−1 = c
−j
r = c

n−j
r.

This already indicates that the conjugacy class structure is different for n

even and n odd. In fact notice that conjugating c
j
r by c results in increasing

j by 2:
c(cjr)c−1 = c

j+1
cr = c

j+2
r.

If n is even, the conjugacy classes are:

{e}, {c, cn−1}, {c2, cn−2}, ..., {cn/2−1
, c

n/2+1}, {cn/2},
{r, c2r, ..., cn−2

r}, {cr, c3r, ..., cn−1
r}.

(2.10)



52 Ambar N. Sengupta

Note that there are 3 + n/2 conjugacy classes, and this exactly matches the
number of inequivalent irreducible complex representations obtained earlier.

To see how this plays out in practice let us look at D4. Our analysis
shows that there are five conjugacy classes:

{e}, {c, c3}, {c2}, {r, c2r}, {cr, c3r}.

There are 4 one dimensional complex representations θ±,±, and one irre-
ducible two dimensional complex representation ρ1 specified through

ρ1(c) =

�
i 0
0 −i

�
, ρ1(r) =

�
0 1
−1 0

�
.

Table 2.1 is the character table of D4, listing the values of the irreducible
complex characters of D4 on the various conjugacy classes. The latter are
displayed in a row (second from top), each conjugacy class identified by an
element it contains; above each conjugacy class we have listed the number
of elements it contains. Each row in the main body of the table displays the
values of a character on the conjugacy classes.

1 2 1 2 2
e c c

2
r cr

θ+,+ 1 1 1 1 1

θ+,− 1 1 1 −1 −1

θ−,+ 1 −1 1 1 −1

θ−,− 1 −1 1 −1 1

χ1 2 0 −2 0 0

Table 2.1: Complex irre-
ducible characters of D4

1 2 3
e c r

θ+,+ 1 1 1

θ+,− 1 1 -1

χ1 2 −1 0

Table 2.2: Complex irre-
ducible characters of D3 =
S3

The case for odd n proceeds similarly. Take, for instance, n = 3. The
group D3 is generated by elements c and r subject to the relations

c
3 = e, r

2 = e, rcr
−1 = c

−1
.
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The conjugacy classes are:

{e}, {c, c2}, {r, cr, c2r}

The irreducible complex representations are: θ+,+, θ+,−, ρ1. Their values are
displayed in Table 2.2, where the first row displays the number of elements
in the conjugacy classes listed (by choice of an element) in the second row.
The dimensions of the representations can be read off from the first column
in the main body of the table. Observe that the sum of the squares of the
dimensions of the representations of S3 listed in the table is

12 + 12 + 22 = 6,

which is exactly the number of elements in D3. This verifies the first property
listed earlier in (2.5).

2.3 The Symmetric Group S4

The symmetric group S3 is isomorphic to the dihedral group D3, and we have
already determined the irreducible representations of D3 over the complex
numbers. Let us turn now to the symmetric group S4, which is the group
of permutations of {1, 2, 3, 4}. Geometrically, this is the group of rotational
symmetries of a cube.

Two elements of S4 are conjugate if and only if they have the same cycle
structure; thus, for instance, (134) and (213) are conjugate, and these are
not conjugate to (12)(34). The following elements belong to all the distinct
conjugacy classes:

ι, (12), (123), (1234), (12)(34)

where ι is the identity permutation. The conjugacy classes, each identified
by one element it contains, are listed with the number of elements in each
conjugacy class in Table 2.3.

There are two 1-dimensional complex representations of S4 we are familiar
with: the trivial one, associating 1 to every element of S4, and the signature
representation � whose value is +1 on even permutations and −1 on odd
ones.
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Number of elements 1 6 8 6 3

Conjugacy class of ι (12) (123) (1234) (12)(34)

Table 2.3: Conjugacy classes in S4

We also have seen a 3-dimensional irreducible complex representation of
S4; recall the representation R of S4 on C

4 given by permutation of coordi-
nates:

(x1, x2, x3, x4) �→ (xσ−1(1), . . . , xσ−1(4))

Equivalently,
R(σ)ej = eσ(j) for j ∈ {1, 2, 3, 4}.

where e1, ..., e4 are the standard basis vectors of C4. The 3-dimensional sub-
space

E0 = {(x1, x2, x3, x4) ∈ C
4 : x1 + x2 + x3 + x4 = 0}

is mapped into itself by the action of R, and the restriction to E0 gives an
irreducible representation R0 of S4. In fact,

C
4 = E0 ⊕ C(1, 1, 1, 1)

decomposes the space C
4 into complementary invariant, irreducible sub-

spaces. The subspace C(1, 1, 1, 1) carries the trivial representation (all el-
ements act through the identity map). Examining the effect of the group
elements on the standard basis vectors, we can work out the character of R.
For instance, R((12)) interchanges e1 and e2, and leaves e3 and e4 fixed, and
so its matrix is 



0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1





and the trace is
χR((12)) = 2.

Subtracting off the trivial character, which is 1 on all elements of S4, we
obtain the character χ0 of the representation R0. All this is displayed in the
first three rows of Table 2.4.
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Conjugacy class of ι (12) (123) (1234) (12)(34)

χR 4 2 1 0 0

χ0 3 1 0 −1 −1

χ1 3 −1 0 1 −1

Table 2.4: The characters χR and χ0 on conjugacy classes

We can manufacture another 3-dimensional complex representation R1

by tensoring R0 with the signature �:

R1 = R0 ⊗ �.

The character χ1 of R1 is then written down by taking products, and is
displayed in the fourth row in Table 2.4.

Since R0 is irreducible and R1 acts by a simple ±1 scaling of R0, it is clear
that R1 is also irreducible. Thus, we now have two 1-dimensional complex
representations and two 3-dimensional complex irreducible representations.
The sum of the squares of the dimensions is

12 + 12 + 32 + 32 = 20.

From the first relation in (2.5) we know that the sum of the squares of
the dimensions of all the inequivalent irreducible complex representations is
|S4| = 24. Thus, looking at the equation

24 = 12 + 12 + 32 + 32+?2

we see that we are missing a 2-dimensional irreducible complex representation
R2. Leaving the entries for this blank, we have Table 2.5.

As an illustration of the power of character theory, let us work out the
character χ2 of this ‘missing’ representation R2, without even bothering to
search for the representation itself. Recall from (2.5) the relation

�

ρ

(dim ρ)χρ(σ) = 0, if σ �= ι,
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1 6 8 6 3

ι (12) (123) (1234) (12)(34)
trivial 1 1 1 1 1

� 1 −1 1 −1 1

χ0 3 1 0 −1 −1

χ1 3 −1 0 1 −1

χ2 2 ? ? ? ?

Table 2.5: Character Table for S4 with missing row

where the sum runs over a maximal set of inequivalent irreducible complex
representations of S4 and σ is any element of S4. This means that the vector
formed by the first column in the main body of the table (that is, the column
for the conjugacy class {ι}) is orthogonal to the vectors formed by the columns
for the other conjugacy classes. Using this we can work out the missing entries
of the character table. For instance, taking σ = (12), we have

2χ2((12)) + 3 ∗ (−1)����
χ1((12))

+3 ∗ 1 + 1 ∗ (−1) + 1 ∗ 1 = 0,

which yields
χ2((12)) = 0.

For σ = (123), we have

2χ2((123)) + 3 ∗ 0����
χ1((123))

+3 ∗ 0 + 1 ∗ 1 + 1 ∗ 1 = 0

which produces
χ2((123)) = −1.

Filling in the entire last row of the character table in this way produces Table
2.6.

Just to be sure that the indirectly detected character χ2 is irreducible let
us run the check given in (2.3) for irreducible complex characters: the sum of
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1 6 8 6 3

ι (12) (123) (1234) (12)(34)
trivial 1 1 1 1 1

� 1 −1 1 −1 1

χ0 3 1 0 −1 −1

χ1 3 −1 0 1 −1

χ2 2 0 −1 0 2

Table 2.6: Character Table for S4

the quantities |C||χ2(C)|2 over all the conjugacy classes C should work out
to 24. Indeed, we have

�

C

|C||χ2(C)|2 = 1 ∗ 22 + 6 ∗ 02 + 8 ∗ (−1)2 + 6 ∗ 02 + 3 ∗ 22 = 24 = |S4|,

a pleasant proof of the power of the theory and tools promised to be developed
in the chapters ahead.

2.4 Quaternionic Units

Before moving on to general theory in the next chapter, let us look at another
example which springs a little surprise. The unit quaternions

1,−1, i,−i, j,−j, k,−k

form a group Q under multiplication. We can take

−1, i, j, k

as generators, with the relations

(−1)2 = 1, i2 = j
2 = k

2 = −1, ij = k.
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The conjugacy classes are

{1}, {−1}, {i,−i}, {j,−j}, {k,−k}.

We can spot the 1-dimensional representations as follows. Since

ijij = k
2 = −1 = i

2 = j
2
,

the value of any 1-dimensional representation τ on −1 must be 1 because

τ(−1) = τ(ijij) = τ(i)τ(j)τ(i)τ(j) = τ(i2j2) = τ(1) = 1 (2.11)

and then the values on i and j must each be ±1. (For another formulation of
this argument see Exercise 4.7.) A little thought shows that

�
τ(i), τ(j)

�
could

be taken to be any of the four possible values (±1,±1) and this would spec-
ify a one dimensional representation τ . Thus, there are four 1-dimensional
representations. Given that Q contains 8 elements, writing this as a sum of
squares of dimensions of irreducible complex representations, we have

8 = 12 + 12 + 12 + 12+?2

Clearly, what we are missing is an irreducible complex representation of di-
mension 2. The incomplete character table is displayed in Table 2.7.

1 2 1 2 2
1 i −1 j k

χ+1,+1 1 1 1 1 1

χ+1,−1 1 1 1 −1 −1

χ−1,+1 1 −1 1 1 −1

χ−1,−1 1 −1 1 −1 1

χ2 2 ? ? ? ?

Table 2.7: Character Table for Q,
missing last row

1 2 1 2 2
1 i −1 j k

χ+,+ 1 1 1 1 1

χ+,− 1 1 1 −1 −1

χ−,+ 1 −1 1 1 −1

χ−,− 1 −1 1 −1 1

χ2 2 0 −2 0 0

Table 2.8: Character Table for Q

Remarkably, everything here, with the potential exception of the missing
last row, is identical to the information in Table 2.1 for the dihedral groupD4.
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Then, since the last row is entirely determined by the information available,
the entire character table for Q must be identical to that of D4. Thus the
complete character table for Q is as in Table 2.8.

A guess at this stage would be that Q must be isomorphic to D4, a guess
bolstered by the observation that certainly the conjugacy classes look much
the same, in terms of number of elements at least. But this guess is dashed
upon second thought: the dihedral group D4 has four elements r, cr, c2r, c3r
each of order 2, whereas the only element of order 2 in Q is −1. So we have an
interesting observation here: two non-isomorphic groups can have identical
character tables !

2.5 Afterthoughts: Geometric Groups

In closing this chapter let us note some important classes of finite groups,
though we will not explore their representations specifically.

The groupQ of special quaternions we studied in section 2.4 is a particular
case of a more general setting. Let V be a finite dimensional real vector space
equipped with an inner product �·, ·�. There is then the Clifford algebra
Creal,d, which is an associative algebra over R, with a unit element 1, whose
elements are linear combinations of formal products v1...vm (with this being
1 if m = 0), linear in each vi ∈ V , with the requirement that

vw + wv = −2�v, w�1 for all v, w ∈ V .

If e1, ..., ed form an orthonormal basis of V , then the products ±ei1 . . .eik ,
for k ∈ {0, ..., d}, form a group Qd under the multiplication operation of the
algebra Creal,d. When d = 2, we write i = e1, j = e2, and k = e1e2, and
obtain Q2 = {1,−1, i,−i, j,−j, k,−k}, the quaternionic group.

In chemistry one studies crystallographic groups, which are finite sub-
groups of the group of Euclidean motions in R

3. Reflection groups are groups
generated by reflections in Euclidean spaces. Let V be a finite dimensional
real vector space with an inner product �·, ·�. If w is a unit vector in V then
the reflection rw across the hyperplane

w
⊥ = {v ∈ R

n : �v, w� = 0},

takes w to −w and holds all vectors in the ‘mirror’ w⊥ fixed; thus

rw(v) = v − 2�v, w�w, for all v ∈ V . (2.12)
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If r1 and r2 are reflections across planes w
⊥
1 and w

⊥
2 , where w1 and w2 are

unit vectors in V with angle θ = cos−1�w1, w2� ∈ [0, π] between them, then,
geometrically,

r
2
1 = r

2
2 = I;

r1r2 = r2r1 if �w1, w2� = 0;

r1r2 = rotation by angle 2θ in the w1-w2 plane.

(2.13)

An abstract Coxeter group is a group generated by a family of elements ri of
order 2, with the restriction that certain pair products rirj also have finite
order. Of course, for such a group to be finite, every pair product rirj needs to
have finite order. An important class of finite Coxeter groups is formed by the
Weyl groups that arise in the study of Lie algebras. Consider a very special
type of Weyl group: the group generated by reflections across the hyperplanes
(ej−ek)⊥, where e1, ..., en form the standard basis of Rn, and j, k are distinct
elements running over [n]. We can recognize this as essentially the symmetric
group Sn, realized geometrically through the faithful representation R back in
(1.3). In this point of view, Sn can be viewed as being generated by elements
r1, ..., rn−1, with ri standing for the transposition (i i + 1), satisfying the
relations

r
2
j
= ι for all j ∈ [n− 1],

rjrj+1rj = rj+1rjrj+1 for all j ∈ [n− 2],

rjrk = rjrk for all j, k ∈ [n− 1] with |j − k| ≥ 2,

(2.14)

where ι is the identity element. It would seem to be more natural to write
the second equation as (rjrj+1)3 = ι, which would be equivalent provided
each r

2
j
is ι. However, just holding on to the second and third equations

generates another important class of groups, the braid groups Bn, where Bn

is generated abstractly by elements r1, ..., rn−1 subject to just the second
and third conditions in (2.14). Thus, there is a natural surjection Bn → Sn

mapping ri to (i i+ 1) for each i ∈ [n− 1].
If F is a subfield of a field F1, such that dimF F1 < ∞, then the set of

all automorphisms σ of the field F1 for which σ(c) = c for all c ∈ F, is a
finite group under composition. This is the Galois group of F1 over F; the
classical case is where F1 is defined by adjoining to F roots of polynomial
equations over F. Morally related to these ideas are fundamental groups of
surfaces; an instance of this, the fundamental group of a compact oriented
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surface of genus g, is the group with 2g generators a1, b1, ..., ag, bg satisfying
the constraint

a1b1a
−1
1 b

−1
1 . . . agbga

−1
g
b
−1
g

= e. (2.15)

Such equations, with ai and bj represented in more concrete groups, have
come up in two and three dimensional gauge theories. Far earlier, in his
first major work in developing character theory, Frobenius [28] studied the
number of solutions of equations of this and related types, with each ai and
bj represented in some finite group. In section 7.9 we will study Frobenius’
formula for counting the number of solutions of the equation

s1. . .sm = e

for s1, ..., sm running over specified conjugacy classes in a finite group G.
In the case G = Sn, restricting the si to run over transpositions, a result of
Hurwitz relates this number to counting n-sheeted Riemann surfaces with m

branch points (see Curtis [15] for related history).

Exercises

1. Work out the character table of D5.

2. Consider the subgroup of S4 given by

V4 = {ι, (12)(34), (13)(24), (14)(23)}.

Being a union of conjugacy classes, V4 is a normal subgroup of S4. Now
view S3 as the subgroup of S4 consisting of the permutations that fix
4. Thus, V4 ∩ S3 = {ι}. Show that the mapping

S3 → S4/V4 : σ �→ σV4

is an isomorphism. Obtain an explicit form of a 2-dimensional irre-
ducible complex representation of S4 for which the character is χ2 as
given in Table 2.6.

3. In S3 there is the cyclic group C3 generated by (123), which is a normal
subgroup. The quotient S3/C3 � S2 is a two-element group. Work out
the one dimensional representation of S3 that arises from this by the
method of Problem 2.2 above.
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4. Construct a two dimensional irreducible representation of S3, over any
field F in which 3 �= 0, using matrices that have integer entries.

5. The alternating group A4 consists of all even permutations in S4. It is
generated by the elements

c = (123), x = (12)(34), y = (13)(24), z = (14)(23)

satisfying the relations

cxc
−1 = z, cyc

−1 = x, czc
−1 = y, c

3 = ι, xy = yx = z.

1 3 4 4

ι (12)(34) (123) (132)

ψ0 1 1 1 1

ψ1 1 1 ω ω
2

ψ2 1 1 ω
2

ω

χ1 ? ? ? ?

Table 2.9: Character table for A4

(i) Show that the conjugacy classes are

{ι}, {x, y, z}, {c, cx, cy, cz}, {c2, c2x, c2y, c2z}.

Note that c and c
2 are in different conjugacy classes in A4, even

though in S4 they are conjugate.

(ii) Show that the group A4 generated by all commutators aba
−1
b
−1

is V4 = {ι, x, y, z}, which is just the set of commutators in A4.

(iii) Check that there is an isomorphism given by

C3 �→ A4/V4 : c �→ cV4.
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(iv) Obtain three 1-dimensional representations of A4.

(v) The group A4 ⊂ S4 acts by permutation of coordinates on C
4 and

preserves the 3-dimensional subspace E0 = {(x1, ..., x4) : x1+· · ·+
x4 = 0}. Work out the character χ3 of this representation of A4.

(vi) Work out the full character table for A4, by filling in the last row
of Table 2.9.

6. Let V be a real vector space and T : V → V a linear mapping with
T

m = I, for some positive integer m. Choose a basis B of V , and let
VC be the complex vector space with basis B. Define the conjugation
map C : VC → VC : v �→ v by

C

�
�

b∈B

vbb

�
=

�

b∈B

vbb

where each vb ∈ C, and on the right we just have the ordinary complex
conjugates vb. Show that

x = 1
2(v + Cv) and y = − i

2(v − Cv)

are in V for every v ∈ VC. If v ∈ VC is an eigenvector of T , show that
T maps the subspace Rx+ Ry of V spanned by x and y into itself.

7. Work out an irreducible representation of the group

Q = {1,−1, i,−i, j,−j, k,−1}

of unit quaternions on C
2, by associating suitable 2× 2 matrices to the

elements of Q.
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Chapter 3

The Group Algebra

The simplest meaningful object we can construct out of a field F and a group
G is a vector space over F, with basis the elements of G. A typical element
of this vector space is a linear combination

a1g1 + · · ·+ angn,

where g1, ..., gn are the elements of G, and a1, ..., an are drawn from F. This
vector space, denoted F[G], is endowed with a natural representation ρreg of
the group G, specified by:

ρreg(g)(a1g1 + · · ·+ angn) = a1gg1 + · · ·+ anggn.

Put another way, the elements of the group G form a basis of F[G], and the
action of G simply permutes this basis by left-multiplication.

The representation ρreg on F[G] is the mother of all irreducible represen-
tations: if the group G is finite and |G|1F �= 0 then the representation ρreg

on F[G] decomposes as a direct sum of irreducible representations of G, and

every irreducible representation of G is equivalent to one of the
representations appearing in the decompostion of ρreg.

This result, and much more, will be proved in Chapter 4, where we will
examine the representation ρreg in detail. For now, in this chapter, we will
introduce F[G] officially, and establish some of its basic features.

Beyond being a vector space, F[G] is also an algebra: there is a natu-
ral multiplication operation in F[G] arising from the multiplication of the

65
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elements of the group G. We will explore this algebra structure in a spe-
cific example, with G being the permutation group S3, and draw some valu-
able lessons and insights from this example. We will also prove a wonderful
structural property of F[G] called semisimplicity that is at the heart of the
decomposability of representations of G into irreducible ones.

3.1 Definition of the Group Algebra

It is time to delve into the formal definition of the group algebra

F[G],

where G is a group and F a field. As a set, this consists of all formal linear
combinations

a1g1 + · · ·+ angn,

where g1, ..., gn are elements of G, and a1, ..., an ∈ F. We add and multiply
these new objects in the only natural way that is sensible. For example,

(2g1 + 3g2) + (−4g1 + 5g3) = (−2)g1 + 3g2 + 5g3

and

(2g1 − 4g2)(g4 + g3) = 2g1g4 + 2g1g3 − 4g2g4 − 4g2g3.

Officially, F[G] consists of all maps

x : G �→ F : g �→ xg

such that xg is 0 for all except finitely many g ∈ G; thus, F[G] is the direct
sum of copies of the field F, one copy for each element of G. In the case of
interest to us, G is finite and F[G] is simply the set of all F-valued functions
on G.

It turns out to be very convenient, indeed intuitively crucial, to write
x ∈ F[G] in the form

x =
�

g∈G

xgg.

To avoid clutter we usually write
�

g
when we mean

�
g∈G.
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Addition and multiplication, as well as multiplication by elements c ∈ F,
are defined in the obvious way:

�

g

xgg +
�

g

ygg =
�

g

(xg + yg)g

�

g

xgg

�

h

yhh =
�

g

�
�

h

xhyh−1g

�
g

c

�

g

xgg =
�

g

cxgg

(3.1)

It is readily checked that F[G] is an algebra over F: it is a ring as well as an
F-module, and the multiplication

F[G]× F[G] → F[G] : (x, y) �→ xy

is F-bilinear, associative, and has a non-zero multiplicative identity element
1e, where e is the identity in G.

Sometimes it is useful to think of G as a subset of F[G], by identifying
g ∈ G with the element 1g ∈ F[G]. But the multiplicative unit 1e in F[G]
will also be denoted 1, and in this way F may be viewed as a subset of F[G]:

F → F[G] : c �→ ce.

Occasionally we will also work with R[G], where R is a commutative ring
such as Z. This is defined just as F[G] is, except that the field F is replaced
by the ring R, and R[G] is an algebra over the ring R.

3.2 Representations of G and F[G]

The algebra F[G] has a very useful feature: any representation

ρ : G → EndF(E)

defines, in a unique way, a representation of the algebra F[G] in terms of
operators on E. More specifically, for each element

x =
�

g

xgg ∈ F[G]
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we have an endomorphism

ρ(x)
def
=

�

g

xgρ(g) ∈ EndF(E). (3.2)

This induces an F[G]-module structure on E:

�
�

g

xgg

�
v =

�

g

xgρ(g)v (3.3)

It is very useful to look at representations in this way.
Put another way, we have an extension of ρ to an algebra-homomorphism

ρ : F[G] → EndF(E) :
�

g

agg �→
�

g

agρ(g) (3.4)

Thus, a representation of G specifies a module over the ring F[G]. Con-
versely, if E is an F[G]-module, then we have a representation of G on E, by
restricting multiplication to the elements in F[G] that are in G.

In summary, representations of G on vector spaces over F correspond
naturally to F[G]-modules. Depending on the context, it is sometimes useful
to think in terms of representations of G and sometimes in terms of F[G]-
modules.

A subrepresentation or invariant subspace corresponds to a submodule,
and direct sums of representations correspond to direct sums of modules.
A morphism of representations corresponds to an F[G]-linear map, and an
isomorphism, or equivalence, of representations is an isomorphism of F[G]-
modules.

An irreducible representation corresponds to a simple module, which is a
non-zero module with no proper non-zero submodules.

Here is Schur’s Lemma (Theorem 1.8.1) in module language:

Theorem 3.2.1 Let G be a finite group, and F a field. Suppose E and F

are simple F[G]-modules, and T : E → F an F[G]-linear map. Then either T
is 0 or T is an isomorphism of F[G]-modules. If, moreover, F is algebraically
closed then any F[G]-linear map S : E → E is of the form S = λI for some
scalar λ ∈ F.
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3.3 The Center

A natural first question about an algebra is whether it has an interesting
center. By center of an algebra we mean the set of all elements in the algebra
that commute with every element of the algebra.

It is easy to determine the center Z of the group algebra F[G] of a group
G over a field F. An element

x =
�

h∈G

xhh

belongs to the center if and only if it commutes with every g ∈ G:

gxg
−1 = x,

which expands out to �

h∈G

xhghg
−1 =

�

h∈G

xhh.

Thus x lies in Z if and only if

xg−1hg = xh for every g, h ∈ G. (3.5)

This means that the function g �→ xg is constant on conjugacy classes in
G. Thus, x is in the center if and only if it can be expressed as a linear
combination of the elements

zC =
�

g∈C

g, C a finite conjugacy class in G. (3.6)

We are primarily interested in finite groups, and then the added qualifier of
finiteness of the conjugacy classes is not needed.

If C and C
� are distinct conjugacy classes then zC and zC� are sums over

disjoint sets of elements of G, and so the collection of all such zC is linearly
independent. This yields a simple but important result:

Theorem 3.3.1 Suppose G is a finite group, F a field, and let zC ∈ F[G] be
the sum of all the elements in a conjugacy class C in G. The center Z of
F[G] is a vector space over F and the elements zC, with C running over all
conjugacy classes of G, form a basis of Z. In particular, the dimension of
the center of F[G] is equal to the number of conjugacy classes in G.
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The center Z of F[G] is, of course, also an algebra in its own right. Since
we have a handy basis, consisting of the vectors zC , of Z, we can get a full
grip on the algebra structure of Z by working out all the products between
the basis elements zC . There is one simple, yet remarkable fact here:

Proposition 3.3.1 Suppose G is a finite group, and C1, ..., Cs all the dis-
tinct conjugacy classes in G. For each j ∈ [s], let zj ∈ Z[G] be the sum of
all the elements of Cj. Then for any l, n ∈ [s], the product zlzn is a linear
combination of the vectors zm with coefficients that are non-negative integers.
Specifically,

zlzn =
�

C∈C

κl,mnzm (3.7)

where κl,mn counts the number of solutions of the equation c = ab, for any
fixed c ∈ Cm with a, b running over Cl and Cn, respectively:

κl,mn = |{(a, b) ∈ Cl × Cn | c = ab}| (3.8)

for any fixed c ∈ Cm.

The numbers κl,mn are sometimes called the structure constants of the
group G. As we shall see later in section 7.6 these constants can be used to
work out all the irreducible characters of the group.
Proof. Note first that c = ab if and only if (gag−1)(gbg)−1 = gcg

−1 for every
g ∈ G, and so the number κl,mn is completely specified by the conjugacy class
Cm in which c lies in the definition (3.8). In the product zlzn, the coefficient
of c ∈ Cm is clearly κl,mn. QED

If you wish, you can leap ahead to section 3.5 and then proceed to the
next chapter.

3.4 Deconstructing F[S3]

To get a hands-on feel for the group algebra we will work out the structure
of the group algebra F[S3], where F is a field in which 6 �= 0; thus, the
characteristic of the field is not 2 or 3. The reason for imposing this condition
will become clear as we proceed. We will work through this example slowly,
avoiding fast tricks/tracks, and it will serve us well later. The method we
use will introduce and highlight many key ideas and techniques that we will
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use later to analyze the structure of F[G] for general finite groups, and also
for general algebras.

From what we have learnt in the preceding section, the center Z of F[S3]
is a vector space with basis constructed from the conjugacy classes of S3.
These classes are

{ι}, {c, c2}, {r, cr, c2r},

where r = (12) and c = (123). The center Z has basis

ι, C = c+ c
2
, R = r + cr + c

2
r.

Table 3.1 shows the multiplicative structure of Z. Notice that the structure
constants of S3 can be read off from this table.

1 C R

1 1 C R

C C 2 + C 2R

R R 2R 3 + 3C

Table 3.1: Multiplication in the center of F[S3]

The structure of the algebra F[G], for any finite group G, can be probed
by means of idempotent elements. An element u ∈ F[G] is an idempotent if

u
2 = u.

Idempotents u and v are called orthogonal if uv and vu are 0. In this case,
u+ v is also an idempotent:

(u+ v)2 = u
2 + uv + vu+ v

2 = u+ 0 + 0 + v.

Clearly, 0 and 1 are idempotent. But what is really useful is to find a
maximal set of orthogonal idempotents u1, ..., um in the center Z that are
not 0 or 1, and have the spanning property

u1 + · · ·+ um = 1. (3.9)
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An idempotent in an algebra which lies in the center of the algebra is called
a central idempotent.

The spanning condition (3.9) for the central idempotents ui implies that
any element a ∈ F[G] can be decomposed as

a = a1 = au1 + · · ·+ aum,

and the orthogonality property, along with the centrality of the idempotents
uj, shows that

aujauk = aaujuk = 0 for j �= k.

In view of this, the map

I : F[G]u1 × . . .× F[G]um → F[G] : (a1, . . . , am) �→ a1 + · · ·+ am

is an isomorphism of algebras, in the sense that it is a bijection, and preserves
multiplication and addition:

I(a1 + a
�
1, . . . , am + a

�
m
) = I(a1, . . . , am) + I(a�1, . . . , a

�
m
)

I(a1a
�
1, . . . , ama

�
m
) = I(a1, . . . , am)I(a

�
1, . . . , a

�
m
).

(3.10)

All this is verified easily. The multiplicative property as well as the injectivity
of I follow from the orthogonality and centrality of the idempotents u1, ...,
um.

Thus, the isomorphism I decomposes F[G] into a product of the smaller
algebras F[G]uj. Notice that within the algebra F[G]uj the element uj plays
the role of the multiplicative unit.

Now we are motivated to search for central idempotents in F[S3]. Using
the basis of Z given by 1, C,R, we consider

u = xι+ yC + zR

with x, y, z ∈ F. We are going to do this brute force; in a later chapter, in
Theorem 7.4.1, we will see how the character table of a group can be used
systematically to obtain the central idempotents in the group algebra. The
condition for idempotence, u2 = u, leads to three (quadratic) equations in
the three unknowns x, y, z. The solutions lead to the following elements:

u1 =
1

6
(1 + C +R), u2 =

1

6
(1 + C −R), u3 =

1

3
(2− C)

u1 + u2 =
1

3
(1 + C), u2 + u3 =

1

6
(5− C −R), u3 + u1 =

1

6
(5− C +R)

(3.11)
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The division by 6 is the reason for the condition that 6 �= 0 in F. We check
readily that u1, u2, u3 are orthogonal; for instance,

(1+C +R)(1+C −R) = 1+2C +C
2−R

2 = 1+2C +2+C − 3− 3C = 0.

For now, as an aside, we can observe that there are idempotents in F[S3] that
are not central; for instance,

1

2
(1 + r),

1

2
(1− r)

are readily checked to be orthogonal idempotents, adding up to 1, but they
are not central.

Thus, we have a decomposition of F[S3] into a product of smaller algebras:

F[S3] � F[S3]u1 × F[S3]u2 × F[S3]u3 (3.12)

Simple calculations show that

cu1 = u1 and ru1 = u1,

which imply that F[S3]u1 is simply the one-dimensional space generated by
u1:

F[S3]u1 = Fu1.

In fact, what we see is that left-multiplication by elements of S3 on F[S3]u1

is a 1-dimensional representation of S3, the trivial one.
Next,

cu2 = u2, and ru2 = −u2,

which imply that F[S3]u2 is also 1-dimensional:

F[S3]u2 = Fu2.

Moreover, multiplication on the left by elements of S3 on F[S3]u2 gives a
one-dimensional representation � of S3, this time the one given by the parity:
on even permutations � is 1, and on odd permutations it is −1.

We know that the full space F[S3] has a basis consisting of the six elements
of S3. Thus,

dimF[S3]u3 = 6− 1− 1 = 4.

We can see this more definitively by working out the elements of F[S3]u3.
For this we should resist the thought of simply multiplying each element of
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F[S3] by u3; this might not be a method that would give any general insights
which would be meaningful for groups other than S3. Instead, observe that

an element x ∈ F[S3] lies in F[S3]u3 if and only if xu3 = x. (3.13)

This follows readily from the idempotence of u3. Then, taking an element

x = α + βc+ γc
2 + θr + φcr + ψc

2
r ∈ F[S3]

we can work out what the condition xu3 = x says about the coefficients α, β,
..., ψ ∈ F:

α + β + γ = 0

θ + φ+ ψ = 0
(3.14)

This leaves four (linearly) independent elements among the six coefficients
α, ...,ψ, verifying again that F[S3]u3 is four dimensional. Dropping α and θ

as coordinates, writes x ∈ F[S3]u3 as

x = β(c− 1) + γ(c2 − 1) + φ(c− 1)r + ψ(c2 − 1)r. (3.15)

With this choice, we see that

c− 1, (c2 − 1), (c− 1)r, (c2 − 1)r form a basis of F[S3]u3. (3.16)

Another choice would be to ‘split the difference’ between the multipliers
1 and r, and bring in the two elements

r+ =
1

2
(1 + r), r− =

1

2
(1− r).

The nice thing about these elements is that they are idempotents, and we
will use them again shortly. So we have another choice of basis for F[S3]u3:

b
+
1 = (c− 1)r+, b

+
2 = (c2 − 1)r+, b

−
1 = (c− 1)r−, b

−
2 = (c2 − 1)r− (3.17)

How does the representation ρreg, restricted to F[S3]u3, look relative to this
basis? Simply eyeballing the vectors in the basis we can see that the first
two span a subspace invariant under left-multiplication by all elements of S3,
and so is the span of the last two vectors. For the subspace spanned by the
b
+
j
, the matrices for left-multiplication by c and r are given by

c �→
�
−1 −1
1 0

�
, r �→

�
0 1
1 0

�
. (3.18)
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This representation is irreducible: clearly, any vector fixed (or taken to its
negative) by the action of r would have to be a multiple of (1, 1), and the
only such multiple fixed by the action of c is the zero vector. Observe that
the character χ2 of this representation is specified on the conjugacy classes
by

χ2(c) = −1, χ2(r) = 0.

For the subspace spanned by the vectors b−
j
, these matrices are given by

c �→
�
−1 −1
1 0

�
r �→

�
0 −1
−1 0

�
(3.19)

At first it isn’t obvious how this relates to (3.18). However, we can use a new
basis given by

B
−
1 =

1

2
b
−
1 − b

−
2 , B

−
2 = b

−
1 − 1

2
b
−
2

and with respect to this basis, the matrices for the left-multiplication action
of c and r are given again by exactly the same matrices as in (3.18):

cB
−
1 = −B

−
1 +B

−
2 , cB

−
2 = −B

−
1 .

Thus, we have a decomposition of F[S3]u3 into subspaces

F[S3]u3 = (span of b+1 , b
+
2 ) ⊕ (span of B−

1 , B
−
2 ),

each of which carries the same representation of S3, specified as in (3.18).
Observe that from the way we constructed the invariant subspaces,

span of b+1 , b
+
2 = F[S3]u3r+ and span of B−

1 , B
−
2 = F[S3]u3r−

Thus, we have a clean and complete decomposition of F[S3] into subspaces

F[S3] = F[S3]u1 ⊕ F[S3]u2 ⊕ (F[S3]y1 ⊕ F[S3]y2) , (3.20)

where

y1 =
1

2
(1 + r)u3, y2 =

1

2
(1− r)u3. (3.21)

Each of these subspaces carries a representation of S3 given by multiplication
on the left; moreover, each of these is an irreducible representation.
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Having done all this we still don’t have a complete analysis of the structure
of F[S3] as an algebra. What remains is to analyze the structure of the smaller
algebra

F[S3]u3.

Perhaps we should try our idempotent trick again? Clearly

v1 =
1

2
(1 + r)u3, v2 =

1

2
(1− r)u3 (3.22)

are orthogonal idempotents and add up to u3.
In the absence of centrality, we cannot use our previous method of identi-

fying the algebra with products of certain subalgebras. However, we can do
something similar, using the fact that v1, v2 are orthogonal idempotents in
F[S3]u3 whose sum is u3, which is the multiplicative identity in this algebra
F[S3]u3. We can decompose any x ∈ F[S3]u3 as:

x = (y1 + y2)x(y1 + y2) = y1xy1 + y1xy2 + y2xy1 + y2xy2. (3.23)

Let us write
xjk = yjxyk. (3.24)

Observe next that for x, w ∈ F[S3]u3, the product xw decomposes as

xw = (x11 + x12 + x21 + x22)(w11 +w12 +w21 +w22) =
2�

j,k=1

�
2�

m=1

xjmwmk

�
.

Using the orthogonality of the idempotents y1, y2 we have

(xw)jk = yj(xw)yk =
2�

m=1

xjmwmk

Does this remind us of something? Sure, it is matrix multiplication! Thus,
the association

x �→
�
x11 x12

x21 x22

�
(3.25)

preserves multiplication. Clearly, it also preserves/respects addition, and
multiplication by scalars (elements of F). Thus, we have identified F[S3]u3

as an algebra of matrices.
However, there is something not clear yet: what kind of objects are the

entries of the matrix [xjk]? Since we know that F[S3]u3 is a 4-dimensional
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vector space over F it seems that the entries of the matrix ought to be scalars
drawn from F. To see if or in what way this is true, we need to explore the
nature of the quantities

xjk = yjxyk with x ∈ F[S3]u3.

We have reached the ‘shut up and calculate’ point; for

x = β(c− 1) + γ(c2 − 1) + φ(c− 1)r + ψ(c2 − 1)r,

as in (3.15), the matrix [xjk] works out to

�
x11 x12

x21 x22

�

=

�
−3

2(β + γ + φ+ ψ)y1 (β − γ − φ+ ψ)14(1 + r)(c− c
2)

(β − γ − φ− ψ)14(1− r)(c− c
2) −3

2(β + γ − φ− ψ)y2

�
.

(3.26)

Perhaps then we should associate the matrix

�
−3

2(β + γ + φ+ ψ) (β − γ − φ+ ψ)
(β − γ − φ− ψ) −3

2(β + γ − φ− ψ)

�

to x ∈ F[S3]u3? This would certainly identify F[S3]u3, as a vector space, with
the vector space of 2 × 2 matrices with entries in F. But to also properly
encode multiplication in F[S3]u3 into matrix multiplication we observe, after
calculations, that

1

4
(1 + r)(c− c

2)
1

4
(1− r)(c− c

2) = −3

4
y1.

The factor of −3/4 can throw things off balance. So we use the mapping

x �→
�
−3

2(β + γ + φ+ ψ) −3
4(β − γ − φ+ ψ)

(β − γ − φ− ψ) −3
2(β + γ − φ− ψ)

�
. (3.27)

This identifies the algebra F[S3]u3 with the algebra of all 2× 2 matrices with
entries drawn from the field F:

F[S3]u3 � Matr2×2(F) (3.28)
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Thus, we have completely worked out the structure of the algebra F[S3]:

F[S3] � F× F×Matr2×2(F) (3.29)

where the first two terms arise from the 1-dimensional algebras F[S3]u1 and
F[S3]u2.

What are the lessons of this long exercise? Here is a summary, writing A

for the algebra F[S3]:

• We found a basis of the center Z of A consisting of idempotents u1, u2,
u3. Then A is realized as isomorphic to a product of smaller algebras:

A � Au1 × Au2 × Au3

• Au1 and Au2 are 1-dimensional, and hence carry 1-dimensional irre-
ducible representations of F[S3] by left-multiplication.

• The subspace Au3 was decomposed again by the method of idempo-
tents: we found orthogonal idempotents y1, y2, adding up to u3, and
then

Au3 = Ay1 ⊕ Ay2,

with Ay1 and Ay2 being irreducible representations of S3 under left-
multiplication

• The set
{yjxyk | x ∈ Au3}

is a 1-dimensional subspace of Ayk, for each j, k ∈ {1, 2}.

• There is then a convenient decompostion of each x ∈ Au3 as

x = y1xy1 + y1xy2 + y2xy1 + y2xy2,

which suggests the association of a matrix to x:

x �→
�
x11 x12

x21 x22

�
.

• Au3, as an algebra, is isomorphic to the algebra Matr2×2(F).
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Remarkably, much of this goes through even when we take a general finite
group G in place of S3. Indeed, a lot of it works even for algebras that
can be decomposed into a sum of subspaces which are invariant under left-
multiplication by elements of the algebra. In Chapter 5 we will traverse this
territory.

Let us not forget that all the way through we were dividing by 2 and 3,
and indeed even in forming the idempotents we needed to divide by 6. So for
our analysis of the structure of F[S3] we needed to assume that 6 is not 0 in
the field F. What is special about 6? It is no coincidence that 6 is just the
number of elements of S3. In the more general setting of F[G], we will need
to assume that |G|1F �= 0, to make progress in understanding the structure
of F[G].

There are also some other observations we can make, which are more
specific to S3. For instance, the representation on each irreducible subspace
is given by matrices with integer entries! This is not something we can expect
to hold for a general finite group. But it does raise a question: perhaps some
groups have a kind of ‘rigidity’ that forces irreducible representations to be
realizable in suitable integer rings? (Leap ahead to Exercise 6.3 to dip your
foot in these waters.)

3.5 When F[G] is Semisimple

Closing out this chapter, we will prove a fundamental structural property of
the group algebra F[G] that will yield a large trove of results about repre-
sentations of G. This property is semisimplicity.

A module E over a ring is semisimple if for any submodule F in E there
is a submodule Fc in E, such that E is the direct sum of F and Fc. A ring
is semisimple if it is semisimple as a left module over itself.

If E is the direct sum of submodules F and Fc, then these submodules
are said to be complements of each other.

Our immediate objective here is to prove Maschke’s theorem:

Theorem 3.5.1 Suppose G is a finite group, and F a field whose charac-
teristic is not a divisor of |G|. Then every module over the ring F[G] is
semisimple. In particular, F[G] is semisimple.

Note the condition that |G| is not divisible by the characteristic of F. We
have seen this condition arise in the study of the structure of F[S3]. In fact,



80 Ambar N. Sengupta

the converse of the above theorem also holds: if F[G] is semisimple then the
characteristic of F is not a divisor of |G|; this is Exercise 2.3.
Proof. Let E be an F[G]-module, and F a submodule. We have then the
F-linear inclusion

j : F → E.

Since E and F are vector spaces over F, there is an F-linear map

P : E → F

satisfying
Pj = idF . (3.30)

(Choose a basis of F and extend to a basis of E. Then let P be the map
that keeps each of the basis elements of F fixed, but maps all the other basis
elements to zero.)

All we have to do is modify P to make it F[G]-linear. Observe that the
inclusion map j is invariant under ‘conjugation’ by any element of G:

gjg
−1 = j for all g ∈ G.

Consequently:

gPg
−1
j = gPjg

−1 = idF for all g ∈ G. (3.31)

So we have
P0j = idF ,

where P0 is the G-averaged version of P :

P0 =
1

|G|
�

g∈G

gPg
−1;

here the division makes sense because |G| �= 0 in F. Clearly, P0 is G-invariant
and hence F[G]-linear. Moreover, just as P , the G-averaged version P0 is also
a ‘projection’ onto F in the sense that P0v = v for all v in F .

We can decompose any x ∈ E as

x = P0x����
∈F

+ x− P0x� �� �
∈Fc

.
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This shows that E splits as a direct sum of F[G]-submodules:

E = F ⊕ Fc,

where
Fc = kerP0

is also an F[G]-submodule of E. Thus, every submodule of an F[G]-module
has a complementary submodule. In particular, this applies to F[G] itself,
and so F[G] is semisimple. QED

The version above is a long way, in evolution of formulation, fromMaschke’s
original result [57] which was reformulated and reproved by Frobenius, Burn-
side, Schur, and Weyl (see [15, III.4]).

The map
F[G] → F[G] : x �→ x̂ =

�

g∈G

xgg
−1 (3.32)

turns left into right:
�(xy) = ŷx̂.

This makes every right F[G]-module a left F[G]-module by defining the left
module structure through

g · v = vg
−1
,

and then every sub-right-module is a sub-left-module. Thus, F[G], viewed as
a right module over itself, is also semisimple.

Despite the ethereal appearance of the proof of Theorem 3.5.1, the argu-
ment can be exploited to obtain a slow but sure algorithm for decomposing
a representation into irreducible components, at least over an algebraically
closed field. If a representation ρ on E is not irreducible, and has a proper
non-zero invariant subspace F ⊂ E, then starting with an ordinary linear
projection map P : E → F we obtain a G-invariant one by averaging:

P0 =
1

|G|
�

g∈G

ρ(g)−1
Pρ(g)

This provides us with a decomposition

E = kerP0 + ker(I − P0)

into complementary, invariant subspaces F and (I−P0)(E) of lower dimen-
sion than E and so, repeating this procedure breaks down the original space
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E into irreducible subspaces. But how do we find the starter projection P?
Since we have nothing to go on, we can try taking any linear map T : E → E,
and average it to

T0 =
1

|G|
�

g∈G

ρ(g)−1
Tρ(g).

Then we can take a suitable polynomial in T0 that provides a projection map;
specifically, if λ is an eigenvalue of T0 (and that always exists if the field is al-
gebraically closed) then the projection onto the corresponding eigensubspace
is a polynomial in T0 and hence is also G-invariant. This provides us with
P0, without needing to start with a projection P . There is, however, still
something that could throw a spanner in the works: what if T0 turns out to
be just a multiple of the identity I? If this were the case for every choice
of T then there would in fact be no proper non-zero G-invariant projection
map, and ρ would be irreducible and we could halt to program right there.
Still, it seems unpleasant to have to go searching through all endomorphisms
of E for some T that would yield a T0 which is not a multiple of I. Fortu-
nately, we can simply try out all the elements in any basis of EndF(E), for if
all such elements lead to multiples of the identity then of course ρ must be
irreducible.

We can now sketch a first draft of an algorithm for breaking down a
given representation into subrepresentations. For convenience, let us assume
the field of scalars is C. Let us choose an inner product on E that makes
each ρ(g) unitary. Instead of endomorphisms of the N -dimensional space E,
we work with N × N matrices. The usual basis of the space of all N × N

matrices consists of the matrices Ejk, where Ejk has 1 at the (j, k) position
and 0 elsewhere, for j, k ∈ {1, ..., N}. It will be more convenient to work
with a basis consisting of hermitian matrices. To this end, replace, for j �= k,
the pair of matrices Ejk, Ekj by the pair of hermitian matrices

Ejk + Ekj, i(Ejk − Ekj).

This produces a basis B1, ..., BN2 of the space of N×N matrices, where each
Bj is hermitian. The sketch algorithm is:

• For each 1 ≤ k ≤ N
2, work out

1

|G|
�

g∈G

ρ(g)Bkρ(g)
−1
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(which, you can check, is hermitian) and set T0 equal to the first such
matrix which is not a multiple of the identity matrix I.

• Work out, using a suitable matrix-algebra ‘subroutine’, the projection
operator P0 onto an eigensubspace of T0.

Obviously, this needs more work to actually turn into code. For details and
more on computational representation theory see the papers of Blokker and
Flodmark [5] and Dixon [23, 24].

3.6 Afterthoughts: Invariants

Though we focus almost entirely on finite dimensional representations of a
group, there are infinite dimensional representations that are of natural and
classic interest. Let ρ be a representation of a finite group G on a finite
dimensional vector space V over a field F. Then each tensor power V

⊗n

carries the representation ρ
⊗n:

ρ
⊗n(g)(v1 ⊗ . . .⊗ vn) = ρ(g)v1 ⊗ . . .⊗ ρ(g)vn. (3.33)

Hence the tensor algebra

T (V ) =
�

n∈{0,1,2,...}

V
⊗n (3.34)

carries the corresponding direct sum representation of all the tensor powers
ρ
⊗n, with ρ

⊗0 being the trivial representation (given by the identity map) on
V

⊗0 = F. The group Sn of all permutations of [n] acts naturally on V
⊗n by

σ · (v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

The subspace of all x ∈ V
⊗n that are fixed, with σ · x = x for all σ ∈ Sn, is

the symmetric tensor power V
⊗̂n; for n = 0 we take this to be F. Clearly,

ρ
⊗n leaves V ⊗̂n invariant, and so the tensor algebra representation restricts

to the symmetric tensor algebra

S(V ) =
�

n∈{0,1,2,...}

V
⊗̂n

. (3.35)

There is a more concrete and pleasant way of working with the symmet-
ric tensor algebra representation. For this it is convenient to work with the
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dual space V
� and the dual representation ρ

� on V
�. Choosing a basis in

V , we denote the dual basis in V
� by X1,..., Xn, which we could also think

of as abstract (commuting) indeterminates. An element of the tensor alge-
bra S(V �) is then a finite linear combination of monomials Xw1

1 . . .X
wn

n
with

(w1, . . . , wn) ∈ Z
n

≥0. Thus, S(V
�) is identifiable with the polynomial algebra

F[X1, . . . , Xn]. The action by ρ
� is specified through

gXj

def
= ρ

�(g)Xj = Xj ◦ ρ(g)−1
.

A fundamental task, the subject of invariant theory, is to determine the
set Iρ of all polynomials f ∈ F[X1, ..., Xn] that are fixed by the action of G.
Clearly, Iρ is closed both under addition and multiplication, and also contains
all scalars in F. Thus, the invariants form a ring, or, more specifically, an
algebra over F. A deep and fundamental result of Noether shows that there
is a finite set of generators for this ring.

The most familiar example in this context is the symmetric group Sn

acting on polynomials in X1,..., Xn in the natural way specified by σXj =
Xσ−1(j). The ring of invariants is generated by the elementary symmetric
polynomials

Ek(X1, . . . , Xn) =
�

B∈Pk

�

j∈B

Xj,

where Pk is the set of all k-element subsets of [n], and k ∈ {0, 1, . . . , n}.
Another choice of generators is given by the power sums

Nk(X1, . . . , Xn) =
n�

j=1

X
k

j

for k ∈ {0, . . . , n}. The Jacobian

det





∂N1
∂X1

. . .
∂N1
∂Xn

... . . .
...

∂Nn

∂X1
. . .

∂Nn

∂Xn



 = n! det





1 1 . . . 1
X1 X2 . . . Xn

...
... . . .

...
X

n−1
1 X

n−1
2 . . . X

n−1
n





= n!
�

1≤j<k≤n

(Xk −Xj),

(3.36)

where in the last step we have the formula for the Vandermonde determinant
which we will meet again in other contexts (see Exercise 3.10). The simple
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observation that the determinant is not identically 0 already has a substantial
consequence: the polynomials N1,..., Nn are algebraically independent. Here
is a ‘one sentence’ proof: if f is a polynomial in n variables, of least total
degree, for which f(N1, . . . , Nn), as a polynomial in the Xi, is 0, then the
row vector �

∂1f(N1, . . . , Nn), . . . , ∂nf(N1, . . . , Nn)
�

multiplied on the right by the Jacobian matrix in (3.36) is 0, and so, since the
determinant of this matrix is not 0, each ∂if(N1, . . . , Nn) is 0, from which, by
minimality of the degree of f , it follows that f is constant and hence 0. The
factorization that takes place in the last step in (3.36) is no coincidence; it is
an instance of a deeper fact about reflection groups, of which the symmetric
group Sn is an example.

The slim but carefully detailed volume of Dieudonné and Carrell [22] and
the beautiful text of Neusel [60] are excellent introductions to this subject.

Exercises

1. Let G be a finite group, F a field, and G
∗ the set of all non-zero multi-

plicative homomorphisms G → F. For f ∈ G
∗, let

sf =
�

g∈G

f(g−1)g.

Show that Fsf is an invariant subspace of F[G]. The representation of
G on Fsf given by left-multiplication is f , in the sense that gv = f(g)v
for all g ∈ G and v ∈ Fsf .

2. Show that if G is a finite group containing more than one element, and
F any field, then F[G] contains nonzero elements a and b whose product
ab is 0.

3. Suppose F is a field of characteristic p > 0, and G is a finite group with
|G| a multiple of p. Let s =

�
g∈G g ∈ F[G]. Show that the submodule

F[G]s contains no nonzero idempotent and conclude that F[G]s has no
complementary submodule in F[G]. (Exercise 4.15 pushes this much
further.) Thus F[G] is not semisimple if the characteristic of F is a
divisor of |G|.
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4. For any finite group G and commutative ring R, explain why the aug-
mentation map

� : R[G] → R :
�

g

xgg �→
�

g

xg (3.37)

is a homomorphism of rings. Show that ker �, which is an ideal in R[G],
is free as an R-module, with basis {g − 1 : g ∈ G, g �= e}.

5. Work out the multiplication table specifying the algebra structure of
the center Z(D5) of the dihedral group D5. Take the generators of the
group to be c and r, satisfying c

5 = r
2 = e and rcr

−1 = c
−1. Take as

basis for the center the conjugacy sums 1, C = c+ c
4, D = c

2+ c
3, and

R = (1 + c+ c
2 + c

3 + c
4)r.

6. Determine all the central idempotents in the algebra F[D5], where D5

is the dihedral group of order 10, and F is a field of characteristic 0
containing a square-root of 5. Show that some of these form a basis
of the center Z of F[D5]. Then determine the structure of the algebra
F[D5] as a product of two 1-dimensional algebras and two 4-dimensional
matrix algebras.

7. LetG be a finite group, F an algebraically closed field in which |G|1F �= 0.
Suppose E is a simple F[G]-module. Fix an F-linear map P : E → E

that is a projection onto a one-dimensional subspace V of E, and let
P0 = 1

|G|
�

g∈G gPg
−1. Show by computing the trace of P0 and then

again by using Schur’s Lemma (specifically, the second part of Theorem
3.2.1) that dimF E is not divisible by the characteristic of F.

8. For g ∈ G, let Rg : F[G] → F[G] : x �→ gx. Show that

Tr(Rg) =

�
|G| if g = e;

0 if g �= e
(3.38)

9. For g, h ∈ G, let T(g,h) : F[G] → F[G] : x �→ gxh
−1. Show that

Tr(T(g,h)) =

�
0 if g and h are not conjugate;
|G|
|C| if g and h belong to the same conjugacy class C.

(3.39)
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10. Prove the Vandermonde determinant formula:

det





1 1 . . . 1
X1 X2 . . . Xn

...
... . . .

...
X

n−1
1 X

n−1
2 . . . X

n−1
n




=

�

1≤j<k≤n

(Xk −Xj). (3.40)
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Chapter 4

More Group Algebra

We are now ready to plunge into a fuller exploration of the group algebra
F[G]. The group G is, for us, always finite, and the field F will often be
required to satisfy some standard conditions: its characteristic should not be
a divisor of the order of the group, and, for some results, we need the field
to be algebraically closed.

Recall that F[G] is the vector space, over the field F, with the elements
of G as basis. Thus, its dimension is |G|, the number of elements in G. The
typical element of F[G] is of the form

x =
�

g∈G

xgg,

with each xg in F. The multiplication map

F[G]× F[G] → F[G] : (x, y) �→ xy =
�

g∈G

�
�

h∈G

xgh−1yh

�
g

is bilinear, associative, and has 1 = 1e, where e is the identity element of G,
has multiplicative identity. Thus, F[G] is an algebra over the field F.

The regular representation ρreg of G associates to each g ∈ G the map

ρreg(g) : F[G] → F[G] : x �→ gx =
�

h∈G

xhgh (4.1)

for all elements x =
�

h∈G xhh in F[G]. It is very useful to view a rep-
resentation ρ of G on a vector space E as specifying, and specified by, an

89
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F[G]-module structure on E:
�
�

g∈G

xg

�
v =

�

g∈G

xgρ(g)v,

for all v ∈ E and all a(g) ∈ F, with g running over the finite group G. With
this notation, we can stop writing ρ and write gv instead of ρ(g)v. The trade-
off between notational ambiguity and clarity is worth it. A subrepresentation
then is just a submodule. An irreducible representation E corresponds to a
simplemodule, in the sense that E �= 0 and E has no submodules other than 0
and E itself. We will use the terms ‘irreducible’ and ‘simple’ interchangeably
in the context of modules.

Inside the algebra F[G], viewed as a left module over itself, a submodule
is a left ideal, which means a subset closed under addition and also under
multiplication on the left by elements of F[G]. A simple submodule of F[G]
is thus a simple left ideal, in the sense that it is a nonzero left ideal that
contains, as proper subset, no nonzero left ideal.

In the previous chapter we saw how the group algebra F[S3] decomposes
as a product of smaller algebras, each of the form F[S3]u for some central
idempotent element u, and then we decomposed each F[S3]u as a direct sum
of simple submodules that are also of the form F[S3]y with y idempotent but
not necessarily central. In this chapter we will develop this procedure for the
group algebra of a general finite group.

4.1 Looking Ahead

Let us take a quick look at the terrain ahead. We work with a finite group G

and a field F in which |G|1F �= 0. The significance and endlessly useful con-
sequence of this assumption about |G| is that the algebra F[G] is semisimple.

Semisimplicity says that any submodule of F[G] has a complementary
submodule, so that their direct sum is all of F[G]. Thus it is no surprise, as
we shall prove in Proposition 4.3.1, that F[G] splits up into a direct sum of
simple left ideals Mj:

F[G] = M1 ⊕ · · ·⊕Mm.

By Schur’s Lemma (Theorem 3.2.1) it follows that for any pair j, k, either
Mj and Mk are isomorphic as F[G]-modules, or there is no non-zero module
morphism Mj → Mk. Clearly it makes sense then to pick out a maximal set
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of non-isomorphic simple left ideals L1, ..., Ls, and group the Mj’s together
according to which Li they are isomorphic to. This produces the decompo-
sition

F[G] = L11 + · · ·+ L1d1� �� �
A1

+ · · · + Ls1 + · · ·+ Lsds� �� �
As

,

which is a direct sum, with the first d1 left ideals being isomorphic to L1, the
next d2 to L2, and so on, with the last ds ones isomorphic to Ls. Thus,

F[G] � L
d1
1 ⊕ · · ·⊕ L

ds

s
. (4.2)

We will show that each Ai is a two sided ideal, closed under multiplication
both on the left and on the right by elements of F[G]. It also contains an
idempotent ui that serves as a multiplicative unit inside Ai. Thus, each Ai

is an algebra in itself. Moreover, it is a minimal algebra, in the sense that
the only two sided ideals inside it are 0 and Ai. Furthermore, using Schur’s
Lemma again, we will show that

AjAk = 0 if j �= k.

All this leads to an identification of F[G] with the product of the algebras
Ai:

s�

i=1

Ai � F[G]

by identifying (a1, ..., as) with the sum a1 + · · ·+ as.
A central result is the realization of F[G] as an algebra of matrices. The

way this works is that for each b ∈ F[G] we have the map

rb : F[G] → F[G] : x �→ xb

and the key point here is that rb is F[G]-linear, on viewing F[G] as a left
module over itself. The decomposition of F[G] as a direct sum in (4.2):

F[G] � L
d1
1 ⊕ · · ·⊕ L

ds

s

provides a matrix for rb whose entries are F[G]-linear maps Lj → Lk; by
Schur’s Lemma, these are all 0 except, potentially, when j = k. As we will
prove later, EndF[G](Lk) is a division algebra. This realizes F[G] as an algebra
of block-diagonal matrices, with each block being a matrix with entries in a
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division algebra (these algebras being different in the different blocks). In
the special case where F is algebraically closed, the division algebras collapse
down to F itself, and F[G] is realized as an algebra of block-diagonal matrices
with entries in F. Thus rb has a block diagonal form and we have

b ↔ rb =





[b1] 0 0 · · · 0
0 [b2] 0 · · · 0
...

...
...

...
...

0 0 0 · · · [bs]




(4.3)

Decomposing F[G] into simple left ideals provides a decomposition of the
regular representation into irreducible components. The interplay between
the regular representation, as given by multiplications on the left, and the
representation on F[G] by multiplications on the right is part of a powerful
larger story which we will see recurring later in Schur-Weyl duality.

If you are eager to hike ahead on your own you can explore along the
path laid out in Exercise 4.5, in which, to add to the adventure, you are not
allowed to semisimplify!

4.2 Submodules and Idempotents

Let us begin with a closer look at why idempotents arise in constructing
submodules of F[G]. Idempotents were introduced and used with great ef-
fectiveness by Frobenius in unravelling the structure of F[G].

Recall that an idempotent in the algebra F[G] is an element v whose
square is itself:

v
2 = v.

Idempotents u and v are said to be orthogonal if

uv = vu = 0.

The sum of two orthogonal idempotents is clearly again an idempotent. An
idempotent is said to be primitive or indecomposable if it is not zero and
cannot be expressed as a sum of two nonzero orthogonal idempotents.

An element v in a left ideal L is called a generator if L = F[G]v. Here is
a very useful little fact:

for an idempotent y, an element x lies in F[G]y if and only if xy = x.
(4.4)
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(You can verify this as a moment’s-thought exercise.)
Indecomposability of idempotents translates to indecomposability of the

generated left ideals:

Proposition 4.2.1 Let G be any finite group and F a field. An idempotent
y ∈ F[G] is indecomposable if and only if F[G]y cannot be decomposed as a
direct sum of two distinct non-zero left ideals in F[G].

Proof. Suppose y is an indecomposable idempotent, and F[G]y is the direct
sum of left ideals L1 and M1. Then

y = y1 + v1 (4.5)

for unique y1 ∈ L1 and v1 ∈ M1. Since y1 ∈ L1 ⊂ F[G]y, we can write
y1 = ay for some a ∈ F[G] and then, since y is an idempotent, we have
y1y = y1. Left-multiplying (4.5) by y1 produces

y1y����
=y1

= y1y1����
∈L1

+ y1v1����
∈M1

and so, again by unique decomposition,

y1 = y
2
1 and y1v1 = 0.

Similarly, v1 is also an idempotent and v1y1 is 0. Since y is indecomposable,
at least one of y1 and v1 is 0. Say v1 = 0. But then y = y1, and so F[G]y ⊂ L1,
which implies M1 = 0.

For the converse, suppose y = y1 + v1, where y1 and v1 are nonzero
orthogonal idempotents. For any x ∈ F[G]y, we have x = ay for some
a ∈ F[G], and then

x = xy = xy1����
∈F[G]y1

+ xv1����
∈F[G]v1

.

So F[G]y is the sum of the left ideals F[G]y1 and F[G]v1. This sum is direct
because if

ay1 + bv1 = 0

then, on right-multiplying by the idempotent y1 which is orthogonal to v1,
we have ay1 = 0, and then bv1 is also 0. Finally, note that F[G]y1 contains
y1 and so is not {0}, and similarly also F[G]v1 �= {0}. QED

With semisimplicity, every left ideal has an idempotent generator:
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Proposition 4.2.2 Let G be any finite group and F a field in which |G|1F �= 0.
If L is a left ideal in the algebra F[G] then there is an idempotent element
y ∈ F[G] such that

L = F[G]y.

Proof. By semisimplicity, L has a complementary left ideal Lc such that F[G]
is the direct sum of L and Lc. Decompose 1 ∈ F[G] as

1 = y + z,

where y ∈ L and z ∈ Lc. Then for any x ∈ F[G],

x = xy����
∈L

+ xz����
∈Lc

and so x lies in L if and only if x is, in fact, equal to xy. Hence, L = F[G]y,
and also y equals yy, which means that y is an idempotent. QED

4.3 Deconstructing F[G], the Module

Semisimplicity decomposes F[G] into simple left ideals:

Proposition 4.3.1 For any finite group G and field F in which |G|1F �= 0,
the algebra F[G], viewed as a left module over itself, decomposes as a direct
sum of simple submodules. There are indecomposable orthogonal idempotents
e1, ..., em ∈ F[G] such that

1 = e1 + · · ·+ em,

and the simple left ideals F[G]e1,..., F[G]em provide a decomposition of F[G]
as a direct sum:

F[G] = F[G]e1 ⊕ · · ·⊕ F[G]em.

In the language of representations, this decomposes the regular represen-
tation into a direct sum of irreducible representations.
Proof. Choose a submodule M1 in F[G] that has the smallest non-zero di-
mension as a vector space over F. Then, of course, M1 has to be a simple
submodule.
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Take now the largest integer m such that there exist simple submodules
M1, ...,Mm, such that the sum M = M1 + · · ·+Mm is a direct sum; such an
m exists because F[G] is finite dimensional as a vector space over F. If M is
not all of F[G] then there is, by semisimplicity, a complementary submodule
N that is not zero. Inside N choose a submodule Mm+1 of smallest positive
dimension as vector space over F. But then Mm+1 is a simple submodule
and the sum M1 + · · · +Mm+1 is direct, which contradicts the definition of
m. Hence, M is all of F[G]:

F[G] = M1 ⊕ · · ·⊕Mm.

Splitting the element 1 ∈ F[G] as a sum of components ej ∈ Mj, we have

1 = e1 + · · ·+ em.

Then for any x ∈ F[G],

x = xe1����
∈M1

+ · · ·+ xem����
∈Mm

,

and so x lies in Mj if and only if x = xej and xek = 0 for all k �= j. This
means, in particular, that

e
2
j
= ej, and ejek = 0 if j �= k,

and
Mj = F[G]ej,

for all j, k ∈ {1, ...,m}. QED
We can make another observation here, for which we use the versatile

power of Schur’s Lemma (Theorem 3.2.1).

Proposition 4.3.2 Let G be a finite group and F a field in which |G|1F �= 0.
View F[G] as a left module over itself, and let M1, ...,Mm be simple submod-
ules whose direct sum is F[G]. If L is any simple submodule in F[G] then L

is isomorphic to some Mj, and is a subset of the sum of those Mj that are
isomorphic to L.

Proof. Since F[G] is the direct sum of the submodules Mj, every element
x ∈ F[G] decomposes uniquely as a sum

x = x1����
∈M1

+ · · ·+ xm����
∈Mm

,
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with xj ∈ Mj for each j ∈ {1, ...,m}. Thus there are the projection maps

πj : F[G] → Mj : x �→ xj.

The uniqueness of the decomposition, along with the fact that axj ∈ Mj for
every a ∈ F[G], implies that πj is linear as a map between F[G]-modules:

πj(ax+ y) = aπj(x) + πj(y)

for all a, x, y ∈ F[G]. Consider now a simple submodule L ⊂ F[G]. The
restriction πj|L is an F[G]-linear map L → Mj. Then by Schur’s Lemma
(Theorem 3.2.1), this must be either 0 or an isomorphism. Looking at any
x ∈ L, as a sum of the components xj = πj(x), the components that lie in
the Mk not isomorphic to L are all zero, and so at least one of the other
components must be non-zero when x �= 0. This implies that L is isomorphic
to some Mj, and lies inside the sum of those Mj to which it is isomorphic.
QED

4.4 Deconstructing F[G], the Algebra

We turn to the task of decomposing F[G], viewed now as an algebra, as a
product of smaller, simpler algebras. Recall that an algebra, over a field
F, is a vector space over F equipped with a bilinear multiplication map
A × A → A : (a, b) �→ ab, which is associative and has an identity element
1 �= 0.

If S and T are subsets of F[G], then by ST we mean the set of all elements
that are finite sums of products st with s ∈ S and t ∈ T :

ST = {s1t1 + · · ·+ sktk : k ∈ {1, 2, ...}, s1, ..., sk ∈ S, t1, ..., tk ∈ T}

Thus, with this notation, a subset J ⊂ A, for which J+J ⊂ J , is a left ideal
if AJ ⊂ J , is a right ideal if JA ⊂ J , and is a two sided ideal if AJA ⊂ J .

Let us make a few starter observations about left ideals.

Proposition 4.4.1 Let G be a finite group, F a field, and L a simple left
ideal in the algebra A = F[G]. Then :

(i) L = F[G]u for any non-zero u ∈ L;
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(ii) if v ∈ F[G] then either Lv is 0 or it is isomorphic to L, as left F[G]-
modules;

(iii) if M is a simple left ideal and LM �= 0 then M = Lv for some v ∈ F[G];

(iv) LA, which is the sum of all the right-translates Lv, is a two sided ideal
in F[G];

(v) if L and M are simple left ideals, and M is not isomorphic to L, then

(LA)(MA) = 0.

Notice, as a curiosity at least, that for once we do not need the semisimplicity
condition that |G| not be divisible by the characteristic of F.
Proof. If L is a simple left ideal and u ∈ L is not zero then F[G]u is a
non-zero left ideal contained inside L and hence must be equal to L.

For any v ∈ F[G], Lv is clearly a left ideal in F[G]. The map

f : L → Lv : a �→ av

is F[G]-linear, and so ker f is a left ideal in F[G] contained inside L. Since L
is simple, Schur’s Lemma implies that either f = 0, which means Lv = 0, or
f is an isomorphism of L onto Lv. Thus, either Lv is 0 or it is isomorphic,
as a left F[G]-module, to L.

Next suppose M is also a simple left ideal, and LM �= 0. Choose u ∈ L

and v ∈ M with uv �= 0. Then M = F[G]v and so Lv ⊂ M . Since M is
simple and Lv, which contains uv, is not 0, we have M = Lv.

It is clear that LA is both a left ideal and a right ideal.
Now suppose L and M are both simple left ideals, and (LA)(MA) �= 0.

Then (Lx)(My) �= 0 for some x, y ∈ F[G]. Then Lx �= 0 and My �= 0, and
so Lx � L and My � M , by (ii). In particular, Lx and My are also simple
left ideals. Since LxMy �= 0 it follows by (iii) that My is a right translate
of Lx, which then, by (ii), implies that Lx � My. But, as we have already
noted, Lx � L and My � M . Hence L � M . QED

Semisimplicity gives us a bit more: if F[G] is semisimple and L and M

are simple left ideals that are isomorphic as F[G]-modules then M is a right
translate of L. This is because semisimplicity implies L = F[G]y for an
idempotent y and so if f : L → M is an isomorphism of modules then

M = f(L) = f(Ly) = Lf(y),
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showing that M is a right translate of L. If we add up all the simple left
ideals that are isomorphic to a given simple left ideal L, we get

�

x∈F[G]

Lx = LF[G]

and this is a two sided ideal, clearly the smallest two sided ideal containing
L. Such two sided ideals form the key structural pieces in the decomposition
of the algebra F[G].

Theorem 4.4.1 Let G be a finite group and F a field in which |G|1F �= 0.
Then there are subspaces A1, ..., As ⊂ F[G] such that each Aj is an algebra
under the multiplication operation inherited from F[G], and the map

I :
s�

j=1

Aj → F[G] : (a1, ..., as) �→ a1 + · · ·+ as

is an isomorphism of algebras. Moreover,

(i) every simple left ideal is contained inside exactly one of A1, ..., As,

(ii) AjAk = 0 if j �= k,

(iii) each Aj is a two sided ideal in F[G],

(iv) each Aj is of the form F[G]uj, with u1, ..., us being orthogonal idempo-
tents, all lying in the center of the algebra F[G], and with

u1 + · · ·+ us = 1,

(v) every two sided ideal in F[G] is a sum of some of the A1, ..., As,

(vi) for every j ∈ [s], the only two sided ideals of Aj are 0 and Aj itself,

(vii) no uj can be decomposed as a sum of two non-zero central idempotents.

This is a lot and the proof is lengthy, but not hard. Parts (i)-(iv), and also
(vii), hold even when F[G] is not semisimple; for this, following an alternate
route, you can work through Exercise 4.5.
Proof. First view F[G] as a left module over itself. We saw in Proposition
4.3.1 that F[G] is a direct sum of a finite set of simple submodulesM1, ...,Mm.
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Moreover, by Proposition 4.3.2, every simple submodule is isomorphic to one
of these submodules and also lies inside the sum of those Mj to which it is
isomorphic. Thus, it would be good to group together all the Mj that are
mutually isomorphic and form their sums.

Let L1, ..., Ls be a maximal set of simple submodules among the Mj such
that no two are isomorphic with each other. Now, for each j, set Aj to be
the sum of all those Mi that are isomorphic to Lj. Then F[G] is the direct
sum of the submodules Aj:

F[G] = A1 ⊕ · · ·⊕ As. (4.6)

Let us keep in mind, from Proposition 4.3.2, that any simple submodule
which is isomorphic to Lj actually lies inside Aj. Thus, Aj is the sum of all
the simple submodules that are isomorphic to Lj. Since all such submodules
are right-translates Ljy of Lj, and conversely every right-translate Ljy is
either 0 or isomorphic to Lj, we have

Aj = LjF[G].

From this it is clear that Aj is also a right ideal.
By Proposition 4.4.1(v) it follows that

AjAk = 0 if j �= k.

Thus, if x, y ∈ F[G] decompose as

x = x1 + · · ·+ xs, y = y1 + · · ·+ ys,

with xj, yj ∈ Aj, for each j, then

xy = x1y1 + · · ·+ xsys.

Let us now express 1 as a sum of components uj ∈ Aj:

1 = u1 + · · ·+ us.

Since AjAk is 0 for j �= k, it follows on working out the product uj1 that

uj = u
2
j

and ujuk = 0 for all j, k ∈ {1, ..., s} with j �= k.

Thus, the uj are orthogonal idempotents that add up to 1.
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For x ∈ F[G] we have

x = x1 = xu1 + · · · xus,

which gives the decomposition of x into the component pieces in the Aj, and
also shows that x lies inside Aj if and only if xuj is x itself; hence,

Aj = F[G]uj for all j ∈ {1, ..., s}.

Clearly, uj is the multiplicative identity element in Aj, which is thus an
algebra in itself. Note that if uj were 0 then Aj would be 0 and this is
impossible because Aj is a sum of simple, hence non-zero, modules.

It is now clear that the mapping

s�

j=1

Aj → F[G] : (a1, ..., as) �→ a1 + · · ·+ as

is an isomorphism of algebras.
Let us check that each uj is in the center of F[G]. For any x ∈ F[G] we

have
x = 1x = u1x����

∈A1

+ · · ·+ usx����
∈As

Comparing with the decomposition ‘on the left’

x = x1 = xu1����
∈A1

+ · · ·+ xus����
∈As

and using the uniqueness of decomposition of F[G] as a direct sum of the Aj,
we see that x commutes with each uj. Hence, u1, ..., us are all in the center
of F[G].

Now consider a two sided ideal B �= 0 in F[G]. Let j ∈ [s]. The set BAj,
consisting of all sums of elements baj with b drawn from B and aj from Aj,
is a two sided ideal and is clearly contained inside B ∩ Aj. If BAj contains
a non-zero element x then, working with a minimal left ideal L contained in
F[G]x ⊂ BAj, it follows that BAj contains all right translates of L; thus,
if BAj �= 0 then BAj ⊃ Aj, and hence BAj = Aj. Thus, looking at the
decomposition

B = BA = BA1 + · · ·+BAs,

we see that B is the sum of those Aj for which BAj �= 0.
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Now we show that the algebra Aj is minimal in the sense that any two
sided ideal in it is either 0 or Aj. Suppose J is a two sided ideal in the algebra
Aj. For any x ∈ F[G], and y ∈ Aj, we know that xy equals xjy, where xj

is the component of x in Aj in the decomposition of A as the direct sum
of A1,...,As. Consequently, any left ideal within Aj is a left ideal in the full
algebra F[G]. Similarly, any right ideal in Aj is a right ideal in F[G]. Hence a
two sided ideal J inside the algebra Aj is a two sided ideal in F[G] and hence
is a sum of certain of the ideals Ai. But these ideals are complementary and
J lies inside Aj; hence, J is equal to Aj.

Finally, let us show that the central idempotent generators uj are inde-
composable within the class of central idempotents. Suppose

uj = u+ v,

where u and v are orthogonal central idempotents. Then

uuj = uu+ uv = u
2 + 0 = u,

and so
F[G]u = F[G]uuj ⊂ F[G]uj = Aj.

Furthermore, since u is central, the left ideal F[G]u is also a right ideal. Being
a two sided ideal lying inside Aj it must then be either 0 or Aj itself. If F[G]u
is 0 then u = 1u is 0. If u �= 0 then F[G]u = Aj and so uj = xu for some
x ∈ F[G], and then v = ujv = xuv is 0. Thus, in the decomposition of uj

into a sum of two central orthogonal idempotents one of them must be 0.
QED

The next task is to determine the structure of an algebra that does not
contain any non-zero proper two sided ideals. But before turning to that we
note the following uniqueness of the decompositon:

Theorem 4.4.2 Let G be a finite group and F a field in which |G|1F �= 0.
Suppose B1, ..., Br ⊂ F[G], where each Bj is non-zero, closed under addition
and multiplication, and contains no non-zero proper two sided ideals, and
such that

I : B1 × · · ·×Br → F[G] : (b1, ..., br) �→ b1 + · · · br
preserves addition and multiplication. Then r = s and

{B1, ..., Br} = {A1, ..., As},

where A1, ..., As are the two sided ideals in F[G] described in Theorem 4.4.1.
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Proof. The fact that I preserves multiplication implies that

BjBk = 0 if j �= k.

Each Bj is a two sided ideal in F[G], because

BBj ⊂ B1Bj + · · ·BrBj = 0 +BjBj + 0 ⊂ Bj,

and, similarly, BjB ⊂ Bj.
Then, by Theorem 4.4.1, each Bj is the sum of some of the two sided

ideals Ai. The condition that Bj contains no proper nonzero two sided ideal
then implies that Bj is equal to some Ai. Hence, I maps

{(0, 0, ..., bj����
j−th position

, 0, ..., 0) : bj ∈ Bj}

onto Ai. Now the sets A1, ..., As are all distinct. Since the map I is a bijection
it follows that B1, ..., Br are all distinct. Hence r = s and {B1, ..., Br} is the
same as {A1, ..., As}. QED

4.5 As Simple as Matrix Algebras

We turn now to the determination of the structure of finite dimensional
algebras that contain no nonzero proper two sided ideals. We will revisit this
topic in a more general setting later in section 5.6.

Suppose B is a finite dimensional, algebra over a field F, and L a left ideal
in B of minimum positive dimension. Then L, being of minimum dimension,
is simple. Let

D = EndB(L),

which is the set of all B-linear maps f : L → L. By Schur’s Lemma, any
such f is either 0 or an isomorphism. Thus, D is a division ring: it is a
ring, with mutliplicative identity ( �= 0), in which every non-zero element has
a multiplicative inverse. Note that here D contains F and is also a vector
space over F, necessarily finite dimensional because it is contained inside the
finite dimensional space EndF(L).

Theorem 4.5.1 Suppose B is a finite dimensional algebra over a field F and
assume that the only two sided ideals in B are 0 and B itself. Then B is
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isomorphic to the algebra of n×n matrices over a division ring D, for some
positive integer n. The division ring is D = EndB(L), where L is any simple
left ideal in B, with multiplication given by composition in the opposite order:
f ◦op g = g ◦ f for f, g ∈ EndB(L).

This fundamental result, evolved in formulation, grew out of the disser-
tations of Molien [58] and Wedderburn [74].

To indicate that the multiplication is in the opposite order to the standard
multiplication in EndB(L), we write

D = EndB(L)
opp

.

The appearance of a division ring, as opposed to a field, might seem dis-
appointing. But much of the algebra here is a sharper shadow of synthetic
geometry, a subject nearly lost to mathematical history, where, logically if
not historically, division rings appear more naturally (that is, from fewer
geometric axioms) than fields.
Proof. There are two main steps in realizing B as an algebra of matrices.
First, we will show that B is naturally isomorphic to the algebra EndB(B)
of all B-linear maps B → B, with a little twist applied. Next we will show
by breaking B up into a direct sum of translates of any simple left ideal that
any element of EndB(B) can be viewed as a matrix with entries in D.

Any element b ∈ B specifies a B-linear map

rb : B → B : x �→ xb,

and b is recovered from rb by applying rb to 1:

b = rb(1).

Conversely, if f ∈ EndB(B) then

f(x) = f(x1) = xf(1) = rf(1)(x) for all x ∈ B.

Thus b �→ rb is a bijection B → EndB(B), and is clearly linear over the field
F. Let us look now at how r interacts with mutliplication:

rarb(x) = ra(xb) = x(ba) = rba(x)

Thus, the map b �→ rb reverses multiplication. Then we have an isomorphism
of algebras

B → EndB(B)opp,
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where the superscript indicates that multiplication of endomorphisms should
be done in the order opposite to the usual.

Now let L be a left ideal in B of minimum positive dimension, as a vector
space over F. The minimum dimension condition implies that L is a simple
left ideal. Since LB is a nonzero two sided ideal in B, it is equal to B. But
LB is the sum of all right translates Lb with b running over B. If b ∈ B is
such that Lb �= 0 then the mapping between the left B-modules L and Lb

given by

φb : L → Lb : x �→ xb

is clearly B-linear and surjective, and kerφb, which is not L because Lb �= 0,
must be {0} and this means that φb is an isomorphism of B-modules. Thus,
any nonzero Lb is a simple left ideal isomorphic as a B-module to L.

Let n be the largest integer for which there exist b1, ..., bn ∈ B such that
the sum Lb1 + · · · + Lbn is a direct sum and each Lbj is nonzero. As noted
above, the mapping

φj : L → Lbj : x �→ xbj (4.7)

is an isomorphism of B-modules and Lbj is a simple left ideal in B.
Note that n ≥ 1 and also that n ≤ dimF B, which is finite by hypothesis.

If Lb1 + · · · + Lbn is not all of LB then there is some Lb not contained in
S = Lb1 + · · · + Lbn; but then Lb ∩ S = {0} by simplicity of Lb and this
would contradict the definition of n. Thus,

B = LB = Lb1 ⊕ · · ·⊕ Lbn. (4.8)

Putting the maps φj together yields an isomorphism of left B-modules

Φ : Ln → B : (a1, ..., an) �→ φ1(a1) + · · ·+ φn(an)

Then any b ∈ B corresponds to a B-linear map

r
�
b
= Φ−1 ◦ rb ◦ Φ : Ln → L

n

that gives rise to a matrix

[bjk]1≤j,k≤n,

where

bjk = pk ◦ r�b ◦ ij : L → L,
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with pk : Ln → L being the projection onto the k-th component and

ij : L → L
n : x �→ (0, ..., x����

j−th term

, ..., 0).

Note that
n�

j=1

ijpj = idLn .

Now we have a key observation: each component bjk is in EndB(L), and
is thus an element of the division ring D. Thus, we have associated to each
b ∈ B a matrix [bjk] with entries in D.

If a, b ∈ B then

(ab)jk = pkΦ
−1
rabΦij

= pkΦ
−1
rbraΦij

=
n�

l=1

pkΦ
−1
rbΦilplΦ

−1
raΦij

=
n�

l=1

blkajl

=
n�

l=1

ajl ◦op blk.

(4.9)

Thus,

[(ab)jk] = [ajl][blk]

as a product of matrices with entries in the ring D = EndB(L)opp. It is clear
that there is no twist in addition:

[(a+ b)jk] = [ajk] + [bjk]

Thus, the mapping

a �→ [ajk]

preserves addition and multiplication. Clearly it preserves multiplication by
scalars from F, and also carries the multiplicative identity 1 in B to the
identity matrix.
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If [cjk] is any n × n matrix with entries in D then it corresponds to the
B-linear mapping

L
n → L

n : (x1, ..., xn) �→
�

n�

j=1

cj1xj, ...,

n�

j=1

cjnxj

�
,

which, by the identification L
n � B, corresponds to an element f ∈ EndB(B),

which in turn corresponds to the element c = f(1) in B. This recovers c from
the matrix [cjk]. QED

A ring which is the sum of simple left ideals that are all isomorphic to
each other is called a simple ring. In the preceding proof, specifically in (4.8),
we saw that a finite dimensional algebra B that contains no nonzero proper
two sided ideals is a simple ring. By a simple algebra we mean an algebra
which is a simple ring. We study simple rings in section 5.6.

In applying Theorem 4.5.1 to the algebras Ai contained inside F[G] as
two sided ideals, we note that a simple left ideal L in Ai is also a simple left
ideal when viewed as a subset of F[G], because if x ∈ F[G] is decomposed as
x1 + · · ·+ xs, with xj ∈ Aj for each j, then

xL = (x1 + · · ·+ xs)L = 0 + xiL+ 0 ⊂ L,

with the last inclusion holding because xi ∈ Ai and L is a left ideal in Ai. In
fact, essentially the same argument shows that if f : L → L is linear over Ai

then it is linear over the big algebra F[G]. Thus,

EndAi
(L) = EndF[G](L),

for any minimal two sided ideal Ai in F[G] and simple left ideal L ⊂ Ai.
Recall in this context Wedderburn’s result Theorem 1.8.2 stating that

any finite dimensional division algebra D over any algebraically closed field
F is equal to F, identified natually as a subset of D. There is another similar
result also discovered by Wedderburn [74]: if F is a finite field then every
finite dimensional division algebra over F is a field.

We have introduced the notion of splitting field for a group algebra. More
generally, a field F is a splitting field for a finite dimensional F-algebra A if
for every simple A-module E, the only A-linear mappings E → E are of the
form cI, where I is the identity mapping on E and c ∈ F; more compactly,
the condition is that EndA(E) = FI.
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4.6 Putting F[G] back together

It is time to look back and see how all the pieces fit together to form the
algebra F[G]. We assume that G is a finite group and F is a field in which
|G|1F �= 0. Then:

• F[G] is a direct sum of simple left ideals.

• Choose a maximal collection of simple left ideals L1, ..., Ls such that
no two are isomorphic to each other as F[G]-modules; let

Ai = sum of all simple left ideals isomorphic to Li.

Then each Ai is a minimal two sided ideal in F[G], it is an algebra in
itself under the operations inherited from F[G], and in the algebra Ai

the only two sided ideals are 0 and Ai.

• The map
s�

j=1

Aj → F[G] : (a1, ..., as) �→ a1 + · · ·+ as

is an algebra-isomorphism of the product algebra
�

s

j=1 Aj onto the
group algebra F[G]; in particular,

A1 ⊕ · · ·⊕ An = F[G] and AjAk = 0 if j �= k.

• There are orthogonal central idempotents u1, ..., us ∈ F[G] such that

Ai = F[G]ui

and
u1 + · · ·+ us = 1.

No uj can be decomposed as a sum of two non-zero orthogonal central
idempotents.

• Each Ai is a direct sum of simple left ideals, and they can be chosen in
the following way:

Ai = F[G]yi1� �� �
Li

⊕ · · ·⊕ F[G]yidi

where yi1, ..., yidi are orthogonal indecomposable idempotents that add
up to ui.
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• Fix an isomorphism Li → F[G]yij, for each i ∈ [s] and j ∈ [di], and
using this, identify Ai with

L
di

i
= Li ⊕ · · ·⊕ Li� �� �

di

,

as left modules over F[G]. Associating to each b ∈ F[G] the right
multiplication

rb : F[G] → F[G] : x �→ xb

identifies F[G] with the algebra of F[G]-linear maps F[G] → F[G]. Us-
ing the identification of F[G] with ⊕s

i=1L
di

i
, the right multiplication

operator rb is specified by a matrix consisting of blocks B1, ..., Bs going
down the main diagonal:





B1 0 0 · · · 0
0 B2 0 · · · 0
...

... · · · 0
0 0 0 · · · Bs





where each Bi is a di × di-matrix with entries in the division algebra
Di = EndF[G](Li), and all other entries are 0.

• If the field F is algebraically closed then each division algebra Di co-
incides with F, and so the entire group algebra F[G] is realized as an
algebra of matrices consisting of block-diagonal matrices.

Here is a central result of Frobenius that drops out from this analysis:

Theorem 4.6.1 If G is a finite group, and F an algebraically closed field in
which |G|1F �= 0 in F, then

|G| =
s�

i=1

d
2
i
, (4.10)

where di = dimF Li, and L1, ..., Ls is a maximal collection of simple left ideals
in F[G] such that no two are isomorphic as F[G]-modules.

Proof. We simply have to count the dimension, over F, of the algebra of
block matrices as described above, and equate it to dimF F[G] = |G|. QED

Later we will prove that each di is a divisor of |G|, and no di is divisible
by the characteristic of F.
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4.7 The Mother of All Representations

Let ρ be an irreducible representation of a finite group G on a vector space
V over a field F. Assume that |G|1F �= 0 in F. Then F[G] is semisimple, and
so F[G] is a direct sum of subspaces each of which is irreducible under ρreg.
In particular,

1 = y1 + · · ·+ yN ,

for some y1, ..., yN lying in the distinct irreducible subspaces. For any non-
zero v ∈ V we then have

v = y1v + · · ·+ yNv,

and so at least one of the terms on the right, say yjv, is non-zero, where yj

lies in a simple submodule L ⊂ F[G]. Then the map

L → V : x �→ ρ(x)v

is not zero, and is clearly a morphism from ρreg|L to ρ and so by Schur’s
Lemma (Theorem 1.8.1), it is an isomorphism. Thus, we have a remarkable
conclusion:

Theorem 4.7.1 Suppose G is a finite group, and F a field in which |G|1F �= 0.
Then every irreducible representation of G is equivalent to a subrepresenta-
tion of the regular representation ρreg of G on the group algebra F[G]. In
particular, every irreducible representation of a finite group is finite dimen-
sional.

For an alternative proof see Exercise 4.1.
Thus, the regular representation is no ordinary representation: it contains

the pieces that make up all representations. If you think of what F[G] is,
the vector space with the elements of G as basis and on which G acts by
permutations through multiplication on the left, it is not so surprising that
it contains just about all there is to know about the representations of G.

When examining the structure of F[G] we observed that there is a finite
number s, indeed s ≤ dimF F[G] = |G|, such that there are simple left ideals
L1, ..., Ls in F[G], such that any simple left ideal is isomorphic as an F[G]-
module to exactly one of the Li.
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Theorem 4.7.2 Suppose G is a finite group, and F a field in which |G|1F �= 0.
Then there is a finite number s, and simple left ideals L1, ..., Ls in F[G]
such that every irreducible representation of G is equivalent to the restriction
ρreg|Li for exactly one i ∈ {1, ..., s}. Moreover, if F is algebraically closed
then

|G| =
s�

i=1

d
2
i

where di = dimF Li.

A remark about computing representations is in order. Recall the proce-
dure we sketched in section 3.5 for decomposing a representation into irre-
ducible components. If that procedure is applied to the regular representa-
tion, where each element of G is represented by a nice permutation matrix,
then the algorithm leads to a determination of all irreducible (complex) rep-
resentations of G.

Theorem 4.7.3 Suppose G is a finite group and F a field in which |G|1F �= 0.
Then every F[G]-module E is a direct sum of simple submodules. In other
words, every representation of G, on a vector space over the field F, is a
direct sum of irreducible representations.

Proof. We will prove this here under the assumption that E has finite di-
mension as a vector space over F, which makes it possible to use an inductive
argument. (The general case is proved later in Theorem 5.2.1 using a more
sophisticated induction procedure, namely Zorn’s Lemma.) If E = 0 there is
nothing to prove, so suppose dimF E is positive but finite. Any submodule
of E of minimal positive dimension as vector space over F is a simple sub-
module. So there is a largest positive integer m such that there exist simple
submodules E1, ..., Em whose sum F = E1 + · · · + Em is a direct sum. If
F �= E then there is a nonzero complementary submodule Fc in E; in other
words, a submodule Fc for which E is the direct sum of F and Fc. Inside
Fc choose a submodule Em+1 of minimal positive dimension (notice that this
works because we are working with finite dimensional vector spaces!). But
then the sum E1 + · · ·+Em+1 is a direct sum, contradicting the defintion of
m. Thus, F = E, and so E is a direct sum of irreducible subspaces. QED
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4.8 The Center

Let G be a finite group and F a field.
We know from Proposition 3.3.1 that the center Z of F[G] has a basis

consisting of the conjugacy class sums

zC =
�

g∈C

g,

where C runs over all conjugacy classes of G. We will compare this now with
what the matrix realization of F[G] says about Z and draw some interesting
conclusions.

Let A1,...,As be a collection of non-zero two sided ideals in F[G] whose
direct sum is F[G] (we will eventually specialize to the case where s is the
largest integer for which there is such a finite collection). Then

AjAk ⊂ Ak ∩ Ak = {0} if j �= k.

Decomposing 1 uniquely as a sum of elements in the Ai we have

1 = u1 + · · ·+ us,

with ui ∈ Ai for each i. Left/right-multiplying by ui we have

ui = u
2
i
+ 0,

which shows that each ui is an idempotent. Then, multiplying 1 by any
x ∈ F[G], we have

s�

i=1

xui����
∈Ai

= x =
s�

i=1

uix����
∈Ai

,

which shows that (i) each ui is in the center Z of F[G], (ii) yui = y if y ∈ Ai

(and, in particular, ui �= 0), and (iii) uix = 0 if x ∈ Aj with j �= i. The
idempotents ui are linearly independent, for if

�
s

i=1 ciui = 0, with coefficients
ci all in F, then multiplying by uj shows that cjuj = 0 and hence cj = 0. As
seen before,

s�

i=1

Ai → A : (a1, ..., as) �→ a1 + · · ·+ as (4.11)

is an isomorphism of algebras.
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Thus, with no assumptions on the field F, we have found a natural set of
orthogonal central idempotents u1, ..., us that are linearly independent over F
and all lie in the center Z. Moreover, from the isomorphism (4.11) it follows
that

Z = Z(A1) + · · ·+ Z(As),

where Z(Ai) is the center of Ai.
Now assume that |G|1F �= 0 in F. Then we have seen that A1, ..., As exist

such that Ai is isomorphic to the algebra of di×di matrices over a division ring
Di, where di is the number of copies of a simple module Li whose direct sum
is isomorphic to Ai. If we now, further, assume that F is algebraically closed
then the division rings Di are all equal to F. Now the center of the algebra
of all di × di consists just of the scalar matrices (multiples of the identity
matrix). From this we see that if F is algebraically closed and |G|1F �= 0 in
F then

Z(Ai) = Fui.

We have thus proved:

Proposition 4.8.1 Let G be a finite group, F any field, and Z the center of
the group algebra F[G]. Let u1, ..., us be a maximal string of nonzero central
idempotents adding up to 1 in F[G]. Then

s ≤ dimF Z. (4.12)

If, moreover, F is algebraically closed and |G|1F �= 0, then u1, ..., us form a
basis for Z, and so

s = dimF Z if F is algebraically closed and |G|1F �= 0. (4.13)

We saw in Theorem 3.3.1 that the dimension of the center Z, as a vec-
tor space over F, is just the number of conjugacy classes in G. Putting
this together with the observations we have made in this section, we have a
remarkable conclusion:

Theorem 4.8.1 Suppose G is a finite group, F a field, and Z the center of
the group algebra F[G]. Let s be the number of distinct isomorphism classes
of irreducible representations of G, over the field F. Then

s ≤ number of conjugacy classes in G. (4.14)

If the field F is also algebraically closed, and |G|1F �= 0, then s equals the
number of conjugacy classes in G.
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As usual, the condition that F is algebraically closed can be replaced by
the requirement that it be a splitting field for G, since that is what is actually
used in the argument. If the characteristic p of the field F is a divisor of |G|
(taking us outside our semisimple comfort zone) then, with F still being a
splitting field for G, the number of distinct isomorphism classes of irreducible
representations of G is equal to the number of conjugacy classes of elements
whose orders are coprime to p; for a proof see [64, Theorem 1.5].

4.9 Representing Abelian Groups

Let G be a finite group and F an algebraically closed field in which |G|1F �= 0.
Let L1, .., Ls be a maximal set of irreducible, inequivalent representations of
G over F. Then the formula

|G| =
s�

i=1

[dimF(Li)]
2
,

shows that each Li is 1-dimensional if and only if the number s is equal to
|G|. Thus, each irreducible representation of G is 1-dimensional if and only
if the number of conjugacy classes in G equals |G|, in other words if each
conjugacy class contains just one element. But this means that G is abelian.
We state this formally:

Theorem 4.9.1 Assume the ground field F is algebraically closed and G is
a finite group with |G|1F �= 0 in F. All irreducible representations of G are
1-dimensional if and only if G is abelian.

If F is not algebraically closed then the above result is not true. For
example, the representation of the cyclic group Z4 on R

2 given by rotations,
with 1 ∈ Z4 going to rotation by 900, is irreducible. In a different twist, if the
characteristic of F is a divisor of |G|, so that we are off our semsimple comfort
zone, one can end up with a situation where every irreducible representation
of G is one dimensional even if G is not abelian; Exercise 4.14 develops an
example.

4.10 Indecomposable Idempotents

Before closing off our study of F[G] let us return briefly to one corner that
we left unexplored but which will prove useful later. How do we decide if a
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given idempotent is indecomposable?
In understanding the discussion in this section it will be useful to think

of F[G] realized as a matrix algebra. An idempotent is then a projection
matrix.

Proposition 4.10.1 Let A be a finite dimensional algebra over a field F;
for instance, A = F[G], where G is a a finite group. If a nonzero idempotent
u ∈ A satisfies the condition

uAu = Fu (4.15)

then u is indecomposable.

Proof. Assume that the idempotent u satisfies (4.15): for every x ∈ A,

uxu = λxu

for some λx ∈ F. Now suppose u decomposes as

u = v + w,

where v and w are orthogonal idempotents:

v
2 = v, w

2 = w, vw = wv = 0.

Now
uvu = (v + w)v(v + w) = v + 0 = v,

and so, by (4.15), it follows that v is a multiple of u:

v = λu for some λ ∈ F.

Since both u and v are idempotents, it follows that

λ
2 = λ

and so λ is 0 or 1. Hence, u is indecomposable. QED
We can take the first step to understanding how inequivalence of simple

left ideals reflects on the generators of such ideals:
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Theorem 4.10.1 Suppose G is a finite group and F a field. If y1 and y2 are
nonzero idempotents in F[G] for which

y2F[G]y1 = 0 (4.16)

then the left ideals F[G]y1 and F[G]y2 are not isomorphic as F[G]-modules.

Proof. Let f : F[G]y1 → F[G]y2 be F[G]-linear, where y1, y2 are idempotents
in F[G]. Then the image f(y1) is of the form xy2 for some x ∈ F[G], and so

f(ay1) = f(ay1y1) = ay1f(y1) = ay1xy2,

for all a ∈ F[G], and so f = 0 if condition (4.16) holds. In particular, F[G]y1
and F[G]y2 are not isomorphic as F[G]-modules, unless they are both zero.
QED

With semisimplicity thrown in, we have in the converse direction:

Theorem 4.10.2 Suppose G is a finite group and F a field in which |G|1F �= 0.
If y1 and y2 are indecomposable idempotents such that the left ideals F[G]y1
and F[G]y2 are not isomorphic as F[G]-modules then

y2F[G]y1 = 0. (4.17)

Proof. By Proposition 4.2.1, F[G]y2 and F[G]y1 are simple modules. Fix any
x ∈ F[G], and consider the map

f : F[G]y2 → F[G]y1 : y �→ yxy1,

which is clearly F[G]-linear. By Schur’s Lemma (Theorem 3.2.1), f is either
0 or an isomorphism. By the hypothesis, f is not an isomorphism, and hence
it is 0. In particular, f(y2) is 0. Thus, y2xy1 is 0. QED

In our warm up exercise (look back to equation (3.24)) decomposing F[S3]
we found it useful to associate to each x ∈ F[S3] a matrix with entries
yjxyk, where the yj are indecomposable idempotents. We also saw there
that {yjxyk : x ∈ F[S3]} is one-dimensional over F. We can now prove this
for F[G], with some assumptions on the field and the group. One way to
visualize the following is by thinking of the full algebra F[G] as a matrix
algebra in which the idempotent y2 is the matrix for a projection operator
onto a one-dimensional subspace; then {y2xy1 : x ∈ F[G]} consists of all
scalar multiples of y2.
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Theorem 4.10.3 Suppose G is a finite group and F an algebraically closed
field in which |G|1F �= 0. If y1 and y2 are indecomposable idempotents that
generate left ideals that are isomorphic as left F[G]-modules, that is F[G]y1 �
F[G]y2, then {y2xy1 : x ∈ F[G]} is a one dimensional vector space over F.

See Exercise 5. 11 for a more general formulation.
Proof. Let A denote the algebra F[G]. By Schur’s Lemma (Theorem 3.2.1),
HomA(Ay2, Ay1) is a one-dimensional vector space over F. Fix a non-zero
f0 ∈ HomA(Ay2, Ay1) then f0(y2) is of the form x0y1 for some x0 ∈ A, and
so

f0(y) = f0(yy2y2) = yy2f(y2) = yy2x0y1,

for all y ∈ Ay2. Now take any x ∈ A; then the map Ay2 → Ay1 : y �→ yy2xy1

is A-linear, and so is an F-multiple of f0; in particular, f(y2) is an F-multiple
of f0(y2), which just says that y2xy1 is an F-multiple of y2x0y1. QED

4.11 Beyond Our Borders

Our study of the group algebra F[G] is entirely focused on the case where the
group G is finite. Semisimplicity can play a powerful role even beyond, for
infinite groups (despite the observation in Exercise 4.13). If our focus does
not seem to do full justice to the enduring power of semisimplicity see Chalabi
[12] on group algebras for infinite groups. A comprehensive development of
the theory is given in the book of Passman [63]

Our exploration of F[G] stays almost always within semisimple territory.
Modular representation theory, which stays with finite groups but goes deep
into fields of finite characteristic, is much harder. To make matters worse
for an initiation, books in this subject follow a shock-and-awe style of ex-
position that leaves the beginner with the wrong impression that this is a
subject where ‘stuff happens’, making it hard to discern a coherent struc-
ture or philosophy. The works of Puttaswamiah and Dixon [64] and Feit
[27] are substantial accounts, but Curtis and Reiner [16], despite its encyclo-
pedic scope, is more readable, as is the concise introduction in the book of
Weintraub [75].

There is an entirely different territory to explore when one veers off F[G]
into a ‘deformation’ of its algebraic structure. For instance, consider a finite
group W generated by a family of reflections r1,..., rm across hyperplanes in
some Euclidean space R

N . In the group algebra F[W ], the relations r2
j
= 1
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hold. Now consider an algebra F[W ]q, with q being a, possibly formal, pa-
rameter, generated by elements r1, ..., rm satisfying the relations that the
reflections rj satisfy except that each relation r

2
j
= 1 is replaced by a ‘defor-

mation’:

r
2
j
= q1− (1− q)rj.

When q = 0 this reduces to the group algebra F[W ]. This leads to the study
of Hecke algebras and the general idea of deformation of algebras. This notion
of deformation sees an instance in the relationship between certain algebras of
functions, or observables, for a classical physical system and algebras for the
corresponding observables for the quantum theory of the physical systems.

Exercises

1. Let G be a group and F a field such that the algebra F[G] is semisimple.
Let L be a simple F[G]-module and consider the map I : F[G] → L :
x �→ xv, for any fixed nonzero v ∈ L. Using I, and just the fact that
every submodule of F[G] has a complement, produce a submodule of
F[G] that is isomorphic to L.

2. Let G be a finite group and F a field, and for each g ∈ G let R(g) :
F[G] → F[G] : x �→ gx provide the regular representation. Using the
elements of G as basis of F[G] check that the (a, b)-th entry of the
matrix for R(g) is

R(g)ab
def
=

�
1 if g = ab

−1;

0 if g �= ab
−1.

(4.18)

Now introduce a variable Xg for each g ∈ G, and verify that the matrix

DG =
�

g∈G

R(g)Xg (4.19)

has (a, b)-th entry Xab−1 . The determinant of the matrix DG was intro-
duced by Dedekind [19] and named the group determinant; its factor-
ization, now among the many memes lost to mutations in mathematical
evolution, gave rise to the notion of characters of groups. We will re-
turn to this in section 7.7. For now show that the group determinant
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for a cyclic group of order n factors as a product of linear terms:
���������

X0 Xn−1 Xn−2 . . . X1

X1 X0 Xn−1 . . . X2
...

...
... · · · ...

Xn−1 Xn−2 Xn−3 . . . X0

���������

=
n�

i=1

�
X0 + η

j
X1 + η

2j + · · ·+ η
(n−1)j

Xn−1

�
,

(4.20)

where η is any primitive n-th root of unity. The type of determinant
on the left in (4.20) is (or, more accurately, was) called a circulant.

3. Let G be a finite group, and for each g ∈ G consider indeterminates
Xg and Yg. Explain the the matrix commutation identity:

[Xab−1 ]a,b∈G[Yb−1a]a,b∈G = [Yb−1a]a,b∈G[Xab−1 ]a,b∈G. (4.21)

4. Let C1, ..., Cr be the distinct conjugacy classes in G. For each i ∈ [r] =
{1, ..., r} we have the central element zi ∈ F[G] that is the sum of all
the elements of Ci. Recall from (3.7) the structure constants κijk of G,
specified by requiring that

zizk =
r�

j=1

κi,jkzj.

Thus κi,jk is the number of solutions (a, c) ∈ Ci × Ck, of the equation
a = bc

−1, for fixed b ∈ Cj. Next let

Mi = [κi,jk]j,k∈[r]

be the r × r matrix of the restriction of R(zi) to the center Z of F[G],
relative to the basis {zj : j ∈ [r]}. Since everything is in the center, the
matrices M1, ...,Mr commute with each other. Now attach a variable
Yg to each g but with the condition that Yg = Yh if g and h are in
the same conjugacy class; also denote this common variable for the
conjugacy class Ci as Yi. Consider the r × r matrix

FZG = det

�
r�

i=1

MiYi

�
. (4.22)
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Explain why FZG is a product of linear factors of the type λ1Y1+ · · ·+
λmYm.

5. In the following, G is a finite group, F a field, and A = F[G]. No
assumption is made about the characteristic of F. An A-module is said
to be indecomposable if it is not 0 and is not the direct sum of two
non-zero submodules.

(a) Show that if e and f1 are idempotents in A with f1e = f1 then

e1
def
= ef1e and e2

def
= e − e1 are orthogonal idempotents, with

e = e1 + e2, with e1e = e1 and e2e = e2.

(b) Show that if y is an indecomposable idempotent in A then the
left ideal Ay cannot be written as a direct sum of two distinct
non-zero left ideals.

(c) Suppose L is a left ideal in A that has a complementary ideal Lc,
such that A is the direct sum of L and Lc. Show that there is an
idempotent y ∈ L such that L = Ay.

(d) Prove that there is a largest positive integer n such that there
exist non-zero orthogonal idempotents y1, ..., yn in A whose sum
is 1. Show that each yi is indecomposable.

(e) Prove that there is a largest positive integer s such that there exist
non-zero central idempotents u1, ..., us for which u1+ · · ·+us = 1.

(f) Show that, with notation as in (5e), ujuk = 0 if j �= k and j, k ∈
{1, ..., s}.

(g) Prove that any central idempotent u is a sum of some of the ui of
(5e). Then show that the set {u1, ..., us} is uniquely specified as
the largest set of nonzero central idempotents adding up to 1.

(h) With u1, ..., us as above, show that each ui is a sum of some of the
idempotents e1, ..., en in (5d). If ei appears in the sum for ur then
eiur = ei and eiut = 0 for t �= r.

(i) Show that Aui is indecomposable in the sense that it is not the
direct sum of two non-zero left ideals, and that the map

s�

i=1

Aui → A : (a1, ..., as) �→ a1 + · · ·+ as

is an isomorphism of algebras.
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(j) Show that A is the direct sum of indecomposable submodules
V1, ..., Vn.

(k) Let E be a finite dimensional indecomposable A-module. Prove
that there is a submodule E0 ⊂ E that is maximal in the sense
that E is the only submodule of E which contains E0 as a proper
subset. Then show that E/E0 is a simple A-module.

(l) Let φ : F → F be an automorphism of the field F (for example, φ
could be simply the identity or, in the case of the complex field,
φ could be conjugation). Suppose Φ : A → A is a bijection which
is additive, φ-linear:

Φ(kx) = φ(k)Φ(x) for all k ∈ F and x ∈ F[G]

and for which either Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A or Φ(ab) =
Φ(b)Φ(a) for all a, b ∈ A. Show that

{Φ(u1), ...,Φ(us)} = {u1, ..., us}.

Thus, for each i there is a unique Φ(i) such that Φ(ui) = uΦ(i).

(m) Let
Tre : F[G] → F : x �→ xe.

Show that
Tre(xy) = Tre(yx).

Assuming that Φ maps G into itself show that

Tre Φ(x) = φ(Tre x).

(n) Consider the pairing

(·, ·)Φ : A× A → F : (x, y) �→ Tr e

�
xΦ(y)

�
,

which is linear in x and φ-linear in y. Prove that this pairing is
nondegenerate in the sense that: (a) if (x, y)Φ = 0 for all y ∈ A

then x is 0, and (b) if (x, y)Φ = 0 for all x ∈ A then y is 0. Check
that this means that the map y �→ y

� of A to its dual vector space
A

� specified by
y
�(x) = (x, y)Φ
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is an isomorphism of vector spaces over F, where for the vector
space structure on A

� multiplication by scalars is specified by

(cf)(x) = φ(c)f(x)

for all c ∈ F, f ∈ A
�, and all x ∈ A. Assuming that Φ maps G

into itself, show that

(Φ(x),Φ(y))Φ = φ ((x, y)Φ)

(o) Show that for each i ∈ {1, ..., s} the pairing

Aui × Auj → A : (x, y) �→ (x, y)Φ

is non-degenerate if j = Φ−1(i), and is 0 otherwise.

(p) Take the special case Ψ for Φ given by

Ψ(x) = x̌ =
�

g∈G

x(g)g−1

Show that the pairing (·, ·)Ψ is G-invariant in the sense that

(gx, gy)Ψ = (x, y)Ψ

for all x, y ∈ F[G] and g ∈ G. Then show that the induced
map A → A

� : y �→ y
� is an isomorphism of left F[G]-modules,

where the dual space A
� is a left F[G]-module through the dual

representation of G on A
� given by

ρ
�
reg(g)f

def
= f ◦ ρreg(g)−1

(q) Let Lk = Ayk, where yk is one of the idempotents in a string
of orthogonal indecomposable idempotents y1, ..., yn adding up to
1. Prove that the dual vector space L�

k
, with the left F[G]-module

structure given by the dual representation (ρreg|Lk)�, is isomorphic
to Lj for some j ∈ [n]. (We have seen a version of this back in
Theorem 1.7.1.) Moreover, Lk � L

�
j
.

(r) Let E be an indecomposable left A-module, and let y1, ..., yn be a
string of indecomposable orthogonal idempotents in A adding up
to 1. Show that yjE �= 0 for some j ∈ [n].
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(s) Let F be a simple left A-module, and suppose yjF �= 0, as above.
Let W = {x ∈ Ayj : xF = 0}, which is a left ideal of A contained
inside Ayj. Show that Ayj/W � F , isomorphic as A-modules,
and conclude that W is a maximal proper submodule of Ayj.

(t) Let E be a simple left A-module, and, apply the previous step
with F = E

�, where E
� is the dual vector space with the usual

dual representation/A-module structure, to obtain j ∈ [n] with
yjE

� �= 0 and a maximal proper submodule W in Ayj. Continuing
notation from above, Ayj � (Ayk)� (we use � to denote isomor-
phism of A-modules) for some k ∈ [n]. Let W̃ the image of W in
(Ayk)� � Ayj. Then

(Ayj)/W � (Ayk)
�
/W̃ � W̃

�
0, (4.23)

where we used Lemma 1.6.1 with W̃0 being the annihilator

W̃0
def
= {x ∈ Ayk : f(x) = 0 for all f ∈ W̃}, (4.24)

as A-modules. Using Lemma 1.6.1 show that W̃0 is a simple sub-
module of Ayk. Conclude (by Exercise 1. 11) that

E
� � W̃

�
0, (4.25)

and then E � W0, as A-modules (see Exercise 1.11). Thus, ev-
ery simple A-module is isomorphic to a submodule of one of the
indecomposable A-modules Ayk.

6. Work out all idempotents in the algebra Z2[S3].

7. Let τ be a 1-dimensional representation of a groupG. Show that τ maps
all elements of the commutator subgroup (the subgroup generated by
aba

−1
b
−1 with a, b running over G) to 1. Use this to show that in the

case G = Q = {±1,±i,±j,±k}, the group of unit quaternions, τ(−1)
must be 1 and hence that τ(i) and τ(j) must be ±1. (We saw this
earlier in (2.11).

8. Let G be a finite group and F an algebraically closed field in which
|G|1F is not 0. Show that the number of inequivalent 1-dimensional
representations of G over F is |G/G

�|, where G
� is the commutator

subgroup of G.
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9. Let G be a cyclic group, and F algebraically closed in which |G|1F is not
0. Decompose F[G] as a direct sum of 1-dimensional representations of
G.

10. Let y =
�

g∈G ygg ∈ Z[G], and suppose that y
2 is a rational multiple

of y and ye = 1.

(i) Show that there is a positive integer γ which is a divisor of |G|,
and for which γ

−1
y is an idempotent.

(ii) Show that the dimension of the representation space for the idem-
potent γ−1

y is a divisor of |G|.

11. Let τ : G → F
× be a homomorphism of the finite groupG into the group

of invertible elements of the field F, and assume that the characteristic
of F is not a divisor of |G|. Let

uτ =
1

|G|
�

g∈G

τ(g−1)g

Show that uτ is an indecomposable idempotent.

12. Let R be a commutative ring, G a finite group, and y an element of
R[G] for which gy = y for all g ∈ G. Show that y = yes, where
s =

�
g
g.

13. Show that, for any field F, the ring F[G] is not semisimple if G is an
infinite group.

14. Let R be a commutative ring of prime characteristic p > 0, G a group
with |G| = p

n for some positive integer n, and E an R[G]-module.
Choose a nonzero v ∈ E and let E0 be the Z-linear span of Gv = {gv :
g ∈ G} in E. Then E0 is a finite dimensional vector space over the field
Zp, and so |E0| = p

d, where d = dimZp
E0 ≥ 1. By partitioning the set

E0 into the union of disjoint orbits under the action of G, show that
there exists a nonzero w ∈ E0 for which gw = w for all g ∈ G. Now
show that if the R[G]-module E is simple then E = Rw and gv = v for
all v ∈ E.

15. Let F is a field of characteristic p > 0, and G a group with |G| = p
n for

some positive integer n. Prove that F[G] is indecomposable, and Fs,
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where s =
�

g
g, is the unique simple left ideal in F[G]. Show also that

ker � is the unique maximal ideal in F[G], where � : F[G] → F :
�

g
xg �→�

g
xg. In the converse direction, prove that if F has characteristic p > 0

and G is a finite group such that F[G] is indecomposable then |G| = p
n

for some positive integer n.



Chapter 5

Simply Semisimple

We have seen that the group algebra F[G] is especially rich and easy to
explore when |G|, the number of elements in the group G, is not divisible by
the characteristic of the field F. What makes everything flow so well in this
case is that the algebra F[G] is semisimple. In this chapter we are going to
fly over largely the same terrain as we have already, but this time replacing
F[G] by a more general ring, and looking at everything directly through
semisimplicity. This chapter can be read idependently of the previous ones,
although occasional look backs would be pleasant.

We will be working with modules over a ring A with unit 1 �= 0. So,
all through this chapter A denotes such a ring. Note that A need not be
commutative. Occasionally, we will comment on the case where the ring A

is an algebra over a field F.

By definition, a module E over the ring A is semisimple if for any sub-
module F in E there is a submodule Fc in E, such that E is the direct sum
of F and Fc.

A ring is said to be semisimple if it is semisimple as a left module over
itself.

A module is said to be simple if it is not 0 and contains no submodule
other than 0 and itself.

A (termino)logical pitfall to note: the zero module 0 is semisimple but
not simple.

Aside from the group ring F[G], the algebra EndFV of all endomorphisms
of a finite dimensional vector space V over a field F is a semisimple algebra
(a matrix formalism verification is traced out in Exercise 5.5).

125
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5.1 Schur’s Lemma

Suppose
f : E → F

is linear, where E is a simple A-module and F an A-module. The kernel

ker f = f
−1(0)

is a submodule of E and hence is either {0} or E itself. If, moreover, F is
also simple then f(E), being a submodule of F , is either {0} or F . This is
Schur’s Lemma:

Theorem 5.1.1 If E and F are simple modules over a ring A, then every
non-zero element in

HomA(E,F )

is an isomorphism of E onto F .

For a simple A-module E �= 0, this implies that every non-zero element
in the ring

EndA(E)

has a multiplicative inverse. Such a ring is called a division ring; it falls short
of being a field only in that multiplication (which is composition in this case)
is not necessarily commutative.

We can now specialize to a case of interest, where A is a finite dimensional
algebra over an algebraically closed field F. We can view F as a subring of
EndA(E):

F � F1 ⊂ EndA(E),

where 1 is the identity element in EndA(E). The assumption that F is alge-
braically closed implies that F has no proper finite extension, and this leads
to the following consequence:

Theorem 5.1.2 Suppose A is a finite dimensional algebra over an alge-
braically closed field F. Then for any simple A-module E that is finite di-
mensional as a vector space over F:

EndA(E) = F,

upon identifying F with F1 ⊂ EndA(E). Moreover, if E and F are simple
A-modules, then HomA(E,F ) is either {0} or a 1-dimensional vector space
over F.



Representing Finite Groups 3/2011 127

Proof. Let x ∈ EndA(E). Suppose x /∈ F1. Note that x commutes with
all elements of F1. Since EndA(E) ⊂ EndF(E) is a finite-dimensional vector
space over F, there is a smallest natural number n ∈ {1, 2, ...} such that
1, x, ..., xn are linearly dependent over F; put another way, there is a polyno-
mial p(X) ∈ F[X], of lowest degree, with deg p(X) = n ≥ 1, such that

p(x) = 0.

Since F is algebraically closed, p(X) factorizes over F as

p(X) = (X − λ)q(X)

for some λ ∈ F. Consequently, x − λ1 is not invertible, for otherwise q(x),
of lower degree, would be 0. Thus, by Schur’s Lemma (Theorem 5.1.1),
x = λ1 ∈ F1.

Now suppose E and F are simple A-modules, and suppose there is a non-
zero element f ∈ HomA(E,F ). By Theorem 5.1.1, f is an isomorphism. If g
is also an element of HomA(E,F ), then f

−1
g is in EndA(E,E), and so, by the

first part, is an F-multiple of the identity element in EndA(E). Consequently,
g is an F-multiple of f . QED

The preceding proof can be shortened by appeal to Wedderburn’s result
that every finite dimensional division algebra D over any algebraically closed
field F is F itself, viewed as a subset of D (Theorem 1.8.2).

5.2 Semisimple Modules

We will work with modules over a ring A with unit element 1 �= 0.

Proposition 5.2.1 Submodules and quotient modules of semisimple modules
are semisimple.

Proof. Let F be a submodule of a semisimple module E. We will show that
F is also semisimple. To this end, let L be a submodule of F . Then, by
semisimplicity of E, the submodule L has a complement Lc in E:

E = L⊕ Lc.

If f ∈ F we can decompose it uniquely as

f = a����
∈L

+ ac����
∈Lc
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Then
ac = f − a ∈ F

and so, in the decomposition of f ∈ F as a + ac, both a and ac are in F .
Hence

F = L⊕ (Lc ∩ F ).

Having found a complement of any submodule inside F , we have semisim-
plicity of F .

If Fc is the complementary submodule to F in E, then we have the iso-
morphism of modules:

Fc → E/F : x �→ x+ F.

So E/F , being isomorphic to the submodule Fc, is semisimple. QED
For another perspective on the preceding result see Exercise 19.
Complements are not unique but something can be said about different

choices of complements:

Proposition 5.2.2 Let L be a submodule of a module E over a ring. Then
E is the direct sum of L and a submodule Lc of E if and only if the quotient
map E → E/L restricts to an isomorphism of Lc onto E/L.

Proof. Let q : E → E/L be the quotient map. If E = L+ Lc as a sum then
q(Lc) = q(E) = E/L. Next, ker(q|Lc) = Lc∩L and so q|Lc is injective if and
only if the sum L+ Lc is direct. QED

Our goal is to decompose a module over a semisimple ring into direct sum
of simple submodules. The first obstacle in reaching this goal is a strange
one: how do we even know there is a simple submodule? If the module
happens to come automatically equipped with a vector space structure then
we can use dimension as the steps of a ladder to climb down all the way to a
minimal dimensional submodule. Without a vector space structure, it seems
we are looking down an endless abyss of uncountable descent. Fortunately,
this transfinite abyss can be plumbed using Zorn’s Lemma.

Proposition 5.2.3 Let E be a nonzero semisimple module over a ring A.
Then E contains a simple submodule.

Proof. Pick a nonzero v ∈ E, and consider Av. A convenient feature of Av is
that a submodule of Av is proper if and only if it does not contain v. We will
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produce a simple submodule inside Av, as complement of a maximal proper
submodule. A maximal proper submodule is produced using Zorn’s Lemma.
Let F be the set of all proper submodules of Av. If G is a nonempty subset of
F that is a chain in the sense that if H,K ∈ G then H ⊂ K or K ⊂ H, then
∪G is a submodule of Av that does not contain v. Hence, Zorn’s Lemma is
applicable to F and implies that there is a maximal element M in F . This
means that a submodule of Av that contains M is Av or M itself. Now we
use semisimplicity of E which implies that Av is also semisimple. Then there
is a submodule Mc ⊂ Av such that Av is the direct sum of M and Mc. We
claim that Mc is simple. First, Mc �= 0 because otherwise M would be all of
Av which it isn’t since it is missing v. Next, if L is a nonzero submodule of
Mc then M + L is a submodule of Av properly containing M and hence is
all of Av, and this implies L = Mc. Thus, Mc is a simple module. QED

Now we will prove some convenient equivalent forms of semisimplicity.
The idea of producing a minimal module as complement of a maximal one
will come in useful. The argument, at one point, will also use the reasoning
that leads to a basic fact about vector spaces: if T is a linearly independent
subset of a vector space, and S a subset that spans the whole space, then a
basis of the vector space is formed by adjoining to T a maximal subset of S
which respects linear independence.

Theorem 5.2.1 The following conditions are equivalent for an A-module E:

(i) E is semisimple;

(ii) E is a sum of simple submodules;

(iii) E is a direct sum of simple submodules.

If E = {0} then the sums in (ii) and (iii) are empty sums. The proof also
shows that if E is the sum of a set of simple submodules then E is a direct
sum of a subset of this collection of submodules.
Proof. Assume that (i) holds. Let F be the sum of a maximal collection of
simple submodules of E; such a collection exists, by Zorn’s Lemma. Then
E = F ⊕ Fc, for a submodule Fc of E. We will show that Fc = 0. Suppose
Fc �= 0. Then, by Proposition 5.2.3, Fc has a simple submodule, and this
contradicts the maximality of F . Thus, E is a sum of simple submodules.
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Now let E be any A-module, and F a submodule that is contained in the
sum of a family {Ej}j∈J of simple submodules of E:

F ⊂
�

j∈J

Ej.

Zorn’s lemma extracts a maximal subset K (possibly empty) of J such that
the sum

H = F +
�

k∈K

Ek

is a direct sum of the family {F} ∪ {Ek : k ∈ K}. For any j ∈ J , the
intersection Ej ∩H is a submodule of Ej and so is either 0 or Ej. It cannot
be 0 by maximality of K. Thus, Ej ⊂ H for all j ∈ J , and so

�
j∈J Ej ⊂ H.

Thus, �

j∈J

Ej = F +
�

k∈K

Ek

which is a direct sum of the family {F} ∪ {Ek : k ∈ K}.
Applying the conclusion above to the case where {Ej}j∈J span all of E,

and taking F = 0, we see that E is a direct sum of some of the simple
submodules Ek. This proves that (ii) implies (iii).

Next, applying our observation to a family {Ej}j∈J that gives a direct
sum decomposition of E, and taking F to be any submodule of E, it follows
that

E = F ⊕ Fc,

where Fc is a direct sum of some of the simple submodules Ek. Thus, (iii)
implies (i). QED

5.3 Deconstructing Semisimple Modules

In Theorem 5.2.1 we saw that a semisimple module is a sum of simple sub-
modules. In this section we will use this to reach a full structure theorem for
semisimple modules.

We begin with an observation about simple modules that is analogous to
the situation for vector spaces. Indeed, the proof is accomplished by viewing
a module as a vector space (for more logical handwringing see Theorem 5.3.3).

Theorem 5.3.1 If E is a simple A-module, then E is a vector space over
the division ring EndA(E). If En � E

m as A-modules, then n = m.
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Proof. If E is a simple A-module then, by Schur’s lemma,

D
def
= EndA(E)

is a division ring. Thus, E is a vector space over D. Then E
n is the product

vector space over D. If dimD E were finite, then we would be done. In the
absence of this, there is a clever alternative route. Look at EndA(En). This is
a vector space over D, because for any λ ∈ D and A-linear f : En → E

n, the
map λf is also A-linear. In fact, each element of EndA(En) can be displayed,
as usual, as an n × n matrix with entries in D. Moreover, this effectively
provides a basis of the D-vector space EndA(En) consisting of n2 elements.
Thus, En � E

m implies n = m. QED
Now we can turn to the uniqueness of the structure of semisimple modules

of finite type:

Theorem 5.3.2 Suppose a module E over a ring A can be expressed as

E � E
m1
1 ⊕ . . .⊕ E

mn

n
(5.1)

where E1, ..., En, are non-isomorphic simple modules, and each mi is a posi-
tive integer. Suppose also that E can be expressed also as

E � F
j1
1 ⊕ . . .⊕ F

jm

m

where F1, ..., Fm, are non-isomorphic simple modules, and each ji is a positive
integer. Then m = n, and each Ea is isomorphic to one and only one Fb,
and then ma = jb. Every simple submodule of E is isomorphic to Ej for
exactly one j ∈ [n].

Proof. Let H be any simple module isomorphic to a submodule of E. Then
composing an isomorphism H → E with the projection E → Er, we see
that there exists an a for which the composite H → Ea is not zero and
hence H � Ea. Similarly, there is a b such that H � Fb. Thus each Ea is
isomorphic to some Fb. The rest follows by Theorem 5.3.1. QED

The preceding results, or variations on them, are generally called, in
combination, the Krull-Schmidt theorem. There is a way to understand them
without peering too far into the internal structure or elements of a module;
instead we can look at the partially ordered set, or lattice, of submodules of
a module. Exercises 5.18 and 5.19 provide a glimpse into this approach, and



132 Ambar N. Sengupta

we include it as a token tribute to Dedekind’s much-maligned foundation of
lattice theory [17, 18] (see the ever readable Rota [65] for historical context).

The arguments proving the preceding results rely on the uniqueness of
dimension of a vector space over a division ring. The proof of this is iden-
tical to the case of vector spaces over fields, and is elementary in the finite
dimensional case. The proof of uniqueness of dimension for infinite dimen-
sional spaces is an unpleasant application of Zorn’s Lemma (see Hungerford
[46]). Alternatively, the tables can be turned and the decomposition theory
for semisimple modules, specialized all the way down to the case of division
rings can be used as proof for the existence of basis and uniqueness of dimen-
sion of a vector space over a division ring. With this perspective, we have
(adapted from Chevalley [13]):

Theorem 5.3.3 Let E and F be modules over a ring A, such that E and
F are both sums of simple submodules. Assume that every simple submodule
of E is isomorphic to every simple submodule of F . Then the following are
equivalent: (i) E and F are isomorphic; (ii) any set of simple submodules of
E whose direct sum is all of E has the same cardinality as any set of simple
submodules of F whose direct sum is F . In particular, if A is a division ring
then any two bases of a vector space over A have the same cardinality.

Proof. By Theorem 5.2.1, if a module is the sum of simple submodules then
it is also a direct sum of a family of simple submodules. Let E be the direct
sum of simple submodules Ei, with i running over a set I, and F the direct
sum of simple submodules Fj with j running over a set J . Suppose that each
Ei is isomorphic to each Fj; if |I| = |J | then we clearly obtain an isomorphism
E → F .

Now assume, for the converse, that f : E → F is an isomorphism. First
we work with the case when I is a finite set. The argument is by induction
on |I|. If I = ∅ then E = 0 and so F = 0 and J = ∅. Now suppose I �= ∅,
assume the claimed result for smaller values of |I|, and pick a ∈ I. Then,
by Theorem 5.2.1, a complement H of f(Ea) in F is formed by adding up a
suitable set of Fj’s:

F = f(Ea) +d H,

where +d signifies (internal) direct sum, with

H =
�

j∈S

Fj,
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and S is a subset of J . Now choose b ∈ J such that Fb is not contained inside
H; such a b exists because f(Ea), being an isomorphic copy of the simple
module Ea, is not 0. Then the quotient map q : F → F/H is not 0 when
restricted to Fb and so, by Schur’s Lemma used on the simplicity of Fb and
of F/H � f(Ea) � Ea, the restriction q|Fb : Fb → F/H is an isomorphism.
Then by Proposition 5.2.2, Fb is also a complement of H. But then

Fb +d

�

j∈S

Fj = Fb +d H = F = Fb +d

�

j∈J−{b}

Fj,

and, these being direct sums, we conclude that S = J − {b}. Combining the
various isomorphisms, we have

E/Ea�F/f(Ea) � H � F/Fb.

This implies that the direct sum of the simple modules Ei, with i ∈ I − {a},
is isomorphic to the direct sum of the simple modules Fj with j ∈ J − {b}.
Then by the induction hypothesis, |I − {a}| = |J − {b}|, whence |I| = |J |.

Consider now the case of infinite I. For any i ∈ I, pick nonzero xi ∈ Ei,
and observe that there is a finite set Si ⊂ J such that f(xi) ∈

�
j∈Si

Fi,
whence f(Ei) ⊂

�
j∈Si

Fj. Let S∗ be the union of all the Si; then

f(E) ⊂
�

j∈S∗

Fj.

But f(E) = F , and so S∗ = J . The cardinality of S∗ is the same as that
of I, because I is infinite (this is a little set theory observation courtesy of
Zorn’s Lemma). Hence, |I| = |J |.

Lastly, suppose A is a division ring. Observe that an A-module is simple
if and only if it is of the form Av for a nonzero element v in the module. Thus
every decomposition {Ei}i∈I of an A-module E into a direct sum of simple
modules gives rise to a choice of a basis {vi}i∈I for E of the same cardinality
|I| and, conversely, every choice of basis of E gives rise to a decomposition
into a direct sum of simple submodules. QED

5.4 Simple Modules for Semisimple Rings

An element y in a ring A is an idempotent if y2 = y. Idempotents v, w are
orthogonal if vw = wv = 0. An idempotent y is indecomposable if it is not
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zero and is not the sum of two nonzero, orthogonal idempotents. A central
idempotent is one which lies in the center of A.

Here is an ambidextrous upgrade on Proposition 4.2.1, formulated with-
out using semisimplicity.

Proposition 5.4.1 If y is an idempotent in a ring A then the following are
equivalent:

(i) y is an indecomposable idempotent;

(ii) Ay cannot be decomposed as a direct sum of two nonzero left ideals in
A;

(iii) yA cannot be decomposed as a direct sum of two nonzero right ideals in
A.

We omit the proof, which you can read out by replacing F[G] with A in the
proof of Proposition 4.2.1, and then going through a second run with ‘left’
replaced by ‘right.’

If a left ideal can be expressed as Ay we say that y is a generator of the
ideal. Similarly, if a right ideal has the form yA we call y a generator of the
ideal.

Theorem 5.4.1 Let L be a left ideal in a ring A. The following are equiva-
lent:

(a) there is a left ideal Lc such that A is the direct sum of L and Lc;

(b) there is an idempotent yL ∈ L such that L = AyL.

If (a) and (b) hold then
LL = L. (5.2)

Proof. Suppose
A = L⊕ Lc,

where Lc is also a left ideal in A. Then the multiplicative unit 1 ∈ A

decomposes as
1 = yL + yc,
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where yL ∈ L and yc ∈ Lc. For any a ∈ A we then have

a = a1 = ayL����
∈L

+ ayc����
∈Lc

This shows that a belongs to L if and only if it is equal to ayL. In particular,
y
2
L
equals yL, and L = AyL. Moreover,

L = AyL = AyLyL ⊂ LL.

Of course, L being a left ideal, we also have LL ⊂ L. Thus, LL equals L.
Conversely, suppose L = AyL, where yL ∈ L is an idempotent. Then A

is the direct sum of L = AyL and and Lc = A(1− yL). QED
Next we see why simple modules are isomorphic to simple left ideals. The

criteria obtained here for simple modules to be isomorphic will prove useful
later.

Theorem 5.4.2 Let L be a left ideal in a ring A, and E a simple left A-
module. Then exactly one of the following holds:

(i) LE = 0;

(ii) LE = E and L is isomorphic to E.

If, moreover, the ring A is semisimple, and LE = 0 then E is not isomorphic
to L as a left A-module.

Proof. Since LE is a submodule of E, it is either {0} or E. Suppose LE = E.
Then take a y ∈ E with Ly �= 0. By simplicity of E, then Ly = E. The map

L �→ E = Ly : a �→ ay

is an A-linear surjection, and it is injective because its kernel, being a sub-
module of the simple module L, is {0}. Thus, if LE = E then L is isomorphic
to E.

Now assume that A is semisimple. If f : L → E is A-linear then

f(L) = f(LL) = Lf(L) = LE

Thus, if f is an isomorphism, so that f(L) = E, then E = LE. QED
Finally a curious, but convenient fact about left ideals that are isomorphic

as A-modules:
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Proposition 5.4.2 If L and M are isomorphic left ideals in a semisimple
ring A then

L = Mx,

for some x ∈ A.

Proof. We know that M = AyM , for some idempotent yM . Let f : M → L

be an isomorphism of A-modules. Then

L = f(M) = f(AyMyM) = AyMf(yM) = Mx,

where x = f(yM). QED

5.5 Deconstructing Semisimple Rings

We will work with a semisimple ring A. Recall that this means that A is
semisimple as a left module over itself.

Semisimplicity decomposes A as a direct sum of simple submodules. A
submodule in A is just a left ideal. Thus, we have a decomposition

A =
�

{all simple left ideals of A.}

Let
{Li}i∈R

be a maximal family of non-isomorphic simple left ideals in A; such a family
exists by Zorn’s Lemma. Let

Ai =
�

{L : L is a left ideal isomorphic to Li}

Another convenient way to express Ai is as LiA:

Ai = LiA,

which makes it especially clear that Ai is a two sided ideal.
By Theorem 5.4.2, we have

LL
� = 0 if L is not isomorphic to L

�.

So
AiAj = 0 if i �= j (5.3)
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Since A is semisimple, it is the sum of all its simple left ideals, and so

A =
�

i∈R

Ai.

Thus, A is a sum of two sided ideals Ai. As it stands there seems to be no
reason why R should be a finite set; yet, remarkably, it is finite!

The finiteness of R becomes visible when we look at the decomposition
of the unit element 1 ∈ A:

1 =
�

i∈R

ui����
∈Ai

. (5.4)

The sum here, of course, is finite; that is, all but finitely many ui are 0. For
any a ∈ A we can write

a =
�

i∈R

ai with each ai in Ai.

Then, on using (5.3),
aj = aj1 = ajuj = auj.

Thus a determines the ‘components’ aj uniquely, and so

the sum A =
�

i∈R Ai is a direct sum.

If some uj were 0 then all the corresponding aj would be 0, which cannot
be since each Aj is non-zero. Consequently,

the index set R is finite.

Since we also have, for any a ∈ A,

a = 1a =
�

i∈R

uia,

we have from the fact that the sum A =
�

i
Ai is direct,

uia = ai = aui.

Hence, ui is the multiplicative identity in Ai.
We have arrived at a first view of the structure of semisimple rings:
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Theorem 5.5.1 Suppose A is a semisimple ring. Then there are finitely
many left ideals L1, ..., Lr in A such that every left ideal of A is isomorphic,
as a left A-module, to exactly one of the Lj. Furthermore,

Aj = LjA = sum of all left ideals isomorphic to Lj

is a two sided ideal, with a non-zero unit element uj, and A is the product of
the rings Aj, in the sense that the map

r�

i=j

Ai → A : (a1, ..., ar) �→ a1 + · · ·+ ar (5.5)

is an isomorphism of rings. Any simple left ideal in Aj is isomorphic to Lj.
Moreover,

1 = u1 + · · ·+ ur

Aj = Auj

AiAj = 0 for i �= j.

(5.6)

Here is a summary of the properties of the elements ui:

Proposition 5.5.1 Let L1, ..., Lr be simple left ideals in a semisimple ring
A such that every left ideal of A is isomorphic, as a left A-module, to exactly
one of the Lj. Let Aj = LjA and uj an idempotent generator of Aj. Then
u1, ..., ur are non-zero, lie in the center of the algebra, and satisfy

u
2
i
= ui, uiuj = 0 if i �= j

u1 + · · ·+ ur = 1.
(5.7)

Moreover, u1, ..., ur is a longest set of nonzero central idempotents satisfying
(5.7). Multiplication by ui in A is the identity on Ai and is 0 on all Aj for
j �= 1.

The two sided ideals Aj are, it turns out, minimal two sided ideals, and
every two sided ideal in A is a sum of certain Aj.

Theorem 5.5.2 Let Aj = LjA, where L1, ..., Ls are simple left ideals in a
semisimple ring A such that every simple left ideal is isomorphic, as a left
A-module, to exactly one of the Li. Then Aj is a ring in which the only two
sided ideals are 0 and Aj. Every two sided ideal in A is a sum of some of the
Aj.
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Proof. Suppose J �= 0 is a two sided ideal of Aj. Since AiAk = 0 if i �= k it
follows that J is also a two sided ideal in A. Since A is semisimple, so is J as
a left submodule of A. Then J is a sum of simple left ideals of A. Let L be
a simple left ideal of A contained inside J . Now recall that Aj is the sum of
all left ideals isomorphic to a certain simple left ideal Lj, and that all such
left ideals are of the form Ljx for x ∈ A. Then, since J is also a right ideal,
each such Ljx is inside J and so Aj ⊂ J . Thus, the only non zero two sided
ideals of Aj are 0 and itself.

Now consider any two sided ideal I in A. Then AI ⊂ I, but also I ⊂ AI

since 1 ∈ A. Hence
I = AI = A1I + · · ·+ ArI

Note that AjI is a two sided ideal, and AjI ⊂ Aj. By the property we have
already proved it follows that AjI is either 0 or Aj. Consequently,

I =
�

j:AjI �=0

Aj. QED

5.6 Simply Simple

Let A be a semisimple ring; as we have seen, A is the product of minimal two
sided ideals A1, ..., Ar, where each Aj is the sum of all left ideals isomorphic,
as left A-modules, to a specific simple left ideal Lj. Each subring Aj is
isotypical, in that it is the sum of simple left ideals that are all isomorphic
to one common left ideal.

We say that a ring B is simple if it is a sum of simple left ideals that are
all isomorphic to each other as left B-modules.

Since, by Proposition 5.4.2, all isomorphic left ideals are right translates
of one another, a simple ring B is a sum of right translates of any given
simple left ideal L. Consequently,

B = LB if B is a simple ring, and L any simple left ideal. (5.8)

As consequence we have:

Proposition 5.6.1 The only two sided ideals in a simple ring are 0 and the
whole ring itself.

Proof. Let I be a two sided ideal in a simple ring B, and suppose I �= 0.
By simplicity, I is a sum of simple left ideals, and so, in particular, contains
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a simple left ideal L. Then by (5.8) we see that LB = B. But LB ⊂ I,
because I is also a right ideal. Thus, I = B. QED

For a ring B, any B-linear map f : B → B is completely specified by the
value f(1), because

f(b) = f(b1) = bf(1)

Moreover, if f, g ∈ EndB(B) then

(fg)(1) = f(g(1)) = g(1)f(1),

and so we have a ring isomorphism

EndB(B) → B
opp : f �→ f(1) (5.9)

where Bopp, the opposite ring, is the ring B with multiplication in ‘opposite’
order:

(a, b) �→ ba.

We then have

Theorem 5.6.1 If B is a simple ring, then B is isomorphic to a ring of
matrices

B � Matrn(D
opp), (5.10)

where n is a positive integer, and D is the division ring EndB(M) for any
simple left ideal M in B.

Proof. We know that B is the sum of a finite number of simple left ideals,
each of which is isomorphic, as a left B-module, to any one simple left ideal
M . Then B � M

n, as left B-modules, for some positive integer n. We also
know that there are ring isomorphisms

B
opp � EndB(B) = EndB(M

n) � Matrn(D)

Taking the opposite ring, we obtain an isomorphism of B with Matrn(D)opp.
But now consider the transpose of n× n matrices:

Matrn(D)opp → Matrn(D
opp) : A �→ A

tr
.

Then, working in components of the matrices, and denoting ‘opposite’ mul-
tiplication by ∗:

(A ∗B)tr
ik
= (BA)ki =

n�

j=1

BkjAji =
n�

j=1

Aji ∗Bkj,
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which is the ordinary matrix product A
tr
B

tr in Matrn(Dopp). Thus, the
transpose gives an isomorphism Matrn(D)opp � Matrn(Dopp). QED

The opposite ring often arises in matrix representations of endomor-
phisms. If M is a 1-dimensional vector space over a division ring D, with
a basis element v, then to each T ∈ EndD(M) we can associate the ‘ma-
trix’ element T̂ ∈ D specified through T (v) = T̂ v. But then, for any
S, T ∈ EndD(M) we have

�ST = T̂ Ŝ.

Thus, EndD(M) is isomorphic to D
opp, via its matrix representation.

5.7 Commutants and Double Commutants

There is a more abstract, ‘coordinate free’ version of Theorem 5.6.1. First
let us observe that for a module M over a ring A, the endomorphism ring

Ac = EndA(M)

is the commutant for A, consisting of all additive maps M → M that com-
mute with the action of A. Next,

Adc = EndAc(M)

is the commutant of Ac. Since, for any a ∈ A, the multiplication

la : M → M : x �→ ax (5.11)

commutes with every element of Ac, it follows that

la ∈ Adc

Note that
lab = lalb

and l maps the identity element in A to that in Adc, and so l is a ring
homomorphism. The following result is due to Rieffel (see Lang [53]):

Theorem 5.7.1 Let B be a simple ring, L a non-zero left ideal in B,

Bc = EndB(L), Bdc = EndBc(L)
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and
l : B → Bdc

the natural ring homomorhism given by (5.11). Then l is an isomorphism.
In particular, every simple ring is isomorphic to the ring of endomorphisms
on a module.

Proof. To avoid confusion, it is useful to keep in mind that elements of Bc

and Bdc are all maps Z-linear maps L → L.
The ring morphism

l : B → Bdc : b �→ lb

is given explicitly by

lbx = bx, for all b ∈ B, and x ∈ L.

It maps the unit element in B to the unit element in Bdc, and so is not 0.
The kernel of l �= 0 is a two sided ideal in a simple ring, and hence is 0. Thus,
l is injective.

We will show that l(B) is Bdc. Since 1 ∈ l(B), it will suffice to prove that
l(B) is a left ideal in Bdc.

Since LB contains L as a subset, and is thus not {0}, and is clearly a two
sided ideal in B, it is equal to B:

LB = B.

Hence
l(L)l(B) = l(B).

Thus, it will suffice to prove that l(L) is a left ideal in Bdc. We can check
this as follows: if f ∈ Bdc, b ∈ B, and y ∈ L then

�
flb

�
(y) = f(by)

= f(b)y because L → L : x �→ xy is in Bc = EndB(L)

= lf(b)(y),

thus showing that
f · lb = lf(b),

and hence l(L) is a left ideal in Bdc. QED
Lastly, let us make an observation about the center of a simple ring:
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Proposition 5.7.1 If B is a simple ring then its center Z(B) is a field. If
B is a finite dimensional simple algebra over an algebraically closed field F,
then Z(B) = F1.

Proof. For each z ∈ Z(B) the map

lz : B → B : b �→ zb

is both left and right B-linear. As we have seen before, lz ∈ Bdc. Assume
now that z �= 0. We need to produce z

−1. We have the ring isomorphism

B → Bdc : x �→ lx,

so we need only produce l
−1
z
. Now lz : B → B : a �→ za is left and right

B-linear, and so ker lz is a two sided ideal. This ideal is not B because z �= 0;
so ker lz = 0, and so the two sided ideal lz(B) in B is all of B. So lz is
invertible as an element of Bdc, and so z is invertible. Thus, every non-zero
element in Z(B) is invertible. Since Z(B) is also commutative and contains
1 �= 0, it is a field.

Suppose now that B is a finite dimensional F-algebra, and F is alge-
braically closed. Then any z ∈ Z(B) not in F would give rise to a proper
finite extension of F and this is impossible (see the proof of Theorem 5.1.2).
QED

5.8 Artin-Wedderburn Structure

We need only bring together the understanding we have gained of the struc-
ture of semisimple rings to formulate the full structure theorem for semisimple
rings:

Theorem 5.8.1 If A is a semisimple ring then there are positive integers s,
d1, ..., ds, and division rings D1, ..., Ds, and an isomorphism of rings

A →
s�

j=1

Mdj
(Dj), (5.12)

where Mdj
(Dj) is the ring of dj×dj matrices with entries in Dj. Conversely,

the ring Md(D), for any positive integer d and division ring D, is simple and
every finite product of such rings is semisimple. If a semisimple ring A is a
finite dimensional algebra over an algebraically closed field F then each Dj is
the field F.
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The decomposition of a semisimple ring into a product of matrix rings is
generally called the Artin-Wedderburn theorem.
Proof. In Theorem 5.5.1 we proved that every semisimple ring is a product
of simple rings. Then in Theorem 5.6.1 we proved that every simple ring is
isomorphic to a matrix ring over a division ring. For the convserse direction
work out Exercise 5.5(a). By Theorem 5.6.1, the division ring Dj is the
opposite ring of EndA(Lj), for a suitable simple left ideal Lj in A, and then
by Schur’s Lemma (in the form of Theorem 5.1.2) Dj = F if F is algebraically
closed. QED

Note that, for the second part of the conclusion in the preceding result,
all we need is for F to be a splitting field for the algebra A.

5.9 A Module as Sum of its Parts

We will now see how the decomposition of a semisimple ring A yields a
decomposition of any A-module E.

Let A be a semisimple ring. Recall that there is a finite collection of
simple left ideals

L1, ..., Lr ⊂ A

such that every simple left ideal is isomorphic to Li for exactly one i ∈ [r].
Moreover,

Ai

def
= sum of all left ideals isomorphic to Li

is a two sided ideal in A, and A is the direct sum of these ideals as well as
being isomorphic to their product:

A �
r�

i=1

Ai

Recall that each Ai has a unit element ui, and

u1 + · · ·+ ur = 1.

Every a ∈ A decomposes uniquely as

a =
r�

i=1

ai,
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where
aui = ai = uia ∈ Ai.

Consider now any left A-module E. Any element x ∈ E can then be
decomposed as

x = 1x =
r�

j=1

ujx����
∈Ej=ujE

Note that
ujx ∈ Ej

def
= AjE, (5.13)

and Ej is a submodule of E. Observe also that since

Aj = ujA,

we have
Ej = ujE.

Moreover,
Ej = AjE =

�

left ideal L � Lj

LE.

Proposition 5.9.1 If A is a semisimple ring and E �= {0} is an A-module
then E has a submodule isomorphic to some simple left ideal in A. In par-
ticular, every simple A-module is isomorphic to a simple left ideal in A.

Proof. Observe that E = AE �= {0}. Now A is the sum of its simple left
ideals. Thus, there is a simple left ideal L in A, and an element v ∈ E, such
that Lv �= {0}. The map

L → Lv : x �→ xv

is surjective and, by simplicity of L, is also injective. Thus, L � Lv, and Lv

is therefore a simple submodule of E. QED

Theorem 5.9.1 Suppose A is a semisimple ring. Let L1, ..., Ls be left ideals
of A such that every simple left ideal of A is isomorphic, as a left A-module,
to Li for exactly one i ∈ [s], and let Aj be the sum of all left ideals of A
isomorphic to Lj. Let ui be a central idempotent for which Ai = Aui, for
each i ∈ [s]. If E is a left A-module then

E = E1

�
. . .

�
Es,
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where
Ei = AiE = uiE

is the sum of all simple left submodules of E isomorphic to Li, this sum being
taken to be {0} when there is no such submodule.

Proof. Let F be a simple submodule of E. We know that it must be isomor-
phic to one of the simple ideals Lj in A. Then, since LF = 0 whenever L is
a simple ideal not isomorphic to Lj, we have

F = AF = AjF ⊂ Ej.

Thus, every submodule isomorphic to Lj is contained in Ej. On the other
hand, Aj is the sum of simple left ideals isomorphic to Lj, and so Ej = AjE

is a sum of simple submodules isomorphic to Lj. The module E is the direct
sum of simple submodules, and each such submodule is isomorphic to some
Lj. Summing up the submodules isomorphic to Lj yields Ej. QED

5.10 Readings on Rings

The general subject of which we have seen a special sample in this chapter
is the theory of noncommutative rings. Books on noncommutative rings
and algebras generally subscribe to the ‘beatings shall continue until morale
improves’ school of exposition. A delightful exception is the page-turner
account in the book of Lam [50]. The accessible book of Farb and Dennis
[26] also includes a slim yet substantive chapter on representations of finite
groups. Lang’s Algebra is also a very convenient and readable reference for
the basic major results.

5.11 Afterthoughts: Clifford Algebras

Clifford algebras are algebras of great use and interest that lie just at the
borders of our exploration. Here we take a very quick look at this family of
algebras.

A quadratic form Q on a vector space V , over a field F, is a mapping
Q : V → F for which

Q(cv) = c
2
Q(v) for all c ∈ F and v ∈ V ,
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and such that the map

V × V → F : (u, v) �→ BQ(u, v)
def
= Q(u+ v)−Q(u)−Q(v)

is bilinear.
If w ∈ V has Q(w) �= 0, then the mapping

rw : V → V : v �→ v − BQ(v, w)

Q(w)
w

fixes each point on the subspace w
⊥ = {v ∈ V : BQ(v, w) = 0}, and maps

w to −w. This is therefore the reflection across w
⊥, if the characteristic of

F is not 2. In case the characteristic of F is 2, you can construct reflections
‘by hand’: for a hyperplane H in V , and a vector w outside H, fix a vector
v0 ∈ H, a reflection is produced by taking the linear map on V for which
fixes each point on H and maps w to w + v0.

The Clifford algebra CQ for a quadratic form Q on a vector space V is
the quotient algebra

CQ = T (V )/JQ, (5.14)

where T (V ) is the tensor algebra

T (V ) = F⊕ V ⊕ V
⊗2 ⊕ . . .

and JQ is the two sided ideal in T (V ) generated by all elements of the form

v ⊗ v +Q(v)1, for all v ∈ V .

The natural injection V → T (V ) induces, by composition with the projection
down to the quotient CQ(V ), a linear map

jQ : V → CQ(V ) (5.15)

which satisfies
jQ(v)

2 +Q(v) = 0 for all v ∈ V . (5.16)

The map jQ : V → CQ(V ) specifies CQ(V ) as the ‘minimal’ such algebra in
the sense that it has the ‘universal property’ that if f : V → A is any linear
map from V to an F-algebra A for which f(v)2 + Q(v) = 0, for all v ∈ V ,
then there is a unique algebra morphism fQ : CQ(V ) → A such that

f = fQ ◦ jQ.
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For our discussion, let us focus on a complex vector space V of finite
dimension d, and the bilinear form BQ is specified by the matrix

BQ(ea, eb) = −2δab, for all a, b ∈ [d],

where e1,..., ed is some basis of V . The corresponding Clifford algebra, which
we denote by Cd, can be taken to be the complex algebra generated by the
e1,..., ed, subject to the relations

{ea, eb}
def
= ebeb + ebea = −2δab1 for all a, b ∈ [d]. (5.17)

A basis of the algebra is given by all products of the form

es1 . . .esm ,

where m ≥ 0, and 1 ≤ s1 < s2 < · · · ≤ sm ≤ d. Writing S for such a set
{s1, . . . , sm} ⊂ {1, . . . , d}, with the elements si always in increasing order, we
see that the algebra has a basis consisting of one element eS for each subset
S of {1, . . . , d}. Notice also that the condition (5.17) implies that every time
a term eset, with s > t, is replaced by etes, one picks up a minus sign:

etes = −eset if s �= t. (5.18)

Keeping in mind also the condition e
2
s
= 1 for all s ∈ [d], we have

eSeT = �ST eS∆T , (5.19)

where S∆T is the symmetric difference of the sets S and T , and

�ST =
�

s∈S,t∈T

�st,

�st =






+1 if s < t;

+1 if s = t;

−1 if s > t,

(5.20)

and the empty product, which occurs if S or T is ∅, is taken to be 1. The alge-
bra Cd can be reconstructed more officially as the 2d-dimensional free vector
space over the set of formal variables eS, and then specifying multiplication
by (5.19). (For more see the book of Artin [2].)
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Each basis vector ea gives rise to idempotents

1

2
(1 + ea) and

1

2
(1− ea).

In fact, the relation
(es1 . . .esm)

2 = (−1)m(m−1) (5.21)

shows that any basis element eS in Cd, where S = {s1, ..., sm} contains m

elements, produces orthogonal idempotents

y+,S =
1

2
(1− (−1)m(m−1)/2

eS) and y−,S =
1

2
(1 + (−1)m(m−1)/2

eS).

If d is odd then the full product e[d] = e1...ed is in the center of the algebra
Cd, and the idempotents y±,[d] are central idempotents. Thus, for d odd, Cd

is the product of 2 two sided ideals Cdy+,[d] and Cdy−,[d].
Particularly useful are the orthogonal idempotents arising from pairs

{a, b} ⊂ [d]:

y+,{a,b} =
1

2
(1 + eaeb) and y−,{a,b} =

1

2
(1− eaeb),

where a < b. Could this be an indecomposable idempotent? Recall the crite-
rion for indecomposability from Proposition 4.10.1 for a nonzero idempotent
y:

y is indecomposable if yxy is a scalar multple of y for every x ∈ Cd.
(5.22)

A simple calculation shows that

y±,{a,b}ec =

�
ecy±,{a,b} if c /∈ {a, b};
ecy∓,{a,b} if c ∈ {a, b}.

(5.23)

Thus, to construct an indecomposable idempotent we can take a product
of the idempotents y±,{a,b}. Suppose first that d is even, and let πd be the
partition of [d] into pairs of consecutive integers:

πd = {{1, 2}, . . . , {d− 1, d}}.

Let � be any mapping of πd to {+1,−1}, giving a choice of sign for each pair
{j, j + 1} in πd. Then we have the idempotent

y� =
�

B∈πd

y�(B),B, (5.24)
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where, observe, the terms y�(B),B commute with each other since the distinct
B’s are disjoint. An example of such an idempotent, for d = 4, is

1

2
(1 + e1e2)

1

2
(1− e3e4).

Applying the criterion (5.22) with x = ec, and using (5.23), it follows that
the idempotent y� is indecomposable. Thus, we have the full decomposition
of Cd, for even d, into simple left ideals

Cd =
�

�∈{+1,−1}πd
Cdy�. (5.25)

This explicitly exhibits the semisimple structure of Cd for even d. A straight-
forward extension produces the semsimple structure of Cd for odd d, on using
the central idempotents y±,[d].

If one thinks of e1,..., ed as forming an orthonormal basis for a real vector
space V0 sitting inside V , the relation e

2
a
= 1 is suggestive of reflection across

the hyperplane e
⊥
a
. More precisely, for any nonzero vector w ∈ V0, the map

V0 → V0 : v �→ −wvw
−1

takes w to −w and takes any v ∈ w
⊥ to

−wvw
−1 = vww

−1 = v,

and is thus just the reflection map rw across the hyperplane w⊥. A linear map
T : V0 → V0 is an orthogonal transformation, relative to Q, if Q(Tv) = Q(v)
for all v ∈ V0. A general orthogonal transformations is a composition of
reflections, and so the Clifford algebra is a crucial structure in the study of
representations of the group of orthogonal transformations.

Exercises

1. Sanity check:

(a) Is Z a semisimple ring?

(b) Is Q a semisimple ring?

(c) Is a subring of a semisimple ring also semisimple?
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2. Show that in the ring of all matrices Ma,b =

�
a b

0 a

�
, with a, b running

over C, the left ideal {M0,b : b ∈ C} has no complement.

3. Show that a commutative simple ring is a field.

4. Let A be a finite-dimensional semisimple algebra over a field F, and
define χreg : A → F by

χreg(a) = Tr
�
ρreg(a)

�
, where ρreg(a) : A → A : x �→ ax. (5.26)

Let L1, ..., Ls be a maximal collection of non-isomorphic simple left
ideals in A, so that A �

�
s

i=1 Ai, where Ai is the two sided ideal
formed by the sum of all left ideals isomorphic to Li. As usual, let 1 =
u1+ · · ·+us be the decomposition of 1 into idempotents ui ∈ Ai = Aui.
Viewing Li as a vector space over F, define

χi(a) = Tr(ρreg(a)|Li) (5.27)

Note that since Li is a left ideal, ρreg(a)(Li) ⊂ Li. Show that:

(i) χreg =
�

s

i=1 diχi, where di is the integer for which Ai � L
di

i
as

A-modules.

(ii) χi(uj) = δij dimF Li

(iii) Assume that the characteristic of F does not divide any of the
numbers dimF Li (in Exercise 3.7 there is an important case of
this). Use (ii) to show that the functions χ1, ...,χs are linearly
independent over F.

(iv) Let E be an A-module, and define χE : A → F by

χE(a) = Tr
�
ρE(a)

�
, where ρE(a) : E → E : x �→ ax. (5.28)

Show that χE is a linear combination of the functions χi with
non-negative integer coefficients:

χE =
s�

i=1

niχi

where ni is the number of copies of Li in a decomposition of E
into simple A-modules.
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(v) Under the assumption made in (iii), show that if E and F are
A-modules with χE = χF then E � F .

5. Let B = Matrn(D) be the algebra of n×n matrices over a division ring
D.

(a) Show that for each j ∈ {1, ..., n}, the set Lj of all matrices in
B that have all entries 0 except possibly those in column j is a
simple left ideal. Since B = L1 + · · · + Ln, this implies that B is
a semisimple ring.

(b) Show that if L is a simple left ideal in B then there is a basis
b1, ..., bn of Dn, treated as a right D-module, such that L consists
exactly of those matrices T for which Tbi = 0 whenever i �= 1.

(c) With notation as in (a), produce orthogonal idempotent genera-
tors in L1, ..., Ln.

6. Prove that if a moduleN over a ring is the direct sum of simple submod-
ules, no two of which are isomorphic to each other then every simple
submodule of N is one of these submodules.

7. Suppose L1 and L2 are simple left ideals in a semisimple ring A. Show
that the following are equivalent: (i) L1L2 = 0; (ii) L1 and L2 are not
isomorphic as A-modules; (iii) L2L1 = 0.

8. Suppose N1 and N2 are left ideals in a semisimple ring A. Show that
the following are equivalent: (i) N1N2 = 0; (ii) there is no nonzero A-
linear map N1 → N2; (iii) N2N1 = 0; (iv) there is a simple submodule
of N1 which is isomorphic to a submodule of N2.

9. Let u and v be indecomposable idempotents in a semisimple ring A for
which uA = vA. Show that Au is isomorphic to Av as left A-modules.

10. Prove the results of section 4.10 for semsimple algebras, and, where
needed, assume that the algebra is finite dimensional over an alge-
braically closed field.

11. Suppose y is an idempotent in a ring A such that the left ideal Ay is
simple. Show that Dy = {yxy : x ∈ A} is a division ring under the
addition and multiplication operations inherited from A.
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12. Let I be a nonempty finite set of commuting nonzero idempotents in a
ring A. Show that there is a set G of orthogonal nonzero idempotents
in A which add up to 1 such that every element of I is the sum of a
unique subset of G.

13. For an algebra A over a field F, define an element s ∈ A to be semisim-
ple if s = c1e1 + · · ·+ cmem for some distinct orthogonal nonzero idem-
potents ej and c1, ..., cm ∈ F. For such s, show that each ej is equal to
pj(s) for some polynomial pj(X) ∈ F[X]. Show also that the elements
in A that are polynomials in s form a semisimple subalgebra of A.

14. Let C be a finite nonempty set of commuting semisimple elements in
an algebra A over a field F. Show that there are orthogonal nonzero
idempotents e1, ..., en such that every element of C is an F-linear com-
bination of the ej.

15. Let A be a semisimple algebra over an algebraically closed field F,
{Li}i∈R a maximal collection of non-isomorphic simple left ideals in A,
and Ai the sum of all left ideals isomorphic to Li. We know that Ai �
EndF(Li) and A �

�
i∈R Ai, as algebras. Show that an element a ∈ A is

an idempotent if and only if its representative block diagonal matrix in�
i∈R EndF(Li) is a projection matrix, and that it is an indecomposable

idempotent if and only if the matrix is a projection matrix of rank 1.

16. Let A be a finite dimensional semisimple algebra over an algebraically
closed field F. Let L1, ..., Ls be simple left ideals in A such that every
simple A-module is isomorphic to Li for exactly one i ∈ [s]. For every
a ∈ A let ρi(a) be the di × di matrix for the map Li → Li : x �→ ax

relative to a fixed basis |b1(i)�, ..., |bdi(i)� of Li. Prove that the matrix-
entry functions ρi,jk : a �→ �bj(i), abk(i)�, with j, k ∈ {1, ..., di} and
i ∈ {1, ..., r}, are linearly independent over F. Using this conclude that
the characters χi = Trρi are linearly independent.

17. Show that if u and v are indecomposable idempotents in a semisimple
F-algebra A, where F is algebraically closed, then uv is either 0, or
has square equal to 0, or is an F-multiple of an indecomposable idem-
potent. What can be said if u and v are commuting indecomposable
idempotents?
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18. A partially ordered set (S,≤) is said to be a lattice if for any a, b ∈ S

there is a least element that is ≥ both a and b, and there is a greatest
element a ∧ b that is ≤ both a and b; the lattice is complete if every
T ⊂ S has an infimum (greatest lower bound) and a supremum (least
upper bound). The least element in S is denoted 0, and the greatest
element 1, if they exist. An atom in S is an element a ∈ S such that
a �= 0 and if b ≤ a then b ∈ {0, a}. If S is a subset of a partially ordered
set, a maximal element of S is an element a ∈ S such that if b ∈ S

with a ≤ b then b = a; a minimal element of S is an element a ∈ S

such that if b ∈ S with b ≤ a then b = a. A partially ordered set (S,≤)
satisfies the ascending chain condition if every nonempty subset of S
contains a maximal element; it satisfies the descending chain condition
if every nonempty subset of S contains a minimal element. Now let LM

be the set of all submodules of a module M over a ring A, and take the
inclusion relation L1 ⊂ L2 as a partial order on LM . Thus an atom in
LM is a simple submodule. Prove the following:

(i) LM is a complete lattice.

(ii) The lattice LM is modular:

If p,m, b ∈ LM and m ⊂ b then (p+m) ∩ b = (p ∩ b) +m.
(5.29)

(The significance of modularity in a lattice was underlined by
Dedekind [17, section 4, eqn. (M)], [18, section II.8].).)

(iii) Prove that if A is a finite dimensional algebra over a field then
A is left Artinian in the sense that the lattice of left ideals in A

satisfies the descending chain condition.

(iv) If A is a semisimple ring then A is left Noetherian in the sense
that the lattice of left ideals in A satisfies the ascending chain
condition.

(v) If A is a semisimple ring and I and J are two sided ideals in A

then I ∩ J = IJ .

(vi) If A is a semisimple ring then the lattice of two sided ideals in A

is distributive:

I ∩ (J +K) = (I ∩ J) + (I ∩K)

I + (J ∩K) = (I + J) ∩ (I +K),
(5.30)

for all two sided ideals I, J,K in A.
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19. Let (L,≤) be a modular lattice with 0 and 1 (these and other related
terms are as defined in Exercise 5.18). Let A be the set of atoms in L.
Denote by a + b the supremum of {a, b}, and by a ∩ b the infimum of
{a, b}, and, more generally, denote the supremum of a subset S ⊂ L by
supS or by

�
S. Elements a, b ∈ L are complements of each other if

a+b = 1 and a∩b = 0. Say that a subset S ⊂ A is linearly independent
if
�

T1 =
�

T2 for some finite subsets T1 ⊂ T2 ⊂ S implies T1 = T2.

(i) Suppose every element of L has a complement. Show that if t ≤ s

in L then there exists v ∈ L such that t+ v = s and t ∩ v = 0.

(ii) S ⊂ A is independent if and only if a ∩
�

T = 0 for every finite
T ⊂ S and all a ∈ S − T .

(iii) Suppose every s ∈ L has a complement and L satisfies the ascend-
ing chain condition. Show that for every nonzero m ∈ L there is
an a ∈ A with a ≤ m.

(iv) Here is a primitive (in the logical, not historical) form of the Chi-
nese Remainder Theorem : For any elements A, B, I and J in
a modular lattice for which J + K = 1, show that there is an
element C such that C + I = A + I and C + J = B + J . Next,
working with the lattice LR of two sided ideals in a ring R, show
that if I1, ..., Im ∈ LR for which Ia + Ib = R for a �= b, and if K1,
..., Km ∈ LR, then there exists C ∈ LR such that C+Ia = Ka+Ia

for all a ∈ {1, ...,m}.
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Chapter 6

Representations of Sn

Having survived the long exploration of semisimple structure, it may seem
that midway in our journey we are in deep woods, the right path lost. But
this is no time to abandon hope; instead we plunge right into untangling
the structure of representations of an important family of groups, the per-
mutation groups Sn. This will be the only important class of finite groups
to which we will apply all the machinery we have manufactured. A natural
pathway beyond this is the study of representations of reflection groups.

There are several highly efficient ways to speed through the basics of the
representations of Sn. We choose a more leisurely path, beginning with a look
at permutations of [n] = {1, ..., n} and partitions of [n]. This will lead us nat-
urally to a magically powerful device: Young tableaux, which package special
pairs of partitions of [n]. We will then proceed to Frobenius’ construction of
indecomposable idempotents, or, equivalently, irreducible representations of
Sn, by using symmetries of Young tableaux.

6.1 Permutations and Partitions

To set the strategy for constructing the irreducible representations of Sn in
its natural context, let us begin by looking briefly at the relationship between
subgroups of Sn and partitions of [n] = {1, ..., n}.

A partition π of [n] is a set of disjoint nonempty subsets of [n] whose
union is [n]; we will call the elements of π the blocks of π. For example, the
set

{{2, 5, 3}, {1}, {4, 6}}

157
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is a partition of [6] consisting of the blocks {2, 3, 5}, {1}, {4, 6}. Let

Pn = the set of all partitions of [n]. (6.1)

Any subgroup H of Sn produces a partition πH of [n] through the orbits:
two elements j, k ∈ [n] lie in a block of πH if and only if j = s(k) for some
s ∈ H.

A cycle is a permutation that has at most one block of size > 1; we call
this block the support of the cycle, which we take to be ∅ for the identity
permutation ι. A cycle c is displayed as

c = (i1 i2 . . . ik),

where c(i1) = i2,..., c(ik−1) = ik, c(ik) = i1. Two cycles are said to be disjoint
if their supports are disjoint. Disjoint cycles commute. The length of a cycle
is the size of the largest block minus 1; thus, the length of the cycle (1 2 3 5)
is 3, and the length of a transposition (a b) is 1. If s ∈ Sn then a cycle of s is
a cycle that coincides with s on some subset of [n] and is the identity outside
it. Then s is the product, in any order, of its distinct cycles. For example,
the permutation

1 �→ 1, 2 �→ 5, 3 �→ 2, 4 �→ 6, 5 �→ 3, 6 �→ 4

is written as �
1 2 3 4 5 6
1 5 2 6 3 4

�

and has the cycle decomposition

(2 5 3)(4 6),

not writing the identity cycle. The length l(s) of a permutation s is the sum
of the lengths of its cycles, and the signature of s is given by

�(s) = (−1)l(s). (6.2)

Multiplying s by a transposition t either splits a cycle of s into two, or joins
two cycles into one:

(1 j)(1 2 3 . . . j . . .m) = (1 2 3 . . . j − 1)(j j + 1 . . . m),

(1 j)(1 2 3 . . . j − 1)(j j + 1 . . . m) = (1 2 3 . . . j . . . ,m),
(6.3)
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with the sum of the cycle lengths either decreasing by 1 or increasing by 1:

l(ts) = l(s)± 1 if t is a transposition and s ∈ Sn. (6.4)

Consequently, �(ts) = −�(s) if t is a transposition. Since every cycle is a
product of transpositions:

(1 2 . . . k) = (1 2)(2 3) . . . (k − 1 k),

so is every permutation, and so

�(s) = (−1)k, if s is a product of k transpositions.

The permutation s is said to be even if �(s) is 1, and odd if �(s) = −1. We
then have

�(rs) = �(r)�(s) for all r, s ∈ Sn.

Thus, for any field F, the homomorphism � : Sn → {1,−1} ⊂ F
×, provides a

one dimensional, hence irreducible, representation of Sn on F.
Returning to partitions, let B1, ..., Bm be the string of blocks of a partition

π ∈ Pn, listed in order of decreasing size:

|B1| ≥ |B2| ≥ . . . ≥ |Bm|.

Then
λ(π) = (|B1|, . . . , |Bm|) (6.5)

is called the shape of π. We dentote by Pn the set of all shapes of all the
elements in Pn.

A shape, in general, is simply a finite non-decreasing sequence of positive
integers. Shapes are displayed visually as Young diagrams in terms of rows
of empty boxes. For example, the diagram

displays the shape (4, 3, 3, 2, 1, 1).
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Consider shapes λ and λ
� in Pn. If λ� �= λ then there is a smallest j for

which λ
�
j
�= λj. If, for this j, λ�

j
> λj then we say that λ�

> λ in lexicographic
order. This is an order relation on the partitions of n. The largest element
is

(n)

and the smallest element is (1, 1, . . . , 1). Here is an ordering of P3 displayed
in decreasing lexicographic order:

> > (6.6)

There is also a natural partial order on Pn, with π1 ≤ π2 meaning that
π1 refines the blocks of π2:

π1 ≤ π2 if for any block A ∈ π1 there is a block B ∈ π2 with A ⊂ B, (6.7)

or, equivalently, each block of π2 is the union of some of the blocks in π1.
Thus, π1 ≤ π2 if π1 is a ‘finer’ partition than π2. For example,

{{2, 3}, {5}, {1}, {4}, {6}} ≤ {{2, 5, 3}, {1}, {4, 6}}

in P6. The ‘smallest’ partition in this order is {{1}, ..., {n}}, and the ‘largest’
is {[n]}:

0 = {{1}, ..., {n}}, and 1 = {[n]}. (6.8)

For π1, π2 ∈ Pn, define the interval [π1, π2] to be

[π1, π2] = {π ∈ Pn : π1 ≤ π ≤ π2}. (6.9)

If we coalesce two blocks of a partition π to obtain a partition π1 then we
say that π1 covers π. Clearly, π1 covers π if and only if π1 �= π and [π, π1] =
{π, π1}. Climbing up the ladder of partial order one step at a time shows that
for any πL ≤ πU , distinct elements in Pn, there is a sequence of partitions
π1, . . . , πj with

πL = π1 ≤ . . . ≤ πj = πU ,

where πi covers πi−1 for each i ∈ {2, . . . , j}. Notice that at each step up the
number of blocks decreases by one.
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If π ∈ Pn can be reached from 0 in l steps, each carrying it from one
partition to a covering partition, then l is equal to

l(π) =
�

B∈π

(|B|− 1) = n− |π|, (6.10)

which is independent of the particular sequence of partitions used to go from
0 to π.

Proposition 6.1.1 For any positive integer n and distinct partitions π1, π2 ∈
Pn, if π1 ≤ π2 then λ(π1) < λ(π2). In particular, if S is a nonempty subset
of Pn and π is the element of largest shape in S then π is a maximal element
in S relative to the partial order ≤.

Proof. Let B1, ..., Bm be the blocks of a partition π ∈ Pn, with |B1| ≥ . . . ≥
|Bm|, and let αi = |Bi| for i ∈ [m]. Thus λ(π) = (α1, . . . ,αm). Let π� be the
partition obtained from π by coalescing Bj and Bk for some j > k in [m].
Then λ(π�) = (α�

1, . . . ,α
�
m−1), where

α
�
i
=






αi if αi > αj + αk;

αj + αk if i is the smallest integer for which αi ≤ αj + αk;

αi+1 for all other i.
(6.11)

From the second line above, if r is the smallest integer for which αr ≤ αj+αk

then
α
�
r
= αj + αk ≥ αr,

and, from the first line, α�
i
= αi for i < r. This means λ(π�) > λ(π).

For any distinct π1, π2 ∈ Pn with π1 ≤ π2, there is a sequence of partitions
τ1, . . . , τN ∈ Pn with τi obtained by coalescing two blocks of τi−1, for i ∈
{2, . . . , N}, and τ1 = π1 and τN = π2. Then λ(π1) = λ(τ1) < . . . < λ(τN) =
λ(π2). QED

6.2 Complements and Young Tableaux

The partial ordering ≤ of partitions makes Pn a lattice: partitions π1 and π2

have a greatest lower bound as well as a least upper bound, which we denote

π1 ∧ π2 = inf{π1, π2}, and π1 ∨ π2 = sup{π1, π2}. (6.12)
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More descriptively, π1 ∧π2 consists of all the non-empty intersections B ∩C,
with B a block of π1 and C a block of π2. Two elements i, j ∈ [n] lie in the
same block of π1 ∨ π2 if and only if there is a sequence

i = i0, i1, . . . , im = j,

where consecutive elements lie in a common block of either π1 or π2. In other
words, two elements lie in the same block of π1∨π2 if one can travel from one
element to the other by moving in steps, each of which stays inside either a
block of π1 or a block of π2.

As in the lattice of left ideals of a semisimple ring, in the partition lattice
Pn every element π has a complement πc, satisfying

π ∧ πc = 0 and π∨πc = 1, (6.13)

and, as with ideals, the complement is not generally unique.
A Young tableau is a wondefully compact device encoding a partition of

[n] along with a choice of complemenent. It is a matrix of the form

a11 ... ... ... ... a1λ1

a21 ... ... a2λ2

...
...

...
am1 . . . amλm

(6.14)

We will take the entries aij all distinct and drawn from {1, ..., n}. Thus,
officially, a Young tableau, of size n ∈ {1, 2, 3, ...} and shape (λ1, ...,λm) ∈ Pn,
is an injective mapping

T : {(i, j) : i ∈ [m], j ∈ [λi]} → [n] : (i, j) �→ aij. (6.15)

Note that, technically, a Young tableau is a bit more than a partition of [n],
as it comes with a specific ordering of the elements in each block of such a
partition. The shape of a Young tableau is, however, the same as the shape
of the corresponding partition.

The plural of ‘Young tableau’ is ‘Young tableaux.’ In gratitude to Börchers
and Gieseke’s LaTeX package youngtab, we will sometimes use the terms
Youngtab and the plural Youngtabs.

It is convenient to display Youngtabs using boxes; for example:

1 2 4 5
3 6
7 .
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Let Tn denote the set of all Youngtabs with n entries.
Each Youngtab specifies two partitions of [n], one formed by the rows

and the other by the columns:

Rows(T ) = {rows of T}
Cols(T ) = {columns of T}

(6.16)

where, of course, each row and each column is viewed as a set. Here is a
simple but essential observation about Rows(T ) and Cols(T ):

a block R ∈ Rows(T ) intersects a block C ∈ Cols(T ) in at most
one element.

In fact, something stronger is true: if you pick any two entries in the Youngtab
T then you can travel from one to the other by successively moving horizon-
tally along rows and vertically along columns (in the Youngtab, simply move
from one entry back to the first entry in that row, then move up or down
the first column till you reach the row containing the other entry, and then
move horizontally along the row.) Thus:

Rows(T ) and Cols(T ) are complements of each other in Pn. (6.17)

A Young tableau thus provides an efficient package, keeping track of two com-
plementary partitions of [n]. The complement provided by a Young tableau
has special and useful features. Here is a summary of observations about
complements in the lattice Pn:

Theorem 6.2.1 Let π ∈ Pn be a partition of [n], and let

π
⊥ = {π1 ∈ Pn : π ∧ π1 = 0}. (6.18)

Any element of π⊥ with largest shape in lexicographic order is also a maximal
element of π⊥ in the partial order on Pn. Every maximal element πc in π

⊥

is a complement of π, in the sense that it satisfies:

π ∧ πc = 0

π∨πc = 1.
(6.19)

If T is any Young tableau for which Rows(T ) = π then Cols(T ) is an element
of largest shape in π

⊥, and similarly, with rows and columns interchanged.
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A Young complement of π is a complement of largest shape. As ex-
plained in the preceding theorem, such a complement can be obtained from
a Youngtab whose rows (or columns) form the partition π.

Proof. Consider a maximal element πc of the set π
⊥ given in (6.18). Let i

and j be any elements of [n]; we will show that i and j lie in the same block
of π∨πc. This would mean that π∨πc is 1. Let i ∈ B1 and j ∈ B2, where B1

and B2 are blocks of πc; assume B1 �= B2, for otherwise i and j both lie in
the block of π∨πc that contains B1. Maximality of πc in π

⊥ implies that two
blocks of πc cannot be coalesced while still retaining the first condition on πc

in (6.19); in particular, B1 and B2 each contains an element such that these
two elements lie in the same block B of π. Thus, B1 ∪B2 ∪B lies inside one
block of π∨πc, and hence so do the elements i and j. This proves π∨πc = 1.

Let T be a Young tableau with Rows(T ) = π. We have already noted in
(6.17) that πyc = Cols(T ) is a complementary partition to π in Pn. Let R1,
..., Rm be the blocks of π listed in decreasing order of size:

|R1| ≥ . . . ≥ |Rm|.

(Think of these as the rows of T from the top row to the bottom row.) Let
C1, ..., Cq be the blocks of πyc, formed as follows: C1 contains exactly one
element from each Rj, and, for every i ∈ {2, . . . , q}, Ci contains exactly one
element from every nonempty Rj − ∪k<iCk.

Consider any π0 ∈ π
⊥, and let B1, ..., Bs be the blocks of π0 listed in

decreasing order. Our goal is to show that λ(π0) ≤ λ(πyc). Each block of
π0 intersects each Rj in at most one element, and so the largest block B1

contains ≤ m elements. Thus, λ1(π0) ≤ m = λ1(πyc). If λ1(π0) < λ1(πyc)
then π0 ≤ πyc, and we are done. Suppose then that λ1(π0) = λ1(πyc). Then
B1 intersects each Rj in exactly one element, and so Rj −B1 is empty if and
only if Rj −C1 is empty, for any j ∈ [m]. Let i be the largest positive integer
in [s] for which (i) λi(π0) = λi(πyc), and (ii) |{j ∈ [m] : Rj − ∪k≤iBk =
∅}| = |{j ∈ [m] : Rj − ∪k≤iCk = ∅}|. If i = s then π0 ≤ πyc and again we
would be done. So suppose i < s. Now Bi+1 contains at most one element
from each nonempty Rj − ∪k≤iBk and Ci+1 contains exactly one element
from each nonempty Rj − ∪k≤iCk. By (ii) it follows that |Bi+1| ≤ |Ci+1|,
and the definition of i then implies that |Bi+1| < |Ci+1|. Thus, in all cases,
λ(π0) ≤ λ(πyc), proving that πyc is an element of largest shape in π

⊥. QED
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6.3 Symmetries of Partitions

The action of Sn on [n] induces an action on the set Pn of all partitions of
[n]: a permutation s ∈ Sn carries the partition π to the partition s(π) whose
blocks are s(B) with B running over the blocks of π. For example:

(13)(245) · {{2, 5, 3}, {1}, {4, 6}} = {{4, 2, 1}, {3}, {5, 6}}.

Define the fixing subgroup Fixπ of a partition π ∈ Pn to consist of all permu-
tations that carry each block of π into itself:

Fixπ = {s ∈ Sn : s(B) = B for allB ∈ π}. (6.20)

Theorem 6.3.1 The mapping

Fix : Pn → {subgroups of Sn} : π �→ Fixπ (6.21)

is injective and order-preserving when the subgroups of Sn are ordered by in-
clusion. The mapping Fix from Pn to its image inside the lattice of subgroups
of Sn is an isomorphism:

Fixπ1 ⊂ Fixπ2 if and only if π1 ≤ π2.

Furthermore, Fix also preserves the lattice operations:

Fixπ1∧π2 = Fixπ1 ∩ Fixπ2

Fixπ1∨π2 = the subgroup generated by Fixπ1 and Fixπ2 ,
(6.22)

for all π1, π2 ∈ Pn.
There is an isomorphism of groups

Fixπ → Sλ1(π) × . . .× Sλm(π), (6.23)

where
�
λ1(π), ...,λm(π)

�
is the shape of π. In particular, Fixπ is generated

by the transpositions it contains.

Proof. A partition π is recovered from the fixing subgroup Fixπ as the set of
orbits of Fixπ in [n]. Hence, π �→ Fixπ is injective.

Suppose π1 ≤ π2 in Pn. Then any B ∈ π2 is a union of blocks B1, ..., Bk ∈
π1 and so s(B) is the union s(B1)∪ . . .∪s(Bk) for any s ∈ Sn; thus, s(B) = B

if s ∈ Fixπ1 . Hence, Fixπ1 ⊂ Fixπ2 .
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Conversely, suppose Fixπ1 ⊂ Fixπ2 , and B is any block of π2; then every
s ∈ Fixπ1 maps B into itself and so B is a union of blocks of π1.

Let s ∈ Fixπ1 ∩ Fixπ2 , and consider any block B ∈ π1 ∧ π2. Then B =
B1 ∩ B2, for some B1 ∈ π1 and B2 ∈ π2, and so s(B) = s(B1) ∩ s(B2) =
B1 ∩B2 = B. Hence, Fixπ1 ∩Fixπ2 ⊂ Fixπ1∧π2 . The reverse inclusion follows
from the fact that Fix is order-preserving.

We turn next to (6.23). Let B1, ..., Bm be the blocks of a partition π, and
let SBj

be the group of permutations of the set Bj; then

Fixπ →
m�

j=1

SBj
: s �→ (s|B1, ..., s|Bm)

is clearly an isomorphism. Since each SBj
� S|Bj | is generated by its trans-

positions, so is Fixπ.
Now consider a transposition (a b) ∈ Fixπ1∨π2 . If {a, b} is in a block of

π1 or π2 then s is in Fixπ1 or Fixπ2 . Suppose next that a ∈ B1 ∈ π1 and
b ∈ B2 ∈ π2. Now two elements lie in the same block of π1∨π2 if and only if
there is a sequence of elements starting from one and ending with the other:

a = i1, i2, ... , ir = b,

with consecutive terms in the sequence always in the same block of either π1

or of π2. Consequently,

(ik ik+1) ∈ Fixπ1 ∪ Fixπ2 for all k ∈ {1, ..., r − 1}.

Let F be the subgroup of Sn generated by Fixπ1 and Fixπ2 . Observe that

(i1 i2)(i2 i3)(i1 i2) = (i1 i3) ∈ F

and then
(i1 i3)(i3 i4)(i1 i3) = (i1 i4) ∈ F,

and thus, inductively,
(a b) = (i1 ir) ∈ F.

Hence, every transposition in Fixπ1∨π2 is in F . Since Fixπ1∨π2 is generated
by its transpositions, it follows that Fixπ1∨π2 is a subset of F . The reverse
inclusion holds simply because Fixπ1 and Fixπ2 are both subsets of Fixπ1∨π2 .
This completes the proof of the second part of (6.22). QED



Representing Finite Groups 3/2011 167

Recall from the proof of Theorem 6.2.1 how we can construct, for a par-
tition π ∈ Pn, a partition πyc of largest shape satisfying π ∧ πyc = 0. If π�

yc

is another such partition then a largest block C1 of πyc and a largest block
C

�
1 of π

�
yc

both contain exactly one element from each block of π; hence there
is a permutation s1 ∈ Fixπ, which is a product of one transposition each for
each block of π, that maps C

�
1 to C1. Next, removing C1 and C

�
1 from the

picture, and arguing similarly for a next largest block C2 of πyc and a next
largest block C

�
2 of π

�
yc
we have a permutation, again a product transpositions

preserving every block of π, that carries C �
2 to C2. Proceeding in this way we

produce a permutation s ∈ Sn which fixes each block of π and carries π�
yc

to
πyc, with Cj going over to s(Cj) = C

�
j
. In summary:

Theorem 6.3.2 Let π ∈ Pn, and suppose πyc, π
�
yc

∈ Pn are Young comple-
ments of π:

π ∧ πyc = 0 = π ∧ π
�
yc
,

λ(πyc) = λ(π�
yc
) = max{λ(π1) : π ∧ π1 = 0}.

(6.24)

Let C1, ..., Cm be the distinct blocks of πyc, ordered so that |C1| ≥ . . . ≥ |Cm|,
and C

�
1, ..., C

�
m
the distinct blocks of π�

yc
also listed in decreasing order of size.

Then there exists an s ∈ Fixπ such that

s(Cj) = C
�
j

for all j ∈ [m].

Conversely, if s ∈ Fixπ then s(πyc) is a Young complement of π.

Here is a useful consequence:

Theorem 6.3.3 Suppose πyc is a Young complement of π ∈ Pn. Then, for
any s ∈ Sn,

Fixπ ∩ sFixπyc
s
−1 = {ι} if s ∈ FixπFixπyc

, and

Fixπ ∩ sFixπyc
s
−1 �= {ι} if s /∈ FixπFixπyc

,
(6.25)

where ι is the identity permutation. The group Fixπ ∩ sFixπyc
s
−1, as with all

fixing subgroups, is generated by the transpositions it contains.
Thus, if T is any Young tableau with n entries, and s ∈ Sn, then

CT ∩ sRT s
−1 = {ι} if and only if s ∈ CTRT , (6.26)

where RT is the fixing subgroup for Rows(T ) and CT is the fixing subgroup
for Cols(T ). The group CT ∩sRT s

−1, if non-trivial, contains a transposition.
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Proof. Let C1, ..., Cq be the blocks of πyc in decreasing order of size; then
s(C1), ..., s(Cq) are the blocks of s(πyc), also in decreasing order of size. From

Fixπ∧s(πyc) = Fixπ ∩ sFixπyc
s
−1

we see that this subgroup is trivial if and only if π ∧ s(πyc) is 0. Thus, this
condition means s(πyc), which has the same shape as πyc, is also a Young
complement of π. By Theorem 6.3.2 this holds if and only if there is an
element s1 ∈ Fixπ such that s1s(Cj) = Cj for each j ∈ [q]. The latter means
s1s is in the fixing subgroup of πyc, and so the condition Fixπ ∩ sFixπyc

s
−1 =

{ι} is equivalent to s = s
−1
1 s2 for some s1 ∈ Fixπ and s2 ∈ Fixπyc

. This
establishes (6.25). The result (6.26) follows by specializing to π = Rows(T )
and πyc = Cols(T ). QED

6.4 Conjugacy Classes to Young Tableaux

Any element in Sn can be expressed as a product of a unique set of disjoint
cycles:

(a11, ..., a1λ1) . . . (am1, ..., amλm
)

where the aij are distinct and run over {1, ..., n}. This permutation thus
specifies a partition

(λ1, ...,λm)

of n into positive integers λ1, ...,λm:

λ1 + · · ·+ λm = n.

To make things definite, we require that

λ1 ≥ λ2 ≥ . . . ≥ λm.

The set of all such shapes (λ1, ...,λm) is naturally identifiable as the quotient

Pn � Pn/Sn. (6.27)

This delineates the distinction between partitions of n and partitions of [n].
Two permutations are conjugate if and only if they have the same cy-

cle structure. Thus, the conjugacy classes of Sn correspond one to one to
partitions of n.



Representing Finite Groups 3/2011 169

The group Sn acts on the set of Youngtabs corresponding to each partition
of n; viewing a Young tableau as a mapping T as in (6.15) the action is defined
by composition with permutations:

Sn × Tn → Tn : (σ, T ) �→ σ ◦ T.

For example:

(134)(25)(67) ·
1 2 4 5
3 6
7

=
3 5 1 2
4 7
6

For a tableau T , Young introduced two subgroups of Sn:

RT = {all p ∈ Sn that preserve each row of T}
CT = {all q ∈ Sn that preserve each column of T}.

(6.28)

If we think in terms of the natural action of Sn on the set Pn of partitions
of [n], RT is the fixing subgroup of the element Rows(T ) ∈ Pn and CT is the
fixing subgroup of Cols(T ) ∈ Pn.

6.5 Young Tableaux to Young Symmetrizers

The Young symmetrizer for a Youngtab T is the element

yT
def
= cT rT =

�

q∈CT ,p∈RT

(−1)qqp ∈ Z[Sn], (6.29)

where

cT =
�

q∈CT

(−1)qq

rT =
�

p∈RT

p.

(6.30)

We have used, and will use, the notation

(−1)q = �(q).

Observe that RT acts with the trivial representation on the one dimensional
space QrT , and CT acts through the representation �|CT on the one dimen-
sional space QcT . Indeed, cT and rT are, up to scalar multiples, idempotents
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in Q[Sn]. Frobenius constructed yT from cT and rT and showed that a certain
scalar multiple of yT is an indecomposable idempotent in Q[Sn].

Here is a formal statement of some of the basic obervations about rT , cT ,
and yT :

Proposition 6.5.1 Let T be any Young tableau T with n entries. Then

qyT = (−1)qyT if q ∈ CT ;

yTp = yT if p ∈ RT .
(6.31)

The row group RT and column group CT have trivial intersection:

RT ∩ CT = {ι}, (6.32)

where, as usual, ι denotes the identity permutation. Consequently, each ele-
ment in the set

CTRT = {qp : q ∈ CT , p ∈ RT}

can be expressed in the form qp for a unique pair (q, p) ∈ CT ×RT . For any
s ∈ Sn, the row and column symmetry groups behave as:

RsT = sRT s
−1
, and CsT = sCT s

−1
, (6.33)

and the Young symmetrizer transforms to a conjugate:

ysT = syT s
−1
. (6.34)

We leave the proof as Exercise 6.1.

6.6 Youngtabs to Irreducible Representations

We denote by ι ∈ Sn the identity permutation. Let R be any ring; then there
is the ‘trace functional’

Tr0 : R[Sn] → R : x =
�

s∈Sn

xss �→ xι.

Theorem 6.6.1 Let T be a Young tableau for n ∈ {2, 3, ...}. Then, for
the Young symmetrizer yT ∈ Z[Sn], the trace Tr0(y2T ) is a positive integer
γT , dividing n!. The element eT = 1

γT
yT is an indecomposable idempotent
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in Q[Sn]. The corresponding irreducible representation space Q[Sn]yT has
dimension dT given by

dT =
n!

γT
. (6.35)

There are elements v1, ..., vdT ∈ Z[Sn]yT that form a Q-basis of Q[Sn]yT .

Proof. The indecomposability criterion in Proposition 4.10.1 will be our key
tool.

To simplify the notation in the proof, we drop all subscripts indicating
the fixed tableau T ; thus, we write y instead of yT .

Fix t ∈ Sn, and let
z = yty. (6.36)

Our first objective is to prove that z is an integer multiple of y.
Observe that

qzp = (−1)qz for all p ∈ RT and q ∈ CT , (6.37)

because qy = (−1)qy and yp = y. Writing z as

z =
�

s∈Sn

zss,

where each zs is an integer, we see that, for q ∈ CT and p ∈ RT ,

zqp = coeff. of ι in q
−1
zp

−1 = (−1)qzι

Using this, we can express z as

z = zιy +
�

s/∈CTRT

zss. (6.38)

Next we show that the second term on the right is 0. For this we recall from
Theorem 6.3.3 that if s /∈ CTRT then CT ∩ sRT s

−1 is non-trivial, and hence
contains some transposition τ ; thus:

If s /∈ CTRT then there are transpositions σ ∈ RT and τ ∈ CT such that

τ
−1
sσ

−1 = s. (6.39)

Consequently:
(τzσ)s = zs.
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But since τ ∈ CT and σ ∈ RT we have

τzσ = (−1)τz = −z,

from which, specializing to the coefficient of s, we have

(τzσ)s = −zs.

Hence
zs = 0 if s /∈ CTRT .

Looking back at (6.38), we conclude that

z = zιy. (6.40)

Recalling the definition of z in (6.36), we see then that yty is an integer
multiple of y for every t ∈ Sn. Consequently,

yxy is a Q-multiple of y for every x ∈ Q[Sn]. (6.41)

Specializing to the case t = ι, we have

yy = γy, (6.42)

where
γ = (y2)ι. (6.43)

In particular, the multiplier γ is an integer. We will show shortly that γ is a
positive integer dividing n!. Then

e
def
= γ

−1
y (6.44)

is well defined and is clearly an idempotent in Q[Sn]. By (6.41), exe is a
Q-multiple of e for all x ∈ Q[Sn]. Hence by the indecomposablity criterion
in Proposition 4.10.1, e is an indecomposable idempotent.

It remains to prove that γ is a positive integer dividing n!. The Q-linear
map

Ty : Q[Sn] → Q[Sn] : a �→ ay (6.45)

acts on the subspace Q[Sn]y by multiplication by the constant γ. Moreover,
Ty maps any complementary subspace to Q[Sn]y (indeed, its entire domain)
into Q[Sn]y. Consequently,

Tr (Ty) = γ dimQ

�
Q[Sn]y

�
. (6.46)
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On the other hand, in terms of the standard basis of Q[Sn] given by the
elements of Sn, the trace of Ty is

Tr (Ty) = n!yι = n!, (6.47)

since, from the definition of y it is clear that

yι = 1.

Thus,
γ dimQ

�
Q[Sn]y

�
= n!. (6.48)

Hence γ is a positive integer dividing n!.
To finish up, note that the elements ty, with t running over Sn, span

Z[Sn]y. Consequently, a subset of them form a Q-basis of the vector space
Q[Sn]y. QED

We can upgrade to a general field. If F is any field, there is the natural
ring homomorphism

Z → F : m �→ mF

def
= m1F,

which is injective if F has characteristic 0, and which induces an injection of
Zp = Z/pZ onto the image ZF of Z in F if the characteristic of F is p �= 0.
To avoid too much notational distraction, we often sacrifice precision and
denote m1F as simply m instead of mF, bearing in mind that this might
be the 0 element in F. This induces a homomorphism of the corresponding
group rings:

Z[Sn] → F[Sn] : a �→ aF,

for every n ∈ {1, 2, ...}. Again, we often simply write a instead of aF. For
instance, the image of the Young symmetrizer yT ∈ Z[Sn] in F[Sn] is denoted
simply by yT in the statement of the following result.

Theorem 6.6.2 Let n ∈ {2, 3, ...} and F a field in which n! �= 0. Let T be
a Young tableau for n. Then γT = Tr0(y2T ) is not zero in F, and the element
eT = 1

γT
yT , viewed as an element in F[Sn], is an indecomposable idempotent.

The corresponding representation space F[Sn]yT has dimension dF,T which
satisfies

dF,T1F =
n!

γT
1F. (6.49)
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If F has characteristic 0 then

dF,T = dT =
n!

γT
(6.50)

does not depend on the field F.

Proof. The argument is essentially a rerun of the proof of Theorem 6.6.1,
mostly making sure we don’t divide by 0 anywhere. In place of (6.41) we
have now

yTxyT is an F-multiple of yT for every x ∈ F[Sn]. (6.51)

This again implies that eT = γ
−1
T

yT is an indecomposable idempotent, pro-
vided we make sure γT = Tr0(y2T ) isn’t 0 in F. But γT is a divisor of n!, and
hence is indeed �= 0 in F. Lastly, writing y for yT and arguing as in (6.47),
we work out the trace of

Ty : F[Sn] → F[Sn] : a �→ ay (6.52)

to be
Tr (Ty) = n!yι = n!, (6.53)

by one count, and equal to γT dimF

�
F[Sn]y

�
by another count; this shows

that dimF

�
F[Sn]y

�
equals n!/γT , both viewed as elements of F. QED

6.7 Youngtab Apps

There is a whole jujitsu of Young tableau combinatorics which yield a power-
ful show of results. Here we go through just a few of these moves, extracting
three ‘apps’ that are often used. The standard, intricate and efficient, path-
way to the results is from Weyl [76] who appears to credit von Neumann for
this approach. We include alternative insights by way of proofs based on the
viewpoint of partitions.

Proposition 6.7.1 For Youngtabs T and T
�, each with n entries, if λ(T �) >

λ(T ) in lexicographic order, then:

(i) there are two entries that both lie in one row of T � and in one column
of T as well.
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(ii) there exists a transposition σ lying in RT � ∩ CT .

In the language of partitions, if λ(T �) > λ(T ) then Cols(T ) ∧ Rows(T �) �= 0,
and the nontrivial group

RT � ∩ CT = FixCols(T )∧Rows(T �) (6.54)

is generated by the transpositions it contains.

Proof. Recall from Theorem 6.2.1 that the Young complement Rows(T )
of Cols(T ) is the partition of largest shape among all π1 ∈ Pn for which
Cols(T ) ∧ π1 = 0. Now λ(T �) > λ(T ) means that the shape of Rows(T �) is
larger than the shape of Rows(T ), and so

Cols(T ) ∧ Rows(T �) �= 0.

This just means that there is a column of T which intersects some row of
T

� in more than one element. Let i and j be two such elements. Then the
transposition (i j) lies in both RT � and CT . Theorem 6.3.1 implies that the
fixing subgroup (6.54) is generated by transpositions. QED

Here is the more traditional argument:
Traditional Proof. Write λ

� for λ(T �), and λ for λ(T ). Suppose λ
� wins

over λ right out in row 1: λ
�
1 > λ1. Now λ1(S) is not just the number of

entries in row 1 of a Young tableau S, it is also the number of columns of
S. Therefore, there must exist two entries in the first row of T � that lie in
the same column of T . Next suppose λ

�
1 = λ1, and the elements of the first

row of T � are distributed over different columns of T . Then we move these
elements ‘vertically’ in T all to the first row, obtaining a tableau T1 whose
first row is a permutation of the first row of T �. Having used only vertical
moves, we have T1 = q1T , for some q1 ∈ CT . We can replay the game now,
focusing on row 2 downwards. Compare row 2 of T � with that of T1. Again,
if the rows are of equal length then there is a vertical move in T1 (which is
therefore also a vertical move in T , because Cq1T = CT ) which produces a
tableau T2 = q2q1T , with q2 ∈ CT , whose first row is the same as that of T1,
and whose second row is a permutation of the second row of T �. Proceeding
this way, we reach the first j for which the j-th row of T � has more elements
than the j-th row of T . Then each of the first j−1 rows of T � is a permutation
of the corresponding row of Tj−1; focusing on the Youngtabs made up of the
remaining rows, recycling the argument we used for row 1, we see that there
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are two elements in the j-th row of T � that lie a single column in Tj−1. Since
the columns of Tj−1 are, as sets, identical to those of T , we are done with
proving (i). Now, for (ii), suppose a and b are distinct entries lying in one row
of T � and in one column of T ; then the transposition (a b) lies in RT � ∩ CT .
QED

The next result says what happens with Youngtabs for a common parti-
tion.

Proposition 6.7.2 Let T and T
� be Young tableaux associated to a common

partition λ. Let s be the element of Sn for which T
� = sT . Then:

(i) s /∈ CTRT if and only if there are two elements that are in one row of
T

� and also in one column of T ;

(ii) s /∈ CTRT if and only if there is a transposition σ ∈ RT and a transpo-
sition τ ∈ CT , for which

τsσ = s. (6.55)

Conclusion (i), stated in terms of the row and column partitions, says that
Rows(sT ) and Cols(T ) are Young complements of each other if and only if
s ∈ CTRT .

Proof. The condition that there does not exist two elements that are in one
row of T � = sT and also in one column of T means that

Rows(T �) ∧ Cols(T ) = 0,

which, since T
� and T have the same shape, means that Rows(T �) is a

Young complement of Cols(T ). From Theorem 6.3.2, Rows(T �) is a Young
complement for Cols(T ) if and only if s1Rows(T �) = Rows(T ) for some
s1 ∈ FixCols(T ). Since Rows(T �) = sRows(T ), the condition is thus equiv-
alent to:

there exists s1 ∈ FixCols(T ) for which s1s ∈ FixRows(T ).

Thus, the condition that Cols(T �) is a Young complement to Rows(T ) is
equivalent to s ∈ FixCols(T )FixRows(T ) = CTRT .

For (ii), recall that

FixCols(T )∧Rows(sT ) = FixCols(T ) ∩ FixRows(sT )

= FixCols(T ) ∩ sFixRows(T )s
−1

= CT ∩ sRT s
−1

(6.56)
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and the fixing subgroups are generated by the transpositions they contain.
Therefore, Cols(T ) and Rows(sT ) are not Young complements if and only
if there exists a transposition τ ∈ CT such that σ = s

−1
τs is in RT ; being

conjugate to a transposition, σ is also a transposition. QED
Here is a proof which bypasses the structure we have built about parti-

tions:
Traditional Proof. Suppose that s = qp, with q ∈ CT and p ∈ RT . Consider
two elements s(i) and s(j), with i �= j, lying in the same row of T �:

T
�
ab
= s(i), T

�
ac

= s(j).

Thus, i and j lie in the same row of T :

Tab = i, Tac = j.

The images p(i) and p(j) are also from the same row of T (hence different
columns) and then qp(i) and qp(j) would be in different columns of T . Thus
the entries s(i) and s(j), lying in the same row in T

�, lie in different columns
of T .

Conversely, suppose that if two elements lie in the same row of T � then
they lie in different columns of T . We will show that the permutation s ∈ Sn

for which T
� = sT has to be in CTRT . Bear in mind that the sequence of

row lengths for T
� is the same as for T . The elements of row 1 of T � are

distributed over distinct columns of T . Therefore, by moving these elements
vertically we can bring them all to the first row. This means that there is an
element q1 ∈ CT such that T1 = q1T and T

� have the same set of elements for
their first rows. Next, the elements of the second row of T � are distributed
over distinct columns in T , and hence also in T1 = q1T . Hence there is a
vertical move

q2 ∈ Cq1T = CT ,

for which T2 = q2T1 and T
� have the same set of first row elements and also

the same set of second row elements.
Proceeding in this way, we obtain a q ∈ CT such that each row of T � is

equal, as a set, to the corresponding row of qT :

{T �
ab
: 1 ≤ b ≤ λa} = {q(Tab) : 1 ≤ b ≤ λa}, for each a.

But then we can permute horizontally: for each fixed a, permute the numbers
Tab so that the q(Tab) match the T

�
ab
. Thus, there is a p ∈ RT , such that

T
� = qp(T ).
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Thus,
s = qp ∈ CTRT .

We turn to proving (ii). Suppose s /∈ CTRT . Then, by (i), there is a row
a, and two entries i = Tab and j = Tac, whose images s(i) and s(j) lie in
a common column of T . Let σ = (i j) and τ =

�
s(i) s(j)

�
. Then σ ∈ RT ,

τ ∈ CT , and
τsσ = s,

which is readily checked on i and j.
Conversely, suppose τsσ = s, where σ = (i j) ∈ RT . Then i and j are

in the same row of T , and so s(i) and s(j) are in the same row in T
�. Now

s(i) = τ(s(j)) and s(j) = τ(s(i)). Since τ ∈ CT it follows that s(i) and s(j)
are in the same column of T . QED

A Young tableau is standard if the entries in each row are in increasing
order, left to right, and the numbers in each column are also in increasing
order, top to bottom. For example:

1 2 7
3 4
5 6

Such a tableau must, of necessity, start with 1 at the top left box, and each
new row begins with the smallest number not already listed in any of the
preceding rows. Numbers lying directly ‘south’, directly ‘east’, and southeast
of a given entry are larger than this entry, and those to the north, west, and
northwest are lower.

In general, the boxes of a tableau are ordered in ‘book order’: read the
boxes left to right along a row and then move down to the next row.

The Youngtabs, for a given partition, can be linearly ordered: if T and
T

� are standard, we declare that

T
�
> T

if the first entry Tab of T that is different from the corresponding entry T
�
ab

of
T

� satisfies Tab < T
�
ab
. The tableaux for a given partition can then be written

in increasing/decreasing order. Here is how it looks for some partitions of 3:

3 2 1 > 3 1 2 > 2 3 1 > 2 1 3 > 1 3 2 > 1 2 3

For the partition (2, 1) the Youngtabs descend as:
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3 2

1
> 3 1

2
> 2 3

1
> 2 1

3
> 1 3

2
> 1 2

3

With this ordering we have the following result which states a condition
for Young complementarity in terms of Youngtabs, not the partitions:

Proposition 6.7.3 If T and T
� are standard Young tableaux with a common

partition, and T
�
> T , then there are two entries in some row of T � that lie

in one column of T . Consequently, there exists a transposition σ lying in
RT ∩ CT �.

Proof. Let x = Tab be the first entry of T that is less than the corresponding
entry y = T

�
ab
. The entry x appears somewhere in the tableau T

�. Because
ab is the first location where T differs from T

�, and Tab = x, we see that x

cannot appear prior to the location T
�
ab
. But x being < y = T

�
ab
, it can also

not appear directly south, east, or southeast of T �
ab
. Thus, x must appear in

T
� in a row below the a-th row and in a column c < b. Thus, the numbers

Tac (which equals T �
ac
) and Tab = x, appearing in the a-th row of T , appear

in the c-th column of T �. QED

6.8 Orthogonality

We have seen that Youngtabs correspond to irreducible representations of Sn

via indecomposable idempotents. Which Youngtabs correspond to inequiva-
lent representations? Here is the first step to answering this question:

Theorem 6.8.1 Suppose T and T
� are Young tableaux with n entries, where

n ∈ {2, 3, ...}; then

yT �yT = 0 if λ(T �) > λ(T ) in lexicographic order. (6.57)

Proof. Suppose λ(T �) > λ(T ). Then by Proposition 6.7.1, there is a trans-
position σ ∈ RT � ∩ CT . Then

yT �yT = yT �σσyT = (yT �)(−yT ) = −yT �yT

Thus, yT �yT is 0. QED
Here is the corresponding result for standard Youngtabs with common

shape:
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Theorem 6.8.2 If T and T
� are standard Young tableaux associated to a

common partition of n ∈ {2, 3, ...}, then

yTyT � = 0 if T �
> T . (6.58)

Proof. By Proposition 6.7.3, there is a transposition σ ∈ RT ∩ CT � . Then

yTyT � = yTσσyT � = (yT )(−yT �) = −yTyT �

and so yTyT � is 0. QED

6.9 Deconstructing F[Sn]

As a first consequence of orthogonality of the Young symmetrizers we are
able to distinguish between inequivalent irreducible representations of Sn:

Theorem 6.9.1 Let T and T
� be Young tableaux with n entries. Let F be a

field in which n! �= 0. Then the left ideals F[Sn]yT and F[Sn]yT � in F[Sn] are
isomorphic as F[Sn]-modules if and only if T and T

� have the same shape.

Proof. Suppose first that λ(T ) �= λ(T �). Back in Proposition 4.10.1 we
showed that, for any finite group G and field F in which |G|1F �= 0, idempo-
tents y1 and y2 in F[G] generate non-isomorphic left ideals if y1F[G]y2 = 0.
Thus it will suffice to verify that yT �syT is 0 for all s ∈ Sn. This is equivalent
to checking that yT �syT s

−1 is 0, which, by (6.34), is equivalent to yT �ysT being
0. Since T

� and T have different shapes, we can assume that λ(T �) > λ(T ).
Then also λ(T �) > λ(sT ), because sT and T have, of course, the same shape.
Then the orthogonality result (6.57) implies that yT �ysT is indeed 0.

Now suppose T and T
� have the same shape. Then there is an s ∈ Sn

such that T � = sT . Recall that ysT = syT s
−1. So there is the mapping

f : F[Sn]yT → F[Sn]yT � : v �→ vs
−1
.

This is clearly F[Sn]-linear as well as a bijection, and hence an isomorphism
of F[Sn]-modules. QED

Next, working with standard Youngtabs, we have the following conse-
quence of orthogonality:
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Theorem 6.9.2 If T1, ..., Tm are all the standard Young tableaux associated
to a common partition of n, then the sum

�
m

j=1 F[Sn]yTj
is a direct sum, if

the characteristic of F does not divide n!.

Proof. Order the Tj, so that T1 < T2 < · · · < Tm. Suppose
�

m

j=1 F[Sn]yTj
is

not a direct sum. Let r be the smallest element of {1, ..., n} for which there
exist xj ∈ F[Sn]yTj

, for j ∈ {1, ..., r}, with xr �= 0, such that

r�

j=1

xj = 0.

Multiplying on the right by yTr
produces

γTr
xr = 0,

because y
2
Tr

= γTr
yTr

, and yTs
yTr

= 0 for s < r. Now γTr
is a divisor of n!,

and so γTr
is not 0 in F, and so

xr = 0.

This contradiction proves that
�

m

j=1 F[Sn]yTj
is a direct sum. QED

Finally, with all the experience and technology we have developed, we
can take F[Sn] apart:

Theorem 6.9.3 Let n ∈ {2, 3, ...}, and F a field in which n!1F �= 0. Denote
by Tn the set of all Young tableaux with n entries, and Pn the set of all shapes
of all partitions of n. Then for any p ∈ Pn, the sum

A(p) =
�

T∈Tn,λ(T )=p

F[Sn]yT (6.59)

is a two sided ideal in F[Sn] that contains no other nonzero two sided ideal.
The mapping

I :
�

p∈Pn

A(p) → F[Sn] : (ap)p∈Pn
�→

�

p∈Pn

ap (6.60)

is an isomorphism of rings.
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Take a look back to the remark made right after the statement of Theorem
5.2.1. From this remark and (6.59) it follows that there is a subset Shp of
T ∈ Tn, all with fixed shape p, for which the simple modules F[Sn]yT form a
direct sum decomposition of A(p):

A(p) =
�

T∈Shp

F[Sn]yT . (6.61)

Proof. It is clear that A(p) is a left ideal. To see that it is a right ideal we
simply observe that if λ(T ) = p then for any s ∈ Sn:

F[Sn]yT s = F[Sn]ss
−1
yT s = F[Sn]ys−1T ⊂ A(p)

where the last inclusion holds because λ(s−1
T ) = λ(T ) = p.

Now suppose p and p
� are different partitions of n. Then for any tableaux

T and T
� with λ(T ) = p and λ(T �) = p

�, Theorem 6.9.1 says that F[Sn]yT is
not isomorphic to F[Sn]yT � , and so

F[Sn]yTF[Sn]yT � = 0,

because these two simple left ideals are not isomorphic (see Theorem 5.4.2,
if you must). Consequently

A(p)A(p�) = 0.

From this it follows that the mapping (6.60) preserves addition and multi-
plication.

For injectivity of I, let up be an idempotent generator of Ap for each
p ∈ Pn. If �

p∈Pn

ap = 0

then multiplying on the right by up zeroes out all terms except the p-th,
which remains unchanged at ap and hence is 0. Thus, I is injective.

On to surjectivity. It’s time to recall (4.14); in the present context, it
says that the number of non-isomorphic simple F[Sn]-modules is at most the
number of conjugacy classes in Sn, which is the same as |Pn|. So if L is any
simple left ideal in F[Sn] then it must be isomorphic to any simple left ideal
F[Sn]yT lying inside A(p), for exactly one p ∈ Pn, since such p are, of course,
also |Pn| in number. Then L is a right translate of this F[Sn]yT and hence
also lies inside A(p). Therefore, the image of I is all of F[Sn].
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Consequently, the image of I covers all of the group algebra F[Sn]. QED
This is a major accomplishment. Yet there are tasks unfinished: what

exactly is the value of the dimension of F[Sn]yT ? And what is the character
χT of the representation given by F[Sn]yT ? We will revisit this place, enriched
with more experience from a very different territory in Chapter 10, and gain
an understanding of the character χT .

6.10 Integrality

Here is a dramatic consequence of our concrete picture of the representations
of Sn through the modules F[Sn]yT :

Theorem 6.10.1 Suppose ρ : Sn → EndF(E) is any representation of Sn on
a finite dimensional vector space E over a field F of characteristic 0, where
n ∈ {2, 3, ...}. Then there is a basis in E relative to which, for any s ∈ Sn,
the matrix ρ(s) has all entries integers. In particular, all characters of Sn

are integers.

Proof. First, by decomposing into simple pieces, we may assume that E is an
irreducible representation. Then, thanks to Theorem 6.9.3, we may further
take E = F[Sn]yT , for some Youngtab T , and ρ the restriction ρT of the
regular representation to this submodule of F[Sn].

The Z-module Z[Sn]yT is a submodule of the finitely generated free mod-
ule Z[Sn], and hence is itself finitely generated and free (Theorem 12.5.1). Fix
a Z-basis v1, ..., vdT of Z[Sn]yT . Multiplication on the left by a fixed s ∈ Sn

is a Z-linear map of Z[Sn]yT into itself and so has matrix MT (s), relative to
the basis {vi}, having all entries in Z. Now 1⊗v1, ..., 1⊗vdT is an F-basis for
the vector space F[Sn]yT = F ⊗Z Z[Sn]yT (see Theorem 12.10.1). Hence the
matrix for ρT (s) is MT (s), which, as we noted, has all integer entries. QED

There is a more abstract reason, noted by Frobenius [28, §8], why char-
acters of Sn have integer values: if s ∈ Sn and k is prime to the order of s
then s

k is conjugate to s. See Weintraub [75, Theorem 7.1] for more.

6.11 Rivals and Rebels

In contrast to our leisurely exploration, there are extremely efficient ex-
positions of the theory of representations of Sn. Among these we men-
tion the short and readable treament of Diaconis [21, Chapter 7] and the
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characteristic-free development by James [49]. The long established order of
Young tableaux has been turned on its side by the sudden appearance of a
method propounded by Okounkov and Vershik [62]; the book of Ceccherini-
Silberstein, Scarabotti, and Tolli [11] is an extensive introduction to the
Okounkov-Vershik theory, and a short self-contained exposition is available
in the book of Hora and Obata [44, Chapter 9]. The study of Young tableaux
is in itself an entire field which to the outsider has the feel of a secret soci-
ety with a plethora of mysterious formulas, and rules and rituals with hy-
phenated parentage: the Murnaghan-Nakayama rule, the jeu de taquin of
Schützenberger, the Littlewood-Richardson correspondence, the Robinson-
Schensted-Knuth algorithm. An initiation may be gained from the book of
Fulton [36] (and an internet search on Schensted is recommended). We have
not covered the hook length formula that gives the dimension of irreducible
representations of Sn; an unusual but simple proof of this formula is given
by Glass and Ng [38].

6.12 Afterthoughts: Reflections

The symmetric group Sn is generated by transpositions, which are just the
elements of order two in the group. There is a class of more geometric groups
that are generated by elements of order two. These are groups generated by
reflections in finite dimensional real vector spaces. In this section we will
explore some aspects of such groups which resemble features we have studied
for Sn.

Let E be a finite dimensional real vector space, equipped with an in-
ner product �·, ·�. A hyperplane in E is a codimension one subspace of E;
equivalently, it is a subspace perpendicular to some nonzero vector v:

v
⊥ = {x ∈ E : �x, v� = 0}.

Reflection across this hyperplane is the linear map

Rv⊥ : E → E

which fixes each point on v
⊥ and maps v to −v:

Rv⊥(x) = x− 2
�x, v�
�v, v�v for all x ∈ E.
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A more elegant definition of reflection requires no inner product structure: a
reflection across a codimension one subspace B in a general vector space V

is a linear map R : V → V for which R
2 = I, the identity map on V , and

ker(I −R) = B.
By a reflection group in E let us mean a finite group of endomorphisms of

E generated by a set of reflections across hyperplanes in E. Not all elements
of such a group need be reflections. Let HW be the set of all hyperplanes B
such that the reflection RB across B is in W . This is a finite set, of course.
Let

PW = {π : π is the intersection of a set of hyperplanes in HW}. (6.62)

This is a hyperplane arrangement (for the theory of hyperplane arrangements
see [61]). Observe that each π ∈ PW is the intersection of all the hyperplanes
of HW that contain π as subset:

π =
�

{B ∈ HW : π ⊂ B}. (6.63)

The set PW is partially ordered by reverse inclusion:

π1 ≤ π2 means π2 ⊂ π1.

The least element 0 and the largest element 1 are:

0 = E, and 1 = ∩B∈HW
B,

where E is viewed as the intersection of the empty family of hyperplanes in
E (though, in general, ∩∅ is fallacious territory in set theory!). Moreover, if
π1, π2 ∈ PW then

π1 ∨ π2
def
= sup{π1, π2} = π1 ∩ π2

π1 ∧ π2
def
= inf{π1, π2} = ∩{π ∈ PW : π ⊃ π1, π2}.

(6.64)

Here, by definition, inf S is the largest element ≤ to all elements of S, and it
exists, being just the intersection of the subspaces in S. For example, if B1

and B2 are distinct hyperplanes, then B1 ∧ B2 is E. Thus, PW is a lattice,
the intersection lattice for W .

Let us compare the intersection lattice PW with the partition lattice Pn

we have used for Sn. In the lattice Pn, an atom is a partition that contains
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one two-element set and all others are one-element sets. The analog in the
lattice PW are the hyperplanes of HW . The relation (6.63) means that each
element π ∈ PW is the supremum of the atoms that are below it:

π = sup{B ∈ HW : B ≤ π}. (6.65)

The analog for Pn also holds: any partition π ∈ Pn is the supremum of the
atoms that lie below it.

For a subspace π ∈ PW , let πc be the intersection of the hyperplanes in
HW which do not contain π:

πc =
�

{B ∈ HW : π �⊂ B}. (6.66)

Using (6.63) we then have

π ∨ πc =
�

B∈HW

B = 1. (6.67)

Moreover, since there is no hyperplane which contains both π and πc, the
infimum of {π, πc} is E:

π ∧ πc = E = 0. (6.68)

For this lattice complementation we also have:

π1 ≤ π2 ⇒ (π2)c ≤ (π1)c
(πc)c = π.

(6.69)

Now consider symmetries of PW : for each π ∈ PW we have the subgroup of
all s ∈ S which fix each point in π:

Fixπ = {s ∈ W : s|π = idπ}. (6.70)

The mapping
Fix : PW → {subgroups of W}

is clearly order-preserving:

if π1 ≤ π2 then Fixπ1 ⊂ Fixπ2 . (6.71)

Remarkably, Fixπ is generated by the order two elements it contains, these
being the reflections across the hyperplanes containing π (see Humphreys [45,
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§1.5]). Consequently, π may be recovered from Fixπ as the intersection of
the fixed point sets of all reflections r ∈ Fixπ:

π = ∩r∈Fixπ ,r2=I ker(I − r). (6.72)

We can now summarize our observations into the following analog of Theorem
6.3.1:

Theorem 6.12.1 The mapping

Fix : PW → {subgroups ofW} : π �→ Fixπ

is injective and order-preserving when the subgroups of W are ordered by in-
clusion. The mapping Fix from PW to its image inside the lattice of subgroups
of W is an order-preserving isomorphism:

Fixπ1 ⊂ Fixπ2 if and only if π1 ≤ π2.

Furthermore, Fix also preserves the lattice operations:

Fixπ1∧π2 = Fixπ1 ∩ Fixπ2

Fixπ1∨π2 = the subgroup generated by Fixπ1 andFixπ2 ,
(6.73)

for all π1, π2 ∈ PW .
The group Fixπ is generated by the reflections it contains.

As in the case of Sn, we also have

Fixs(π) = sFixπs
−1 (6.74)

for all π ∈ PW and s ∈ W .
We step off this train of thought at this point, having seen that the method

of using partitions, and beyond that the Young tableaux, have reflections
beyond the realm of the symmetric groups.

Exercises

1. Prove Proposition 6.5.1.

2. Work out the Young symmetrizers for all the Youngtabs for S3. De-
compose F[S3] into a direct sum of simple left ideals. Work out the
irreducible representations given by these ideals.
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3. Let G be a finite group and F the field of fractions of a principal ideal
domain R. If ρ : G → EndF(V ) is a representation of G on a finite
dimensional vector space V over F, show that there is a basis of V
such that, for every g ∈ G, the matrix of ρ(g) relative to this basis has
entries all in R. (You can use Theorem 12.5.2.)

4. For H any subgroup of Sn, let OrbH be the set of all orbits of H in
[n]; in detail, OrbH = {{h(j) : h ∈ H} : j ∈ [n]}. Then Orb :
{subgroups of Sn} → Pn is an order-preserving map, where subgroups
are ordered by inclusion, and the set Pn of all partitions of [n] is ordered
so that π1 ≤ π2 if each block in π1 is contained inside some block of
π2. For any partition π ∈ Pn let Fixπ be the subgroup of Sn consisting
of all s ∈ Sn for which s(B) = B for all blocks B ∈ π. Show that for
π ∈ Pn and H any subgroup of Sn: (a) if Fixπ ⊂ H then π ≤ OrbH ;
(b) if H ⊂ Fixπ then OrbH ≤ π.

5. For any positive integer n, and any k ∈ [n] = {1, . . . , n}, the Jucys-
Murphy element Xk in R[Sn] is defined to be

Xk = (1 k) + · · ·+ (k − 1 k), (6.75)

with X1 = 0, and R is any commutative ring. Show that, for k > 1, the
element Xk commutes with every element of R[Sk−1], where we view
Sk−1 as a subset of Sn in the natural way. Show that X1,...,Xn generate
a commutative subalgebra of R[Sn]. For the standard Young tableau

T = 1 2 5
3 4

work out X4yT . The Jucys-Murphy elements play an important role in
the Okounkov-Vershik theory [62].



Chapter 7

Characters

The character of a representation ρ of a finite group G on a finite dimensional
F-vector space E is the function χρ on G given by

χρ : G → F : g �→ Tr
�
ρ(g)

�
. (7.1)

Sometimes it is convenient to write χE instead of χρ.
A character of G is the character of some finite dimensional representation

of G. In the case of greatest use, the underlying field is C; for this case, we
will use the term complex character. An irreducible or simple character is the
character of an irreducible representation.

A character is always a central function:

χρ(ghg
−1) = χρ(h) for all g, h ∈ G. (7.2)

A different face of conjugation invariance is expressed by the fact that

χρ1 = χρ2

whenever ρ1 and ρ2 are equivalent representations. We have proved this in
Proposition 1.10.1.

The character χρ extends naturally to a linear function

χρ : F[G] → F

which is central in the sense that

χρ(ab) = χρ(ba) for all a, b ∈ F[G]. (7.3)

189
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There is generally no need to distinguish between χ viewed as a function on
F[G] and as a function on G.

We have seen that

χE⊕F = χE + χF (7.4)

χE⊗F = χEχF (7.5)

If E decomposes as

E =
m�

i=1

niEi,

where Ei are representations, then

χE =
s�

i=1

niχEi
(7.6)

7.1 The Regular Character

We work with a finite group G and a field F.
The regular representation ρreg of a finite group G is its representation

through left multiplications on the group algebra F[G]: to g ∈ G is asso-
ciated ρreg(g) : F[G] → F[G] : x �→ gx. We denote the character of this
representation by χreg:

χreg
def
= character of the regular representation. (7.7)

As usual, we may view this as a function on F[G]; this

χreg(x) = Trace of the linear map F[G] → F[G] : y �→ xy (7.8)

for all x ∈ F[G].
Let us work out χreg on any element

b =
�

h∈G

bhh ∈ F[G].

For any g ∈ G we have

bg =
�

h∈G

bhhg = beg +
�

w∈G,w �=g

bwg−1w,
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and so, in terms of the basis of F[G] given by the elements of G, left multi-
plication by b has a matrix with be running down the main diagonal. Hence

χreg(b) = |G|be. (7.9)

We can rewrite (7.9) as

1

|G|Tr (ρreg(b)) = be if |G| �= 0 in F. (7.10)

The map
Tre : F[G] → F : b �→ be,

is itself also called a trace, and is a central function on F[G]. Unlike χreg, the
trace Tre is both meaningful and useful even if |G|1F is 0 in F.

In Chapter 4 we saw that there is a maximal string of nonzero central
idempotent elements u1, ..., us in F[G] such that the map

I :
s�

i=1

F[G]ui → F[G] : (a1, ..., as) �→ a1 + · · ·+ as (7.11)

is an isomorphism of algebras, where F[G]ui is a two sided ideal in F[G] and
is an algebra in itself, with ui as multiplicative identity. The statement that
I in (7.11) preserves multiplication encodes the observation that

F[G]uiF[G]uj = 0 if i �= j.

If |G|1F �= 0 then, on picking a simple left ideal Li of F[G] lying inside F[G]i
for each i, every irreducible representation of G, viewed as an F[G]-module,
is isomorphic to some Li, and

F[G]ui = Li ⊕ · · ·⊕ Li� �� �
di copies

,

for some positive integer di every i ∈ {1, ..., s}. Let χi be the character of
the restriction of the regular representation to the subspace Li:

χi(g) = Tr (ρreg(g)|Li) (7.12)

If |G|1F �= 0 then every finite dimensional representation of G is isomorphic
to a direct sum of copies of the Li, and so in this case every character χ of
G is a linear combination of the form

χ =
s�

i=1

niχi, (7.13)
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where ni is the number of copies of Li in a direct sum decomposition of the
representation for χ into irreducible components.

In the remainder of this section, whenever we work with χi we will assume
that the algebra is semisimple, or, equivalently, that |G|1F �= 0 in F.

In particular, with |G|1F �= 0 in F, we have

χreg =
s�

i=1

diχi, (7.14)

is the number of copies of Li in a direct sum decomposition of F[G] into
simple left ideals. We know that

di = dimDi
Li,

where Di is the division ring

Di = EndF[G]ui
Li.

When F is also algebraically closed, di equals dimF Li.
Recalling (7.8), and noting that

ajF[G]ui = 0 if aj ∈ F[G]uj and j �= i,

we have
χi(aj) = 0 if aj ∈ F[G]uj and j �= i. (7.15)

Thus,

χi

���F[G]uj = 0 if j �= i (7.16)

Equivalently,
χi(uj) = 0 if j �= i (7.17)

where, as usual, uj is the generating idempotent for F[G]uj. On the other
hand,

χi(ui) = dimF Li (7.18)

because the central element ui acts as the identity on Li ⊂ F[G]ui. In fact,
we have

χreg(yui) = diχi(y) for all y ∈ G (7.19)

Lemma 7.1.1 If L is an irreducible representation of a finite group G over
an algebraically closed field F whose characteristic does not divide |G|, then
dimF L is also not divisible by the characteristic of F.
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There will be a remarkably sharpened version of this result later in Theorem
7.5.1.
Proof. Let P : L → L be a linear projection map with one-dimensional range.
Then by Schur’s Lemma, the F[G]-linear map P1 =

�
g∈G gPg

−1 : L → L is
a scalar multiple cI of the identity, and so, taking the trace, we have |G| · 1F
(which, by assumption, is not 0) equals c dimF L. Hence, dimF L is not 0 in
F. QED

One aspect of the importance and utility of characters is codified in the
following fundamental observation:

Theorem 7.1.1 Suppose G is a finite group and F a field; assume that either
(i) F has characteristic 0 or (ii) |G|1F �= 0 and F is algebraically closed. Then
the irreducible characters of G over the field F are linearly independent.

Proof. Let χ1, ...,χs be the distinct irreducible characters of G for represen-
tations on vector spaces over the field F. From (7.17) and (7.18) it follows
that if

s�

i=1

ciχi = 0

where c1, ..., cs ∈ F, then, on applying this to aj,

cj dimF Lj = 0.

Thus, since either of the hypotheses (i) and (ii) imply that each dimF Li is
not 0 in F, it follows that each cj is 0. QED

Linear independence encodes the following important fact about charac-
ters:

Theorem 7.1.2 Suppose G is a finite group and F is an algebraically closed
field of characteristic 0. Two finite dimensional representations of G, over
F, have the same character if and only if they are equivalent.

Proof. Let L1, ..., Ls be a maximal collection of inequivalent irreducible rep-
resentations of G. If E is a representation of G then E is isomorphic to a
direct sum

E �
s�

i=1

niLi (7.20)
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where niLi is a direct sum of ni copies of Li. Then

χE =
s�

i=1

niχi

The coefficients ni are uniquely determined by χE, and hence so is the de-
composition (7.20) up to isomorphism. QED

7.2 Character Orthogonality

The character, being a trace, has interesting and useful features inherited
from the nature of the trace functional. We will explore some of these prop-
erties in this section. A note of warning: we will use the bra-ket formalism
introduced at the end of section 1.6. When working with a vector space V ,
and its dual V �, we will often denote a typical element of V by |v� and a
typical element of V � by �f |, with the evaluation of �f | on |v� denoted by

�f |v�.

Assume that G is a finite group and F a field. Let

T : E → F

be an F-linear map between simple F[G]-modules. Then the G-symmetrized
version

T1 =
�

g∈G

gTg
−1

satisfies
hT1 = T1h for all h ∈ G

and so is F[G]-linear. Hence by Schur’s Lemma it is either 0 or an isomor-
phism. A general linear map T : E → F , viewed as matrix relative to bases
in E and F , is a linear combination of matrices that have all entries zero
except for one which is 1; we specialize T to such a matrix. We choose now
a special form for the map T ; picking a basis |e1�, ..., |em� of the vector space
E, and a basis |f1�, ...|fn� of F , and let T be given by

T = |fj��ek| : |v� �→ �ek|v�|fj� = vk|fj�,
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where vk is the k-th component of |v� written out in the basis |e1�, ..., |em�.
Then

T1 =
�

g∈G

ρF (g)|fj��ek|ρE(g)−1
. (7.21)

If ρE and ρF are inequivalent representations of G, then T1 is 0, and so

�fj|T1|ek� = 0,

which says �

g∈G

ρF (g)jjρE(g
−1)kk = 0. (7.22)

Summing over j as well as k produces:
�

g∈G

χF (g)χE(g
−1) = 0. (7.23)

This is one of several orthogonality relations discovered by Frobenius. Here
is an official summary:

Theorem 7.2.1 If ρ1 and ρ2 are inequivalent irreducible representations of
a finite group on vector spaces then

�

g∈G

χρ1(g)χρ2(g
−1) = 0. (7.24)

Why the term ‘orthogonality’? The answer is seen by noticing that,
working with complex representations, the relation (7.24) can be viewed as
saying that the vectors

(χE(g))g∈G ∈ C
G

are orthogonal to each other for inequivalent choices of the irreducible rep-
resentation E.

Next we use Schur’s Lemma in the case the representations are the same.
Thus, consider an F-linear map

T : E → E,

where E is a simple F[G]-module. Forming the symmetrized version just as
above we have, again by Schur’s Lemma,

�

g∈G

gTg
−1 = cI, (7.25)
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for some scalar c ∈ F, provided, of course, we assume now that F is alge-
braically closed (or at least that F is a splitting field for G). The value of c
is obtained by taking the trace of both sides in (7.25):

|G|Tr (T ) = c dimF E. (7.26)

Picking a T whose trace is 1 shows that dimF E �= 0 in the field F, provided
|G|1F �= 0; with this assumption we have then

�

g∈G

gTg
−1 =

|G|Tr (T )
dimF E

I. (7.27)

Using a basis |e1�, ..., |em� of E we take T to be

Tjk = |ej��ek|,

and this gives �

g∈G

ρE(g)|ej��ek|ρE(g)−1 = cjkI, (7.28)

where
cjk dimF E = |G|Tr (Tjk) = δjk|G|. (7.29)

(Notice that from this it follows again that if |G|1F �= 0 in F then dimF E is
also nonzero as an element of F. Bracketing (7.28) between �ej| · · · |ek� we
have: �

g∈G

�ej|ρE(g)|ej��ek|ρE(g)−1|ek� = cjkδjk.

Summing over j and k produces, on dividing by |G|1F,
�

g∈G

χE(g)χE(g
−1) = |G|.

Here is a clean summary of our conclusions:

Theorem 7.2.2 If ρ is an irreducible representation of a finite group on a
vector space over an algebraically closed field F in which |G|1F �= 0, then

�

g∈G

χρ(g)χρ(g
−1) = |G|. (7.30)
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As is often the case, the condition that F is algebraically closed can be
replaced by the requirement that F be a splitting field for G.

The two results we have proven here so far can be combined into one: if
ρ1 and ρ2 are irreducible representations then

1

|G|
�

g∈G

χρ1(g)χρ2(g
−1) =

�
1 if ρ1 is equivalent to ρ2

0 if ρ1 is not equivalent to ρ2,
(7.31)

provided that the underlying field F is algebraically closed and |G|1F �= 0.
Here is another perspective on this:

Theorem 7.2.3 Suppose ρ1 and ρ2 are representations of a finite group G

on finite dimensional vector spaces E1 and E2, respectively, over a field F in
which |G|1F �= 0. Then

1

|G|
�

g∈G

χρ1(g)χρ2(g
−1) = dimF HomF[G](E1, E2) (7.32)

where HomF[G](E1, E2) is the vector space of all F[G]-linear maps E1 → E2.

Before heading into the proof observe that if ρ1 and ρ2 are inequivalent
irreducible representations then, by Schur’s Lemma, HomF[G](E1, E2) is 0,
whereas if ρ1 and ρ2 are equivalent irreducible representations then, again by
Schur’s Lemma, HomF[G](E1, E2) is 1-dimensional if F is algebraically closed.
The version we now have works even if ρ1 and ρ2 are not irreducible and
shows that in fact the averaged character product on the left in (7.31) takes
into account the multiplicities of irreducible constituents of E1 and E2.
Proof. The key point is that the G-symmetrization or averaging T → T0 in
(7.33) below is a projection map onto HomF[G](E1, E2) and the trace of this
projection gives the dimension of HomF[G](E1, E2). In more detail, consider
the map

Π0 : HomF(E1, E2) → HomF(E1, E2) : T �→ T0 =
1

|G|
�

g∈G

ρE2(g)
−1
TρE1(g).

(7.33)
Clearly, T0 lies in the subspace HomF[G](E1, E2). Moreover, if T is already
in this subspace then T0 = T . Thus, Π2

0 = Π0 and is a projection map with
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image HomF[G](E1, E2). Every element T ∈ HomF(E1, E2) splits uniquely as
a sum

T = Π0(T )� �� �
∈Im(Π0)

+(1− Π0)(T )� �� �
∈ker(Π0)

.

Thus:
HomF(E1, E2) = HomF[G](E1, E2)⊕ kerΠ0.

Form a basis of HomF(E1, E2) by pooling together a basis of HomF[G](E1, E2)
with a basis of kerΠ0; relative to this basis, the matrix of P0 is diagonal,
with an entry of 1 for each basis vector of HomF[G](E1, E2) and 0 in all other
entries. Hence,

Tr(Π0) = dimF HomF[G](E1, E2). (7.34)

Now let us calculate the trace on the left more concretely. If E1 or E2 is
{0} then the result is trivial, so we assume that neither space is 0. Choose a
basis |e1�, ..., |em� in E1, and a basis |f1�, ..., |fn� in E2. The elements

Tjk = |fj��ek| : E1 → E2 : |v� �→ �ek|v��fj|

where �ek|v� is the k-th component of |v� in the basis {|ei�}, form a basis of
HomF(E1, E2). The image of Tjk under the projection Π0 is

Π0(Tjk) =
1

|G|
�

g∈G

ρE2(g)
−1|fj��ek|ρE1(g)

=
�

1≤i≤m,1≤l≤n

1

|G|
�

g∈G

�fl|ρE2(g)
−1|fj��ek|ρE1(g)|ei� |fl��ei|.

(7.35)

Thus, the Tjk-component of Π0(Tjk) is

1

|G|
�

g∈G

�fk|ρE2(g)
−1|fj��ek|ρE1(g)|ej�

and so the trace of Π0 is found by summing over j and k:

Tr (Π0) =
1

|G|
�

g∈G

χρ2(g
−1)χρ1(g). (7.36)

Combining this with (7.34) brings us to our goal (7.32). QED
The roles of characters and conjugacy classes can be interchanged to

reveal another orthogonality identity:
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Theorem 7.2.4 Let R be a maximal set of inequivalent irreducible repre-
sentations of a finite group G over an algebraically closed field F in which
|G|1F �= 0. then

�

ρ∈R

χρ(C
�)χρ(C

−1) =
|G|
|C|δC,C� (7.37)

for any conjugacy classes C and C
� in G.

Proof. Let χ1,...,χr be all the distinct irreducible characters of G, over F, and
let C1,...,Cr be all the distinct conjugacy classes in G. Then by Theorems
7.2.2 and 7.2.1, writing each sum

�
g
as a sum over conjugacy classes, we

have
r�

j=1

|Cj|
|G| χi(Cj)χk(C

−1
j

) = δik. (7.38)

Let us read this as a matrix equation: let A and B be r×r matrices specified
by

Aij =
|Cj|
|G| χi(Cj), and Bjk = χk(C

−1
j

),

for all i, j, k ∈ [r]. Then the relation (7.38) means AB is the identity matrix
I, and hence BA is also I. Thus

r�

j=1

BijAjk = δik

which spells out as
r�

j=1

χj(C
−1
i

)
|Ck|
|G| χj(Ck) = δik

for all i, k ∈ [r]. Writing C
� for Ci and C for Ck, and a small bit of rear-

rangement, brings us to our destination (7.37). QED
The argument given above is a slight reformulation of Frobenius’ proof.

You can explore a longer but more insightful alternative route in Exercise
7.2.

Here is a nice consequence, which can be seen by other means as well:

Theorem 7.2.5 Let G be a finite group, F an algebraically closed field in
which |G|1F �= 0. If g1, g2 ∈ G are such that χ(g) = χ(h) for every irreducible
character χ of G over F, then g1 and g2 belong to the same conjugacy class.
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Proof. Let C be the conjugacy class of g1 and C
� that of g2. Then χ(C �) =

χ(C) for all irreducible characters. Let χ1,...,χr be all the distinct irreducible
characters of G over F. Then using (7.37) we have

|G|
|C| =

r�

i=1

χi(C)χi(C
−1) =

r�

i=1

χi(C
�)χi(C

−1) =
|G|
|C|δC,C� ,

which implies that C coincides with C
�. QED

Before looking at yet another consequence of Schur’s Lemma for charac-
ters, it will be convenient to introduce a certain product of functions on G

called convolution. Let G be a finite group and F any field. Recall that an
element

�
g∈G xgg of the group algebra F[G] is just a different expression for

the function G → F : g �→ xg. It is, however, also useful to relate functions
G → F to elements of F[G] in a less obvious way. Assume |G|1F �= 0 and
associate to a function f : G → F the element

f =
1

|G|
�

g∈G

f(g)g−1 (7.39)

The association

F
G → F[G] : f �→ f

is clearly an isomorphism of F-vector-spaces. Let us see what in F
G corre-

sponds to the product structure on F[G]. If f1, f2 : G → F then a simple
calculation produces

f1 f2 = f1∗f2 (7.40)

where f1 ∗ f2 is the convolution of the functions f1 and f2, specified by

f1∗f2(h) =
1

|G|
�

g∈G

f1(g)f2(hg
−1) (7.41)

for all h ∈ G. Of course, all this makes sense only when |G|1F �= 0. (If |G|
were divisible by the character of the field F then one could still define a
convolution by dropping the dividing factor |G|. One other caveat: we put a
twist in (7.39) with the g

−1 on the right which has resulted in what maybe
a somewhat uncomfortable twist in the definition (7.41) of the convolution.)

Here is a stronger form of the character orthogonality relations, expressed
in terms of the convolution of characters:
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Theorem 7.2.6 Let E and F be irreducible representations of a finite group
G over an algebraically closed field in which |G|1F �= 0. Then

χE ∗ χF =

�
1

dimF E
χE if E and F are equivalent;

0 if E and F are not equivalent.
(7.42)

Explicitly,

1

|G|
�

h∈G

χE(gh
−1)χF (h) =

�
1

dimF E
χE(g) if E and F are equivalent;

0 if E and F are not equivalent.

(7.43)
More generally, if χ1, ...,χk are characters of irreducible representations of
G, over the field F, then

�

{(a1,...,ak)∈Gk:a1...ak=c}

χ1(a1)...χk(ak) =






�
|G|
d1

�k−1
χ1(c) if all χj are equal to χ1;

0 otherwise,

(7.44)
for any c ∈ G, with d1 = χ1(e) being the dimension of the representation
space of the character χ1.

As in the first character orthogonality result, Proposition 7.2.1, the second
case in (7.42) holds without any conditions on the field F.
Proof. Suppose first E and F are inequivalent representations. In this case
the argument is a rerun, with a simple modification, of the proof of the first
character orthogonality relation Proposition 7.2.1. Fix bases |e1�, ..., |em� in
E, and |f1�, ..., |fn� in F , and let

Tjk = |fj��ek|.

Then �

g∈G

ρF (g
−1)TjkρE(h)ρE(g)

is an F[G]-linear map E → F and hence, by Schur’s Lemma, is 0; bracketing
between �fj| and |ek� gives:

�

g∈G

�fj|ρF (g−1)|fj��ek|ρE(h)ρE(g)|ej� = 0.
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Summing over j and k produces

�

g∈G

χF (g
−1)χE(hg) = 0,

which is the second case in (7.42). Now suppose E and F are equivalent,
and so we simply set F = E. Recall from (7.27) the identity

�

g∈G

ρE(g
−1)TρE(g) =

|G|Tr (T )
dimF E

I, (7.45)

valid for all T ∈ EndF(E). Apply this to |ej��ek|ρE(h) for T to obtain:

�

g∈G

ρE(g
−1)|ej��ek|ρE(hg) =

|G|�ek|ρE(h)|ej�
dimF E

I

Bracketing this between �ej| and |ek� gives

�

g∈G

ρE(g
−1)jjρE(hg)kk =

|G|
dimF E

ρE(h)kjδjk

Summing over j and k produces

�

g∈G

χE(g
−1)χE(hg) =

|G|
dimF E

χE(h).

Iterating this we obtain the general formula (7.44). QED

7.3 Character Expansions

From the results of the preceding sections we know that the irreducible char-
acters of a finite group are linearly independent.

Theorem 7.3.1 Let G be a finite group and F a field; assume that |G|1F �= 0
and F is algebraically closed. Then the distinct irreducible characters form a
basis of the vector space of all central functions on G with values in F.
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As usual, this would work with algebraic closedness replaced by the require-
ment that F is a splitting field for G. This result also implies Theorem 7.2.5
which we proved earlier directly from the orthogonality relations.
Proof. Viewing a function on G as an element of F[G], we see that the
subspace of central functions corresponds precisely to the center Z of F[G].
As we have seen in Theorem 4.8.1 and the discussion preceding it, under
the given hypotheses, dimF Z is exactly the number of distinct irreducible
characters of G. Since these characters are linearly independent, we conclude
that they form a basis of the vector space of central functions G → F. QED

When the underlying field F is a subfield of the complex field C, we
denote by L

2(G) the vector space of all functions G → F, equipped with the
hermitian inner product specified by

�f1, f2�L2 =
1

|G|
�

g∈G

f1(g)f2(g) (7.46)

for f1, f2 : G → F ⊂ C. (For a general field we can consider the bilinear form
given by

�
g∈G f1(g)f2(g−1).)

From character orthogonality (7.31) we know that the irreducible complex
characters are orthonormal:

�χj,χk�L2 = δjk,

whereas from Theorem 7.3.1 above we know that they form a basis of the
space of central functions. Thus, we have:

Theorem 7.3.2 For a finite group G, the irreducible complex characters
form an orthonormal basis of the vector space all central functions G → C

with respect to the inner product �·, ·�L2 in (7.46).

Let us note the following result which can be a quick way of checking
irreducibility:

Proposition 7.3.1 A complex character χ is irreducible if and only if ||χ||L2 =
1.

Proof. Suppose χ decomposes as

χ =
s�

i=1

niχi,
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where χ1, ...,χs are the irreducible complex characters. Then

||χ||2
L2 =

s�

i=1

n
2
i
,

and so the norm of χ is 1 if and only if all ni are zero except for one which
equals 1. QED

Here is an immediate application:

Proposition 7.3.2 Let E1, ..., Es be a maximal collection of inequivalent
irreducible complex representations of a finite group. Then, for any posi-
tive integer n and for each i = (i1, ..., in) ∈ {1, ..., s}n, the representation
ρi = ρi1 ⊗ · · ·⊗ρin of Gn on Ei = Ei1 ⊗ · · ·⊗Ein

is irreducible and the ρi with
i running over {1, ..., s}n form a maximal collection of inequivalent complex
representations of Gn.

Proof. Write χj for χEj
for any j ∈ {1, ..., s}. Then for any i = (i1, ..., in) ∈

{1, ..., s}n,

χi = χi1 ⊗ · · ·⊗ χin
: Gn → C : (g1, ..., gn) �→ χi1(g1) . . .χin

(gn)

is the character of the tensor product representation of Gn on Ei1 ⊗ · · ·⊗Ein
.

The functions χi are orthonormal in L
2(Gn), and s

n in number. Now s
n is

the number of conjugacy classes in G
n. Hence Ei1 ⊗ · · · ⊗ Ein

runs over all
the irreducible representations of Gn as (i1, ..., in) runs over {1, ..., s}n.

The appearance of the hermitian inner product �·, ·�L2 maybe a bit uset-
tling: where did it come from? Is it somehow ‘natural’? The key feature
that makes this pairing of functions on G so useful is its invariance:

Proposition 7.3.3 For any finite group G, identify L
2(G) with the group

algebra C[G] by the linear isomorphism

I : L2(G) → C[G] : f �→ I(f) = f,

where

f =
1

|G|
�

h∈G

f(h−1)h.

Then the regular representation ρreg of G corresponds to the representation
Rreg = I

−1
ρregI on L

2(G) given explicitly by

(Rreg(g)f)(h) = f(hg) (7.47)
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for all g, h ∈ G, and f ∈ L
2(G). Moreover, Rreg is a unitary representation

of G on L
2(G):

�Rreg(g)f1, Rreg(g)f2�L2 = �f1, f2�L2 (7.48)

for all g ∈ G, and all f1, f2 ∈ L
2(G).

The proof is straightforward verification, which we leave as an exercise.
There is still one curiosity not satisfied: does the G-invariance of the inner

product pin it down uniquely up to multiples? Briefly, the answer is ‘nearly’;
explore this in Exercise 7.9 (and look back to Exercise 1.18 for some related
ideas.)

7.4 Comparing Z-Bases

We work with a finite group G and an algebraically closed field F in which
|G|1F �= 0.

We have seen two natural bases for the center Z of F[G]. One consists of
all the conjugacy class sums

zC =
�

g∈C

g, (7.49)

with C running over C, the set of all conjugacy classes in G (take a quick
look back at Theorem 3.3.1). The other consists of u1, ..., us, which form the
maximal set of non-zero orthogonal central idempotents in F[G] adding up
to 1 (for this see Proposition 4.8.1). Our goal in this section is to express
these two bases in terms of each other by using the simple characters of G.

Pick a simple left ideal Li in the two sided ideal F[G]ui, for each i ∈
{1, ..., s}, and let χi be the character of ρi, the restriction of the regular rep-
resentation to the submodule Li ⊂ F[G]. Then χ1, ...,χs are all the distinct
irreducible characters of G. Multiplication by ui acts as the identity on the
block F[G]ui and is zero on all other blocks F[G]uj for j �= i. Moreover,

F[G]ui � L
di

i
,

where

di = dimF Li.
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From this we see that χreg(guj) is the trace of a block diagonal matrix, with
one dj × dj block given by ρj(g) and all other blocks zero; hence:

χreg(guj) = χj(g)dj, (7.50)

for all g ∈ G and j ∈ {1, ..., s}, with χreg being the character of the regular
representation, given explicitly by

χreg(g) =

�
|G| if g = e;

0 if g �= e.
(7.51)

We are ready to prove the basis conversion result:

Theorem 7.4.1 Let χ1, ...,χs be all the distinct irreducible characters of a
finite group G over an algebraically closed field F in which |G|1F �= 0, and
let dj = χj(e) be the dimension of the representation space for χj. Then the
elements

ui =
�

g∈G

di

|G|χi(g
−1)g =

�

C∈C

di

|G|χi(C
−1)zC , (7.52)

for i ∈ {1, ..., s}, form the maximal set of non-zero orthogonal central idem-
potents adding up to 1 in F[G], where C is the set of all conjugacy classes in
G and χi(C−1) denotes the value of χi on any element in the conjugacy class
C

−1 = {c−1 : c ∈ C}. In the other direction,

zC =
s�

j=1

|C|
dj

χj(C)uj (7.53)

for every C ∈ C.

Proof. Writing ui as

ui =
�

g∈G

ui(g)g

and applying χreg to g
−1
ui we have

ui(g)|G| = χreg(g
−1
ui) = χi(g

−1)di. (7.54)

Thus,

ui =
�

g∈G

di

|G|χi(g
−1)g, (7.55)
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and the sum can be condensed into a sum over conjugacy classes since
di

|G|χi(g−1) is constant when g runs over a conjugacy class.

To prove (7.53), note first that since u1, ..., us is a basis of Z, we can write

zC =
s�

j=1

λjuj, (7.56)

for some λ1, ...,λs ∈ F. To find the value of λj, apply the character χj to zC :

χj(zC) =
�

g∈C

χj(g) = |C|χj(C) (7.57)

Because χj(ui) = δijdj, from (7.56) it is also λjdj. Hence we have (7.53).
QED

More insight into (7.53) will be revealed in (7.77) below.
We will put the basis change formulas to use in the next two sections to

explore two very different paths.

7.5 Character Arithmetic

In this section we venture out very briefly in a direction quite different from
what we have been exploring in this chapter. Our main objective is to prove
the following remarkable result:

Theorem 7.5.1 The dimension of any irreducible representation of a finite
group G is a divisor of |G|, if the underlying field F for the representation is
algebraically closed and has characteristic 0.

We work with a finite group G, of order n = |G|, and a field F which
is algebraically closed and has characteristic 0 (think of F as being either C
or the algebraic closure Q of the rationals). Being a field of characteristic
0, F contains a copy of Z and hence also a copy of the rationals Q. Being
algebraically closed, such a field also contains n distinct n-th roots of unity.
Moreover, these roots form a multiplicative group which has generators called
primitive n-th roots of unity (these are e2πki/n with k ∈ {1, ..., n} coprime to
n).

A key fact to be used is the arithmetic feature of characters we had noted
back in Theorem 1.11.1: the value of any character of G is a sum of n-th roots
of unity. We will first reformulate this slightly using some new terminology.
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A polynomial p(X) is said to be monic if it is of the form
�

m

k=0 pkX
k

with pm = 1 and m ≥ 1. An element α ∈ F is an algebraic integer if p(α) = 0
for some monic polynomial p(X) ∈ Z[X]. Here are two useful basic facts:

(i) the sum or product of two algebraic integers is an algebraic integer,
and so the set of all algebraic integers is a ring;

(ii) if x ∈ Q is an algebraic integer then x ∈ Z.

Proofs are in section 12.7.
With this language and technology at hand, here is a restatement of

Theorem 1.11.1:

Theorem 7.5.2 Suppose G is a group containing n elements and F a field
of characteristic 0 containing n distinct n-th roots of unity. Then for any
representation ρ of G on a finite dimensional vector space over F and for any
g ∈ G the value χρ(g) is a linear combination of 1, η, ..., ηn−1 with integer
coefficients, where η is a primitive n-th root of unity; thus, χρ(g) ∈ Z[η]
viewed as a subring of F. In particular, χρ(g) is an algebraic integer.

We can turn now to proving Theorem 7.5.1.
Proof of Theorem 7.5.1. Let u1, ..., us be the maximal set of non-zero or-
thogonal central idempotents adding up to 1 in F[G]; we will work with any
particular ui. From the formula (7.52) we have

n

di
ui =

�

g∈G

χi(g
−1)g. (7.58)

On the right we have an element of F[G] in which all coefficients are in the
ring Z[η]. The interesting observation here is that multiplication by n/di

carries uih into a linear combination of the elements uig with coefficients in
Z[η]:

n

di
uih = ui

n

di
uih =

�

g∈G

χi(g
−1)uigh.

Thus, on the Z-module F consisting of all linear combinations of the elements
uig with coefficients in Z[η], multiplication by n/di acts as a Z-linear map
F → F . Then (do Exercise 7.3 and find that) there is a monic polynomial
p(X) such that p(n/di) = 0. Thus n/di is an algebraic integer. But then, by
(ii) in the list above, it must be an integer in Z, which means that di divides
n. QED

Just a little extra work produces the following much sharper result:
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Theorem 7.5.3 Suppose G is a finite group, and F an algebraically closed
field in which |G|1F �= 0. Let χ be the character of an irreducible representa-
tion of G on a vector space of dimension d over the field F. Then

|C|
d

χ(C)

is an algebraic integer, for any conjugacy class C in G.

Proof. Let u1, ..., us be the maximal set of non-zero orthogonal central idem-
potents adding up to 1 in F[G], and let C1, ..., Cs be all the distinct conjugacy
classes in G. Let

zi = zCi
=

�

g∈Ci

g.

Recall from (7.53) that

zi =
s�

j=1

|Ci|
dj

χj(Ci)uj,

from which we have

ziuk =
|Ci|
dk

χk(Ci)uk.

Then

|Ci|
dk

χk(Ci)zjuk = zjziuk

=
s�

k=1

κi,m jzmuk,

(7.59)

where the structure constants κi,m j are integers specified by

zizj =
s�

m=1

κi,m jzm, (7.60)

and given more specifically by

κi,m j = |{(a, b) ∈ Ci × Cj : ab = h}| for any fixed h ∈ Cm. (7.61)

(We have encountered these back in (3.7) and will work with them again
shortly.) The equality of the first term and the last term in (7.59) implies
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that, for each fixed i, k ∈ [s], multiplication by |Ci|
dk

χk(Ci) is a Z-linear map
of the Z-module spanned by the elements zmuk with m running over [s]:

s�

m=1

Zzmuk →
s�

m=1

Zzmuk : x �→ |Ci|
dk

χk(Ci)x (7.62)

Then, just as in the proof of Theorem 7.5.1, Exercise 7.3 implies that |Ci|
dk

χk(Ci)

is an algebraic integer. QED
We will return to a simpler proof in the next section which will give

an explicit monic polynomial (7.73), with integer coeffients, of which the
quantities |C|

d
χ(C) are solutions.

7.6 Computing Characters

In his classic work [9, Section 223] (2nd Edition) Burnside describes an im-
pressive method of working out all irreducible complex characters of a finite
group directly from the multiplication table for the group, without ever hav-
ing to work out any irreducible representations! This is an amazing achieve-
ment, viewed from the logical pathway we have followed. However, from the
viewpoint of the historical pathway, this is only natural, for Frobenius [28,
eqn. (8)] effectively defined characters by this method using just the group
multiplication table.

We work with a finite group G and an algebraically closed field F in which
|G|1F �= 0.

Under our hypotheses on F, the number of conjugacy classes in G is s,
the number of distinct irreducible representations of G. Let C1, ..., Cs be the
distinct elements of C. Let ρ1, ..., ρs be a maximal collection of inequivalent
irreducible representations of G, and let χj be the character of ρj and dj the
dimension of ρj. Let zi be the sum of the elements in the conjugacy class Ci:

zi =
�

g∈Ci

g for i ∈ {1, ..., s}

Recall the basis change formula (7.63):

zj =
s�

i=1

|Cj|
di

χi(Cj)ui (7.63)
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for every j ∈ {1, ..., s}. For any z ∈ Z, the center of F[G], let M(z) be the
linear map

M(z) : Z → Z : w �→ zw. (7.64)

This is the just the restriction of the regular representation to Z. The idea
is to extract information by looking at the matrix of M(z) first for the basis
z1, ..., zs, and then for the basis u1, ..., us.

Now take a quick look back to Proposition 3.3.1: the structure constants
κj,i k ∈ F are specified by the requirement that

zkzj =
s�

l=1

κk,i jzi for all j, k ∈ [s]. (7.65)

Another way to view the structure constants κj,i k is given by

κk,i j = |{(a, b) ∈ Ck × Cj : ab = c}|, (7.66)

for any fixed choice of c in Ci. Clearly, at least in principle, the structure
constants can worked out from the multiplication table for the group G.
Then, relative to the basis z1, ..., zs, the matrix Mk of M(zk) has (i, j)-th
entry given by κk,i j:

M(k) =





κk,11 κk,12 . . . κk,1s

κk,21 κk,22 . . . κk,2s
...

... . . .
...

κk,s1 κk,s2 . . . κk,ss




. (7.67)

Now consider the action of M(zk) on uj:

M(zk)uj = zkuj =
|Ck|
dj

χj(Ck)uj. (7.68)

by using (7.63). Thus, the elements u1, ..., us, are eigenvectors for M(zk),
with uj having eigenvalue |Ck|

dj
χj(Ck).

Recalling formula (7.52):

uj =
s�

k=1

dj

|G|χj(C
−1
k

)zk
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we can display uj as a column vector, with respect to the basis z1, ..., zs, as

�uj =





dj

|G|χj(C
−1
1 )

...
dj

|G|χj(C−1
s

)



 . (7.69)

Then, in matrix form,

M(k)�uj =
|Ck|
dj

χj(Ck)�uj. (7.70)

Thus, for each fixed j ∈ [s], the vector �uj is a simultaneous eigenvector of
the s matrices M(1), ...,M(s).

A program that computes eigenvectors and eigenvalues can then be used
to work out the values |Cj |

di
χi(Cj). Next recall the character orthogonality

relation (7.24) which we can write as:

s�

k=1

|Ck|χi(Ck)χi(C
−1
k

) = |G|, (7.71)

and then as
s�

k=1

1

|Ck|
|Ck|
di

χi(Ck)
|C−1

k
|

di
χi(C

−1
k

) =
|G|
d
2
i

(7.72)

Thus, once we have computed the eigenvalue |C|
di
χi(C) for each conjugacy

class C and each i ∈ [s], we can determine |G|/d2
i
and hence the values

d1, ..., ds. Finally, we can compute the values χi(C) of the characters χi on
all the conjugacy classes C as:

χi(C) =
1

|C|di
|C|
di

χi(C).

An unpleasant feature of this otherwise wonderful procedure is that the
eigenvalues will, in general, be complex numbers, which are therefore deter-
mined by a typical matrix algebra software only approximately. Dixon [23]
showed how character values can be computed exactly once they are known
up to close enough approximation (this was explored in Exercise 1.21). Dixon
also provides a methof of computing the characters exactly by using reduc-
tion mod p, for large enough prime p. These ideas have been coded up in
programs such as GAP that compute group characters.
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There is one pleasant theoretical consequence of the exploration of the
matrices Mk; this is Frobenius’ simple proof of Theorem 7.5.3:
Simple proof of Theorem 7.5.3. As usual, let G be a finite group, F an alge-
braically closed field in which |G|1F �= 0, C1, ..., Cs all the distinct conjugacy
classes in G, and χ1, ...,χs the distinct irreducible characters of G, over the
field F, and dj the dimension of the representation for the character χj. Then,
as we have seen above, the matrices M(k), with integer entries as given in
(7.67), have the eigenvalues |Ck|

dj
χj(Ck). Thus, these eigenvalues are solutions

for λ ∈ F of the characteristic equation

det (λI −M(k)) = 0, (7.73)

which is clearly a monic polynomial. All entries of the matrix M(k) being
integers, all coefficients in the polynomial in λ on the left side of (7.73) are
also integers. Hence, each |Ck|

dj
χj(Ck) is an algebraic integer. QED

Here is a simple example, going back to Burnside [9, paragraph 222] and
Frobenius and Schur [35], of the interplay between properties of a group and
of its characters.

Theorem 7.6.1 If G is a finite group such that every complex character is
real valued then |G| is even.

Proof. Suppose |G| is odd. Then, since the order of every element of G is
a divisor of |G|, there is no element of order 2 in G, and so g �= g

−1 for all
g �= e. If χ is a nontrivial irreducible character of G, over C, then

�

g∈G

χ(g) = 0,

by orthogonality with the trivial character. Since χ is, by hypothesis, real
valued, we have

χ(g) = χ(g−1) for all g ∈ G,

and then

0 =
�

g

χ(g) = χ(e) +
�

g∈S

�
χ(g) + χ(g−1)

�
= d+ 2

�

g∈S

χ(g),

where d is the dimension of the representation for χ, and S is a set containing
half the elements of G−{e}. But then d/2 is both a rational and an algebraic
integer and hence (see Proposition 12.7.1) it is actually an integer in Z. Thus
d is even. QED

For a restatement, with an elementary proof, do Exercise 7.10.
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7.7 Return of the Group Determinant

Let G be a finite group with n elements, and F a field. Dedekind’s group
determinant, described in his letters [19] to Frobenius, is the determinant of
the |G|× |G| matrix

[Xab−1 ]
a,b∈G ,

where Xg is a variable associated with each g ∈ G. Let FG be the matrix
formed in the case where the variables are chosen so that Xa = Xb when a

and b are in the same conjugacy class. The matrix FG was introduced by
Frobenius [34, eq. (11)]. For more history, aside from the original works of
Frobenius [28, 29, 30, 31, 32, 33, 34, 35] and Dedekind [19], see the books
of Hawkins [41, Chapter 10], and Curtis [15] and the article of Lam [51];
Hawkins [42] also presents an enjoyable and enlightening analysis of letters
from Frobenius to Dedekind.

Let F be a field, and R the regular representation of G; thus, for g ∈ G,

R(g) : F[G] → F[G] : y �→ gy.

Then, in the basis of F[G] given by the elements of G, the (a, b)-th entry of

R(g)ab =

�
1 if gb = a.

0 if gb �= a,

which means R(g)ab = 1 if g = ab
−1, and 0 otherwise. Then the matrix for�

g∈G R(g)Xg has (a, b)-th entry Xab−1 . Thus,

FG =
�

g∈G

R(g)Xg. (7.74)

Since Xg has a common value, call it XC , for all g in a conjugacy class C,
we can rewrite FG as

FG =
�

C∈C

R(zC)XC , (7.75)

where C is the set of conjugacy classes in G, and zC is the conjugacy class
sum

zC =
�

g∈C

g. (7.76)

Now suppose the field F is such that |G|1F �= 0. Then there are simple left
ideals L1, ..., Ls in F[G], such that every simple left ideal in F[G] is isomorphic,
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as a left F[G]-module, to Li for exactly one i ∈ [s], and the F-algebra F[G]
is isomorphic to the product of subalgebras A1, ..., As, where Ai is the sum
of all left ideals isomorphic to Li. Assume, moreover, that F is a splitting
field for G in that EndF[G](Li) consists of just the constant maps x �→ cx for
c ∈ F. For instance, F could be algebraically closed. Then Ai is the direct
sum of di simple left ideals, where di = dimF Li. For any element z in the
center Z of F[G], the endomorphism R(z) acts as multiplication by a scalar
cz ∈ F on each Li. Denoting by χi the character of the regular representation
restricted to Li, we have

χi(z)
def
= Tr (R(z)|Li) = Tr (czILi

) = czdi,

where ILi
is the identity mapping on Li. Hence,

cz =
1

di
χi(z).

Taking zC for z shows that

R(zC)|Li =
|C|
di

χi(C)Ii, (7.77)

where χi(C) is the value of the character χi on any element in C (and not
to be confused with χi(zC) itself). Consequently,

FG|Li =
�

C∈C

|C|
di

χi(C)XCIi. (7.78)

Thus, FG can be displayed as a giant block diagonal matrix, with each i ∈ [s]
contributing di blocks, each such block being the scalar matrix in (7.78).
Taking the determinant, we have

detFG =
s�

i=1

�
�

C∈C

|C|
di

χi(C)XC

�d
2
i

. (7.79)

The entire universe of representation theory grew as a flower from Frobenius’
meditation on Dedekind’s determinant. The formula (7.79) (Frobenius [28,
eq.(22)] and [29]) shows how all the characters of G are encoded in the
determinant.
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For S3, with conjugacy classes labeled by variables Y1 (identity element),
Y2 (transpositions), Y3 (three-cycles), equation (7.79) reads

������������

Y1 Y3 Y3 Y2 Y2 Y2

Y3 Y1 Y3 Y2 Y2 Y2

Y3 Y3 Y1 Y2 Y2 Y2

Y2 Y2 Y2 Y1 Y3 Y3

Y2 Y2 Y2 Y3 Y1 Y3

Y2 Y2 Y2 Y3 Y3 Y1

������������

= (Y1 − Y3)
4(Y1 + 3Y2 + 2Y3)(Y1 − 3Y2 + 2Y3),

(7.80)

which you can verify directly at your leisure/pleasure.

7.8 Orthogonality for Matrix Elements

In this section we will again use the bra-ket formalism from the end of section
1.6. By a matrix element for a group G we mean a function on G of the form

G → F : g �→ �e�|ρ(g)|e�

where ρ is a representation of G on a vector space E over a field F, and
|e� ∈ E and �e�| is a vector in the dual space E �. (Note that ‘matrix element’
does not mean the entry in some matrix.)

In this section we explore some straightforward extensions of the orthog-
onality relations from characters to matrix elements.

Theorem 7.8.1 If ρE and ρF are inequivalent irreducible representations of
a finite group G on vector spaces E and F , respectively, then the matrix
elements of ρ and ρ

� are orthogonal in the sense that

�

g∈G

�f �|ρF (g)|f��e�|ρE(g−1)|e� = 0 (7.81)

for all �f �| ∈ F
∗, �e�| ∈ E

∗ and all |e� ∈ E, |f� ∈ F .

Proof. The linear map

T1 =
�

g∈G

ρF (g)|f��e�|ρE(g−1) : E → F
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is F[G]-linear and hence is 0 by Schur’s Lemma. QED
Now assume that F is algebraically closed and has characteristic 0. Let E

be a fixed irreducible representation of G. Then Schur’s Lemma implies that
for any T ∈ EndF(E) the symmetrized operator T0 on the left in (7.82) below
is a multiple of the identity. The value of this multiplier is easily obtained
by comparing traces:

1

|G|
�

g∈G

gTg
−1 = T0 =

1

dimF E
Tr(T )I, (7.82)

noting that both sides have trace equal to Tr(T ).
Working with a basis {ei}i∈I of E, with dual basis {�ej|}j∈I satisfying

�ej|ei� = δ
j

i
,

we then have

�ej|T0|ei� =
1

dimF E
Tr (T )δj

i
for all i, j ∈ I. (7.83)

Taking for T the particular operator

T = ρE(h)|ek��el|,

shows that

1

|G|
�

g∈G

�ej|ρE(gh)|ek��el|ρE(g−1)|ei� =
1

dimF E
ρE(h)

l

k
δ
j

i
for all i, j ∈ I.

(7.84)
A look back at (7.41) provides an interpretation of this in terms of convolu-
tion.

We can summarize our observations in:

Theorem 7.8.2 Let E1, ..., Es be a collection of irreducible representations
of a finite group G, over an algebraically closed field F in which |G|1F �=
0, such that every irreducible F-representation of G is equivalent to Er for
exactly one r ∈ {1, ..., s}. For each r ∈ {1, ..., s}, choose a basis {|e(r)i� :
1 ≤ i ≤ dr}, where dr = dimF Er, and let {�e(r)i| : i ∈ {1, ..., dr}} be the
corresponding dual basis in E

�
r
. Let ρr,ij be the matrix element:

ρr,ij : G → C : g �→ �e(r)i|ρEr
(g)|e(r)j�.
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Then the scaled matrix elements

d
1/2
r

ρr,ij, (7.85)

with i, j ∈ {1, ..., dr}, and r running over {1, ..., s}, form an orthonormal ba-
sis of L2(G). Moreover, the convolution of matrix elements of an irreducible
representation E is a multiple of a matrix element for the same representa-
tion, the multiplier being 0 or 1/ dimF E.

Proof. From the orthogonality relation (7.81) and the identity (7.82), it
follows that the functions in (7.85) are orthonormal in L

2(G). The total
number of these functions is

s�

r=1

d
2
r
.

But this is precisely the number of elements in G, which is also the same as
dimL

2(G). Thus, the functions (7.85) form a basis of L2(G). The convolution
result follows from (7.84) on replacing g by gh

−1. QED

7.9 Solving Equations in Groups

We close our exploration of characters with an application with which Frobe-
nius [28] began his development of the notion of characters. This is the task
of counting the number of solutions of equations in a group.

Theorem 7.9.1 Let C1, ..., Cm be distinct conjugacy classes in a finite group
G. Then

|{(c1, ..., cm) ∈ C1 × . . .× Cm | c1. . .cm = e}|

=
|C1|. . .|Cm|

|G|

s�

i=1

1

d
m−2
i

χi(C1). . .χi(Cm).
(7.86)

where χ1,..., χs are all the distinct irreducible characters of G, over an al-
gebraically closed field F in which |G|1F �= 0, di is the dimension of the
representation for the character χi, and χi(C) is the constant value of χi on
C. Moreover,

|{(c1, ..., cm) ∈ C1 × . . .× Cm | c1...cm = c}|

=
|C1|...|Cm|

|G|

s�

i=1

1

d
m−1
i

χi(C1)...χi(Cm)χi(c
−1)

(7.87)



Representing Finite Groups 3/2011 219

for any c ∈ G. The left sides of (7.86) and (7.87), integers as they stand,
are being viewed as elements of F, by multiplication with 1F.

As always, the algebraic closedness for Fmay be weakened to the requirement
that it is a splitting field for G.
Proof. Let zi =

�
g∈Ci

g be the element in the center Z of F[G] corresponding
to the conjugacy class Ci. Recall the trace functional Tre on F[G] given by
Tre(x) = xe, the coefficient of e in x =

�
g
xgg ∈ F[G]. Clearly,

Tre(z1. . .zm) = |{(c1, . . ., cm) ∈ C1 × . . .× Cm | c1. . .cm = e}|, (7.88)

where the right side is being taken as an element in F. This is the key
observation; the rest of the argument is a matter of working out the trace on
the left from the trace of the regular representaion, decomposed into simple
submodules. Using the regular representation R, given by

R(x) : F[G] → F[G] : y �→ xy for all x ∈ F[G],

we have
TrR(x) = |G|Tre(x) for all x ∈ F[G].

So

Tre(z1. . .zm) =
1

|G|TrR(z1. . .zm). (7.89)

Now recall the relation (7.77)

R(zj)|Li =
|Cj|
di

χi(Cj)Ii, (7.90)

where Ii is the identity map on Li, and L1, ..., Ls are distinct simple left ideals
in F[G] such that every simple left ideal in F[G] is isomorphic to exactly one
Li. As we know from the structure of F[G], this algebra is the direct sum

F[G] =
s�

i=1

(Li1 ⊕ . . .⊕ Lidi
),

where each Lik is isomorphic, as a left F[G]-module, to Li. On each of the
di subspaces Lik, each of dimension di, the endomorphism R(zj) acts by

multiplication by the scalar |Cj |
di

χi(Cj). Consequently,

TrR(z1. . .zm) =
s�

i=1

di

�
m�

j=1

|Cj|χi(Cj)

di

�
di. (7.91)
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Combining this with the relationship between Tre and Tr given in (7.89),
along with the counting formula (7.88) yields the number of (c1, . . ., cm) ∈
C1 × . . .× Cm with c1. . .cm = e.

Now for any c ∈ G, let

P (c) = {(c1, . . ., cm) ∈ C1 × . . .× Cm : c1. . .cm = c}.

Then for any h ∈ G the map

(g1, ..., gm) �→ (hg1h
−1
, . . ., hgmh

−1)

gives a bijection between P (c) and P (hch−1). Moreover, the union of the
sets P (c�) with c

� running over the conjugacy class Cc is in bijection with the
set

{(c1, . . ., cm, d) ∈ C1 × . . .× Cm × Cc−1 : c1. . .cmd = e}.
Comparing the cardinalities, we have

|Cc| |P (c)| = |C1|. . .|Cm||Cc−1 |
|G|

s�

i=1

1

d
m−1
i

χi(C1). . .χi(Cm)χi(c
−1)

Since |Cc| equals |Cc−1 |, this establishes the formula (7.87) for |P (c)|. QED
Frobenius [28] also determined the number of solutions to commutator

equations in terms of characters:

Theorem 7.9.2 Let G be a finite group, and χ the character of an irre-
ducible representation of G on a vector space, of dimension d, over an alge-
braically closed field F in which |G|1F �= 0. Then

�

b∈G

χ(ab−1
hb) =

|G|
d

χ(a)χ(h) (7.92)

for all a, h ∈ G, and

�

a,b∈G

χ(aba−1
b
−1
c) =

�
|G|
d

�2

χ(c) (7.93)

for all c ∈ G. Moreover,

|{(a, b) ∈ G
2 : aba−1

b
−1 = c}| =

s�

i=1

|G|
di

χi(c), (7.94)
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for all c ∈ G, where χ1, ...,χs are all the distinct irreducible characters of G
over the field F, and the left side of (7.94) is being taken as an element of F
by multiplication with 1F.

Proof. For any a ∈ G, let

za =
�

c∈Ca

c

where Ca is the conjugacy class of a. Compare with the sum

�

g∈G

gag
−1
.

Each term in this sum is repeated |Staba| times, where Staba is the set
{g ∈ G : gag−1 = a}, and

|Staba| =
|G|
|Ca|

.

Hence,

za =
|Ca|
|G|

�

g∈G

gag
−1
. (7.95)

Let Rχ denote an irreducible representation whose character is χ. Then,
for any central element z in F[G], the endomorphism R(z) is multiplication
by the constant χ(z)/d; moreover, if zC is the sum

�
g∈C g for a conjugacy

class C, then χ(zC) = |C|χ(C), where χ is the constant value of χ on C.
Then

χ(zazh) = TrRχ(za)Rχ(zh)

= Tr

�
|Ca|
d

χ(a)
|Ch|
d

χ(h)I

�

=
|Ca| |Ch|

d2
χ(a)χ(h)d.

(7.96)
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Now observe that

χ(zazh) = χ

�
|Ca|
|G|

|Cb|
|G|

�

g,b∈G

gag
−1
bhb

−1

�

=
|Ca|
|G|

|Cb|
|G| χ

�
�

g∈G

�

b∈G

gabhb
−1
g
−1

�
(on replacing b by gb.)

=
|Ca|
|G|

|Cb|
|G| |G|

�

b∈G

χ(abhb−1).

(7.97)

Combining this with (7.96) we have

�

b∈G

χ(abhb−1) =
|G|
d

χ(a)χ(h). (7.98)

Taking ca for a, and h = a
−1, and adding up over a as well we have

�

a,b∈G

χ(aba−1
b
−1
c) =

|G|
d

�

a

χ(ca)χ(a−1) =

�
|G|
d

�2

χ(c),

upon using the character convolution formula in Theorem 7.2.6. Next, for
the count,

|{(a, b) : aba−1
b
−1 = c}| =

�

a,b∈G

Tre(aba
−1
b
−1
c
−1)

=
1

|G|
�

a,b

s�

i=1

diχi(aba
−1
b
−1
c
−1)

=
1

|G|

s�

i=1

di
|G|2

d
2
i

χi(c
−1)

=
s�

i=1

|G|
di

χi(c
−1).

(7.99)

To finish off, note that the replacement (a, b) �→ (b, a) changes c to c
−1.

QED
The previous results on commutator equations and product equations

lead to a count of solutions of equations that have topological significance,
as we will discuss shortly.
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Theorem 7.9.3 Let G be a finite group, and χ1, ...,χs all the distinct irre-
ducible characters of G over an algebraically closed field F in which |G|1F �= 0.
For positive integers n and k, and any conjugacy classes C1,..., Ck in G, let

M(C1, . . ., Ck)

= {(α, c1, ..., ck) ∈ G
2n × C1 × . . .× Ck : Kn(α)c1. . .ck = e}

(7.100)

where
Kn(a1, b1, . . ., an, bn) = a1b1a

−1
1 b

−1
1 . . . anbna

−1
n
b
−1
n
.

Then

|M(C1, . . ., Ck)| = |G|
s�

i=1

(|G|/di)2n−2

�
|C1|χi(C1)

di
. . .

|Ck|χi(Ck)

di

�
,

(7.101)
where the left side is taken as an element of F by multiplication with 1F.

The group G acts by conjugation on M(C1, . . . , Ck), and so it seems natural
to factor out one term |G| on the right in (7.101); the terms in the sum are
algebraic integers. A special case of interest is when k = 1 and C1 = {e};
then

|K−1
n

(e)| = |G|
s�

i=1

�
|G|
di

�2n−2

(7.102)

Proof. The key observation is that we can disintegrate M(C1, ..., Ck) by
means of the projection maps

pj : (a1, b1, . . ., an, bn, c1, . . ., ck) �→ (aj, bj) �→ ajbja
−1
j
b
−1
j
.

Take any point h = (h1, ..., hn) ∈ G
n and consider the preimage in G

2n of h
under the map

p : G2n → G
n : (a1, b1, . . ., an, bn) �→

�
K1(a1, b1), . . ., K1(an, bn)

�
.

Then M(C1, . . ., Ck) is the union of the ‘fibers’ p−1
n
(h) × {(c1, . . ., ck)}, with

(c1, . . ., ck) running over all solutions in C1 × . . .× Ck of

c1. . .ck = h1. . .hn.

The idea of the calculation below is best understood by visualizing the set
M(C1, . . ., Ck) as a union of ‘fibers’ over the points (h, c1, . . .ck) and then by
viewing each fiber as essentially a product of sets of the form K

−1
1 (cj).
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From (7.94) we have

|p−1
n
(h1, . . ., hn)| =

n�

j=1

�
s�

i=1

|G|
di

χi(hj)

�
=

�

i1,...,in∈[s]

|G|n

di1 . . .din

χi1(h1). . .χin
(hn)

and then, on using the general character convolution formula (7.44), we have

�

h1...hn=c

|p−1
n
(h1, . . .hn)| =

s�

i=1

|G|n

d
n

i

|G|n−1

d
n−1
i

χi(c) (7.103)

Now we need to sum this up over all solutions of c1. . .ck = c with (c1, . . ., ck)
running over C1× . . .×Ck. Using the count formula (7.87), this brings us to

|C1|. . .|Ck|
|G|

s�

j=1

χj(C1). . .χj(Ck)

d
k−1
j

χj(c
−1)

s�

i=1

|G|n

d
n

i

|G|n−1

d
n−1
i

χi(c). (7.104)

Lastly, this needs to be summed over c ∈ G. Using the convolution formula
�

c

χj(c
−1)χi(c) = |G|δij

we arrive at

|M(C1, . . .Ck)| = |G|2n−1|C1|. . .|Ck|
s�

i=1

χi(C1). . .χi(Ck)

d
2n+k−2
i

. (7.105)

QED
Next, we have what is perhaps an even more remarkable count, courtesy

of Frobenius and Schur [35, section §4]:

Theorem 7.9.4 Let G be a finite group, and χρ the character of an ir-
reducible representation of G on a vector space of dimension dρ, over an
algebraically closed field F in which |G|1F �= 0. Let cρ be the Frobenius-Schur
indicator of ρ, having value 0 if ρ is not isomorphic to the dual ρ�, having
value 1 if there is a nonzero G-invariant symmetric bilinear form on V , and
−1 if there is a nonzero G-invariant skew-symmetric bilinear form on V .
Then

1

|G|
�

g∈G

ρ(g2) =
cρ

dρ
I, (7.106)
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where I is the identity map on V , and so

1

|G|
�

g∈G

χρ(g
2
b) =

cρ

dρ
χ(b) (7.107)

for all b ∈ G. Moreover, if ρ1, ..., ρs are a maximal set of inequivalent irre-
ducible representations of G over the field F, then

|{(g1, ..., gn) ∈ G
n : g21 . . . g

2
n
= e}| = |G|

s�

i=1

�
ci
|G|
di

�n−2

(7.108)

where ci = cρi and di = dρi, and the equality in (7.108) is with both sides
taken as elements of F.

We have discussed the Frobenius-Schur indicator cρ back in Theorem 1.9.1.
Now we have a formula for it:

cρ =
1

|G|
�

g∈G|

χρ(g
2), (7.109)

where, recall, cρ ∈ {0, 1,−1}. For the division by dρ in (7.106), and elsewhere,
recall from Lemma 7.1.1 that dρ �= 0 in F.
Proof. Fix a basis u1, ..., ud of V . For any particular a, b ∈ [d], let B be the
bilinear form on V for which B(ui, uj) is 0 except for (i, j) = (a, b), in which
case B(ua, ub) = 1. Now let S be the corresponding G-invariant bilinear form
specified by

S(v, w) =
�

g∈G

B
�
ρ(g)v, ρ(g)w

�
.

By Theorem 1.9.1,
S(v, w) = cρS(w, v)

for all v, w ∈ V . Taking v = ui and w = uj this spells out

�

g∈G

ρ(g)aiρ(g)bj = cρ

�

g∈G

ρ(g)ajρ(g)bi (7.110)

This holds for all i, j, a, b ∈ [d]. Taking i = b and summing over i brings us
to �

g∈G

[ρ(g)2]aj = cρ

�

g∈G

χρ(g)ρ(g)aj,
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which means �

g∈G

ρ(g2) = cρ

�

g∈G

χρ(g)ρ(g). (7.111)

Taking the trace of this produces
�

g∈G

χ(g2) = cρ

�

g∈G

χρ(g)
2
. (7.112)

If ρ is isomorphic to ρ
� then

χ(g) = χρ(g) = χρ�(g) = χρ(g
−1) = χ(g−1),

for all g ∈ G, and so the sum
�

g
χ(g)2 is the same as

�
g
χ(g−1)χ(g) which,

in turn, is just |G|. Then (7.112) implies

cρ =
1

|G|
�

g∈G

χ(g2). (7.113)

If ρ is not isomorphic to its dual ρ� then, by definition cρ = 0, and so from
(7.112) we see that (7.113) still holds.

Since
�

g∈G g
2 is in the center of F[G], and ρ is irreducible, Schur’s Lemma

implies that
�

g∈G ρ(g2) is a scalar multiple kI of the identity I, and the scalar
k is obtained by comparing traces:

�

g∈G

ρ(g2) = kI, (7.114)

where

k =
1

d
Tr

�

g∈G

ρ(g2) =
1

d

�

g∈G

χ(g2) =
|G|cρ
d

,

where we used the formula (7.113) for the Frobenius-Schur indicator cρ. Re-
call from Theorem 7.5.1 that d is a divisor of |G|, and, in particular, is not
0 in F. This proves (7.106):

1

|G|
�

g∈G

ρ(g2) =
cρ

d
I. (7.115)

Multiplying by ρ(h) and taking the trace produces (7.107):

1

|G|
�

g∈G

χρ(g
2
b) =

cρ

d
χ(h) (7.116)
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for all h ∈ G.
Now we can count, using the now familiar ‘delta function’

Tre =
1

|G|χreg =
1

|G

s�

i=1

diχi,

where χreg is the character of the regular representation of G on F[G]. Work-
ing in F, we have:

|{(g1, ..., gn) ∈ G
n : g21 . . . g

2
n
= e}| =

�

g1,...,gn∈G

Tre(g
2
1 . . . g

2
n
)

=
1

|G|

s�

i=1

�

g1,...,gn

diχi(g
2
1 . . . g

2
n
)

=
1

|G| |G|n
s�

i=1

di

�
ci

di

�n

di

= |G|n−1
s�

i=1

c
n

i

d
n−2
i

,

(7.117)

which implies (7.108). QED

7.10 Character References

Among many sights and sounds we have passed by in our exploration of char-
acter theory are: (i) Burnside’s paqb theorem [9, Corollary 29, Chapter XVI],
a celebrated application of character theory to the structure of groups; (ii)
zero sets of characters; (iii) Galois-theoretic results for characters. Burnside’s
enormous work [9], especially Chapter XVI, contains a vast array of results,
from the curious to the deep, in character theory. The book of Isaacs [47] is
an excellent reference for a large body of results in character theory, cover-
ing (i)-(iii) and much more. The book of Hill [43] explains several pleasant
applications of character theory to the structure of groups. An encyclopedic
account of character theory is presented by Berkovic and Zhmud’ [3].

7.11 Afterthoughts: Connections

The fundamental group π1(Σ, o) of a topological space Σ, with a chosen base
point o, is the set of homotopy classes of loops based at o, taken as a group
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under composition/concatenation of paths. If Σ is an orientable surface of
genus n with k disks cut out as holes on the surface, then π1(Σ, o) is generated
by elements A1, B1, ..., An, Bn, S1, ..., Sk, subject to the following relation:

A1B1A
−1
1 B

−1
1 . . . AnBnA

−1
n
B

−1
n
S1 . . . Sk = I, (7.118)

where I is the identity element. Here the loops Si go around the boundaries
of the deleted disks. If G is any group then a homomorphism

φ : π1(Σ, o) → G

is completely specified by the values of φ on the Ai, Bi, Sj:

�
φ(A1),φ(B1), ...,φ(An),φn(Bn),φ(S1), ...,φn(Sn)

�
,

which is a point in M(C1, ..., Ck) if the boundary ‘holonomies’ φ(Sj) are
restricted to lie in the conjugacy classes Cj. Thus, M(C1, ..., Ck) has a topo-
logical meaning. The group G acts on M(C1, ..., Ck) by conjugation and the
quotient space M(C1, ..., Ck)/G appears in many different incarnations, in-
cluding as the moduli space of flat connections on a surface and as the phase
space of a three dimensional gauge field theory called Chern-Simons theory.
In these contexts G is a compact Lie group. The space M(C1, ..., Ck)/G is
not generally a smooth manifold but is made up of strata, which are smooth
spaces. The physical context of a phase space provides a natural measure
of volume on M(C1, ..., Ck)/G. The volume of this space was computed by
Witten [77] (see also [69]). The volume formula is, remarkably or not, very
similar to Frobenius’ formula for |M(C1, ..., Ck)|. Witten also computed a
natural volume measure for the case where the surface is not orientable, and
this produces the analog of the Frobenius-Schur count formula (7.108). For
other related results and exploration see the paper of Mulase and Penkava
[59]). Zagier’s Appendix to the beautiful book of Lando and Zvonkin [52]
also contains many interesting results in this connection.

Exercises

1. Let u =
�

h∈G u(h)h be an idempotent in A = F[G], and let χu be the
character of the regular representation of G restricted to Au:

χu(x) = Trace of Au → Au : y �→ xy.
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(i) Show that, for any x ∈ G,

χu(x) = Trace of A → A : y �→ xyu.

(ii) Check that for x, g ∈ G,

xgu =
�

h∈G

u(g−1
x
−1
h)h

(iii) Conclude that:

χu(x) =
�

g∈G

u(g−1
x
−1
g), for all x ∈ G. (7.119)

Equivalently, �

x∈G

χu(x
−1)x =

�

g∈G

gug
−1 (7.120)

(iv) Show that the dimension of the representation on Au is

du = |G|u(1G)

where 1G is the unit element in G.

2. (This exercise follows an argument in the Appendix in [52] by D. Za-
gier.) Let G be a finite group and F a field in which |G|1F �= 0. For
(g, h) ∈ G×G let T(g,h) : F[G] → F[G] be specified by

T(g,h)(a) = gah
−1 for a ∈ F[G] and g, h ∈ G. (7.121)

Compute the trace of T(g,h) using the basis of of F[G] given by the
elements of G to show that

TrT(g,h) =

�
0 if g and h are not in the same conjugacy class;
|G|
|C| if g and h both belong to the same conjugacy class C.

(7.122)
Next recall that F[G] is the direct sum of maximal two sided ideals
F[G]j, with j running over an index set R; then:

TrT(g,h) =
�

j∈R

Tr
�
T(g,h)|F[G]j

�
(7.123)
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Now assume that F is also algebraically closed; then we know that,
picking a simple left ideal Lj ⊂ F[G]j, there is an isomorphism

ρj : F[G]j → EndF(Lj)

where ρj(x)y = xy for all x ∈ F[G]j and y ∈ Lj, and so

Tr
�
T(g,h)|F[G]j

�
= Tr

�
ρj ◦ T(g,h)

���F[G]r ◦
�
ρj

�−1
�

Now use the identification

EndF(Lj) � Lj ⊗ L
�
j
,

where L
�
j
is the vector-space dual to Lj, to show that

Tr
�
T(g,h)|F[G]j

�
= Tr (ρj(g)) Tr

�
ρj(h

−1)
�

= χj(g)χj(h
−1).

(7.124)

Combine this with (7.123) and (7.122) to obtain the orthogonality re-
lation (7.37).

3. Let M be finitely generated Z module, and A : M → M a Z-linear
map. Show that there is a monic polynomial p(X) such that p(A) = 0.

4. Let χ1, ...,χs be all the distinct irreducible characters of a finite group G

over an algebraically closed field of characteristic 0, and let {C1, ..., Cs}
be the conjugacy classes in G. Then show that

χi(C
−1
l

) =
1

|G|
�

1≤j,k≤s

χi(C
−1
j

)χi(C
−1
k

)κjk,l, (7.125)

for all i ∈ {1, ..., s}, where κjk,l are the structure constants of G.

5. Prove the Schur character orthogonality relations from the orthogonal-
ity of matrix elements.

6. The character table of a finite group G that has s conjugacy classes
is the s × s matrix [χi(Cj)]1≤i,j≤s, where C1, ..., Cs are the conjugacy
classes inG and χ1, ...,χs are the distinct irreducible complex characters
of G. Show that the determinant of this matrix is nonzero.
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7. Verify Dedekind’s factorization of the group determinant for S3:

������������

X1 X2 X3 X4 X5 X6

X3 X1 X2 X5 X6 X4

X2 X3 X1 X6 X4 X5

X4 X5 X6 X1 X2 X3

X5 X6 X4 X3 X1 X2

X6 X4 X5 X2 X3 X1

������������

= (u+ v)(u− v)(u1u2 − v1v2)

(7.126)

where

u = X1 +X2 +X3, u1 = X1 + ωX2 + ω
2
X3,u2 = X1 + ω

2
X2 + ωX3

v = X4 +X5 +X6, u1 = X4 + ωX5 + ω
2
X6,v2 = X4 + ω

2
X5 + ωX6,

where ω is a primitive cube root of unity.

8. Let G be a finite group, and χ1, ...,χs all the distinct irreducible char-
acters of G over an algebraically closed field F in which |G|1F �= 0.
Prove the following identity of Frobenius [28, sec. 5, eq. (6)]:

�

{(t1,...,tm)∈Gm : t1...tm=e}

χ(a1t1...amtm) =

�
|G|
d

�m−1

χ(a1)...χ(am)

(7.127)
for all a1, ..., am ∈ G. Use this to prove the counting formula:

|{(t1, ..., tm) ∈ G
m : t1...tm = e, a1t1...amtm = e}|

=
s�

i=1

�
|G|
di

�m−2

χi(a1)...χi(am),

(7.128)

for all a1, ..., am ∈ G.

9. Suppose a group G is represented irreducibly on a finite-dimensional
vector space V over an algebraically closed field F. Let B : V ×V → F

be a non-zero bilinear function which is G-invariant in the sense that
B(gv, gw) = B(v, w) for all vectors v, w ∈ V and g ∈ G. Show that
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(i) B is non-degenerate. [Hint: View B as a linear map V → V
� and

use Schur’s lemma.]

(ii) if B1 is also a G-invariant bilinear form on V then B1 = cB for
some c ∈ F.

(iii) If G is a finite group, and F = C, then either B or −B is positive-
definite, i.e. B(v, v) > 0 for all non-zero v ∈ V .

10. Let ρ1,...,ρs be a maximal set of inequivalent irreducible representations
of a finite group G over an an algebraically closed field F in which
|G|1F �= 0. Let C be the set of all conjugacy classes in G. Let ρ

�

denote the representation dual to ρ, so that for the characters we have
χρ�(g) = χρ(g−1), for all g ∈ G. By computing both sides of the identity

s�

i=1

�

C∈C

|C|
|G|χρi

(C)χρ
�
i
(C−1) =

�

c∈C

s�

i=1

|C|
|G|χρi

(C)χρi

�
(C−1)−1

�

show that the number of irreducible representations that are isomorphic
to their duals is equal to the number of conjugacy classes C for which
C

−1 = C:

|{i ∈ [s] : ρi � ρ
�
i
}| = |{C ∈ C : C = C

−1}|. (7.129)

(For a different, combinatorial proof of this, see the book of Hill [43].)
Now suppose n = |G| is odd. If C = C

−1 is a conugacy class containing
an element a, then gag

−1 = a
−1 for some g ∈ G, and g

n
ag

−n = a
−1,

since n is odd, and so a = a
−1, which can only hold if a = e. Thus,

when |G| is odd, there is exactly one conjugacy class that is equal to its
own inverse, and hence there is exactly one irreducible representation,
over F, that is equivalent to its dual.

11. Let G be a finite group, F a field, and T the representation of G on
F[G] given by

T (g)x = gxg
−1 for all x ∈ F[G] and g ∈ G.

Compute the character χT of T . Next, for the character χ of a repre-
sentation of G over F, find a meaning for the sum

�
C∈C χ(C), where

C being the set of all conjugacy classes in G.



Chapter 8

Induced Representations

A representation of a group G restricts to produce a representation of a
subgroup H. Remarkably, there is a procedure that runs in the opposite
direction, producing a representation of G from a representation of H. This
method, introduced by Frobenius [32], is called induction, and is a powerful
technique for constructing and analyzing the structure of representations.

8.1 Constructions

Consider a finite group G, a subgroup H, and a representation ρ of H on a
finite dimensional vector space E over a field F. Among all functions on G

with values in E we single out those which transform in a nice way in relation
to H; specifically, let E1 be the set of all maps ψ : G → E for which

ψ(ah) = ρ(h−1)ψ(a) for all a ∈ G and h ∈ H. (8.1)

We say that such an ψ is equivariant with respect to ρ and the action of H
on G by right multiplication: G×H → G : (g, h) �→ gh.

It is clear that E1 is a subspace of the finite dimensional vector space
Map(G,E) of all maps G → E. Now the space Map(G,E) carries a natural
representation of G:

G×Map(G,E) → Map(G,E) : (a,ψ) �→ Laψ,

where
Laψ(b) = ψ(a−1

b) for all a, b ∈ G, (8.2)

233
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and this representation preserves the subspace E1. This representation of G
on E1 is the induced representation of ρ on G. We will denote it by i

G

H
ρ.

Good notation for the induced representation is a challenge, and it is best
to be flexible. If E is the original representation space of H, then sometimes
it is more convenient to denote the induced representation by E

G (which is
why we are denoting the set of all functions G → E by Map(G,E)).

A function ψ : G → E is, at bottom, a set of ordered pairs (a, v) ∈ G →
E, with a unique v paired with any given a. The condition (8.1) on ψ requires
that if (a, v) ∈ ψ then

�
ah, ρ(h−1)v

�
is also in ψ. In physics there is a useful

notion of ‘a quantity which transforms’ according to a specified rule; here we
can think of ψ as such a quantity which, when ‘realized’ by means of a is
‘measured’ as the vector v, but when the ‘frame of reference’ a is changed to
ah the measured vector is ρ(h−1)v.

It will often be convenient to work with a set of elements g1, ..., gm ∈ G,
where g1H, ..., gmH are all the distinct left cosets of H in G. Such a set
{g1, . . . , gm} is called a complete set of left coset representatives of H in G.

It is useful to note that an element ψ ∈ E1 is completely determined by
listing its values at elements g1, ..., gm ∈ G, which form a complete set of left
coset representatives. Moreover, we can arbitrarily assign the values of ψ at
the points g1, ..., gm. In other words, the mapping

E1 → E
m : ψ �→

�
ψ(g1), ...,ψ(gm)

�
(8.3)

is an isomorphism of vector spaces (Exercise 8.1).
The isomorphism (8.3) makes it clear that the dimension of the induced

representation is given by

dim i
G

H
ρ = |G/H|(dim ρ). (8.4)

Think of a function ψ : G → E as a formal sum

ψ =
�

g∈G

ψ(g)g.

More officially, we can identify the vector space Map(G,E) with the tensor
product E ⊗ F[G]:

Map(G,E) → E ⊗ F[G] : ψ �→
�

g∈G

ψ(g)⊗ g.
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The subspace E1 corresponds to the those elements
�

g
vg ⊗ g that satisfy

�

g

vg ⊗ g =
�

g

ρ(h−1)vg ⊗ gh, for all h ∈ H. (8.5)

The representation i
G

H
is then specified quite simply:

i
G

H
(g)(va ⊗ a) = va ⊗ ga. (8.6)

The induced representation is meaningful even if the field F is replaced
by a commutative ring R. Let E be an R[H]-module. View R[G] as a right
R[H]-module. Let

E
G = R[G]⊗R[H] E (8.7)

be the tensor product R[G] ⊗ E quotiented by the submodule spanned by
elements of the form (xb)⊗ v − x⊗ (bv) with x, b ∈ R[H], v ∈ V . Now view
this balanced tensor product as a left R[G]-module by specifying the action
of R[G] through

a(x⊗ v) = (ax)⊗ v for all x, a ∈ R[G], v ∈ E. (8.8)

For more, consult the discussion following the definition (12.50). Notice the
mapping

j : E → E
G : v �→ e⊗ v, (8.9)

where e, the identity in G, is viewed as 1e ∈ R[G]. Then by the balanced
tensor product property, we have

j(hv) = h⊗ v = h(e⊗ v) = hj(v), (8.10)

for all h ∈ H, v ∈ E, and so j is R[H]-linear (with E
G viewed, by restriction,

as a left R[H]-module for the moment).
Pick, as before, g1, ..., gm ∈ G forming a complete set of left coset rep-

resentatives of H in G. Then you can check quickly that {g1, ..., gm} is a
basis for R[G], viewed as a right R[H]-module (Exercise 8.3). A consequence
(details being outsourced to Theorem 12.9.1) is that

E
G = g1R[G]⊗R[H] E ⊕ · · · gmR[G]⊗R[H] E (8.11)

In fact, every element of EG can then be expressed as
�

i
gi ⊗ vi with vi ∈ E

uniquely determined. This shows the equivalence with the approach used
above in (8.5), with E1 being isomorhic to E

G as R[G]-modules.
We have now several distinct definitions of EG, all of which are identifiable

with each other. This is an expression of the essential universality of the
induction process that we explore later in section 8.4.
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8.2 The Induced Character

We work with G, H, and E as in the preceding section: H is a subgroup of
the finite group G, and E is an F[H]-module. As before,

E
G = F[G]⊗F[H] E,

is an F[G]-module, and there is the F[H]-linear map

j : E → E
G : v �→ 1e⊗ v.

Set
E0 = j(E),

which is a sub-F[H]-module of EG. Pick g1, ..., gm ∈ G forming a complete
set of left coset representatives of H in G. Then

E
G = g1E0 ⊕ . . .⊕ gmE0,

where giE0 is iG
H
ρ(gi)E0. The map

Lg : E
G → E

G : v �→ i
G

H
ρ(g)v

carries the subspace giE0 bijectively onto ggiE0. Thus, ggiE0 equals giE0 if
and only if g−1

i
ggi is in H. Consequently, the map Lg has zero trace if g is

not conjugate to any element in H. If g is conjugate to an element h of H
then

Tr (Lg) = ngTr(Lh|E0) = ngχρ(h), (8.12)

where ng is the number of i for which g
−1
i
ggi is in H.

We can summarize these observations in:

Theorem 8.2.1 Let H be a subgroup of a finite group G, and i
G

H
ρ the induced

representation of G from a representation ρ of H on a finite dimensional
vector space E over a field F. Let g1, ..., gm ∈ G be such that g1H, ..., gmH

are all the distinct left cosets of H in G. Then the character of iG
H
ρ is given

by

(iG
H
χρ)(g) =

m�

j=1

χ
0
ρ
(g−1

j
ggj) for all g ∈ G, (8.13)

where χ
0
ρ
is equal to the character χρ of ρ on H ⊂ G and is 0 outside H. If

|H| is not divisible by the characteristic of the field F then

(iG
H
χρ)(g) =

1

|H|
�

a∈G

χ
0
ρ
(a−1

ga) for all g ∈ G. (8.14)
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The division by |H| in (8.14) is needed because each gi for which g
−1
i
ggi

is in H is counted |giH| (= |H|) times in the sum on the right (8.14):

χ
0
ρ

�
(gih)

−1
g(gih)

�
= χ

0
ρ
(g−1

i
ggi).

In the special case when H is a normal subgroup of G, the element g−1
j
ggj

lies in H if and only if g is in H. Hence:

Proposition 8.2.1 For a normal subgroup H of a finite group G, and a
finite dimensional representation ρ of G, the character of the induced repre-
sentation i

G

H
ρ is 0 outside the normal subgroup H.

8.3 Induction Workout

As usual, we work with a subgroupH of a finite groupG, and a representation
ρ of H on a finite dimensional vector space E over a field F. Fix g1, ..., gm ∈ G

forming a complete set of left coset representatives ofH in G. For this section
we use the induced representation space E1, which, recall, is the space of all
maps ψ : G → E for which

ψ(ah) = ρ(h−1)ψ(a) for all a ∈ G and h ∈ H.

Then the induction process produces the representation ρ1 of G on E1 given
by

ρ1(a)ψ : b �→ ψ(a−1
b).

and E1 is isomorphic to E
m via the map

E1 → E
m : ψ �→

�
ψ(g1), ...,ψ(gm)

�
.

Let us work out the representation ρ1 as it appears in E
m; we will denote

the representation on E1 again by ρ1. For any g ∈ G we have

(ρ1(g)ψ(g1), ..., ρ1(g)ψ(gm)) =
�
ψ(g−1

g1), ...,ψ(g
−1
gm)

�
(8.15)

Now for each i the element g−1
gi falls into a unique coset gjH; that is, there

is a unique j for which g
−1
j
g
−1
gi = h ∈ H. Note that

h
−1 = g

−1
i
ggj.
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Then, for such i and j, we have

ψ(g−1
gi) = ψ(gjh) = ρ(h−1)ψ(gj).

Thus the action of ρ1(g) is

ρ1(g) :




ψ1
...

ψm



 �→





�
j
ρ
0(g−1

1 ggj)ψj

...�
j
ρ
0(g−1

m
ggj)ψj





where ρ
0 is ρ on H and is 0 outside H. Note that in each of the sums

�
j
,

all except possibly one term is 0. The matrix of ρ1(g) is

ρ1(g) =




ρ
0(g−1

1 gg1) ρ
0(g−1

1 gg2) · · · ρ
0(g−1

1 ggm)
...

... · · · ...
ρ
0(g−1

m
gg1) ρ

0(g−1
m
gg2) · · · ρ

0(g−1
m
ggm)



 . (8.16)

Note again in this big matrix, each row and each column has exactly one
nonzero entry. Moreover, if H is a normal subgroup and h ∈ H, then the
matrix in (8.16) for ρ1(h) is a block diagonal matrix, with each diagonal
block being ρ evaluated on one of the G-conjugates of h lying inside H.

Let us see how this works out for S3 (which is the same as the dihedral
group D3). The elements of S3 are:

ι, c = (123), c
2 = (132), r = (12), rc = (23), rc

2 = (13),

where ι is the identity element. Thus, r and c generate S3 subject to the
relations

r
2 = c

3 = ι, rcr
−1 = c

2
.

The subgroup C = {ι, c, c2} is normal. The group S3 decomposes into cosets

S3 = C ∪ rC.

Consider the one dimensional representation ρ of C on Q[ω], where ω is a
primitive cube root of 1, specified by

ρ(c) = ω.

Let ρ1 be the induced representation; by (8.4) its dimension is

dim ρ1 = |S3/C|(dim ρ) = 2.
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We can write out the matrices for ρ1(c) and ρ1(r):

ρ1(c) =

�
ρ
0(ι−1

cι) ρ
0(ι−1

cr)
ρ
0(r−1

cι) ρ
0(r−1

cr)

�
=

�
ω 0
0 ω

2

�

ρ1(r) =

�
ρ
0(ι−1

rι) ρ
0(r−1

rι)
ρ
0(r−1

rι) ρ
0(r−1

rr)

�
=

�
0 1
1 0

� (8.17)

Looking all the way back to (2.7) we recognize this as an irreducible repre-
sentation of D3 given geometrically as follows: ρ1(c) arises from conjugation
of a rotation by 1200 and r by reflection across a line. Note that restricting
ρ1 to C doesn’t simply give back ρ; in fact, ρ1|C decomposes as a direct
sum of two distinct irreducible representations of C. Lastly, let us note the
character of ρ1:

χ1(ι) = 2, χ1(c) = χ1(c
2) = −1, χ1(r) = χ2(rc) = χ1(rc

2) = 0,
(8.18)

which agrees nicely with the last row in Table 2.2.

Now let us run through S3 again, but this time using the subgroup H =
{ι, r} and the one-dimensional representation τ specified by τ(r) = −1. The
underlying field F is now arbitrary. The coset decomposition is

S3 = H ∪ cH ∪ c
2
H.

Then the induced representation τ1 has dimension

dim τ1 = |S3/H| dim τ = 3.

For τ1(c) we have

τ1(c) =




τ
0(ι−1

cι) τ
0(ι−1

cc) τ
0(ι−1

cc
2)

τ
0(c−1

cι) τ
0(c−1

cc) τ
0(c−1

cc
2)

τ
0(c−2

cι) τ
0(c−2

cc) τ
0(c−2

cc
2)





=




0 0 1
1 0 0
0 1 0





(8.19)
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and for τ1(r) we have

τ1(r) =




τ
0(ι−1

rι) τ
0(ι−1

rc) τ
0(ι−1

rc
2)

τ
0(c−1

rι) τ
0(c−1

rc) τ
0(c−1

rc
2)

τ
0(c−2

rι) τ
0(c−2

rc) τ
0(c−2

rc
2)





=




−1 0 0
0 0 −1
0 −1 0





(8.20)

The character of τ1 is given by

χτ1(ι) = 3, χτ1(c) = χτ1(c
2) = 0, χτ1(r) = χτ1(cr) = χτ1(c

2
r) = −1.

(8.21)
Referring back again to the character table for S3 in Table 2.2, we see that

χτ1 = χ1 + θ+,−. (8.22)

The induced representation τ1 is the direct sum of two irreducible represen-
tations, at least when 3 �= 0 in F (in which case χ1 comes from an irreducible
representation; see the solution of Exercise 2.4). In fact,

F
3 = F(1, 1, 1)⊕ {(x1, x2, x3) ∈ F

3 : x1 + x2 + x3 = 0}

decomposes F3 into a direct sum of irreducible subspaces, provided 3 �= 0 in
F.

8.4 Universality

At first it might seem that the induced representation is just another clever
construction that happened to work out. But there is a certain natural qual-
ity to the induced representation, which can be expressed through a ‘universal
property.’ One way of viewing this universal property is that the induced
representation is the ‘minimal’ natural extension of an H-representation to
a G-representation.

Theorem 8.4.1 Let G be a finite group, H a subgroup, R a commutative
ring, and E a left R[H]-module. Let EG = R[G] ⊗R[H] E, viewed as a left
R[G]-module, and jE : E → E

G the map v �→ e ⊗ v, which is linear over
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R[H]. Now suppose F is a left R[G]-module and f : E → F a map linear
over R[H]. Then there is a unique R[G]-linear map

Tf : EG → F

such that f = Tf ◦ jE.

Proof. Pick g1, ..., gm ∈ G such that g1H, ..., gmH are all the distinct left
cosets of H in G. Every x ∈ E

G has a unique expression as a sum
�

i
gi ⊗ vi

with vi ∈ E; then define Tf : EG → F by setting

Tf (x) = g1f(v1) + · · ·+ gmf(vm).

Now consider an element g ∈ G; then ggi = gi�hi for a unique i
� ∈ {1, ...,m}

and hi ∈ H, and so for x as above, we have

Tf (gx) =
�

i

Tf (gi� ⊗ hivi) =
�

i

gi�f(hivi)

=
�

i

gi�hif(vi)

= g

�

i

gif(vi) = gTf (x).

(8.23)

So Tf , which is clearly additive as well, isR[G]-linear. The relation f = Tf◦jE
follows immediately from the definition of Tf . Uniqueness of Tf then follows
from the fact that the elements jE(v) = 1⊗ v, with v running over E, span
the left R[G]-module E

G. QED

8.5 Universal Consequences

Universality is a powerful idea and produces some results with routine au-
tomatic proofs. It is often best to think not of EG by itself, but rather the
R[H]-linear map

jE : E → E
G
,

as a package, as the induced module
Let H be a subgroup of a finite group G, and E and F left R[H]-modules,

where R is a commutative ring. For any left R-module L, denote by L
G the
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left R[G]-module R[G] ⊗R[H] L, and by jL the map L → L
G : v �→ e ⊗ v,

where e is the identity in G. Then the map

E ⊕ F → E
G ⊕ F

G : (v, w) �→
�
jE(v), jF (w)

�

is R[H]-linear and so there is a unique R[G]-linear map T : (E ⊕ F )G →
E

G ⊕ F
G for which

Tj(v, w) =
�
jE(v), jF (w)

�

for all v ∈ E, w ∈ F , where j = jE⊕F . In the reverse direction, the R[H]-
linear mapping

E → (E ⊕ F )G : v �→ j(v, 0)

gives rise to an R[G]-linear map E
G → (E⊕F )G, and similarly for F ; adding,

we obtain an R[G]-linear map

S : EG ⊕ F
G → (E ⊕ F )G : (jEv, jFw) �→ j(v, 0) + j(0, w) = j(v, w).

Then TS(jE, jF ) = (jE, jF ) and STj = j, which, by the uniqueness in uni-
versality, implies that ST and TS are both the identity. To summarize:

Theorem 8.5.1 Suppose H is a subgroup of a finite group G, and E and
F are left R[H]-modules, where R is a commutative ring. Then there is a
unique R[G]-linear isomorphism

T : (E ⊕ F )G → E
G ⊕ F

G

satisfying TjE⊕F = jE ⊕ jF , were jS : S → S
G denotes the canonical map

for the induced representation for any F[H]-module S.

Proof. By Theorem 8.4.1 there is a unique R[G]-linear map Tf : EG → F

for which
TfjE = f.

Let
f
G = jFTf .

Then
f
G
jE = jFTdjE = jFf.

QED
The next such result is functoriality of the induced representation; it is

an immediate consequence of the universal property of induced modules.
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Theorem 8.5.2 Suppose H is a subgroup of a finite group G, E and F

left R[H]-modules, where R is a commutative ring, and f : E → F an R[H]-
linear map. Let jE : E → E

G and jF : F → F
G be the induced modules. Then

there is a unique R[G]-linear map f
G : EG → F

G such that fG
jE = jFf .

8.6 Reciprocity

The most remarkable consequence of universality is a fundamental ‘reci-
procity’ result of Frobenius [32]. As usual, let H be a subgroup of a fi-
nite group G, E a left R[H]-module, and F an R[G]-module, where R is a
commutative ring.

Recall that, with usual notation, if f : E → F is R[H]-linear then there
is a unique R[G]-linear map Tf : EG → F for which TfjE = f . Thus, we
have a map

HomR[H](E,FH) → HomR[G]

�
E

G
, F

�
: f �→ Tf

The domain and codomain here are left R-modules in the obvious way, keep-
ing in mind that R is commutative by assumption. With this bit of prepa-
ration, we have a formulation of Frobenius reciprocity:

Theorem 8.6.1 Let H be a subgroup of a finite group G, E a left R[H]-
module, where R is a commutative ring, and F a left R[G]-module. Let FH

denote F viewed as a left R[H]-module. Then

HomR[H](E,FH) → HomR[G]

�
E

G
, F

�
: f �→ Tf (8.24)

is an isomorphism of R-modules, where Tf is specified by the requirement
TfjE = f .

Proof. If f ∈ HomR[H](E,FH) then, by universality, there is a unique
Tf ∈ HomR[G]

�
E

G
, F

�
such that Tf ◦ jE = f . Clearly, f �→ Tf is injec-

tive. Uniqueness of Tf implies that Tf1+f2 equals Tf1 + Tf2 , because both
compose with jE to produce f1 + f2, for any f1, f2 ∈ HomR[H](E,FH). Next,
for any r ∈ R, and f ∈ HomR[H](E,FH), the map rTf is in HomR[G]

�
E

G
, F

�

and satisfies (rTf )jE = rf , which, again by uniqueness, implies that rTf is
Trf . Now consider any A ∈ HomR[G]

�
E

G
, F

�
, and let f = AjE, which is

an element of HomR[H](E,FH). Then uniqueness of Tf implies that Tf = A;

thus f �→ Tf is surjective. QED
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A semisimple module N over a ring A decomposes as a direct sum

N =
�

i∈I

Ni,

where eachNi is a simple A-module. For a simple A-module E, the number of
i ∈ I for which Ni is isomorphic to E, as A-modules, is called the multiplicity
of E in N . If A is the group algebra F[G], for a field F and a finite group G,
then the multiplicity is equal to

dimF HomF[G](E,N),

if F is algebraically closed (by Schur’s Lemma).
We bring the reciprocity result Theorem 8.6.1 down to ground now, by

specializing to the case where R is a field F. Then we have the following
concrete consequence:

Theorem 8.6.2 Let H be a subgroup of a finite group G, E a simple F[H]-
module, where F is an algebraically closed field in which |G|1F �= 0, and F a
simple F[G]-module. Let FH denote F viewed as an F[H]-module. Then the
multiplicity of F in E

G is equal to the multiplicity of E in FH .

There is one more way to say it. Looking all the way back to Proposition
7.2.3, we recognize the dimensions of the Hom spaces in (8.24) as the kind of
character convolutions that appear in character orthogonality. This at once
produces the following Frobenius reciprocity result in terms of characters:

Theorem 8.6.3 Let H be a subgroup of a finite group G, E a representation
of H, and F a representation of G, where E and F are finite dimensional
vector spaces over a field F in which |G|1F �= 0. Let FH denote F viewed as
a representation of H, and E

G the induced representation of G. Then

1

|G|
�

g∈G

χEG(g)χF (g
−1) =

1

|H|
�

h∈H

χFH
(h)χE(h

−1). (8.25)

We have seen that on a finite group K there is a useful hermitian inner
product on the vector space of function K → C given by

�f1, f2�K =
1

|K|
�

k∈K

f1(k)f2(k).

In this notation, (8.25) reads

�χEG ,χF �H = �χFH
,χE�G. (8.26)
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8.7 Afterthoughts: Numbers

In Euclid’s Elements, ratios of segments are defined by an equivalence class
procedure: segments AB, CD, A1B1, C1D1 correspond to the same ratio

AB : CD = A1B1 : C1D1

if for any positive integers m and n the inequality m · CD > n · AB holds if
and only if m ·C1D1 > n ·A1B1, where whole multiples of segments and the
comparison relation > are defined geometrically. Then it is shown, through
considerations of similar triangles, that there are well-defined operations of
addition and multiplication on ratios of segments. Fast forwarding through
history, and throwing in both 0 and negatives, shows how the axioms of
Euclidean geometry lead to number fields. This is also reflected in the tra-
ditional ruler and compasses constructions, which show how a number field
emerges from the axioms of geometry. A more subtle process leads to con-
structions of division rings and fields from the sparser axiom set of projective
geometry. Turning now to groups, a finite group is, per definition, quite a
minimal abstract structure, having just one operation defined on a nonempty
set with no other structure. Yet geometric representations of such a group
single out certain number fields corresponding to these geometries. Very con-
cretely put, here is a natural question that was addressed from the earliest
explorations of group representation theory: for a given finite group, is there
a subfield F of, say, C, such that every irreducible complex represenation of
G can be realized with matrices having elements all in the subfield F? The
following magnificent result of Brauer [7], following up on many intermediate
results from the time of Frobenius on, answers this question:

Theorem 8.7.1 Let G be a finite group, and m ∈ {1, 2, ...} be such that
g
m = e for all g ∈ G. For any irreducible complex representation ρ of G on a

vector space V , there is a basis of V relative to which all entries of the matrix
ρ(g) lie in the field Q(ζm), for all g ∈ G, with ζm = e

2πi/m is a primitive m-th
root of unity.

Here Q(ηm) is the smallest subfield of C containing the integers and ηm.
Weintraub [75] provides a thorough treatment of this result, as well as im-
portant other related results. Lang [53] also contains a readable account.
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Exercises

1. Show that (8.3) is an isomorphism of vector spaces. Work out the
representation on E

m which corresponds to i
G

H
ρ via this isomorphism.

2. For the dihedral group

D4 = �c, r : c4 = r
2 = e, rcr

−1 = c
−1�

and the cyclic subgroup C = {e, c, c2, c3}, work out the induced repre-
sentations for

(i) the one dimensional representation ρ of C specified by ρ(c) = i,
and

(ii) the two dimensional representation τ of C specified by

τ(c) =

�
0 −1
1 0

�
.

3. Let G be a finite group, H a subgroup, R a commutative ring with 1.
Choose g1, ..., gm ∈ G such that g1H, ..., gmH are all the distinct left
cosets of H in G. Show that g1, ..., gm ∈ R[G] form a basis of R[G],
viewed as a right R[H]-module.



Chapter 9

Commutant Duality

Consider an abelian group E, written additively, and a set S of homomor-
phisms, addition-preserving mappings, E → E. The commutant Scom of S is
the set of all maps f : E → E that preserve addition and for which

f ◦ s = s ◦ f for all s ∈ S.

We are interested in the case where E is a module over a ring A, and
S is the set of all maps E → E : x �→ ax with a running over A. In this
case, Scom is the ring C = EndA(E), and E is a module over both the ring A

and the ring C. Our task in this chapter is to study how these two module
structures on E interweave with each other.

We return to territory we have traveled before in Chapter 5, but on this
second pass we have a special focus on the commutant. We pursue three
distinct pathways, beginning with a quick, but abstract, approach. The
second aproach is a more concrete one, in terms of matrices and bases. The
third approach focuses more on the relationship between simple left ideals in
a ring A and simple C-submodules of an A-module.

9.1 The Commutant

Consider a module E over a ring A. Let us look at what it means for a
mapping f : E → E to be an endomorphism: in addition to the additivity
condition

f(u+ v) = f(u) + f(v) for all u, v ∈ E, (9.1)

247
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the linearity of f means that it commutes with the action of A:

f(au) = af(u) for all a ∈ A, and u ∈ E. (9.2)

The case of most interest to us is A = F[G], where G is a finite group and
F a field, and E is a finite dimensional vector space over F, with a given
representation of G on E. In this case, the conditions (9.1) and (9.2) are
equivalent to f ∈ EndF(E) commuting with all the elements of G represented
on E. Thus, EndF[G](E) is the commutant for the representation of G on E.

Sometimes the notation
EndG(E)

is used instead of EndF[G](E), but there is potential for confusion; the mini-
malist interpretation of EndG(E) is EndZ[G](E), and at the other end it could
mean EndF[G](E) where F is some relevant field.

Here is a consequence of Schur’s Lemma 3.2.1 rephrased in commutant
language:

Theorem 9.1.1 Let G be a finite group represented on a finite dimensional
vector space V over an algebraically closed field F. Then the commutant of
this representation consists of multiples of the identity operator on V if and
only if the representation is irreducible.

(Instant exercise: check the ‘only if’ part.)
Suppose now that A is a semisimple ring, E is an A-module, decomposing

as
E = E

n1
1 ⊕ . . .⊕ E

nr

r
(9.3)

where each Ei is a simple submodule, each ni ∈ {1, 2, 3, ...}, and Ei �� Ej as
A-modules when i �= j. By Schur’s lemma, the only A-linear map Ei → Ej,
for i �= j, is 0. Consequently, any element in the commutant EndA(E) can
be displayed as a block-diagonal matrix





C1 0 0 . . . 0
0 C2 0 . . . 0
...

...
... . . . 0

0 0 0 . . . Cr




(9.4)

where each Ci is in EndA(E
ni

i
). Moreover, any element of

EndA(E
ni

i
)
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is itself an ni × ni matrix, with entries from

Di = EndA(Ei), (9.5)

which, by Schur’s lemma, is a division ring. Conversely, any such matrix
clearly specifies an element of the endomorphism ring EndA(E

ni

i
).

To summarize:

Theorem 9.1.2 If E is a semisimple module over a ring A, and E is the
direct sum of finitely many simple modules:

E � E
m1
1 ⊕ . . .⊕ E

mn

n

then the ring EndA(E) is isomorphic to a product of matrix rings:

EndA(E) �
n�

i=1

Matrmi
(Di) (9.6)

where Matrmi
(Di) is the ring of mi × mi matrices over the division ring

Di = EndA(Ei).

9.2 The Double Commutant

Recall that a ring B is simple if it is the sum of simple left ideals, all isomor-
phic to each other as B-modules. In this case any two simple left ideals in B

are isomorphic, and B is the internal direct sum of a finite number of simple
left ideals.

Consider a left ideal L in a simple ring B, viewed as a B-module. The
commutant of the action of B on L is the ring

C = EndB(L).

The double commutant is
D = EndC(L).

Every element b ∈ B gives a multiplication map

l(b) : L → L : a �→ ba,

which, of course, commutes with every f ∈ EndB(L). Thus, each l(b) is in
EndC(L). We can now recall Theorem 5.7.1 in this language:
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Theorem 9.2.1 Let B be a simple ring, L a non-zero left ideal in B, and

C = EndB(L), D = EndC(L), (9.7)

the commutant and double commutant of the action of B on L. Then the
double commutant D is essentially the original ring B, in the sense that the
natural map l : B → D, specified by

l(b) : L → L : a �→ ba, for all a ∈ L and b ∈ B, (9.8)

is an isomorphism.

Stepping up from simplicity, the Jacobson density theorem explains how
big l(A) is inside D when L is replaced by a semisimple A-module:

Theorem 9.2.2 Let E be a semisimple module over a ring A, and let C

be the commutant EndA(E). Then for any f ∈ D = EndC(E), and any
x1, ..., xn ∈ E, there exists an a ∈ A such that

f(xi) = axi, for i = 1, ..., n. (9.9)

In particular, if A is an algebra over a field F, and E is finite dimensional
as a vector space over F, then D = l(A); in other words, every element of D
is given by multiplication by an element of A.

Proof. View E
n first as a left A-module is the usual way:

a(y1, ..., yn) = (ay1, ..., ayn)

for all a ∈ A, and (y1, ..., yn) ∈ E
n. Any element of

Cn

def
= EndA(E

n)

is given by an n× n matrix with entries in C. To see this in more detail, let
ιj be the inclusion in the j-th factor

ιj : E → E
n : y �→ (0, ..., 0, y����

j-th

, 0, ..., 0)

and πj the projection on the j-th factor:

πj : E
n → E : (y1, ..., yn) �→ yj.
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Then

F

�
n�

j=1

ιj(yj)

�
=

n�

j,k=1

πkF ιj(yj)

=




π1F ι1 . . . π1F ιn

...
...
...
...

...
πnF ι1 . . . πnF ιn








y1
...
yn





(9.10)

shows how to associate to F ∈ Cn = EndA(En) an n× n matrix with entries
πiF ιj ∈ C = EndA(E).

Moreover, En is also a module over the ring Cn in the natural way. Let
f ∈ D = EndC(E). The map

fn : En → E
n : (y1, ..., yn) �→

�
f(y1), ..., f(yn)

�
.

is readily checked to be Cn-linear; thus,

fn ∈ EndCn
(En).

Now E
n, being semisimple, can be split as

E
n = Ax

�
F,

where x = (x1, ..., xn) is any given element of En, and F is an A-submodule
of En. Let

p : En → Ax ⊂ E
n

be the corresponding projection. This is, of course, A-linear and is therefore
an element of Cn. Consequently, fnp = pfn, and so

fn

�
p(x)

�
= p

�
fn(x)

�
∈ Ax.

Since p(x) = x, we have reached our destination (9.9). QED

9.3 Commutant Decomposition of a Module

Suppose E is a module over a semisimple ring A, Li is a simple left ideal in A,
and Di is the division ring EndA(Li). The elements of Di are A-linear maps
Li → Li and so Li is, naturally, a left Di-module. On the other hand, Di acts
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naturally on the right on HomA(Li, E) by taking (f, d) ∈ HomA(Li, E)×Di

to the element fd = f ◦ d ∈ HomA(Li, A). Thus, HomA(Li, E) is a right
Di-module. Hence there is the balanced tensor product

HomA(Li, E)⊗Di
Li,

which, for starters, is just a Z-module. However, the left A-module structure
on Li, which commutes with the Di-module structure, naturally induces a
left A-module structure on HomA(Li, E) ⊗Di

Li with multiplications on the
second factor. We use this in the following result.

Theorem 9.3.1 If E is a module over a semisimple ring A, and L1,..., Lr

a maximal set of non-isomorphic simple left ideals in A, then the mapping

r�

i=1

HomA(Li, E)⊗Di
Li → E : (f1 ⊗ x1, ..., fr ⊗ xr) �→

r�

i=1

fi(xi). (9.11)

is an isomorphism of A-modules. Here Di is the division ring EndA(Li), and
the left side in (9.11) has an A-module structure from that on the second
factors Li.

Proof. The module E is a direct sum of simple submodules, each isomorphic
to some Li:

E =
r�

i=1

�

j∈Ri

Eij (9.12)

where Eij � Li, as A-modules, for each i and j ∈ Ri). In the following we
will, as we may, simply assume that Ri �= ∅, since HomA(Li, E) is 0 for all
other i. Because Li is simple, Schur’s Lemma implies that HomA(Li, Eij) is
a one dimensional (right) vector space over the division ring Di, and a basis
is given by any fixed non-zero element φij. For any fi ∈ HomA(Li, E) let

fij : Li → Eij

be the composition of fi with the projection of E onto Eij. Then

fij = φijdij,

for some dij ∈ Di. Any element of HomA(Li, E) ⊗Di
Li is uniquely of the

form �

j∈Ri

φij ⊗ xij
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with xij ∈ Li (see Theorem 12.9.1). Consider now the A-linear map

J :
r�

i=1

HomA(Li, E)⊗Di
Li → E

specified by

J

�
r�

i=1

�

j∈Ri

φij ⊗ xij

�
=

r�

i=1

�

j∈Ri

ιij

�
φij(xij)

�
,

where ιij : Eij → E is the canonical injection into the direct sum (9.12).
If this value is 0 then each φij(xij) ∈ Eij is 0 and then, since φij is an
isomorphism, xij is 0. Thus, J is injective. The decomposition of E into the
simple submodules Eij shows that J is also surjective. QED

Even though HomA(Li, E) is not, naturally, an A-module, it is a left
C-module, where

C = EndA(E)

is the commutant of the action of A on E: if c ∈ C and f ∈ HomA(Li, E)
then

cf
def
= c ◦ f

is also in HomA(Li, E). This makes HomA(Li, E) a left C-module.

Theorem 9.3.2 Let E be a module over a semisimple ring A, and let C

be the ring EndA(E), the commutant of A acting on E. Let L be a simple
left ideal in A, and assume that HomA(L,E) �= 0, or, equivalently, that E
contains a submodule isomorphic to L. Then the C-module HomA(L,E) is
simple.

Proof. Let f, h ∈ HomA(L,E), with h �= 0. We will show that f = ch, for
some c ∈ C. Consequently, any non-zero C-submodule of HomA(L,E) is all
of HomA(L,E).

If u is any non-zero element in L then L = Au, and so it will suffice to
show that f(u) = ch(u).

We decompose E as the internal direct sum

E = F ⊕
�

i∈S

Ei,
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where each Ei is a submodule isomorphic with L, and F is a submodule
containing no submodule isomorphic to L. For each i ∈ S the projection
E → Ei, composed with the inclusion Ei ⊂ E, then gives an element

pi ∈ C.

Since h �= 0, and F contains no submodule isomorphic to L, there is some
j ∈ S such that pjh(u) �= 0. Then pjh : L → Ej is an isomorphism.
Moreover, for any i ∈ S, the map

Ej → Ei : pjh(y) �→ pif(y) for all y ∈ L,

is well-defined, and extends to an A-linear map

ci : E → E

which is 0 on F and on Ek for k �= j. Note that there are only finitely many
i for which pi

�
f(u)

�
is not 0, and so there are only finitely many i for which

ci is not 0. Let S
� = {i ∈ S : ci �= 0}. Then, piecing together f from its

components pif = cipjh, we have
�

i∈S�

cipjh = f.

Thus
c =

�

i∈S�

cipj

is an element of EndA(E) for which f = ch. QED

We have seen that any left ideal L in A is of the form Ay with y
2 = y;

the element y ∈ L is called a generator of L.
Here is another interesting observation about HomA(L,E), for a simple

left ideal L in A:

Theorem 9.3.3 If L = Ay is a left ideal in a semisimple ring A, with y an
idempotent, and E is an A-module, then the map

J : HomA(L,E) → yE : f �→ f(y)

is an isomorphism of C-modules, where C is the commutant C = EndA(E).
In particular, yE is either 0 or a simple C-module if y is an indecomposable
idempotent in A.
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Proof. To start with, note that yE is indeed a C-module.
For any f ∈ HomA(L,E) we have

f(y) = f(yy) = yf(y) ∈ yE.

The map
J : HomA(L,E) → yE : f �→ f(y) (9.13)

is manifestly C-linear.
The kernel of J is clearly 0.
To prove that J is surjective, consider any v ∈ yE; define a map

fv : L → E : x �→ xv.

This is clearly A-linear, and J(fv) = yv = v, because v ∈ yE and y
2 = y.

Thus, J is surjective.
Finally, if y is an indecomposable idempotent then L = Ay is a simple

left ideal in A and then, by Theorem 9.3.2, HomA(E), which as we have just
proved is C-isomorphic to yE, is either 0 or a simple C-module. QED

The role of the idempotent y in the preceding result is clarified in the
following result.

Proposition 9.3.1 If idempotents u, v in a ring A generate the same left
ideal, and if E is an A-module, then uE and vE are isomorphic C-submodules
of E, where C = EndA(E).

Proof. Since Au = Av, we have then

u = xv, v = yu, for some x, y ∈ A.

Then the maps

f : uE → vE : w �→ yw, and h : vE → uE : w �→ xw

act by
f(ue) = ve and h(ve) = ue

for all e ∈ E. This shows that f and h are inverses to each other. They are
also, clearly, both C-linear. QED

Let E be an A-module, where A is a semisimple ring, and L1, ..., Lr are
a maximal collection of non-isomorphic simple left ideals in A. Let yi be a
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generating idempotent for Li; thus, Li = Ayi. We are going to prove that
there is an isomorphism

r�

i=1

(yiE ⊗Di
Li) � E

where both sides have commuting A-module and C-module structures, with
C being the commutant EndA(E), and Di the division ring EndA(Li). Before
looking at a formal statement and proof, let us understand the structures
involved here. Easiest is the joint module sructure on E: this is simply a
consequence of the fact that the actions of A and C on E commute with each
other:

(a, c)x = a(c(x)) = c(a(x)) for all x ∈ E, a ∈ A, c ∈ C = EndA(E).

Next, consider the action of the division ring Di on Li = Ayi:

d(ayi) = d(ayiyi) = ayid(yi),

which is thus v �→ vd(yi) for all v ∈ Li. The mapping

Di → A : d �→ d(yi)

is an anti-homomorphism:

d1d2(yi) = d1

�
d2(yi)

�
= d2(yi)d1(yi).

The set yiE is closed under addition and is thus, for starters, just a Z-module.
But clearly it is also a C-module, since

c(yiE) = yic(E) ⊂ yiE.

To make matters even more twisted, the mapping Di → A
opp : d �→ d(yi)

makes yiE a right module over the division ring Di with multiplication given
by:

I× : yiE ×Di → yiE : (v, d) �→ vd
def
= d(yi)v. (9.14)

Thus the mapping
yiE × Li → E : (vi, xi) �→ xivi (9.15)

induces first an Z-linear map

yiE ⊗Z Li → E
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and this quotients to a Z-linear map

I : yiE ⊗Di
Li → E (9.16)

because
I×(vd, x)− I×(v, dx) = xd(yi)v − xd(yi)v = 0.

One more thing: yiE ⊗Di
Li is both an A-module and a C-module, with

commuting module structures, multiplication being given by

a · v ⊗ x �→ v ⊗ ax and c · v ⊗ x �→ c(v)⊗ x, (9.17)

which, as you can check, are well-defined on yiE ⊗Di
Li and surely have all

the usual necessary properties. This takes us a last step up the spiral: the
mapping I is both A- and C-linear:

I (a · v ⊗ x) = I (v ⊗ ax) = axv = aI(v ⊗ x)

I (c · v ⊗ x) = I (c(v)⊗ x) = xc(v) = c(xv) = cI(v ⊗ x).
(9.18)

At last we are at the end, even if a bit out of breath, of the spiral of tensor
product identifications:

Theorem 9.3.4 Suppose E is a module over a semismple ring A, let C

be the commutant EndA(E), and let L1 = Ay1, ..., Lr = Ayr be a maximal
collection of non-isomorphic simple left ideals in A, with each yi being an
idempotent. Then the mapping

r�

i=1

yiE ⊗Di
Li → E :

r�

i=1

vi ⊗ xi �→
r�

i=1

xivi (9.19)

is an isomorphism both for A-modules and for C-modules. Each yiE is a
simple C-module, and, of course, each Li is a simple A-module.

Proof. On identifying yiE with HomA(Li, E) by Theorem 9.3.3, the result
becomes equivalent to Theorem 9.3.1. For a bit more detail do Exercise 9. 7.
QED

The awkwardness of phrasing the joint module structures relative to the
rings A and C could be eased by bringing in a tensor product ring A ⊗ C,
but let us leave that as a trail unexplored.

Here is another version:
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Theorem 9.3.5 Let A be a finite dimensional semisimple algebra over a field
F. Suppose E is a module over A, and let C be the commutant EndA(E).
Then E, viewed as a C-module, is the direct sum of simple submodules of the
form yE, with y running over a set of indecomposable idempotents in A.

We will explore this in matrix formulation in the next section. But you
can also pursue it in Exercise 9.8. The relationship between C-submodules
and right ideals in A is explored in greater detail in Exercise 9.6 (which
loosely follows Weyl [76]).

9.4 The Matrix Version

In this section we dispell the ethereal elegance of Theorem 9.3.4 by working
through the decomposition in terms of matrices. We will proceed entirely
independent of the previous section.

We work with an algebraically closed field F of characteristic 0, a finite
dimensional vector space V over F, and a subalgebra A of EndF(V ). Thus,
V is an A-module. Let C be the commutant:

C = EndA(V ).

Our objective is to establish Schur’s decomposition of V into simple C-
modules eijV :

Theorem 9.4.1 Let A be a subalgebra of EndF(V ), where V �= 0 is a finite-
dimensional vector space over an algebraically closed field F of characteristic
0. Let

C = EndA(V )

be the commutant of A. Then there exist primitive idempotents {eij : 1 ≤
i ≤ r, 1 ≤ j ≤ ni} in A that generate a decomposition of A into simple left
ideals:

A =
�

1≤i≤r,1≤j≤ni

Aeij, (9.20)

and also decompose V , viewed as a C-module, into a direct sum

V =
�

1≤i≤r,1≤j≤ni

eijV, (9.21)

where each non-zero eijV is a simple C-submodule of V .
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Most of the remainder of this section is devoted to proving this result. We
follow Dieudonné and Carrell [22] in examining the detailed matrix structure
of A, to generate the decomposition of V .

Because A is semisimple, and finite dimensional as a vector space over F,
we can decompose it as a direct sum of simple left ideals Aej:

A =
N�

j=1

Aej

where the ej are primitive idempotents with

e1 + · · ·+ eN = 1, and eiej = 0 for all i �= j.

Then V decomposes as a direct sum

V = e1V ⊕ . . .⊕ eNV. (9.22)

(Instant exercise: Why is it a direct sum?) The commutant C maps each
subspace ejV into itself. Thus, the ejV give a decomposition of V as a direct
sum of C-submodules. What is, however, not clear is that each non-zero ejV

is a simple C-module; the hard part of Theorem 9.4.1 provides the simplicity
of the submodules in the decomposition (9.21).

We decompose V into a direct sum

V =
r�

i=1

V
i
, with V

i = Vi1 ⊕ . . .⊕ Vini
(9.23)

where Vi1, ..., Vini
are isomorphic simple A-submodules of V , and Viα is not

isomorphic to Vjβ when i �= j. By Schur’s lemma, elements of C map each
V

i into itself. To simplify the notation greatly, we can then just work within
a particular V i. Thus let us take for now

V =
n�

j=1

Vj,

where each Vj is a simple A-module and the Vj are isomorphic to each other
as A-modules. Let

m = dimF Vj
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Fix a basis
u11, ..., u1m

of the F-vector space V1 and, using fixed A-linear isomorphisms V1 → Vi,
construct a basis

ui1, ..., uim

in each Vi. Then the matrices of elements in A are block diagonal, with n

blocks, each block being an arbitrary m × m matrix T with entries in the
field F: 



T 0
0 T

· · ·
0 T



 (9.24)

Thus, the algebra A is isomorphic to the matrix algebra Matrm×m(F) by

T �→





T 0
0 T

· · ·
0 T



 (9.25)

(Why ‘arbitrary’ you might wonder; see Exercise 9.10.] The typical matrix
in C = EndA(V ) then has the form





s11I s12I · · s1nI

s21I s22I · ·
· · · ·

sn1I · · · snnI



 (9.26)

where I is the m×m identity matrix. Reordering the basis in V as

u11, u21, ..., un1, u12, u22, ..., un2, ..., u1m, ..., unm,

displays the matrix (9.26) as the block diagonal matrix




[sij] 0 · 0
0 [sij] ·
· · ·
0 · · [sij]



 (9.27)

where sij are arbitrary elements of the field F. Thus C is isomorphic to
the algebra of n × n matrices [sij] over F. Now the algebra Matrn×n(F) is
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decomposed into a sum of n simple ideals, each consisting of the matrices
that have all entries zero except possibly those in one particular column.
Thus,

each simple left ideal in C is n-dimensional over F.

Let M i

jh
be the matrix for the linear map V → V which takes uih to uij

and is 0 on all the other basis vectors. Then, from (9.24), the matrices

Mjh = M
1
jh
+ · · ·+M

n

jh
(9.28)

form a basis of A, as a vector space over F. Let

ej = Mjj,

for 1 ≤ j ≤ m. This corresponds, in Matrm×m(F), to the matrix with 1 at
the jj entry and 0 elsewhere. Then A is the direct sum of the simple left
ideals Aej.

The subspace ejV has the vectors

u1j, u2j, ..., unj

as a basis, and so ejV is n-dimensional. Moreover, ejV is mapped into itself
by C:

C(ejV ) = ejCV ⊂ ejV.

Consequently, ejV is a C-module. Since it has the same dimension as any
simple C-module, it follows that ejV cannot have a non-zero proper C-
submodule; hence ejV is a simple C-module.

We have completed the proof of Theorem 9.4.1.

Exercises

1. Let A be a ring, and A
opp the ring formed by the set A with addition

same as the ring A but multiplication in the opposite order: a◦oppb = ba

for all a, b ∈ A. For any a ∈ A let ra : A → A : x �→ xa. Show that
a �→ ra gives an isomorphism of Aopp with EndA(A).

2. Let A be a semisimple ring. Show that :(i) A is also ‘right semisimple’
in the sense that A is the sum of simple right ideals; (ii) every right
ideal in A has a complementary right ideal; (iii) every right ideal in A

is of the form uA with u an idempotent.
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3. Let G be a finite group and F a field. Denote by F[G]L the additive
abelian group F[G] viewed, in the standard way, as a left F[G]-module.
Denote by F[G]R the additive abelian group F[G] viewed as a left F[G]-
module through the multiplication given by

x·a = ax̂,

for x, a ∈ F[G], with x̂ =
�

g∈G x(g)g−1 ∈ F[G]. Show that the com-
mutant EndF[G]F[G]L is isomorphic to F[G]R.

4. Suppose E is a left module over a semisimple ring A. Then Ê =
HomA(E,A) is a right A-module in the natural way via the right-
multiplication in A: if f ∈ Ê and a ∈ A then f ·a : E → A : y �→ f(y)a.
Show that the map

E → HomA (HomA(E,A), A) : x �→ evx

where evx(f) = f(x) for all f ∈ Ê, is injective.

5. Let E be a left A-module, where A = F[G], with G being a finite group
and F a field. Assume that E is finite dimensional as a vector space
over F. Let Ê = HomA(E,A), E � the vector space dual HomF(E,F),
and Tr e : F[G] → F : x �→ xe the functional which evaluates a general
element x =

�
g∈G xgg ∈ A at the identity e ∈ G. Show that the

mapping

I : Ê → E
� : φ �→ φe

def
= Tr e ◦ φ

is an isomorphism of vector spaces over F.

6. Let E be a left A-module, where A is a semisimple ring, C = EndA(E),
and Ê = HomA(E,A). We view E as a left C-module in the natural
way, and view Ê as a right A-module For any nonempty subset S of E
define the subset S# of A to be all finite sums of elements φ(w) with φ

running over Ê and w over S.

(i) Show that S# is a right ideal in A.

(ii) Show that (aE)# = aE# for all a ∈ A.

(iii) If W is a C-submodule of E then W = W#E.

(iv) Suppose U and W are C-submodules of E with U# ⊂ W#. Show
that U ⊂ W . In particular, U# = W# if and only if U = W .
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(v) A C-submodule W of E is simple if W# is a simple right ideal.

(vi) If W is a simple C-submodule of E, and if E# = A, then W# is a
simple right ideal in A.

(vii) If u is an indecomposable idempotent in A and the right ideal uA
lies inside E# then uE is a simple C-module.

7. With E an A-module, where A is a semisimple ring, and L = Ay a
simple left ideal in A with idempotent generator y, use the the map
J : HomA(L,E) → yE : f �→ f(y) to transfer the action of the division
ring D = EndA(L) from L to yE.

8. Prove Theorem 9.3.5.

9. Prove Burnside’s theorem: If G is a group of endomorphisms of a finite
dimensional vector space E over an algebraically closed field F, and E

is simple as a G-module, then FG, the linear span of G inside EndF(E),
is equal to the whole of EndF(E).

10. Prove Wedderburn’s theorem: Let E be a simple module over a ring
A, and suppose that it is faithful in the sense that if a is non-zero in
A then the map l(a) : E → E : x �→ ax is also non-zero. If E is
finite dimensional over the division ring C = EndA(E) then l : A →
EndC(E) is an isomorphism. Specialize this to the case where A is a
finite dimensional algebra over an algebraically closed field F.

11. Let E be a semisimple module over a ring A.

(a) Show that if the commutant EndA(E) is a commutative ring then
E is the direct sum of simple sub-A-modules no two of which are
isomorphic.

(b) Suppose E is the direct sum of simple submodules Eα, no two
of which are isomorphic to each other and assume also that each
commutant EndA(Eα) is a field (that is, it is commutative); show
that the ring EndA(E) is commutative.

(Exercise 5.6 shows that when E is a direct sum of a set of non-
isomorphic simple submodules then every simple submodule of E is one
of these submodules.) Here is a case which is useful in the Okounkov-
Vershik theory for representations of Sn: view Sn−1 as a subgroup of
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Sn in the natural way; then it turns out that C[Sn−1] has commutative
centralizer in C[Sn]. This then implies that in the decomposition of
a simple C[Sn]-module as a direct sum of simple C[Sn−1] modules, no
two of the latter are isomorphic to each other.



Chapter 10

Character Duality

In the chapter we carry out a specific implementation of the dual decomposi-
tion theory explored in the preceding chapter. The symmetric group Sn has
a natural action on V

⊗n, for any vector space V , as in (10.1) below. Our
first goal in this chapter is to identify, under some simple conditions, the
commutant EndF[G]V

⊗n as the linear span of the operators T⊗n on V
⊗n with

T running over the group GLF(V ) of all invertible linear endomorphisms of
V . The commutant duality theory of the previous chapter then produces
an interlinking of the representations, and hence also of the characters, of
Sn and those of GLF(V ). Following this, we will go through a fast proof of
the duality formula connecting characters of Sn and that of GLF(V ), using
the commutant duality theory. In the last section we will prove this duality
formula again, but by more explicit computation.

10.1 The Commutant for Sn on V
⊗n

For any vector space V , the permutation group Sn has a natural left action
on V

⊗n:
σ · (v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n). (10.1)

The set of all invertible endomorphisms in EndF(V ) forms the general linear
group

GLF(V )

of the vector space V . Here is a fundamental result from Schur [68]:

265
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Theorem 10.1.1 Suppose V is a finite dimensional vector space over a field
F, and n ∈ {1, 2, ...} is such that n! is not divisible by the characteristic of
F and, moreover, the number of elements in F exceeds (dimF V )2. Then the
commutant of the action of Sn on V

⊗n is the linear span of all endomorphisms
T

⊗n : V ⊗n → V
⊗n, with T running over GLF(V ).

Proof. Fix a basis |e1�, ..., |ed� of V , and let �e1|, .., �ed| be the dual basis in
V

�:
�ei|ej� = δij.

Any
X ∈ EndF(V

⊗n)

is then described in coordinates by the quantities

Xi1j1;...;injn = �ei1 ⊗ . . .⊗ ein |X|ej1 ⊗ . . .⊗ ejn�. (10.2)

Relabel the m = N
2 pairs (i, j) with numbers from 1, ...,m. Denote

{1, ..., k} by [k] for all positive integers k; thus, an element a in [m][n] expands
out to (a1, ..., an) with each ai ∈ {1, ...,m}, and encodes an n-tuple of pairs
(i, j) ∈ {1, ..., N}2.

The condition that X commutes with the action of Sn translates in co-
ordinate language to the condition that the quantities Xi1j1;...;injn in (10.2)
remain invariant when i, j ∈ [N ][n] are replaced by i◦σ and j◦σ, respectively,
for any σ ∈ Sn.

We will show that if F ∈ EndF(V ⊗n) satisfies
�

a∈[m][n]

Fa1...an(T
⊗n)a1...an = 0 for all T ∈ GLF(V ) (10.3)

then �

a∈[m][n]

Fa1...anXa1...an = 0 (10.4)

for all X in the commutant of Sn. This means that any element in the dual of
EndF(V ⊗n) that vanishes on the elements T⊗n, with T ∈ GLF(V ), vanishes
on the entire subspace which is the commutant of Sn. This clearly implies
that the commutant is spanned by the elements T⊗n.

Consider the polynomial in the m = N
2 indeterminates Ta given by

p(T ) =




�

a1,...,an∈{1,...,m}

Fa1...anTa1 ...Tan



 det[Tij].
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The hypothesis (10.3) says that this polynomial is equal to 0 for all choices
of values of Ta in the field F. If the field F isn’t very small, a polynomial p(T )
all of whose evaluations are 0 is identically 0 as a polynomial. Let us work
through an argument for this. Evaluating the Tk at arbitrary fixed values
in F for all except one k = k∗, the polynomial p(T ) turns into a polynomial
q(Tk∗), of degree ≤ m, in the one variable Tk∗ , which vanishes on all the |F|
elements of F; the hypothesis |F| > N

2 = m then implies that q(Tk∗) is the
zero polynomial. This means the the polynomials in the variables Ta, for
a �= k∗, given by the coefficients of powers of Tk∗ in p(T ), evaluate to 0 at all
values in F. Reducing the number of variables in this way, we reach all the
way to the conclusion that the polynomial p(T ) is 0. Since the polynomial
det[Tij] is certainly not 0, it follows that

�

a

Fa1...anTa1 ...Tan
= 0 (10.5)

as a polynomial. Keep in mind that

Faσ(1)...aσ(n)
= Fa1...an

for all a1, ..., an ∈ {1, ...,m} and σ ∈ Sn. Then from (10.5) we see that
n!Fa1....an is 0, for all subscripts ai. Since n! is not 0 on F, it follows that each
Fa is 0, and hence we have (10.4). QED

10.2 Schur-Weyl Duality

We can now apply the commutant duality theory of the previous chapter to
obtain Schur’s decomposition of the representation of Sn on V

⊗n. Assume
that F is an algebraically closed field of characteristic 0 (in particular, F is
infinite); then

V
⊗n �

r�

i=1

Li ⊗F yiV
⊗n

, (10.6)

where L1, ..., Lr is a maximal string of simple left ideals in F[Sn] that are
not isomorphic as left F[Sn]-modules, and yi is a generating idempotent in
Li for each i ∈ {1, ..., r}. The subspace yiV

⊗n, when non-zero, is a simple
Cn-module, where Cn is the commutant EndF[Sn](V

⊗n). In view of Theorem
10.1.1, the tensor product representation of GLF(V ) on V

⊗n restricts to an
irreducible representation on yiV

⊗n, when this is nonzero.
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The duality between Sn acting on the n-dimensional space V and the
general linear group GLF(V ) is often called Schur-Weyl duality. For far
more on commutants and Schur-Weyl duality see the book of Goodman and
Wallach [39].

10.3 Character Duality, the High Road

As before let F be an algebraically closed field of characteristic 0. If A is
a finite dimensional semisimple algebra over F, and E an A-module with
dimF E < ∞, and C is the commutant EndA(E) then E decomposes through
the map

I :
r�

i=1

yiE ⊗F Li → E :
r�

i=1

vi ⊗ xi �→
r�

i=1

xivi

which is both A-linear and C-linear, where y1, ..., yr are idempotents in A

such that any simple A-module is isomorphic to Li = Ayi for exactly one i.
For any (a, c) ∈ A×C, we have the product ac first as an element of EndF(E)
and then, by I

−1, acting on
�

r

i=1 yiE ⊗F Ayi. Comparing traces, we have

Tr(ac) =
r�

i=1

Tr(a|Li)Tr(c|yiE), (10.7)

where a|Li is the element in EndF(Li) given by x �→ ax.
We specialize now to

A = F[Sn]

acting on V
⊗n, where V is a finite dimensional vector space over F. Then,

as we know, C is spanned by elements of the form B
⊗n, with B running over

GLF(V ). Non-isomorphic simple left ideals in A correspond to inequivalent
irreducible representations of Sn. Let the set R label these representations;
thus there is a maximal set of non-isomorphic simple left ideals Lα, with α

running over R. Then we have, for any σ ∈ Sn and any B ∈ GLF(V ), the
character duality formula

Tr(B⊗n · σ) =
�

α∈R χα(σ)χα(B) (10.8)

where χα is the characteristic of the representation of Sn on Lα = F[Sn]yα,
and χ

α that of GLF(V ) on yαV
⊗n.
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Recall the character orthogonality relation

1

n!

�

σ∈Sn

χα(σ)χβ(σ
−1) = δαβ for all α, β ∈ R.

Using this with (10.8), we have

χ
α(B) =

1

n!

�

σ∈Sn

χα(σ
−1)sσ(B)

where
s
σ(B) = Tr(B⊗n · σ). (10.9)

Note that s
σ depends only on the conjugacy class of σ, rather than on the

specific choice of σ. Denoting by K a typical conjugacy class, we then have

χ
α(B) =

�
K∈C

|K|
n! χα(K)sK(B) (10.10)

where C is the set of all conjugacy classes in Sn, χα(K) is the value of χα on
any element in K, and s

K is sσ for any σ ∈ K.
In the following section we will prove the character duality formulas (10.8)

and (10.10) again, by a more explicit method.

10.4 Character Duality by Calculations

We will now work through a proof of the Schur-Weyl duality formulas by more
explicit computations. This section is entirely independent of the preceding,
and is close to the method of Weyl [76].

All through this section F is an algebraically closed field of characteristic
0.

Let V = F
N , on which the group GL(N,F) acts in the natural way. Let

e1, ..., eN

be the standard basis of V = F
N .

We know that V ⊗n decomposes as a direct sum of subspaces of the form

yαV
⊗n

,
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with yα running over a set of indecomposable idempotents in F[Sn], such
that the left ideals F[Sn]yα form a decomposition of F[Sn] into simple left
submodules.

Let
χ
α

be the character of the irreducible representation ρα of GL(N,F) on the
subspace yαV

⊗n, and
χα

be the character of the representation of Sn on F[Sn]yα.
Our goal is to establish the relation between these two characters.
If a matrix g ∈ GL(N,F) has all eigenvalues distinct, then the corre-

sponding eigenvectors are linearly independent and hence form a basis of V .
Changing basis, g is conjugate to a diagonal matrix

D(�λ) = D(λ1, ...,λN) =





λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
0 0 λ3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 λN





Then χ
α(g) equals χα

�
D(�λ)

�
. We will evaluate the latter.

The tensor product
ei1 ⊗ . . .⊗ ein

is an eigenvector of D(�λ) with eigenvalue λi1 ...λiN
, and these form a basis of

F
N as (i1, ..., in) runs over [N ][n]. Hence every eigenvalue of D(�λ) is of the

form λi1 ...λiN
. Moreover, the eigensubspace for λi1 ...λiN

is the same for all
�λ ∈ F

N .
Fix a partition of n given by

�f = (f1, ..., fN) ∈ Z
N

≥0

with
|�f | = f1 + · · ·+ fN = n,

and let

�λ
�f =

N�

j=1

λ
fj

j
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and
V (�f ) = {v ∈ V

⊗n : D(�λ)v = �λ
�f
v for all �λ ∈ F

N }

Thus every eigenvalue of D(�λ) is of the form �λ
�f . From the observation in

the previous paragraph, it follows that FN is the direct sum of the subspaces
V (�f ), with �f running over all partitions of n.

Since the action of GL(N,F) on V
⊗n commutes with that of Sn, the

action of D(�λ) on the vector

yα(ei1 ⊗ . . .⊗ ein)

is also multiplication by λi1 ...λiN
. The subspaces yαV (�f), for fixed �f and

yα running over the string of indecomposable idempotents adding up to 1,
direct sum to V (�f). Consequently,

χ
α
�
D(�λ)

�
=

�

�f∈Z
N

≥0

�λ
�f dim

�
yαV (�f )

�
. (10.11)

The space V (�f ) has a basis given by the set

{σ · e⊗f1
1 ⊗ · · ·⊗ e

⊗fN

N
: σ ∈ Sn}

Note that
�e
⊗�f = e

⊗f1
1 ⊗ · · ·⊗ e

⊗fN

N

is indeed in V
⊗n, because |�f | = n.

The dimension of yαV (�f ) is

dim
�
yαV (�f )

�
=

1

f1!...fN !

�

σ∈Sn(�f)

χα(σ) (10.12)

where
Sn(�f)

is the subgroup of Sn consisting of elements that preserve the sets

{1, ..., f1}, {f1 + 1, ..., f2}, ..., {fN−1 + 1, ..., fN}

and we have used the fact that χα equals the character of the representation
of Sn on F[Sn]yα. (If you have a short proof of (10.12) write it on the margins
here, or else work through Exercise 10.2.)
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Thus,

χ
α
�
D(�λ)

�
=

�

�f∈Z
N

≥0

�λ
�f

1

f1!...fN !

�

σ∈Sn(�f)

χα(σ) (10.13)

The character χα is constant on conjugacy classes. So the second sum on
the right here should be reduced to a sum over conjugacy classes. Note that,
with obvious notation,

Sn(�f) � Sf1 × . . .× SfN

The conjugacy class of a permutation is completely determined by its
cycle structure: i1 1-cycles, i2 2-cycles,... . For a given sequence

�i = (i1, i2, ..., im) ∈ Z
m

≥0

the number of such permutations in Sm is

m!

(i1!1i1)(i2!2i2)(i3!3i3)...(im!mim)
(10.14)

because, in distributing 1, ...,m among such cycles, the ik k-cycles can be
arranged in ik! ways and each such k-cycle can be expressed in k ways.
Alternatively, the denominator in (10.14) is the size of the isotropy group of
any element of the conjugacy class.

The cycle structure of an element of

(σ1, ..., σN) ∈ Sf1 × · · ·× SfN

is described by a sequence

[�i1, ...,�iN ] = (i11, i12, ..., i1f1� �� �
�i1

, ..., iN1, ..., iNfN� �� �
�iN

)

with ijk being the number of k-cycles in the permutation σj. Let us denote
by

χα([�i1, ...,�iN ])

the value of χα on the corresponding conjugacy class in Sn. Then

�

σ∈Sn(�f)

χα(σ) =
�

[�i1,...,�iN ]∈[�f ]

χα([�i1, ...,�iN ])
N�

j=1

fj!

(ij1!1ij1)(ij2!2ij2) . . .
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Here the sum is over the set [�f ] of all [�i1, ...,�iN ] for which

ij1 + 2ij2 + · · ·+ nijn = fj for all j ∈ {1, ..., N}

(Of course, ijn is 0 when n > fj.)
Returning to the expression for χα in (10.13) we have:

χ
α
�
D(�λ)

�
=

�

�f∈Z
N

≥0

�λ
�f

�

[�i1,...,�iN ]∈[�f ]

χα([�i1, ...,�iN ])
N�

j=1

1

(ij1!1ij1)(ij2!2ij2) . . . (ijn!nijn)

=
�

�f∈Z
N

≥0

�λ
�f

�

[�i1,...,�iN ]∈[�f ]

χα([�i1, ...,�iN ])
�

1≤j≤N, 1≤k≤n

1

ijk! kijk

Now χα is constant on conjugacy classes in Sn. The conjugacy class in
Sf1 × · · ·× SfN

specified by the cycle structure

[�i1, ...,�iN ]

corresponds to the conjugacy class in Sn specified by the cycle structure

�i = (i1, ..., in)

with
N�

j=1

ijk = ik for all k ∈ {1, ..., n}. (10.15)

Recall again that
n�

k=1

kijk = fj. (10.16)

Note that then

�λ
�f =

n�

k=1

(λki1k
1 . . .λ

kiNk

N
).

Combining these observations we have

χ
α
�
D(�λ)

�
=

�

�i∈ZN

≥0

χα(�i)
1

1i12i2 ...nin

�

ijk

n�

k=1

λ
ki1k
1 ...λ

kiNk

N

i1k!i2k!...iNk!
(10.17)
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where the inner sum on the right is over all [�i1, ...,�iN ] corresponding to the
cycle structure�i = (i1, ..., in) in Sn, hence satisfying (10.15). We observe now
that this sum simplifies:

�

ijk

n�

k=1

λ
ki1k
1 ...λ

kiNk

N

i1k!i2k!...iNk!
=

1

i1!...in!

n�

k=1

(λk

1 + · · ·+ λ
k

N
)ik (10.18)

This produces

χ
α
�
D(�λ)

�
=

�
�i∈ZN

≥0
χα(�i)

1
(i1!1i1 )(i2!2i2 )...(in!nin )

�
n

k=1 sk(
�λ)ik (10.19)

where s1, ..., sn are the symmetric polynomials given by

sm(X1, ..., Xn) = X
m

1 + · · ·+X
m

n
(10.20)

We can also conveniently define

sm(B) = Tr(Bm) (10.21)

Then

χ
α(B) =

�
�i∈ZN

≥0
χα(�i)

1
(i1!1i1 )(i2!2i2 )...(in!nin )

�
n

k=1 sk(B)ik (10.22)

for all B ∈ GL(N,F) with distinct eigenvalues, and hence for all B ∈
GL(N,F). (All right, so there is a leap of logic which you should explore.)
The beautiful formula (10.22) for the character χα of the GL(V ) in terms of
characters of Sn was obtained by Schur [68].

The sum on the right in (10.22) is over all conjugacy classes in Sn, each
labeled by its cycle structure

�i = (i1, ..., in).

Note that the number of elements in this conjugacy class is exactly n! divided
by the denominator which appears on the right inside the sum. Thus, we
can also write the Schur-Weyl duality formula as

χ
α(B) =

�
K∈C

|K|
n! χα(K)sK(B) (10.23)
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where C is the set of all conjugacy classes in Sn, and

s
K def

=
n�

m=1

s
im

m
(10.24)

if K has the cycle structure �i = (i1, ..., in).
Up to this point we have not needed to assume that α labels an irreducible

representation of Sn. We have merely used the character χα corresponding
to some left ideal F[Sn]yα in F[Sn], and the corresponding GL(n,F)-module
yαV

⊗n.
We will now assume that χα indeed labels the irreducible characters of

Sn. Then we have the Schur orthogonality relations

1

n!

�

σ∈Sn

χα(σ)χβ(σ
−1) = δαβ.

These can be rewritten as
�

K∈C

χα(K)
|K|
n!

χβ(K
−1) = δαβ. (10.25)

Thus, the |C| × |C| square matrix [χα(K−1)] has the inverse 1
n! [|K|χα(K)].

Therefore also: �

α∈R

χα(K
−1)

|K �|
n!

χα(K
�) = δKK� , (10.26)

where R labels a maximal set of inequivalent irreducible representations of
Sn. Consequently, multiplying (10.23) by χα(K−1) and summing over α, we
obtain: �

α∈R χ
α(B)χα(K) = s

K(B) (10.27)

for every conjugacy class K in Sn, where we used the fact that K−1 = K.
Observe that

s
K(B) = Tr(B⊗n · σ) (10.28)

where σ, any element of the conjugacy class K, appears on the right here by
its representation as an endomorphism of V ⊗n. The identity (10.28) is readily
checked (Exercise 10. 3) if σ is the cycle (12 ... n), and then the general case
follows by observing (and verifying in Exercise 10.3) that

Tr(B⊗j ⊗ B
⊗l · φθ) = Tr(B⊗j)Tr(B⊗l) (10.29)
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if φ and θ are the disjoint cycles (12 ... j) and (j + 1 ... n).
Thus the duality formula (10.27) coincides exactly with the formula (10.8)

we proved in the previous section.

Exercises

1. Let E be a module over a ring A, �e an element of E, and N the
left ideal in A consisting of all n ∈ A for which n�e = 0. Assume
that A decomposes as N ⊕ Nc, where Nc is also a left ideal, and let
Pc : A → A be the projection map onto Nc; thus, every a ∈ A splits as
a = aN + Pc(a), with aN ∈ N and Pc(a) ∈ Nc. Show that for any right
ideal R in A:

(i) Pc(R) ⊂ R;

(ii) there is a well-defined map given by

f : R�e → Pc(R) : x�e �→ Pcx

(iii) the map
Pc(R) → R�e : x �→ x�e

is the inverse of f .

2. Let G be a finite group, represented on a finite-dimensional vector space
E over a field F characteristic 0. Suppose �e ∈ E is such that the set G�e
is a basis of E. Denote by H the isotropy subgroup {h ∈ G : h�e = �e},
and N = {n ∈ F[G] : n�e = 0}.

(i) Show that
F[G] = N ⊕ F[G/H],

where F[G/H] is the left ideal in F[G] consisting of all x for which
xh = x for every h ∈ H, and that the projection map onto F[G/H]
is given by

F[G] → F[G] : x �→ 1

|H|
�

h∈H

xh

(ii) Let y be an idempotent, and L = F[G]y. Show that

L̂�e = ŷE, (10.30)
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where F[G] → F[G] : x �→ x̂ is the F-linear map carrying g to g
−1

for every g ∈ G ⊂ F[G]. Then, using Exercise 10.1, obtain the
dimension formula

dimF(ŷE) =
1

|H|
�

h∈H

χL(h), (10.31)

where χL(a) is the trace of the map L → L : y �→ ay.

3. Verify the identity (10.28) in the case σ is the cycle (12...n). Next verify
the identity (10.29).
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Chapter 11

Representations of U(N)

The unitary group U(N) consists of all N × N complex matrices U that
satisfy the unitarity condition:

U
∗
U = I.

It is a group under matrix multiplication, and, being a subset of the linear
space of allN×N complex matrices, it is a topological space as well. Multipli-
cation of matrices is, clearly, continuous. The inversion map U �→ U

−1 = U
∗

is continuous as well. This makes U(N) a topological group. It has much
more structure, but we will have need for no more.

By a representation ρ of U(N) we will mean a continuous mapping

ρ : U(N) → EndC(V ),

for some finite dimensional complex vector space V . Notice the additional
condition of continuity required of ρ. The character of ρ is the function

χρ : U(N) → C : U �→ tr (ρ(U)) (11.1)

The representation ρ is said to be irreducible if the only subspaces of V

invariant under the action of U(N) are 0 and V , and V �= 0.
Representations ρ1 and ρ2 of U(N), on finite dimensional vector space V1

and V2, respectively, are said to be equivalent if there is a linear isomorphism

Θ : V1 → V2

that intertwines ρ1 and ρ2 in the sense that

Θρ1(U)Θ−1 = ρ2(U) for all U ∈ U(N).

279
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If there is no such Θ then the representations are inequivalent. As for finite
groups (Proposition 1.10.1), if ρ1 and ρ2 are equivalent then they have the
same character.

In this chapter we will explore the representations of U(N). Though
U(N) is definitely not a finite group, Schur-Weyl duality interweaves the
representation theories of U(N) and of the permutation group Sn, making the
exploration of U(N) a natural digression from our main journey through finite
groups. For an interesting application of this duality, and duality between
other compact groups and discrete groups, see the paper of Lévy[54].

11.1 The Haar Integral

For our exploration of U(N) there is one essential piece of equipment we
cannot do without: the Haar integral. Its construction would take as far off
the main route, and so we will accept its existence and one basic formula that
we will see in the next section. Now on to what it is. A readable exposition
of the construction of Haar measure on a general topological group is given
by Cohn [14, Chapter 9]; an account specific to compact Lie groups, such as
U(N), is in the book by Bröcker and tom Dieck [8].

On the space of complex-valued continuous functions on U(N) there is a
unique linear functional, the normalized Haar integral

f �→ �f� =
�

U(N)

f(U) dU

satisfying the following conditions:

• it is non-negative, in the sense that

�f� ≥ 0 if f ≥ 0,

and, moreover, �f� is 0 if and only if f equals 0;

• it is invariant under left and right translations in the sense that
�

U(N)

f(xUy) dU =

�

U(N)

f(U) dU for all x, y ∈ U(N)

and all continuous functions f on U(N);
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• Finally, the integral is normalized:

�1� = 1.

In more standard notation, the Haar integral of f is denoted

�

U(N)

f(g) dg.

Let T denote the subgroup of U(N) consisting of all diagonal matrices.
A typical element of T has the form

D(λ1, ...,λN)
def
=





λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
0 0 λ3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 λN





where λ1, ..., λN are complex numbers of unit modulus.
Thus T is the product of N copies of the circle group U(1) of unit modulus

complex numbers:
T � U(1)N .

This makes it, geometrically, a torus, and hence the choice of notation. There
is a natural Haar integral over T , specified by:

�

T

h(t) dt = (2π)−N

� 2π

0

...

� 2π

0

h
�
D(eiθ1 , ..., eiθN )

�
dθ1...dθN (11.2)

for any continuous function h on T .

11.2 The Weyl Integration Formula

Recall that a function f on a group is central if

f(xyx−1) = f(y)

for all elements x and y of the group.



282 Ambar N. Sengupta

For every continuous central function f on U(N) the following integration
formula (Weyl [76, Section 17]) holds:

�
U(N) f(U) dU = 1

N !

�
T
f(t)|∆(t)|2 dt (11.3)

where

∆
�
D(λ1, ...,λN)

�
= det





λ
N−1
1 λ

N−1
2 · · · λ

N−1
N−1 λ

N−1
N

λ
N−2
1 λ

N−2
2 · · · λ

N−2
N−1 λ

N−2
N

...
...

...
...
...

...
...

λ1 λ2 · · · λN−1 λN

1 1 · · · 1 1





=
�

1≤j<k≤N

(λj − λk),

(11.4)

the last step being a famed identity. This Vandermonde determinant, written
out as an alternating sum, is:

∆
�
D(λ1, ...,λN)

�
=

�

σ∈SN

sgn(σ)λN−σ(1)
1 ...λ

N−σ(N)
N

(11.5)

The diagonal term is
λ
N−1
1 λ

N−2
2 . . .λ

1
N−1λ

0
N
.

Observe that among all the monomial terms λw1
1 ...λ

wN

N
, where �w = (w1, ..., wN) ∈

Z
N , which appear in the determinant, this is the ‘highest’ in the sense that

all such �w are ≤ (N−1, N−2, ..., 0) in lexicographic order (check dominance
in the first component, then the second, and so on).

11.3 Character Orthogonality

As with finite groups, every representation is a direct sum of irreducible
representations. Hence every character is a sum of irreducible representation
characters with positive integer coefficients. (The details of this are farmed
out to Exercise 11.1.)

Just as for finite groups, the character orthogonality relations hold for
representations of U(N): If ρ1 and ρ2 are inequivalent irreducible represen-
tations of U(N) then

�

U(N)

χρ1(U)χρ2(U
−1) dU = 0 (11.6)
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and �

U(N)

χρ(U)χρ(U
−1) dU = 1 (11.7)

for any irreducible representation ρ. (You can work through the proofs in
Exercise 11.3.)

Analogously to the case of finite groups, each ρ(U) is diagonal in some
basis, with diagonal entries being of unit modulus.

It follows then that
χρ(U

−1) = χρ(U) (11.8)

The Haar integral specifies a hermitian inner product on the space of
continuous functions on U(N) by

�f, h� =
�

U(N)

f(U)h(U) dU (11.9)

In terms of this inner product the character orthogonality relations say that
the characters χρ of irreducible representations form an orthonormal set of
functions on U(N).

11.4 Weights

Consider an irreducible representation ρ of U(N) on a finite dimensional
vector space V .

The linear maps
ρ(t) : V → V

with t running over the abelian subgroup T , commute with each other:

ρ(t)ρ(t�) = ρ(tt�) = ρ(t�t) = ρ(t�)ρ(t)

and so there is a basis {vj}1≤j≤dV
of V with respect to which the matrices of

ρ(t), for all t ∈ T , are diagonal:

ρ(t) =





ρ1(t) 0 · · · 0
0 ρ2(t) · · · 0
...

...
... 0

0 0 · · · ρdV (t)




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where
ρr : T → U(1) ⊂ C

are continuous homomorphisms. Thus,

ρr

�
D(λ1, ...,λN)

�
= ρr1(λ1)...ρrN(λN)

where ρrk(λ) is ρr evaluated on the diagonal matrix that has λ at the k-
th diagonal entry and all other diagonal entries are 1. Since each ρrk is a
continuous homomorphism

U(1) → U(1)

it necessarily has the form
ρrk(λ) = λ

wrk (11.10)

for some integer wrk. We will refer to

�wr = (wr1, ..., wrN) ∈ Z
N

as a weight for the representation ρ.

11.5 Characters of U(N)

Continuing with the framework as above, we have

ρr

�
D(λ1, ...,λN)

�
= λ

wr1
1 ...λ

wrN

N
.

Thus,

χρ

�
D(λ1, ...,λN)

�
=

dV�

r=1

λ
wr1
1 ...λ

wrN

N
. (11.11)

It will be convenient to write

�λ = (λ1, ...,λN)

and analogously for �w.
Two diagonal matrices in U(N) whose diagonal entries are permutations

of each other are conjugate within U(N) (permutation of the basis vectors
implements the conjugation transformation). Consequently, a character will
have the same value on two such diagonal matrices. Thus,

χρ

�
D(λ1, ...,λN)

�
is invariant under permutations of the λj.
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Then, by gathering similar terms, we can rewrite the character as a sum of
symmetric sums �

σ∈SN

λ
w1
σ(1)...λ

wN

σ(N) (11.12)

with �w = (w1, ..., wN) running over a certain set of elements in Z
N . (If

‘gathering similar terms’ bothers you, wade through Theorem 12.6.2.)
Thus we can express each character as a Fourier sum (with only finitely

many non-zero terms)

χρ

�
D(�λ)

�
=

�

�w∈ZN

↓

c�ws�w(�λ) (11.13)

where each coefficient c�w is a non-negative integer, and s�w is the symmetric
function given by:

s�w(�λ) =
�

σ∈SN

N�

j=1

λ
wj

σ(j). (11.14)

The subscript ↓ in Z
N

↓ signifies that it consists of integer strings

w1 ≥ w2 ≥ . . . ≥ wN .

Now ρ is irreducible if and only if

�

U(N)

|χρ(U)|2 dU = 1. (11.15)

(Verify this as Exercise 11.4.) Using the Weyl integration formula, and our
expression for χρ, this is equivalent to

�

U(1)N

���χρ(�λ)∆(�λ)
���
2
dλ1...dλN = N ! (11.16)

Now the product
χρ(�λ)∆(�λ)

is skew-symmetric in λ1, ...,λN , and is an integer linear combination of terms
of the form

λ
m1
1 ...λ

mN

N
.
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So, collecting similar terms together, χρ(�λ)∆(�λ) can be expressed as an in-
teger linear combination of the elementary skew-symmetric sums

a�f
(�λ) =

�

σ∈SN

sgn(σ)λf1

σ(1)...λ
fN

σ(N)

=
�

σ∈SN

sgn(σ)λ
fσ(1)

1 ...λ
fσ(N)

N

= det





λ
f1
1 λ

f1
2 . . . λ

f1
N

λ
f2
1 λ

f2
2 . . . λ

f2
N

...
...

...
...

λ
fN

1 λ
fN

2 . . . λ
fN

N




,

(11.17)

with �f = (f1, ..., fN) ∈ Z
N . (Again, the ‘collecting terms’ argument is put

on more serious foundations by Theorem 12.6.2.) Therefore,
�

U(1)N

���χρ(�λ)∆(�λ)
���
2
dλ1...dλN

is an integer linear combination of inner products
�

U(1)N
a�f
(�λ)a�f �(�λ) dλ1 . . . dλN . (11.18)

Now we use the simple, yet crucial, fact that on U(1) there is the orthogo-
nality relation �

U(1)

λ
n
λm dλ = δnm.

Consequently, distinct monomials such as λ
a1
1 ...λ

aN

N
, with �a ∈ Z

N , are or-
thonormal. Hence, if f1 > f2 > · · · > fN , then the first two expressions in
(11.17) for a�f

(�λ) are sums of orthogonal terms, each of norm 1.

If �f and �f � are distinct elements of ZN

↓ , each a strictly decreasing sequence,

then no permutation of the entries of �f could be equal to �f �, and so
�

U(1)N
a�f
(�λ)a�f �(�λ) dλ1 . . . dλN = 0 (11.19)

On the other hand,
�

U(1)N
a�f
(�λ)a�f

(�λ) dλ1 . . . dλN = N ! (11.20)
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because a�f
(�λ) is a sum of N ! orthogonal terms each of norm 1.

Putting all these observations, especially the norms (11.16) and (11.20),
together we see that an expression of χρ(�λ)∆(�λ) as an integer linear com-
bination of the elementary skew-symmetric functions a�f

will involve exactly
one of the latter, and with coefficient ±1:

χρ(�λ)∆(�λ) = ±a�h(
�λ) (11.21)

for some �h ∈ Z
N

↓ . To determine the sign here, it is useful to use the lexi-
cographic ordering on Z

N , with v ∈ Z
N being > than v

� ∈ Z
N if the first

non-zero entry in v − v
� is positive. With this ordering, let �w be the highest

(maximal) of the weights.

Then the ‘highest’ term in χρ(�λ) is

λ
w1
1 ...λ

wN

N

appearing with some positive integer coefficient, and the ‘highest’ term in
∆(�λ) is the diagonal term

λ
N−1
1 ...λ

0
N

Thus, the highest term in the product χρ(�λ)∆(�λ) is

λ
w1+N−1
1 ...λ

wN−1+1
N−1 λ

wN

N

appearing with coefficient +1.
We conclude that

χρ(�λ)∆(�λ) = a(w1+N−1,..,wN−1+1,wN )(�λ) (11.22)

and also that the highest weight term

λ
w1
1 ...λ

wN

N

appears with coefficient 1 in the expression for χρ

�
D(�λ)

�
. This gives a re-

markable consequence:

Theorem 11.5.1 In the decomposition of the representation of T given by ρ

on V , the representation corresponding to the highest weight appears exactly
once.
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The orthogonality relations (11.19) imply that

�

U(1)N
χρ(�λ)χρ�(�λ)|∆(�λ)|2 dλ1...dλN = 0 (11.23)

for irreducible representations ρ and ρ
� corresponding to distinct highest

weights �w and �w�.
Thus:

Theorem 11.5.2 Representations corresponding to different highest weights
are inequivalent.

Finally, we also have an explicit expression, Weyl’s formula [76, Eq (16.9)],
for the character χρ of an irreducible representation ρ, as a ratio of determi-
nants:

Theorem 11.5.3 The character χρ of an irreducible representation ρ of
U(N) is the unique central function on U(N) whose value on diagonal ma-
trices is given by

χρ

�
D(�λ)

�
=

a(w1+N−1,..,wN−1+1,wN )(�λ)

a(N−1,..,1,0)(�λ)
(11.24)

where (w1, ..., wN) is the highest weight for ρ. The division on the right in
(11.24) is to be understood as division of polynomials, treating the λ

±1
j

as
indeterminates.

Note that in (11.24) the denominator is ∆(�λ) from (11.4).

11.6 Weyl Dimension Formula

The dimension of the representation ρ is equal to χρ(I), but (11.24) reads

0/0 on putting �λ = (1, 1, ..., 1) into numerator and denominator. L’Hôpital’s
rule may be applied, but it is simplified by a trick borrowed from Weyl. Take
an indeterminate t, and evaluate the ratio in (11.24) at

�λ = (tN−1
, t

N−2
, ..., t, 1)
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Then a�h(
�λ) becomes a Vandermonde determinant

a(h1,...,hN )(t
N−1

, ..., t, 1) = det





t
h1(N−1)

t
h1(N−2)

. . . t
h1 1

t
h2(N−1)

t
h2(N−2)

. . . t
h2 1

...
...

...
...

...
t
hN (N−1)

t
hN (N−2)

. . . t
hN 1





=
�

1≤j<k≤N

�
t
hj − t

hk

�

Consequently,

a(h1,...,hN )(tN−1
, ..., t, 1)

a(h�
1,...,h

�
N
)(tN−1, ..., t, 1)

=
�

1≤j<k≤N

t
hj − t

hk

t
h
�
j − t

h
�
k

Evaluating of the rational function in t on the right at t = 1 gives us

�

1≤j<k≤N

hj − hk

h
�
j
− h

�
k

=
V D(h1, ..., hN)

V D(h�
1, ..., h

�
N
)
,

where V D denotes the Vandermonde determinant.
Applying this to the Weyl character formula yields the wonderful Weyl

dimension formula:

Theorem 11.6.1 If ρ is an irreducible representation of U(N) then the di-
mension of the corresponding representation space is

dim(ρ) =
�

1≤j<k≤N

wj−wk+k−j

k−j
(11.25)

where (w1, ..., wN) is the highest weight for ρ.

11.7 From Weights to Representations

Our next goal is to construct an irreducible representation of U(N) with a
given weight �w ∈ Z

N

↓ . We will produce such a representation inside a tensor
product of exterior powers of CN .

It will be convenient to work first with a vector �f ∈ Z
N

↓ all of whose

components are ≥ 0. We can take �f to be simply �w, in case all wj are
non-negative. If, on the other hand, some wi < 0, then we set

fj = wj − wN for all j ∈ {1, ..., N}
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Display �f as a tableau of empty boxes, with the first row having f1 boxes, fol-
lowed beneath by a row of f2 boxes, and so on, with the N -th row containing
fN boxes. (We ignore the trivial case where all fj are 0.) For example

�f = (7, 5, 4, 2, 1) ↔

Let f
�
1 be the number of boxes in column 1; this is the largest i for which

fi ≥ 1. In this way, let f �
j
be the number of boxes in column j (the largest i

for which fi ≥ j). Now consider

V�f
=

f
�
1�
C

N ⊗
f
�
2�
C

N ⊗ . . .⊗
f
�
N�
C

N
, (11.26)

where the 0-th exterior power is, by definition, just C, and thus effectively
dropped. (If �f = 0 then V�f

= C.)
The group U(N) acts on V�f

in the obvious way through tensor powers, and
we have thus a representation ρ of U(N). The appropriate tensor products
of the standard basis vectors e1, ..., eN of CN form a basis of V�f

, and these
basis vectors are eigenvectors of the diagonal matrix

D(�λ) ∈ T,

acting on V�f
. Indeed, a basis is formed by the vectors

ea =
N�

j=1

(ea1,j ∧ . . . ∧ ea
f
�
j
,j
),

with each string a1,j, ..., af �
j
,j being strictly increasing and drawn from {1, ..., N}.

We can visualize ea as being obtained by placing the number ai,j in the box
in the i-th row at the j-th column, and then taking the wedge-product of the
vectors eai,j down each column and then taking the tensor product across all
the columns. For example:

1 3 4 8
2 4 6
5 7
3

↔ (e1 ∧ e2 ∧ e5 ∧ e3)⊗ (e3 ∧ e4 ∧ e7)⊗ (e4 ∧ e6)⊗ e8.
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Clearly,
ρ
�
D(�λ)

�
ea =

��

i,j

λai,j

�
ea. (11.27)

The highest weight term corresponds to precisely ea∗ , where a∗ has the entry
1 in all boxes in row 1, then the entry 2 in all boxes in row 2, and so on. The
eigenvalue corresponding to ea∗ is

λ
f1
1 ...λ

fN

N
.

The corresponding subspace inside V�f
is one dimensional, spanned by ea∗ .

Decomposing V�f
into a direct sum of irreducible subspaces under the repre-

sentation ρ, it follows that ea∗ lies inside (exactly) one of these subspaces.
This subspace V�f

must then be the irreducible representation of U(N) cor-

responding to the highest weight �f .
We took �f = �w if wN ≥ 0, and so we are done with that case. Now

suppose wN < 0. We have to make an adjustment to V�f
to produce an

irreducible representation corresponding to the original highest weight �w ∈
Z

N

↓ .
Consider then

V (�w) = V�f
⊗
�−N�

(CN)
�⊗|wN |

, (11.28)

where a negative exterior power is defined as a dual
�−m

V = (
�

m
V )� for m ≥ 1.

The representation of U(N) on
�−N(CN) is given by

U · φ = (detU)−1
φ for all U ∈ U(N) and φ ∈

�−N(CN).

This is a one dimensional representation with weight (−1, ...,−1), because
the diagonal matrix D(�λ) acts by multiplication by λ

−1
1 ...λ

−1
N
.

For the representation of U(N) on V�w, we have a basis of V�w consisting
of eigenvectors of ρ

�
D(�λ)

�
; the highest weight is

�f + (−wN)(−1, ...,−1) = (f1 + wN , ..., fN + wN) = (w1, ..., wN),

by our choice of �f . Thus, V (�w) contains an irreducible representation with
highest weight �w. But

dimV (�w) = dimV�f
,

and, on using Weyl’s dimension formula, this is equal to the dimension of the
irreducible representation of highest weight �w. Thus, V (�w) is the irreducible
representation with highest weight �w.
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11.8 Characters of Sn from Characters of U(N)

We will now see how Schur-Weyl duality leads to a way of determining the
characters of Sn from the characters of U(N).

Let N, n ∈ {1, 2, ...}, and consider the vector space (CN)⊗n. The permu-
tation group Sn acts on this by

σ · (v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n). (11.29)

The group GL(N,C) of invertible linear maps on C
N also acts on (CN)⊗n in

the natural way:

B · (v1 ⊗ . . .⊗ vn) = B
⊗n(v1 ⊗ . . .⊗ vn) = Bv1 ⊗ . . .⊗ Bvn.

Back in Theorem 10.1.1, these actions are dual in the sense that the com-
mutant of the action of C[Sn] on (CN)⊗n is the linear span of the operators
B

⊗n with B running over GL(N,C). We can leverage this to the following
duality for the unitary group:

Theorem 11.8.1 Let N, n ∈ {1, 2, ...}, and consider (CN)⊗n as a C[Sn]-
module by means of the multiplication specified in (11.29). Then the commu-
tant EndC[Sn](C

N)⊗n is spanned by the elements U
⊗n, with U running over

U(N).

For a vector complex vector space W let us, for our purposes here only,
declare the elements A,B ∈ End(W ) to be orthogonal if Tr (AB) = 0. For
any subspace L ⊂ End(W ) let L⊥ be the set of all A ∈ End(W ) orthogonal
to all elements of L. We will use the fact that L �→ L

⊥ is injective. Note also
that if A and UBU

−1 are orthogonal then U
−1
AU and B are orthogonal for

any U ∈ End(W ). You can work these out as Exercise 11.5.

Proof. In Theorem 10.1.1 we showed that EndC[Sn](C
N)⊗n is the linear span

of the operators B
⊗n with B running over GL(N,C). Suppose now that

S ∈ EndC(CN)⊗n is orthogonal to D
⊗n for all D ∈ U(N). Then for any fixed

T ∈ U(N), the element S1 = T
⊗n

S(T−1)⊗n is also orthogonal to D
⊗n for all

D ∈ U(N). From this it follows that S1 is orthogonal to D
⊗n for all diagonal

matrices D ∈ GL(N,C), because Tr (S1D
⊗n), viewed as a polynomial in

every particular diagonal entry of D, is zero on the infinite set U(1) ⊂ C and
hence is 0 on all elements of C. Now for any N × N hermitian matrix H

there is a unitary matrix T1 ∈ U(N) such that T
−1
1 HT1 = D is a diagonal
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matrix. Hence S is orthogonal to H
⊗n for every hermitian matrix H. If H1

and H2 are hermitian then

Tr
�
S(H1 + tH2)

⊗n
�
= 0 (11.30)

for all real t, and hence the left side in (11.30), viewed as a polynomial
in the variable t, is identically 0. Therefore (11.30) holds for all t ∈ C.
Now for a general B ∈ GL(N,C) we have B = H1 + iH2, where H1 and
H2 are hermitian. Hence S is orthogonal to B

⊗n for all N × N matrices
B ∈ GL(N,C). Thus, the linear span of {U⊗n : U ∈ U(N)} is equal to the
linear span of {B⊗n : B ∈ GL(N,C)}. QED

From the Schur-Weyl duality formula it follows that:

Tr(B⊗n · σ) =
�

α∈R

χα(σ)χ
α(B) (11.31)

where, on the left, σ represents the action of σ ∈ Sn on (CN)⊗n, and
B ∈ U(N), and, on the right, R is a maximal set of inequivalent repre-
sentations of Sn. For the representation α of Sn given by the regular repre-
sentation restricted on a simple left ideal Lα in C[Sn], χα is the character of
the representation of U(N) on

yα(C
N)⊗n

, (11.32)

where yα is a non-zero idempotent in Lα.

Now the simple left ideals in C[Sn] correspond to

�f = (f1, ..., fn) ∈ Z
n

≥0,↓ (11.33)

(the subscript ↓ signifying that f1 ≥ . . . ≥ fn) that are partitions of n:

f1 + f2 + . . .+ fn = n.

Recall that associated to this partition we have a Young tableau T�f
of the

numbers 1, ..., n in r rows of boxes:
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1 2 · · · · · · · · · · · · f1

1 + f1 · · · · · · · · · · · · f2 + f1

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · n

If r < n then fj = 0 for r < j ≤ n. Associated to T�f
there is the

idempotent
y�f

=
�

q∈CT
�f

,p∈RT
�f

(−1)sgn (q)
qp (11.34)

where CT�f
is the subgroup of Sn which, acting on the tableau T�f

, map the
entries of each column into the same column, and RT�f

preserves rows. Let

aij ∈ {1, ..., n}

be the entry in the box in row i column j in the tableau T�f
. For example,

a23 = f1 + 3.

Let e1, ..., eN be the standard basis of CN . Place e1 in each of the boxes
in the first row, then e2 in each of the boxes in the second row, and so on till
the r-th row. Let

e
⊗�f = e

⊗f1
1 ⊗ . . .⊗ e

⊗fn

n

be the tensor product of these vectors (recall that if r < j ≤ n then fj = 0

and the corresponding terms are simply absent from e
⊗�f ). Then

y�f
e
⊗�f

is a positive integral multiple of
�

q∈CT
�f

(−1)sgn (q)
qe

⊗�f
.
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Let θ be the permutation that rearranges the entries in the tableau such that
as one reads the new tableau book-style (row 1 left to right, then row 2 left
to right, and so on) the numbers are as in T�f

read down column 1 first, then
down column 2, and so on:

θ : aij �→ aji

Then y�f
e
⊗�f is a non-zero multiple of θ applied to

⊗j≥1 ∧i≥1 eaij .

In particular,
y�f
(CN)⊗n �= 0

if the columns in the tableau T�f
have at most N entries each.

Under the action of a diagonal matrix

D(�λ) ∈ U(N)

with diagonal entries given by

�λ = (λ1, ...,λN),

on (CN)⊗n, the vector y�f
e
⊗�f is an eigenvector with eigenvalue

λ
f1
1 ...λ

fN

N
.

Clearly, the highest weight for the representation of U(N) on y�f
(CN)⊗n is �f .

Returning to the Schur-Weyl character duality formula and using in it
the character formula for U(N) we have

Tr
�
D(�λ)⊗n · σ

�
=

�

�w

χ�w(σ)
a(w1+N−1,..,wN−1+1,wN )(�λ)

a(N−1,..,1,0)(�λ)
(11.35)

where the sum is over all �w ∈ Z
N

≥0,↓ satisfying |�w| = n.
Multiplying through in (11.35) by the Vandermonde determinant in the

denominator on the right, we have

Tr
�
D(�λ)⊗n · σ

�
a(N−1,..,1,0)(�λ) =

�

�w∈ZN

≥0,↓,|�w|=n

χ�w(σ)a(w1+N−1,..,wN−1+1,wN )(�λ).

(11.36)
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To obtain the character value χ�w(σ) view

Tr
�
D(�λ)⊗n · σ

�
a(N−1,..,1,0)(�λ) (11.37)

as a polynomial in λ1, ...,λN . Examining the right side in (11.36), we see
that

w1 +N − 1 > w2 +N − 2 > . . . > wN−1 + 1 > wN

and the coefficient of
λ
w1+N−1
1 ...λ

wN

N

is precisely χ�w(σ). This provides a way of reading off the character value

χ�w(σ) as a coefficient in Tr
�
D(�λ)⊗n · σ

�
a(N−1,..,1,0)(�λ), treated as a polyno-

mial in λ1, ...,λN .
We can work out the trace in (11.37) by using the identity (10.28) taking

σ to be a product of cycles of lengths l1, ..., lm; this leads to

Tr
�
D(�λ)⊗n · σ

�
=

m�

j=1

(λ
lj

1 + · · ·+ λ
lj

N
) (11.38)

Back in (11.4) we saw that

a(N−1,..,1,0)(�λ) =
�

1≤j<k≤N

(λj − λk).

Thus, for the partition �w = (w1, ..., wN) of n, the value of the character χ�w

on a permutation with cycle structure given by the partition (l1, ..., lm) of n
is the coefficient of λw1+N−1

1 ...λ
wN

N
in

m�

j=1

(λ
lj

1 + · · ·+ λ
lj

N
)

�

1≤j<k≤N

(λj − λk). (11.39)

Even if not explicit, this formula, due to Frobenius, is a wonderful concrete
specification of the irreducible characters of the symmetric group.

Exercises

1. Prove that any finite dimensional representation of U(N) is a direct
sum of irreducible representations. Conclude that every character of
U(N) is a linear combination, with non-negative integer coefficients, of
irreducible characters. [Hint: If ρ : U(N) → EndC(V ) is a representa-
tion, consider ρ

�
U(N)

�
as a subset of the algebra EndC(V ).]
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2. Prove Schur’s Lemma for U(N): if ρj : U(N) → EndC(Vj), for j ∈
{1, 2}, are irreducible representations of U(N) then the vector space
HomU(N)(V1, V2) of all linear maps T : V1 → V2 that satisfy Tρ1(g) =
ρ2(g)T for all g ∈ U(N), is {0} if ρ1 is not equivalent to ρ2, and is one
dimensional if ρ1 is equivalent to ρ2. [Hint: As with the case of finite
groups, see what irreducibility implies for the kernel and range of any
T ∈ HomU(N)(V1, V2).]

3. For continuous functions f1 and f2 on U(N), the convolution f1 ∗ f2 is
defined to be the function on U(N) whose value at any g ∈ U(N) is
given by

(f1 ∗ f2)(g) =
�

U(N)

f2(gh)f1(h
−1) dh. (11.40)

(More honestly, this is f2∗f1 by standard convention.) Let ρ1 : U(N) →
EndC(V1) and ρ2 : U(N) → EndC(V2) be irreducible representations of
U(N). Show first that

χρ1 ∗ χρ2 =

�
1

dimC V1
χρ1 if ρ1 and ρ2 are equivalent;

0 if ρ1 and ρ2 are not equivalent.
(11.41)

Then deduce the character orthogonality relation
�

U(N)

χρ1(g)χρ2(g
−1) dg = dimC HomU(N)(V1, V2), (11.42)

holding for any finite dimensional representations ρ1 and ρ2 on spaces V1

and V2, respectively. [Hint: Imitate the case of finite groups, replacing
the average over the group with the Haar integral.]

4. Show that a representation ρ of U(N) is irreducible if and only if
�

U(N)

|χρ(U)|2 dU = 1.

[Hint: Use Exercise 11.3.]

5. Let V be a finite dimensional vector space over a field F, and for A,B ∈
E = EndF(V ) define

(A,B)Tr = φA(B) = Tr (AB).



298 Ambar N. Sengupta

(i) Show that the map φA : E → E
�, where E

� is the dual of E, is an
isomorphism.

(ii) For L any subspace of E, let L⊥ = ∩A∈LφA. Show that (L⊥)⊥ = L.

(iii) For anyA,B, T ∈ E, with T invertible, show that (A, TBT
−1)Tr =

(T−1
AT,B)Tr .



Chapter 12

PS: Algebra

This lengthy postscript summarizes definitions, results, and proofs from alge-
bra, some of it used earlier in the book and some providing a broader cultural
background. The self-contained account here is strongly steered towards uses
we make in representation theory. We have left Galois theory as a field too
vast, ein zu weites Feld, for us to explore.

12.1 Groups and Less

A group is a set G along with an operation

G×G → G : (a, b) �→ a · b

satisfying the following conditions:

(i) the operation is associative:

a · (b · c) = (a · b) · c for all a, b, c ∈ G;

(ii) there is an element e ∈ G, called the identity element, for which

a · e = e · a = a for all a ∈ G; (12.1)

(iii) for each element a ∈ G there is an element a−1 ∈ G, called the inverse
of a, for which

a · a−1 = a
−1 · a = e. (12.2)

299
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If e� ∈ G is an element with the same property (12.1) as e then

e
� = e · e� = e

�
,

and so the identity element is unique. If a, aL ∈ G are such that aL · a is e,
then

aL = aL · e = aL · (a · a−1) = (aL · a) · a−1 = e · a−1 = a
−1
,

and, similarly, if a · aR is e then aR is equal to a
−1. Thus, the inverse of an

element is unique.
Usually, we drop the · in the operation and simply write ab for a · b:

ab = a · b.

If ab = ba we say that a and b commute. The number of elements in G is
called the order of G and denoted |G|. The order of an element g ∈ G is
min{n ≥ 1 : gn = e}.

If G1 and G2 are groups, and f : G1 → G2 a mapping satisfying

f(ab) = f(a)f(b) for all a, b ∈ G1, (12.3)

then f is a homomorphism of groups. Such a homomorphism carries the
identity of G1 to the identity of G2, and f(a−1) = f(a)−1 for all a ∈ G1.
A homomorphism that is a bijection is an isomorphism. The identity map
G → G, for any group G, is clearly an isomorphism. The composite of
homomorphisms is a homomorphism, and the inverse of an isomorphism is
an isomorphism.

The symmetric group Sn is the set of all bijections [n] → [n], under the
operation of composition. Every permutation can be decomposed into a
product of disjoint cycles. The length of a cycle is its order; for example,
the length of (1 2 3) is 3, and the length of any transposition t = (a b) is
2. The sum of the lengths of the disjoint cycles whose product is a given
permutation s is the length l(s) of s. Multiplying a permutation s by a
transposition t = (a b) either splits a cycle into a product of two disjoint
cycles or combines two disjoint cycles into one; in either case

l(st) = l(s)± 1. (12.4)

The signature map

� : Sn → {+1,−1} : s �→ �(s)
def
= (−1)l(s) (12.5)
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is then a homomorphism, viewing {+1,−1} as a group under multiplication.
A subgroup of a group G is a nonempty subset H for which ab ∈ H and

a
−1 ∈ H for all a, b ∈ H; this means that H is a group when the group

operation of G is restricted to H. A left coset of H in G is a subset of the
form xH = {xh : h ∈ H} for some x ∈ G. The set of all left cosets form the
quotient G/H:

G/H = {xH : x ∈ G}. (12.6)

The fact that H is a subgroup ensures that distinct cosets are disjoint, and
this implies

|H| is a divisor of |G|, (12.7)

an observation Lagrange made (for the symmetric groups Sn). A subgroup
H of G is normal if gH = Hg for all g ∈ G; for a normal subgroup H, there
is a natural operation on G/H given by

(aH)(bH) = (ab)H for all a, b ∈ G, (12.8)

which is well-defined and makes G/H also a group. In this case the natural
projection map G → G/H : g �→ gH is a homomorphism.

The subset of even permutations in Sn is a subgroup, called the alternating
group and denoted An.

Elements a, b in a group are conjugate if b = gag
−1 for some g ∈ G.

Conjugacy is an equivalence relation and partitions G into a union of disjoint
conjugacy classes. The conjugacy class of a is the set {gag−1 : g ∈ G}.

The center ZG of a group G is the set of all elements c ∈ G that commute
with all elements of G:

ZG = {c ∈ G : cg = gc for all g ∈ G}. (12.9)

An action of a group G on a nonempty set S is a mapping

G× S → S : (g, s) �→ gs

such that es = s for all s ∈ S, where e is the identity element of G, and

(gh)s = g(hs) for all g, h ∈ G and all s ∈ S.

The set Gs = {gs : g ∈ G} is called the orbit of s ∈ S, and

Stab(s) = {g ∈ G : gs = s} (12.10)



302 Ambar N. Sengupta

is a subgroup of G called the stabilizer or isotropy subgroup for s ∈ S. The
map

G → Gs : g �→ gs

is surjective and the pre-image of any gs is the subgroup gStab(s)g−1 whose
cardinality is

|G|/|Stab(s)|

if G is finite. Since S is the union of all the distinct (and disjoint) orbits, we
have

|S| =
m�

j=1

|G|
|Stab(sj)|

(12.11)

where s1, ..., sm ∈ S are such that Gs1, ..., Gsm are all the distinct orbits. As
a typical application of this formula, suppose |G| = p

n, where p is prime and
n is a positive integer, and |S| is divisible by p; then (12.11) implies that the
number of j for which Gsj = {sj} is divisible by p and hence greater than 1
if positive. The solution of Exercise 4.14 uses this.

If f : G1 → G2 is a homomorphism then the kernel

ker f = {g ∈ G1 : f(g) = e2}, (12.12)

where e2 is the identity in G2, is a subgroup of G1; moreover, the image
Im(f) = f(G1) is a subgroup of G2. Writing K for ker f , there is a well-
defined induced mapping

f : G1/K → G2 : gK �→ f(g) (12.13)

which is an injective homomorphism.
A group A is abelian or commutative if

ab = ba for all a, b ∈ A.

For many abelian groups, the group operation is written additively:

G×G → G : (a, b) �→ a+ b,

the identity element denoted 0, and the inverse of a then denoted −a.
A group C is cyclic if there is an element c ∈ C such that C consists

precisely of all the powers c
n with n running over Z. Such an element c is

called a generator of C.
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A semigroup is a non-empty set T with a binary operation T × T → T :
(a, b) �→ ab which is associative. A monoid is a semigroup with an identity
element; as with groups, this element is necessarily unique.

If S is a nonempty set, and n ∈ {0, 1, 2, ...}, we have the set Sn = S
{1,...,n}

of all maps {1, ..., n} → S, where S
0 is taken to be the one-element set

1 = {∅}. Display an element x ∈ S
n, for now, as a string x1....xn, where

xj = x(j) for each j. Then let

�S� = ∪n≥0S
n
,

and define the product of x, y ∈ �S� to be

xy = x1...xny1...ym,

if x ∈ S
n and y ∈ S

m. This makes �S� a semigroup, with 1 ∈ S
0 as identity

element. This is the free monoid over the set S. If S = ∅ we take �S� to be
the one-element group {1}.

12.2 Rings and More

A ring A is a set with two operations

addition : A× A → A : (a, b) �→ a+ b

multiplication : A× A → R : (a, b) �→ ab,

such that addition makes A an abelian group, multiplication is associative,
multiplication distributes over addition:

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca,
(12.14)

and A contains a multiplicative identity element 1A (or, simply, 1). Since
not everyone requires a ring to have 1, we will often restate the existence of
1 explicitly when discussing a ring.

If A is a ring then on the set A we can define addition as for A but reverse
multiplication to

a ◦opp b = ba,

for all a, b ∈ A. These operations make the set A again a ring, called the
opposite ring of A and denoted A

opp.
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The set Z of all integers, with usual addition and multiplication, is a ring.
A division ring is a ring in which 1 �= 0 and every nonzero element has

a multiplicative inverse. A field is a division ring in which multiplication is
commutative.

A left ideal L in a ring A is a non-empty subset of A for which

al ∈ L for all a ∈ A and x ∈ L.

A right ideal J is a nonempty subset of A for which xa ∈ J for all x ∈ J and
a ∈ A. A subset of A is a two sided ideal if it is both a left ideal and a right
ideal.

A left (or right) ideal in A is principal if it is of the form Ac (or cA) for
some c ∈ A. Note that Ax ⊂ Ay is equivalent to y being a right divisor of x
in the sense that x = ay for some a ∈ A.

In Z every ideal is principal and has a unique non-negative generator.
Proof: If I is a nonzero ideal in Z, choose m ∈ I for which |m| is least; then
for any a ∈ I, dividing by m produces a quotient q ∈ Z and a remainder
r ∈ {0, ..., |m|−1}, and then a−qm = r is a non-negative element of I which
is < |m| and is therefore 0, and so a = qm ∈ mZ; thus I ⊂ mZ ⊂ I and so
I = mZ. If m and m1 both generate I then each is a divisor of the other and
so m = ±m1, and nonnegativity picks out a unique generator.

If A is a ring, and I a two sided ideal in A, then the quotient

A/I
def
= {x+ I : x ∈ A} (12.15)

is a ring under the operations

(x+ I) + (y + I) = (x+ y) + I, (x+ I)(y + I) = xy + I.

The multiplicative identity in A/I is 1 +A (which is 0 if and only if I = A).
If S is a subset of a ring A then the set of all finite sums of elements of

the form xsy, with x, y running over A, is a two sided ideal; clearly, it is the
smallest two sided ideal of A containing S as a subset, and is called the two
sided ideal generated by S.

If a ∈ A and m ∈ {1, 2, 3, ..} the sum of m copies of a is denoted ma;
more officially, define inductively:

1a = a and (m+ 1)a = ma+ a.

Further, setting
0a = 0,
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wherein 0 on the left is the integer 0, and for m ∈ {1, 2, ..}, setting

(−m)a = m(−a),

gives a map
Z× A → A : (n, a) �→ na

that is additive in n and in a, and also satisfies

m(na) = (mn)a for all m,n ∈ Z and a ∈ A.

The non-negative generator of the ideal IA = {m ∈ Z : mA = 0} in Z is
the characteristic of A. The term is generally used only when A is a field.
Suppose 1 �= 0 in A and also that whenever ab = 0, with a, b ∈ A, a or b

is 0; then the characteristic p of A is either 0 or prime. Proof: If m and n

are integers such that mn is divisible by p then mn ∈ IA, that is mn1A = 0,
and so m1An1A = 0, which then implies m ∈ IA or n ∈ IA so that m or n is
divisible by p.

Theorem 12.2.1 Let A be a ring, p any positive integer, and C the two
sided ideal generated by the set of elements of the form ab − ba with a, b

running over A. Then the map φp : x �→ x
p maps C into itself. Assume now

that p is prime and pa = 0 for all a ∈ A. Then

φ
p
: A/C → A/C : x+ C �→ φp(x) + C (12.16)

is a well-defined map and is a homomorphism of rings. Equivalently,

φp(x+ y)− φp(x)− φp(y) ∈ C

φp(xy)− φp(x)φp(y) ∈ C
(12.17)

for all x, y ∈ A.

The map φp is called the Frobenius map [30].
Proof. Observe that, for any xj, yj, aj, bj ∈ A for j ∈ [n] with n any positive
integer, �

n�

j=1

xj(ajbj − bjaj)yj

�p

is a sum of n terms each of the form x(ab − ba)y for some x, a, b ∈ A. This
means φp maps C into itself. The definition of C implies that abcd−acbd ∈ C
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for all a, b, c, d ∈ A. Then, by the binomial theorem, for any x, y ∈ A, and
any positive integer q, we have

(x+ y)q −
q�

j=0

�
q

j

�
x
j
y
q−j ∈ C.

If p is prime then
�
p

j

�
= p!/[j!(p− j)!] is divisible by p when j ∈ {1, ..., p−1},

because the denominator j!(p−j)! contains no factor p whereas the numerator
p! does. Thus, if pA = 0 then all terms in

�
p

j=0

�
p

j

�
x
j
y
p−j are 0 except the

terms for j ∈ {0, p}; so

(x+ y)p − x
p − y

p ∈ C. (12.18)

In particular,
(x− y)p − (xp − y

p) ∈ C,

for all x, y ∈ A, which is clear from (12.18) if p is odd, while if p = 2
then −a = a for all a ∈ A and so again we are back to (12.18). Thus, if
x+ C = y + C, which means x− y ∈ C, then

φp(x)− φp(y) ∈ φp(x− y) + C ⊂ C.

Hence, the mapping φ
p
: A/C → A/C in (12.16) is well-defined. From (12.18)

it follows that φ
p
preserves addition. Next, (xy)p−x

p
y
p ∈ C because, as noted

above, every time we commute two elements in A their difference is in C.
Hence, φ

p
also preserves multiplication. Lastly, φ

p
maps 1 to 1, because so

does φp. QED
Suppose A1 and A2 are rings, and f : A1 → A2 a mapping for which

f(a+ b) = f(a) + f(b)

f(ab) = f(a)f(b)
(12.19)

for all a, b ∈ A1, and f maps the multiplicative identity in A1 to that in A2.
Then we say that f is a homomorphism, or simply morphism, of rings. A
morphism that is a bijection is an isomorphism. The identity map A → A,
for any ring A, is clearly an isomorphism. The composite of morphisms is a
morphism, and the inverse of an isomorphism is an isomorphism.

A subring of a ring A is a non-empty subset B for which x + y ∈ B and
xy ∈ B for all x, y ∈ B, and B contains a multiplicative identity; this means
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that B is a ring when the ring operations of A are restricted to B. Note that
1A might not be in B, in which case, of course, 1B �= 1A. The terminology
here is a bit awkward.

If f : A1 → A2 preserves addition and multiplication then the kernel

ker f = f
−1(0)

is a two sided ideal in A1. The image Im(f) = f(A1) is a subring of A2.
Writing J for ker f , there is a well-defined induced mapping

f : A1/J → A2 : a+ J �→ f(a) (12.20)

that is injective, preserves addition and multiplication, and is a morphism if
f is a morphism of rings.

Now let Ai be a ring for each i in a non-empty set I. Consider the product
set

P =
�

i∈I

Ai,

which is the set of all maps x : I → ∪i∈IAi : i �→ xi for which xi ∈ Ai for
all i ∈ I. We call xi the i-th component of x. On P define addition and
multiplication componentwise:

(x+ y)i = xi + yi

(xy)i = xiyi

(12.21)

for all i ∈ I. This makes P a ring, called the product of the family of rings
Ai. For each i, the projection map P → Ai : x �→ xi is a morphism of rings.

For each i ∈ I we have an injective mapping ji : Ai → P where, for
any a ∈ Ai, the element ji(a) has i-th component equal to a and all other
components are 0. Note that ji preserves addition and multiplication, but
doesn’t generally carry 1 to 1. Identifying Ai with ji(Ai) we can view Ai as
a subring of of R.

If A is a ring and m and n positive integers, an m × n matrix Mwith
entries in A is a mapping

M : [m]× [n] → A : (i, j) �→ Mij.

This is best displayed as

[Mij] =




M11 M12 . . . M1n
...

...
...
...
...

...
Mm1 Mm2 . . . Mmn



 .
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The value Mij is the (i, j)-th entry of M , and is a diagonal entry of i = j.
The transpose M

t, or M tr, is the n×m matrix with entries specified by

(M tr)ij = (M t)ij = Mji

for all i ∈ [n], j ∈ [m]. The sum of m × n matrices M and N is defined
pointwise

(M +N)ij = Mij +Nij for all i ∈ [m], j ∈ [n].

If M is an m×n matrix and N an n×r matrix then MN is the m×r matrix
with entries specified by

(MN)ij =
n�

k=1

MikNkj (12.22)

for all i ∈ [m] and j ∈ [r]. The set of all m ×m matrices is a ring, denoted
Matrm×m(A), under this multiplication, with the multiplicative identity be-
ing the matrix I whose diagonal entries are all 1 and all other entries are
0.

A commutative ring is a ring in which multiplication is commutative.
An element a in a commutative ring R is a divisor of b ∈ R if b = ac, for

some c ∈ R. A divisor of 1 is called a unit.
An ideal I in a commutative ring R is a prime ideal if it is not R and has

the property that if a, b ∈ R have their product ab in I then a or b is in I. In
the ring Z a nonzero ideal is prime if and only if it consists of all multiples
of some prime number.

An ideal I in a commutative ring R is maximal if I �= R and if J is any
ideal containing I then either J = R or J = I. Applying Zorn’s Lemma to
increasing chains of ideals not containing 1 shows that every commutative
ring with 1 �= 0 has a maximal ideal. (In the annoying distraction R = {0}
there is, of course, no maximal ideal.)

Every maximal ideal in a commutative ring with 1 is prime. Proof: If
x, y ∈ R have product xy lying in a maximal ideal M , and y /∈ M then
M+Ry, being an ideal properly containing M , is all of R and hence contains
1 which is then of the formm+ry; multiplying by x shows that x = xm+rxy,
which is in the ideal M .

A commutative ring R with multiplicative identity 1 �= 0 is an integral
domain if whenever ab = 0 for some a, b ∈ R at least one of a and b is 0.
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Thus, an ideal I in a commutative ring R with 1 is prime if and only if
R �= I and R/I is an integral domain. The most basic example of an integral
domain is Z.

A narrower generalization of Z is the notion of a principal ideal domain:
this is an integral domain in which every ideal is principal.

In a principal ideal domain every nonzero prime ideal is maximal. Proof:
Suppose pR �= 0 is prime and cR is an ideal properly containing pR; then
p = ac for some a ∈ R and so a ∈ pR or c ∈ pR; proper containment rules
out c ∈ pR, and we have a = pu for some u ∈ R. Then p = pcu and then,
since p �= 0 and R is an integral domain we conclude that cu = 1 which
implies 1 ∈ cR and hence cR = R. Hence pR is maximal.

The argument above also shows that a generating element p of a nonzero
prime ideal in a principal ideal domain is irreducible: p is not a unit and its
only divisors are units and multiples of itself by units. In a principal ideal
domain R an element p is irreducible if and only if it is prime, the sense that
p �= 0 and if p is a divisor of ab, for some a, b ∈ R, then p is a divisor of a or
of b.

The essential idea of the following result on greatest common divisors
goes back to Euclid’s Elements:

Theorem 12.2.2 If a1, ..., an ∈ R, where R is a principal ideal domain, then
there is a c ∈ R of the form c = a1b1 + · · · + anbn, with b1, ..., bn ∈ R, such
that d ∈ R is a common divisor of a1, ..., an if and only if it is a divisor of c.
If a1, ..., an are coprime in the sense that their only common divisors are the
units in R, then a1d1 + · · ·+ andn = 1 for some d1, ..., dn ∈ R.

Proof. Let c be a generator of the ideal
�

n

i=1 Rai, hence of the form
�

n

i=1 aibi

for some bi ∈ R. Now d ∈ R is a common divisor of the ai if and only if
a1, ..., an ∈ Rd, and this holds if and only if Rc ⊂ Rd, which is equivalent to d
being a divisor of c. If a1, ..., an are coprime then c, being a common divisor,
is a unit; multiplying c =

�
i
aibi by an inverse of c produces 1 =

�
i
aidi for

some di ∈ R. QED
Returning to general rings, here is a useful little stepping stone:

Proposition 12.2.1 Let A1, ..., An be two sided ideals in a ring A, with n ≥
2, such that Ai+Aj = A for all pairs i, j with i �= j. Let Bk be the intersection
of the Ai’s except for i = k:

Bk = A1 ∩ . . . ∩ An� �� �
drop k−th term

= ∩m∈[n]−{k}Am, for all i ∈ [n],
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with [n] being {1, ..., n}. Then

Ak +Bk = A for all k ∈ [n], (12.23)

and

B1 + · · ·+Bn = A. (12.24)

Proof. Fix any k ∈ [n], and, for j �= k, pick aj ∈ Aj and a
�
j
∈ Ak, such that

1 = aj + a
�
j
. Then

1 = (a1 + a
�
1) . . . (an + a

�
n
)� �� �

drop k−th term

= terms involving a
�
j
+ a1 . . . an� �� �

drop k−th term

∈ Ak +Bk,

because each Aj is a two sided ideal. Hence Ak +Bk = A. We prove (12.24)
inductively. It is clearly true when n is 2. Assuming its validity for smaller
values of n > 2, let B�

i
be defined as Bi except for the collection A1, ..., An−1.

Then

B
�
1 + · · ·+B

�
n−1 = A, .

Picking b
�
i
∈ B

�
i
summing up to 1, and an ∈ An, bn ∈ Bn adding to 1, we have

1 = (b�1 + · · ·+ b
�
n−1)(an + bn)

= b
�
1an����
∈B1

+ · · ·+ b
�
n−1an� �� �
∈Bn

+1 · bn� �� �
∈Bn

, (12.25)

which is just (12.24). QED
This brings us to the ever-useful Chinese Remainder Theorem :

Theorem 12.2.3 Suppose A1, ..., An are two sided ideals in a ring A, such
that Aj + Ak = A for every j, k ∈ [n] = {1, ..., n} with j �= k, and let
C = A1∩ . . .∩An. Then, for any y1, ..., yn ∈ A there exists an element y ∈ A

such that y ∈ yj + Aj for all j ∈ [n]. More precisely, the mapping

f : A/C →
n�

j=1

A/Aj : a+ C �→ (a+ Aj)j∈[m] (12.26)

is a well-defined isomorphism of rings.
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For variations on this using only the lattice structure of sets of ideals in A,
see Exercise 5.19.
Proof. The map f is well-defined and injective since a + C = b + C is
equivalent to a− b ∈ C ⊂ Aj, for each j, and this is equivalent to a + Aj =
b + Aj for all j ∈ [n]. Clearly f preserves addition and multiplication, and
maps 1 to 1. Surjectivity will be proved by induction. To start off the
induction, take n = 2; since y1−y2 ∈ A = A1+A2, we have y1−y2 = b1− b2,
for some b1 ∈ A1 and b2 ∈ A2, and so y = y1 − b1 = y2 − b2 satisfies
y + A1 = y1 + A1 and y + A2 = y2 + A2. Next, assuming n > 2, let
B = A1 ∩ . . .∩An−1. By Proposition 12.2.1, An +B = A. Let y1, ..., yn ∈ A;
inductively we can assume that there exists x ∈ A such that

x+ Aj = yj + Aj (12.27)

for all j ∈ [n− 1]. Then by the case of two ideals, it follows that there exists
y ∈ A such that y +An = yn +An and y +B = x+B, with the latter being
equivalent to y +Aj = x+Aj for all j ∈ [n− 1]. Together with (12.27), this
shows that there exists y ∈ A for which f(y) = (y1 +A1, ..., yn +An). QED

12.3 Fields

Recall that a field is a ring, with 1 �= 0, in which multiplication is commuta-
tive and every nonzero element has a multiplicative inverse. Thus, in a field,
the nonzero elements form a group under multiplication.

Suppose R is a commutative ring with a multiplicative identity element
1 �= 0; then an ideal M in R is maximal if and only if the quotient ring R/M

is a field. Proof: Suppose M is maximal; if x ∈ R \M then M + Rx, being
an ideal containing M , is all of R, which implies that 1 = m + yx, for some
y ∈ R, and so (y + M)(x + M) = 1 + M , thus producing a multiplicative
inverse for x+M in R/M . Conversely, if R/M is a field then, first M �= R,
and if x ∈ J \M , where J is an ideal containing M , then there is y ∈ R with
xy ∈ 1 +M and so 1 = xy −m for some m ∈ M , which implies 1 ∈ J and
so J = R.

Applying the construction above to the ring Z, and a prime number p,
produces the finite field

Zp = Z/pZ. (12.28)

Let R be an integral domain and S = R − {0}. On the set S × R define
the relation � by (s1, r1) � (s2, r2) if and only if s2r1 = s1r2. You check
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easily that this is an equivalence relation. The set of equivalence classes is
denoted S

−1
R and the image of (s, r) in S

−1
R denoted by r/s. Then S

−1
R

is a ring with operations

r1/s1 + r2/s2 = (r1s2 + r2s1)/(s1s2), (r1/s1)(r2/s2) = r1r2/(s1s2),

with 0/1 as zero element, and 1 = 1/1 as multiplicative identity, which is
�= 0. Inside S−1

R we have a copy of R sitting in through the elements a/1. A
crucial fact is that each element s of S is a unit element in S

−1
R, because s/1

clearly has 1/s has multiplicative inverse. Elements r/s are called fractions
and S

−1
R is the ring of fractions of R.

Suppose F1 is a field, and F ⊂ F1 is a subset that is a field under the
operations inherited from F1. Then F1 is called an extension of F.

12.4 Modules over Rings

In this section A is a ring with a multiplicative identity element 1A. A left
A-module M is a set M that is an abelian group under an addition operation
+, and there is an operation of scalar multiplication

A×M → M : (a, v) �→ av

for which the following hold:

(a+ b)v = av + bv

a(v + w) = av + aw

a(bv) = (ab)v

1Av = v

for all v, w ∈ M , and a, b ∈ A. Note that 0 = 0 + 0 in A implies, on
multiplying with v,

0v = 0 for all v ∈ M ,

where 0 on the left is the zero in A, and 0 on the right is 0 in M .
A right A-module is defined analogously, except that the multiplication

by scalars is on the right:

M × A → M : (v, a) �→ va
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and so the ‘associative law’ reads

(va)b = v(ab).

By leftist bias, the party line rule is that an A-module means a left A-module.
A vector space over a division ring is a module over the division ring.
Any abelian group A is automatically a Z-module, using the multiplica-

tion
Z× A → A : (n, a) �→ na.

If M and N are A-modules, a map f : M → N is linear if

f(v + w) = f(v) + f(w)

f(av) = af(v)
(12.29)

for all v, w ∈ M and all a ∈ A. The set of all linear maps M → N is denoted

HomA(M,N)

and is an abelian group under addition. When M = N we use the notation

EndA(M),

for HomA(M,M), and the elements of EndA(M) are endomorphisms of M .
If M and N are modules over a commutative ring R, then HomR(M,N) is an
R-module, with multiplication of an element f ∈ HomR(M,N) by a scalar
r ∈ R defined to be the map

rf : M → N : v �→ rf(v).

Note that rf is linear only on using the commutativity of R.
The ring Matrm×n(A) of m × n matrices over the ring A is both a left

A-module and a right A-module under the natural multiplications:

a[Mij] = [aMij] and [Mij]a = [Mija]. (12.30)

A subset N ⊂ M of an A-module M is a submodule of M if it is a module
under the restrictions of addition and scalar multiplication, or, equivalently,
if N +N ⊂ N and AN ⊂ N . In this case, the quotient

M/N = {v +N : v ∈ M}
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is an A-module with the natural operations

(v +N) + (w +N)
def
= (v + w) +N, and a(v +N)

def
= av +N

for all v, w ∈ M and a ∈ A. Thus, it is the unique A-module structure on
M/N that makes the quotient map

M → M/N : v �→ v +N

linear.
Let I be a nonempty set and for each i ∈ I, suppose we have a set Mi.

Let U = ∪i∈IMi; then there is the Cartesian product set
�

i∈I

Mi

def
= {m ∈ U

I : m(i) ∈ Mi, for every i ∈ I} (12.31)

and a projection map

πk :
�

i∈I

Mi → Mk : m �→ mk = m(k) (12.32)

for each k ∈ I. For m ∈
�

i∈I Mi, the element πk(m) is the k-th component
of m. If each Mi is an A-module then the product

�
i∈I Mi is an A-module

in a natural way which makes each πi an A-linear map. This module, along
with these canonical projection maps, is called the product of the family of
modules {Mi}i∈I . Inside it consider the subset ⊕i∈IMi consisting of all m for
which {i ∈ I : πi(m) �= 0} is a finite set. For each k ∈ I and any x ∈ Mk,
there is a unique element ιk(x) ∈ ⊕i∈IMi for which the k-th component is
x and all other components are 0. Then ⊕i∈IMi is a submodule of

�
i∈I Mi,

and, along with the A-linear canonical injections

ιk : Mk → ⊕i∈IMi, (12.33)

is called the direct sum of the family of modules {Mi}i∈I . For the moment
let us write M for the direct sum

�
i∈I Mi. The linear maps

pk = ιk ◦ πk|⊕i∈I Mi : M → M (12.34)

are projections onto the subspaces ιk(Mk) of M and are orthogonal idempo-
tents:

p
2
i
= pi pipk = 0 if i, k ∈ I and i �= k;

�

i∈I

pi(x) = x for all x ∈ M , (12.35)
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on observing that in the sum above, only finitely many pi(x) are nonzero.
Conversely, if M is an A-module and {pi}i∈I is any family of elements in
EndA(M) satisfying (12.35) then M is isomorphic to the direct sum of the
subspaces pi(M) via the addition map

�

i∈I

pi(M) → M : x �→
�

i∈I

pi(x).

The following Chinese Remainder flavored result will be useful later in
establishing the uniqueness of the Jordan decomposition:

Proposition 12.4.1 Let A1, ..., An be two sided ideals in a ring A, such
that Aj + Ak = A for all pairs j �= k. Suppose E is an A-module, such
that CE = 0, where C = A1 ∩ . . . ∩ An. Then E is the direct sum of the
submodules Ej = {v ∈ E : Ajv = 0}. Moreover, if c1, ..., cn ∈ A then there
exists s ∈ A such that sv = cjv for all v ∈ Ej and j ∈ [n].

Proof. Let Bi be the intersection of all Aj except for j = i. Then by
Proposition 12.2.1 there exist b1 ∈ B1,...,bn ∈ Bn, for which b1+ · · ·+ bn = 1.
So then for any v ∈ E,

v = b1v + · · ·+ bnv

and Ajbjv ⊂ Cv = 0, because Ajbj ⊂ Aj ∩ Bj = C, and so each bjv lies in
Ej. Next, suppose

w1 + · · ·+ wn = 0 (12.36)

where wj ∈ Ej for each j ∈ [n]. By Proposition 12.2.1, there exist aj ∈ Aj

and b
�
j
∈ Bj such that aj + b

�
j
= 1 for each j ∈ [n]. Then, since ajwj = 0, we

have
wj = 1wj = ajwj + b

�
j
wj = b

�
j
wj,

and, for i �= j we have

b
�
j
wi ∈ Bjwi ⊂ Aiwi = 0 if i �= j.

Thus, multiplying (12.36) by b
�
j
produces wj = 0. Thus, E is the direct sum

of the Ej. Note that Ej is indeed a submodule, because if y ∈ Ej and a ∈ A

then Ajay ⊂ Ajy = {0} and so ay ∈ Ej. Finally, consider c1, ..., cn ∈ A.
By the Chinese Remainder Theorem 12.2.3 there exists s ∈ A such that
s− cj ∈ Aj for each j ∈ [n], and so sv = (cj + s− cj)v = cjv for all v ∈ Ej.
QED
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An algebra A over a ring R is an R-module equipped with a binary oper-
ation of ‘multiplication’

A× A → A : (a, b) �→ ab

which is bilinear:
(ra)b = r(ab) = a(rb)

for all r ∈ R and all a, b ∈ A. Then

(rs− sr)(ab) = (ra)(sb)− (ra)(sb) = 0 for any r, s ∈ R and a, b ∈ A,

and we work only with algebras over commutative rings. If A1 and A2 are al-
gebras, a mapping f : A1 → A2 is a morphism of algebras if f preserves both
addition and multiplication: f(a+ b) = f(a)+f(b) and f(ab) = f(a)f(b) for
all a, b ∈ A1. In this book we use only algebras for which multiplication is
associative. If we are working with algebras which have multiplicative iden-
tities, a morphism is required to take the identity for A1 to that for A2. A
morphism of algebras that is a bijection is an isomorphism of algebras. The
identity map A1 → A1 is clearly an isomorphism. The composition of mor-
phisms is a morphism and the inverse of an isomorphism is an isomorphism.

Subalgebras and products of algebras are defined exactly as for rings,
except that we note that subalgebras and product algebras also have R-
module structures.

12.5 Free Modules and Bases

For a module M over a ring A, the span of a subset T of an A-module is
the set of all elements of M that are linear combinations of elements of T ;
this is, of course, a submodule of M . The module M is said to be finitely
generated if it is the span of a finite subset. (Take the span of the empty set
to be {0}.)

A set I ⊂ M is linearly independent if for any n ∈ {1, 2, ...}, v1, ..., vn ∈ I

and a1, ..., an ∈ A with a1v1+ · · · anvn = 0 the elements a1, ..., an are all 0. A
basis of M is a linearly subset of M whose span is M . If M has a basis it is
said to be a free module. (The zero module is free if you accept the empty
set as its basis.)

From the general results of Theorem 5.2.1 and Theorem 5.3.3 it follows
that any vector space V over a division ring D has a basis whose cardinality is
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uniquely determined. The cardinality of a basis of V is called the dimension
of V and denoted dimD V . Theorem 5.2.1 also shows that if I is a linearly
independent subset of V , and S a subset of V that spans V , then there is a
basis of V consisting of all the vectors in I and some of the vectors in S.

Theorem 12.5.1 Let R be a principal ideal domain. Any submodule of a
finitely generated R-module is finitely generated. Any submodule of a finitely
generated free R-module is again a finitely generated free R-module. Any two
bases of a free R-module have the same cardinality.

Proof. Leaving aside the trivial case of zero modules, let M be an R-module
which is the linear span of a set S = {a1, ..., an} of n elements, and let N be
a submodule of M . To produce a spanning set for N , the only immediate
idea is to somehow pick a ‘smallest’ element among the linear combinations
r1a1 + · · ·+ rnan that lie in N ; a reasonable first step in making this precise
is to pick the one for which the coefficient r1 is the ‘least’. To fill this out to
something sensible, observe that the set I1 consisting of all r1 ∈ R for which
r1a1 + · · ·+ rnan ∈ N for some r2, ..., rn ∈ R, is an ideal in R and hence is of
the form r

∗
1R for some r

∗
1 ∈ R; in particular, there is an element of N of the

form b1 = r
∗
1a1 + · · ·+ r

∗
n
an for some r∗2, ..., r

∗
n
∈ R. Then every element of N

can be expressed as an R-multiple of b1 plus an element of N that is a linear
combination of a2, ..., an. Working our way down the induction ladder with
n being the rung-count, we touch the ground level n = 0 where the claimed
result is obviously valid. Thus, N is the linear span of a subset containing
at most n elements.

Next we turn to the case of free modules and assume that the spanning
set S is a basis of M ; let b1 be as constructed above. Inductively, we can
assume that there exists a basis B

� of the submodule N
� of N spanned by

a2,..., an:

N
� = N ∩

n�

j=2

Raj.

If b1 ∈ N
� then N

� = N and B = B
� is a basis of N . If b1 /∈ N

� and
t1b1, with t1 ∈ R, plus an element in the span of B� is 0 then, expressing
everything in terms of the linearly independent ai, it follows that t1r

∗
1 = 0

and so, since r
∗
1 �= 0 as b1 /∈ N , we have t1 = 0 and this, coupled with the

linear independence of B�, implies that B = {b1}∪B
� is linearly independent.

Finally, consider a free R-module M �= 0, and let B be a basis of M , and
J a maximal ideal in R. There is the quotient map M → M/JM : x �→
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x = x + JM , and M/JM is a vector space over the field R/J . If b1, ..., bn
are distinct elements in the basis B then, for any r1, ..., rn ∈ R for which the
linear combination r1b1+· · ·+rnbn is in JM , the fact that B is a basis implies
that r1, ..., rn are in J . Thus b �→ b is an injection on B and the image B is
a basis for the vector space M/JM . The uniqueness of dimension for vector
spaces then implies that the cardinality of B is dimR/J M/JM , independent

of the choice of B. QED
An element m in an R-module M is a torsion element if it is not 0 and if

rm = 0 for some nonzero r ∈ R. The module M is said to be torsion free if
it contains no torsion elements. Thus, M is torsion free if for each nonzero
r ∈ R, the mapping M → M : m �→ rm is injective.

A set B ⊂ M is a basis of M if and only if M is the direct sum of the
sumodules Rb, with b running over B, and the mapping R → Rb : r �→ rb is
injective.

Theorem 12.5.2 A finitely generated torsion free module over a principal
ideal domain is free.

Notice that Q, as a Z-module, is torsion free but is not free because no subset
of Q containing at least two elements is linearly independent and nor is any
one-element set a basis of Q over Z.
Proof. Let M be a torsion free module over a principal ideal domain R,
and, focusing on M �= {0}, let b1, ..., br span M . Assume, without loss
of generality, that b1, ..., bk are linearly independent for some k ≤ r, and
every bi, with k + 1 ≤ i ≤ r, has a nonzero multiple, say tibi, in the span
of b1, ..., bk. Hence, with t being the product of these nonzero ti, we have

tbi ∈ N
def
= Rb1 + · · · + Rbk for all i ∈ {k + 1, . . . , r} (it holds automatically

for i ∈ [k]). Thus, the mapping M → M : x �→ tx has image in N , and
so, since M is torsion free, λt : M → N : x �→ tx is an isomorphism. Being
isomorphic to the free module N (which has b1, ..., bk as a basis), M is also
free. QED

If S is a non-empty set, and R a ring with identity 1R, then the set R[S],
of all maps f : S → R for which f

−1(R− {0}) is finite, is an R-module with
the natural operations of addition and multiplication induced from R:

(f + g)(x) = f(x) + g(x), (rf)(x) = rf(x),

for all x ∈ S, r ∈ R, and f, g ∈ R[S]. The R-module R[S] is called the free
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R-module over S. It is convenient to write an element f ∈ R[S] in the form

f =
�

x∈S

f(x)x.

For x ∈ S, let j(x) be the element of R[S] equal to 1R on x and 0 elsewhere.
Then j : S → R[S] is an injection that can be used to identify S with the
subset j(S) of R[S]. Note that j(S) is a basis of R[S]; that is, every element
of R[S] can be expressed in a unique way as a linear combination of the
elements of j(S):

f =
�

x∈S

f(x)j(x)

wherein all but finitely many elements are 0. If M is an R-module and
φ : S → M a map then φ = φ1 ◦j, where φ1 : R[S] → M is uniquely specified
by requiring that it be linear and equal to φ(x) on j(x). (For S = ∅ take
R[S] = {0}.)

Let A be a ring, and E and F free A-modules with an n-element basis
b1,...,bn of E and an m-element basis c1, . . . , cm of F . Then for any f ∈
HomA(E,F ) we have

f

�
n�

j=1

ajbj

�
=

n�

j=1

ajf(bj) =
m�

i=1

�
n�

j=1

ajfij

�
ci, (12.37)

with fij being the ci-th component of f(bj). This relation is best displayed
in matrix form:

[a1, ..., an] �→ [a1, ..., an]




f11 f21 . . . fm1
...

...
...
...
...

...
f1n f2n . . . fmn



 . (12.38)

Note that in the absence of commutativity of A, the matrix operation appears
more naturally on the right, and clearly the matrix on the right here is not
[fij] itself but the transpose [fij]t. A further significance of (12.38) is that,
working with one fixed basis of E, for f, g ∈ EndA(E),

(gf)ik =
m�

j=1

fjkgij =
m�

j=1

gij ◦opp fjk,

so that the mapping

EndA(E) → Matrm×m(A
opp) : f �→ [fij]

t
, (12.39)

is an isomorphism of rings, where A
opp is the opposite ring.



320 Ambar N. Sengupta

12.6 Power Series and Polynomials

In this section R is a commutative ring with multiplicative identity 1, and F

is a field.
A power series in a variable X with coefficients in R is, formally, an

expression of the form

a0 + a1X + a2X
2 + · · · ,

where the coefficients aj are all drawn from R.
For an official definition, consider an abstract element X, called a variable

or indeterminate, and let, �X� be the free monoid over {X}. Then let R[[X]]
be the set of all maps

a : �X� → R.

Denote by aj the image of Xj under a. Define addition in R[[X]] pointwise

(a+ b)j = aj + bj for all j ∈ {0, 1, 2, . . .}.

Define multiplication by

(ab)n =
n�

j=0

ajbn−j for all j ∈ {0, 1, 2, . . .}.

These operations make R[[X]] a ring, called the ring of power series in X

with coefficients in R. An element a ∈ R[[X]] is best written in the form

a(X) =
�

j

ajX
j
,

with the understanding that j runs over {0, 1, 2, . . .}. With this notation,
both multiplication and addition make notational sense; for example, the
product of the power series rX

j with the power series sX
k is indeed the

power series rsXj+k, and
�
�

j

ajX
j

��
�

j

bjX
j

�
=

�

j

cjX
j
,

where

cj =
j�

k=0

akbj−k for all j ∈ {0, 1, 2, . . .}.
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If 1 �= 0 in R then 1 �= 0 in R[[X]] as well.
More generally, if S is a non-empty set then we have first the set R[[S]]nc

of power series in noncommuting indeterminates X ∈ S, defined to be the
set of all maps

a : �S� → R,

where �S� is the free monoid over S. Such a map is more conveniently
displayed as

a =
�

f∈�S�

aff.

An element a for which af = 0 except for exactly one f ∈ S
n, for some

n ∈ {1, 2, ...}, is a monomial. Addition is defined on R[[S]]nc pointwise and
multiplication by

ab =
�

f∈�S�




�

h,k∈�S�,hk=f

ahbk



 f, (12.40)

where the inner sum on the right is necessarily a sum of a finite number of
terms. This makes R[[S]]nc a ring.

Quotienting by the two sided ideal generated by all elements of the form
XY − Y X with X, Y ∈ S produces the ring R[[S]] of power series in the set
S of variables, with coefficients in R. If S consists of the distinct variables
X1, ..., Xn, then R[[S]] is written as R[[X1, ..., Xn]].

Inside the ring R[[X1, ..., Xn]] is the polynomial ring R[X1, ..., Xn] consist-
ing of all elements

�
j
ajX

j1
1 ...X

jn
n
, with j running over {0, 1, ...}n, for which

the set {j : aj �= 0} is finite. Thus, the monomials Xj1
1 ...X

jn
n

form a basis of
the free R-module R[X1, ..., Xn].

Quotienting R[X1, Y1, ..., Xn, Yn] by the ideal generated by the elements
X1Y1 − 1,...,XnYn − 1 produces a ring which we will denote

R[X1, X
−1
1 , ..., Xn, X

−1
n

]. (12.41)

This is a free R-module with basis {Xj1
1 ...X

jn
n

: j1, ..., jn ∈ Z}, with X
0 being

1. An element of this ring is called a Laurent polynomial.
For a non-zero polynomial p(X) ∈ R[X], the largest j for which the

coefficient of Xj is not zero is called the degree of the polynomial. We take
the degree of 0 to be 0 by convention.

A polynomial p(X) ∈ R[X] is monic if it is of the form
�

n

j=0 pjX
j with

pn = 1 and n ≥ 1.
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If a(X), b(X) ∈ F[X], and the degree of b(X) is ≥ 1, then there are
polynomials q(X), r(X) ∈ F[X], with the degree of r(X) being less than the
degree of b(X), such that

a(X) = q(X)b(X) + r(X).

This is the division algorithm in F[X]. Inductive proof: If a(X) has degree
< the degree of b(X) simply set q(X) = 0 and r(X) = a(X). If a(X) has
degree n ≥ m, the degree of b(X), then a(X)− (anb−1

m
)Xn−m

b(X) has degree
< n and so by induction there exist q1(X), r1(X) ∈ F[X], with degree of
r1(X) being < degree b(X), such that

a(X)− (anb
−1
m
)Xn−m

b(X) = q1(X)b(X) + r1(X)

and so we obtain the desired result with q(X) = q1(X) + (anb−1
m
)Xn−m.

The polynomial ring F[X], for any field F, is clearly an integral domain; it
is, moreover, a principal ideal domain. Proof: For an ideal I that is neither
0 nor F[X], let b(X) be a nonzero element of lowest degree; then for any
p(X) ∈ I, we have p(X) = q(X)b(X)+ r(X) with r(X) of lower degree than
b(X), but, on the other hand r(X) = p(X) − q(X)b(X) ∈ I and so r(X)
must be 0, and hence I = b(X)F[X].

If q(X) ∈ F[X] has no polynomial divisors other than constants (elements
of F) and constant multiples of q(X), then q(X) is said to be irreducible. The
ideal q(X)F[X] is maximal if and only if q(X) is irreducible. Thus, q(X) is
irreducible if and only if F[X]/q(X)F[X] is a field.

For any commutative ring R, the derivative map

D : R[X] → R[X] :
m�

j=0

ajX
j �→

m�

j=1

jajX
j−1 (12.42)

is a derivation on the ring R[X] in the sense that it satifies the following two
conditions:

D(p+ q) = Dp+Dq

D(pq) = (Dp)q + pDq,
(12.43)

for all p, q ∈ R[X]. These conditions are readily verified.
If p(X) =

�
d

j=1 ajX
j ∈ R[X], where R is a commutative ring, and α ∈ R

then the evaluation of p(X) at (or on) α is

p(α) =
d�

j=1

ajα
j ∈ R.
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The element α is called a root of p(X) if p(α) is 0.
For a field F and polynomial p(X) ∈ F[X] of positive degree, let p1(X) be

a divisor of p(X) of positive degree, and F1 the field F[X]/p1(X)F[X]. Since
p1(X) is of positive degree, the map c �→ c + p1(X)F[X] maps F injectively
into F1, and so we can view F as being a subset of F1. Let

α = X + p1(X)F[X] ∈ F1;

then p1(α) = 0, and so p(α) is also 0. Thus, in the field F1 the polynomial
p(X) has a root.

A field F is algebraically closed if each polynomial p(X) ∈ F of degree
≥ 1, has a root in F. In this case, a polynomial p(X) of degree d ≥ 1, splits
into a product of d terms each of the form X −α, for α ∈ F, and a constant.

Theorem 12.6.1 Let F be a field and n a positive integer. Then F has an
extension that contains n distinct n-th roots of unity if and only if n1F �= 0
in F.

Proof. Assume first that n1F �= 0. Let F1 be an extension of F in which
X

n − 1 splits as a product of linear terms: X
n − 1 =

�
n

j=1(X − αj), (we
write 1 for 1F). Suppose that αk and αl are equal to some common value α,
for some distinct k, l ∈ [n]. Thus, Xn − 1 = (X − α)2q(X), for a polynomial
q(X) ∈ F1[X]. Applying the derivative D to this factorization of Xn − 1
produces

nX
n−1 = 2(X − α)q(X) + (X − α)2Dq(X) = (X − α)h(X),

where h(X) ∈ F1[X]. But this contradicts the fact that Xn − 1 and nX
n−1

are coprime:

n1F = XnX
n−1 − n(Xn − 1)

= X(X − α)h(X)− n(X − α)2q(X),
(12.44)

which is impossible since X − α is not a divisor of n1F �= 0. Thus, the n-th
roots of 1 are distinct in F1.

For the converse, assume that n1F = 0, and let p be the characteristic of
F. Then

X
p − 1 = (X − 1)p

because the intermediate binomial coefficients are all divisible by p (see The-
orem 12.2.1). Since p divides n, we have n = pk, for a positive integer k, and
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X
n − 1 = (Xp)k − 1 , of which X

p − 1 = (X − 1)p is a factor, thus showing
that not all n-th roots of 1 are distinct in this case. QED

An algebraic closure of a field F is an algebraically closed field F that
contains a subfield isomorphic to F. Every field has an algebraic closure (for
a proof, see Lang [53]).

Let Zn

↓ be the subset of Zn consisting of all strings (j1, ..., jn) with j1 ≥
. . . ≥ jn. Inside Z

n

↓ is the subset Zn

↓↓ of all strictly decreasing sequences.
Let R be a commutative ring with 1 �= 0. Denote a typical element of

R[X1, X
−1
1 , ..., Xn, X

−1
n

] as f(X1, ..., Xn), or simply f . It can be expressed
uniquely as a linear combination of monomials X

�j = X
j1
1 ...X

jn
n
, where �j =

(j1, ..., jn) ∈ Z
n

↓ , with coefficients f�j ∈ R all but finitely many of which are
0. If R1 is any commutative R-algebra and a1, ..., an ∈ R1 then denote by
f(a1, ..., an) the evaluation of f at X1 = a1, .., Xn = an:

f(a1, ..., an) =
�

�j∈Zn

↓

f�ja
j1
1 ...a

jn

n
. (12.45)

Note that, in particular, the ai could be drawn from R[X1, X
−1
1 , ..., Xn, X

−1
n

]
itself. If σ ∈ Sn, denote by fσ(X1, ..., Xn) the element f(Xσ(1), ..., Xσ(n)).

For the following result we say that f is symmetric if fσ = f for all
σ ∈ Sn. The set of all such symmetric f forms a subring Rsym[X1, ..., Xn]
of R[X1, X

−1
1 , ..., Xn, X

−1
n

]. We say that f is alternating if f(Y1, ..., Yn) = 0
whenever {Y1, ..., Yn} is a strictly proper subset of {X1, ..., Xn}.

Theorem 12.6.2 Let F be a field that contains m distinct m-th roots of 1
for every m ∈ {1, 2, ...}, and R a subring of F.

(i) If f ∈ R[X1, X
−1
1 , ..., Xn, X

−1
n

] is such that f(λ1, ...,λn) = 0 for all
roots of unity λ1, ...,λn ∈ F then f = 0.

(ii) Rsym[X1, X
−1
1 , ..., Xn, X

−1
n

] is a free R-module with basis given by the
symmetric sums

s(�w) =
�

σ∈Sn

X
w1
σ(1)...X

wn

σ(n) (12.46)

with �w = (w1, ..., wn) running over Z
n

↓ , and s�0 defined to be 1.

(iii) Ralt[X1, X
−1
1 , ..., Xn, X

−1
n

] is a free R-module with basis given by the
alternating sums

a(�w) =
�

σ∈Sn

(−1)σXw1
σ(1)...X

wn

σ(n) (12.47)
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with �w = (w1, ..., wn) running over Z
n

↓↓.

Proof. (i) First suppose n = 1, and φ ∈ R[X,X
−1] is 0 when X is evaluated

at any root of unity in F. Suppose φ =
�

k∈Z φkX
k, with φk = 0 for k not

between integers l and u, with l < u, and let a = max{0,−l}. Then X
a
φ(X)

is a polynomial that vanishes on infinitely many elements (all roots of unity)
in the field F and so X

a
φ(X) = 0, whence φ = 0. Next, consider n ≥ 2, and

suppose f ∈ R[X1, X
−1
1 , ..., Xn, X

−1
n

] satisfies the condition given. Write f as
an element of R[X2, X

−1
2 , ..., Xn, X

−1
n

][X1, X
−1
1 ], with X

j

1 having coefficient
fj ∈ R[X2, X

−1
2 , ..., Xn, X

−1
n

]. Then by the n = 1 case, each fj(λ2, ...,λn) = 0
for each j and all roots λk of unity. Then, inductively, each fj is 0.

(ii) Consider a nonzero f ∈ R[X1, X
−1
1 , ..., Xn, X

−1
n

], let Wf be the finite
set {�w ∈ Z

n

↓ : f�w �= 0}, and let �Wf = maxWf in the lexicographic order.
Then

g = f − f �W
s �W

is symmetric and if it is not 0 then �Wg < �W ; working down the induc-
tion ladder of the finite set Wf , we see that the symmetric sums span
R[X1, X

−1
1 , ..., Xn, X

−1
n

]. The linear independence follows from observing
that if �w, �w� are distinct elements of Zn

↓ then s�w and s�w� are sums over disjoint
sets of monomials.

(iii) The argument is virtually the same as (ii) except substitute a �W
for

s �W
. QED

12.7 Algebraic Integers

If R is a subring of a commutative ring R1 with multiplicative identity 1 �= 0
lying in R, then an element a ∈ R1 is said to be integral over R if p(a) = 0
for some monic polynomial p(X) ∈ R[X]. All elements r of R are integral
over R (think X − r).

With R and R1 as above, if b1, ..., bm ∈ R1 then by R[b1, ..., bm] is meant
the subring of R1 consisting of all elements of the form p(b1, . . . , bm) with
p(X1, ..., Xm) running over all elements of the polynomial ring R[X1, . . . , Xm].
Note that R[b1, . . . , bm] is a subalgebra of R1, when both are also equipped
with the obvious R-module structures.

Theorem 12.7.1 Suppose R is a subring of a commutative ring R1 with
1 �= 0 lying in R, and assume that R is a principal ideal domain. Then an
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element a ∈ R1 is integral over R if and only if the R-module R[a] is finitely
generated. If a, b ∈ R1 are integral over R then so are a + b and ab. Thus,
the subset of R1 consisting of all elements integral over R is a subring of R1.

Proof. Suppose a is integral over R. Then a
n+ pn−1a

n−1+ · · ·+ p1a+ p0 = 0
for some positive integer n and p0, ..., pn−1 ∈ R. Thus, an lies in the R-
linear span of 1, a, ...., an−1, and hence by an induction argument all powers
of a lie in the R-linear span of 1, ..., an−1. Consequently, the R-module R[a]
is finitely generated. Conversely, suppose R[a] is finitely generated as an R-
module. Then there exist polynomials q1(X), ..., qm(X) ∈ R[X] such that the
R-linear span of q1(a), ..., qm(a) is all of R[a]. Let n be 1 more than the degree
of q1(X)...qm(X); then a

n is an R-linear combination of q1(a), ..., qm(a), and
so this produces a monic polynomial, of degree n, which vanishes on a.

Suppose a, b ∈ R1 are integral over R. Then, by the first part, the
R-modules R[a] and R[b] are finitely generated, and then R[a] + R[b] and
R[a]R[b] (consisting of all sums of products of elements from R[a] and R[b])
are also finitely generated. Since R[a+ b] ⊂ R[a]+R[b] and R[ab] ⊂ R[a]R[b]
it follows from Theorem 12.5.1 that these are also finitely generated and so,
by the first part, a+ b and ab are integral over R. QED

Elements of C (or, if you prefer, Q) that are integral over Z are called
algebraic integers. Firmly setting aside the temptation to explore the vast
and deep terrain of algebraic number theory let us mention only one simple
observation:

Proposition 12.7.1 If a, b ∈ Z are such that a/b is an algebraic integer
then a/b ∈ Z.

Proof. Let p(X) =
�

n

j=0 pjX
j ∈ Z[X] be a monic polynomial that vanishes

on a/b. Assume, without loss of generality, that a and b are coprime. From
p(a/b) = 0 and pn = 1 we have a

n = −
�

n−1
j=0 pjb

n−j
a
j, but the latter is

clearly divisible by b, which, since a and b are coprime, implies that b = ±1.
QED

12.8 Linear Algebra

Let V be a vector space over a field F. In this section we will prove some
useful results in linear algebra on decompositions of elements of EndF(V ) into
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convenient standard forms. Many of the arguments below would be much
simpler if we were to assume that F is algebraically closed and V is finite
dimensional.

We will say that a linear map S : V → V is semisimple if there is a basis
of V with respect to which the matrix of S is diagonal and there are only
finitely many distinct diagonal entries. For such S there is then a nonzero
polynomial p(X) for which p(S) = 0. Compare this with the definition of a
semisimple element in the algebra EndF(V ) given in Exercise 5.13.

An n × n matrix M is said to be upper triangular if Mij = 0 whenever
i > j. It is strictly upper triangular if Mij = 0 whenever i ≥ j.

An element N ∈ EndF(V ) is nilpotent if Nk = 0 for some positive integer
k. Clearly, a nilpotent that is also semisimple is 0. Moreover, the sum of two
commuting nilpotents is nilpotent.

Here is a concrete picture of nilpotent elements in terms of ordered bases:

Proposition 12.8.1 Let V �= 0 be a finite dimensional vector space, and N
a nonempty set of commuting nilpotent elements in EndF(V ). Then V has a
basis relative to which all matrices in N are strictly upper triangular.

Proof. First we show that there is a nonzero vector on which all N ∈ N
vanish. Choose N1,..., Nr in N , which span the linear span of N . We show,
by induction on r, that there is a nonzero b ∈ ∩r

i=1 kerNi. Observe that if ν
is the smallest positive integer for which N

ν1
1 = 0 then there is a vector b1

for which
N

ν1−1
1 b1 �= 0 and N

ν1
1 b1 = 0.

So N
ν1−1
1 b1 is a nonzero vector in kerN1. Since Nj commutes with N1, for

j ∈ {2, . . . , r}, we have
Nj(kerN1) ⊂ kerN1.

Hence, inductively, focusing on the subspace kerN1 and the restrictions of
N2, ..., Nr to kerN1, there is a nonzero v ∈ kerN1 on which N2,..., Nr vanish.
Hence, b1 ∈ ∩r

j=1 kerNj.
Now we use induction on n = dimF V > 1. The result that there is a basis

making all N ∈ N strictly upper triangular is valid in a trivial way for one
dimensional spaces because in this case 0 is the only nilpotent endomorphism.
Assume that n > 1 and that the result holds for dimension < n. Pick nonzero
b1 ∈ ∩r

j=1 kerNj. Let

V = V/Fb1,
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and
N j ∈ EndF(V1)

the map given by
w + Fb1 �→ Njw + Fb1.

Note that dimF V = n−1 < n, and each N i is nilpotent. So, by the induction
hypothesis, V has a basis b2,..., bn such that

N jbk =
�

2≤l<k

(N j)lkbl

for some (N j)lk ∈ F, and all j ∈ [r] and k ∈ {2, . . . , n}. Then the matrix for
each Nj relative to the basis b1,..., bn is strictly upper triangular. QED

The ladder of consequences of the Chinese Remainder Theorem we have
built is tall enough to pluck a pleasant prize, the Chevalley-Jordan decom-
position:

Theorem 12.8.1 Let V be a vector space over a field F, and T ∈ EndF(V )
satisfy p(T ) = 0 where p(X) ∈ F[X] is of the form

p(X) =
m�

j=1

(X − cj)
νj ,

where m, ν1, ..., νm are positive integers and c1, ..., cm are distinct elements of
F. Then there exist S,N ∈ EndF(V ) satisfying:

(i) S is semisimple and N is nilpotent;

(ii) SN = NS;

(iii) T = S +N ;

(iv) S and N are polynomials in T ;

(v) there is a basis of V relative to which the matrix of S is diagonal and
the matrix of N is strictly upper triangular.

If each νj = 1, that is the roots of p(X) are all distinct, then there is a basis
of V relative to which the matrix of T is diagonal; if, moreover, p(X) is a
polynomial of minimum positive degree that vanishes on T then the set of
diagonal entries is exactly {c1, . . . , cm}.
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We will prove below in Proposition 12.8.3 that the decomposition of T as
S + N here is unique. The last statement in the theorem above has been
used in the proof of Proposition 1.11.1; however, you can check this special
case more simply, without having to establish the decomposition theorem in
full.
Proof. Apply Proposition 12.4.1 with Aj being the ideal in A = F[X] gener-
ated by (X−cj)νj . Then, viewing V as an A-module by a(X)v = a(T )v for all
a(X) ∈ A, we see that V is the direct sum of the subspaces Vj = ker(T−cj)νj ,
and, moreover, there is a polynomial s(X) ∈ A such that S = s(T ) agrees
with cjI on Vj for each j ∈ [m]. Then S is semisimple. Taking N = T − S,
we have N

νj equal to 0 on Vj for all j ∈ [m], and so N is nilpotent. Since
both S and N are polynomials in T they commute with each other (which is
clear anyway on each Vj separately).

Choose, by Proposition 12.8.1 applied to just the one nilpotent N |Vj, an
ordered basis in each Vj with respect to which the matrix for N |Vj is strictly
upper triangular. Stringing together all theses bases, suitably ordered, pro-
duces a basis for V relative to whch S is diagonal and N strictly upper
triangular.

If each νj = 1 then the construction of S show that T = S on each Vj and
hence on all of V . If p is a polynomial of minimum positive degree for which
p(T ) is 0, then each Vj �= {0} (for otherwise T − cj is injective and hence has
a left inverse which implies that p(X)/(X − cj) vanishes on T ) and so every
cj appears among the diagonal matrix entries of S. QED

The definition of a semisimple element S is awkward in that it relies on
a basis for the vector space. One simple consequence, easily seen by writing
everything in terms of a basis of eigenvectors, is that ker(S−c)ν = ker(S−c)
for any c ∈ F and positive integer ν. If p(S) = 0 for some positive degree
polynomial p(X) ∈ F[X] then every eigenvalue of S is a zero of p(X) and so
there are only finitely many distinct eigenvalues of S. If W is a subspace of V
that is mapped into itself by S, then p(S|W ) = p(S)|W = 0. Suppose p(X) =�

n

j=1(X − cj)νj , with c1, ..., cm are distinct elements of F and νj are positive
integers. ThenW is the direct sum of the subspaces ker(S−cj)νj |W = Vj∩W ,
where Vj = ker(S − cj)νj = ker(S − cj). This means that W is the direct
sum of the subspaces Wj = ker(S − cj)|W . Thus, S|W is semisimple: if
S ∈ EndF(V ) maps a subspace W into itself then the restriction of S to W

is also semisimple.
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Proposition 12.8.2 Let V be a vector space over a field F and C a finite
subset of EndF(V ) consisting of semisimple elements that commute with each
other. Then there is a basis of V with respect to which the matrix of every
T ∈ C is diagonal. There exists a semisimple S ∈ EndF(V ) such that every
element of C is a polynomial in S. In particular, the sum of finitely many
commuting semisimple elements is semisimple.

For another, more abstract, take on this result, see Exercises 5.12, 5.13,
5.14.
Proof. We prove this by induction on |C|, the case where this is 1 being
clearly valid. Let n = |C| > 1 and assume that the result is valid for lower
values of |C|. Pick a nonzero S1 ∈ C; V is the direct sum of the subspaces
Vc = ker(S1− cI) with c running over F. Let S2, ..., Sn be the other elements
of C. Since each Sj commutes with S1, it maps each Vc into itself and
its restriction to Vc is, as observed before, also semisimple. But then by the
induction hypothesis each nonzero Vc has a basis of simultaneous eigenvectors
of S2, ..., Sn. Putting these bases together yields a basis of V that consists
of simultaneous eigenvectors of S1, ..., Sn. Thus, V = W1 ⊕ . . .⊕Wm, where
each Si is constant on each Wj, say Si|Wj = cijIWj

. Now choose, for each
i ∈ [n], a polynomial pi(X) ∈ F[X] such that pi(j) = cij for j ∈ [m]. Then
pi(J) = Si, where J is the linear map equal to the constant j on Wj. QED

Now we can prove the uniqueness of the Chevalley-Jordan decomposition:

Proposition 12.8.3 Let V be a vector space over a field F. If T ∈ EndF(V )
satisfies p(T ) = 0 for a polynomial p(X) ∈ F[X] that splits as a product
of linear terms X − α, then in a decomposition of T as S + N , with S

semisimple and N nilpotent, and SN = NS, the elements S and N are
uniquely determined by T .

Proof. Remarkably, this uniqueness follows from the existence of the decom-
position constructed in Theorem 12.8.1. If T = S1 +N1 with S1 semisimple,
N1 nilpotent, and S1N1 = N1S1, then S1 and N1 commute with T and hence
with S and N because these are polynomials in T . Then S − S1 = N1 − N

with the left side semisimple and the right side nilpotent, and hence both are
0. Hence S = S1 and T = T1. QED

This leads to the following sharper form of Proposition 12.8.2:

Proposition 12.8.4 Let V �= 0 be a finite dimensional vector space over a
field F and C a finite subset of EndF(V ) consisting of elements that commute
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with each other. Assume also that every T ∈ C satisfies p(T ) = 0 for some
positive degree polynomial p(X) ∈ F[X] that is a product of linear factors of
the form X−α with α drawn from F. Then there is an ordered basis b1, ..., bn
of V such that every T ∈ C has upper triangular matrix.

Proof. We prove this by induction on |C|, the case where this is 1 following
from Theorem 12.8.1. Let n = |C| > 1 and assume that the result is valid
for lower values of |C|. Then V is the direct sum of the subspaces Vj =
ker(T1 − cjI)νj , where p1(T1) = 0 for a polynomial p1(X) =

�
m

j=1(X − cj)νj ,
with cj ∈ F distinct and νj ∈ {1, 2, ...}. Let T2,..., Tn be the other elements of
C. Since each Tj commutes with T1, all elements of C map each Vj into itself.
But then by the induction hypothesis each nonzero Vj has an ordered basis
relative to which the matrices of T2, ..., Tn are upper triangular. Stringing
these bases together (ordered, say, with basis elements of Vi appearing before
the basis elements of Vj when i < j) yields an ordered basis of V relative to
which all the matrices of C are upper triangular. QED

12.9 Tensor Products

In this section R is a commutative ring with multiplicative identity element
1R. We will also use, later in the section, a possibly non-commutative ring
D.

Consider R-modules M1, ...,Mn. If N is also an R-module, a map

f : M1 × · · ·Mn → N : (v1, ..., vn) �→ f(v1, ..., vn)

is called multilinear if it is linear in each vj, with the other vi held fixed:

f(v1, ..., avk + bv
�
k
, ..., vn) = af(v1, ..., vn) + bf(v1, ..., v

�
k
, ..., vn)

for all k ∈ {1, ..., n}, v1 ∈ M1, ..., vk, v
�
k
∈ Mk, ..., vn ∈ Mn and a, b ∈ R.

Consider the set S = M1 × . . . ×Mn, and the free R-module R[S], with
the canonical injection j : S → R[S]. Inside R[S] consider the submodule J

spanned by all elements of the form

j(v1, ..., avk + bv
�
k
, ..., vn)− aj(v1, ...., vn)− bj(v1, ..., v

�
k
, ...vn)

with k ∈ {1, ..., n}, v1 ∈ M1, ..., vk, v
�
k
∈ Mk, ..., vn ∈ Mn and a, b ∈ R. The

quotient R-module
M1 ⊗ . . .⊗Mn = R[S]/J (12.48)
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is called the tensor product of the modulesM1, ...,Mn. Let τ be the composite
map

M1 × . . .×Mn → M1 ⊗ . . .⊗Mn,

obtained by composing j with the quotient map R[S] → R[S]/J . The image
of (v1, ..., vn) ∈ M1 × · · ·×Mn under τ is denoted v1 ⊗ · · ·⊗ vn:

v1 ⊗ · · ·⊗ vn = τ(v1, ..., vn). (12.49)

The tensor product construction has the following ‘universal property’: if
f : M1 × · · · × Mn → N is a multilinear map then there is a unique linear
map f1 : M1 ⊗ · · · ⊗ Mn → N such that f = f1 ◦ τ , specified simply by
requiring that

f(v1, ..., vn) = f1(v1 ⊗ ...⊗ vn),

for all v1, ..., vn ∈ M . Occasionally, the ring R needs to be stressed, and we
then write the tensor product as

M1 ⊗R · · ·⊗R Mn.

If all the modules Mi are the same module M , then the n-fold tensor product
is denoted M

⊗n:
M

⊗n = M ⊗ . . .⊗M� �� �
n-times

.

A note of caution: tensor products can be treacherous; an infamous simple
example is the tensor product of the Z-modules Q and Z2 = Z/2Z:

Q⊗ Z2 = {0},

because 1 ⊗ 1 = 1/2 ⊗ 2 = 0, but Z ⊗ Z2 � Z2 (induced by Z × Z2 → Z :
(m,n) �→ mn) even though Z is a submodule of Q.

There is a tensor product construction for two modules over a possibly
non-commutative ring. We use this in two cases: (i) tensor products over
division rings that arise in commutant duality; and (ii) the induced repre-
sentation. Let D be a ring (not necessarily commutative) with multiplicative
identity element 1D, and suppose M is a right D-module and N a left D-
module. Let J be the submodule of the Z-module M ⊗Z N spanned by all
elements of the form (md)⊗n−m⊗ (dn), with m ∈ M , n ∈ N , d ∈ D. The
quotient is the Z-module

M ⊗D N = Z[M ×N ]/J. (12.50)
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This is sometimes called the balanced tensor product. Denote the image of
(m,n) ∈ M ×N in M ⊗D N by m⊗ n. The key feature now is that

(md)⊗ n = m⊗ (dn), (12.51)

for all (m,n) ∈ M ×N and d ∈ D. The universal property for the balanced
tensor product

t : M ×N → M ⊗D N : (m,n) �→ m⊗ n (12.52)

is that if f : M×N → L is a Z-bilinear map to a Z-module L that is balanced,
in the sense that f(md, n) = f(m, dn) for all m ∈ M, d ∈ D,n ∈ N , then
there is a unique Z-linear map f1 : M ⊗D N → L such that f = f1 ◦ t.

Now suppose M is also a left R-module, for some commutative ring R

with 1, such that (am)d = a(md) for all (a,m, d) ∈ R ×M ×D. Then, for
any a ∈ R,

M ×N → M ⊗D N : (m,n) �→ (am)⊗ n (12.53)

is Z-bilinear and balanced, and so induces a unique Z-linear map specified by

la : M ⊗D N → M ⊗D N : m⊗ n �→ a(m⊗ n)
def
= (am)⊗ n. (12.54)

The uniqueness implies that la+b = la + lb, lab = la ◦ lb, and, of course, l1
is the identity map. Thus, M ⊗D N is a left R-module with multiplication
given by a(m⊗ v) = (am)⊗ v for all a ∈ R, m ∈ M and m ∈ N .

Despite the cautionary note and ‘infamous example’ described earlier,
there is the following comforting and useful result:

Theorem 12.9.1 Let D be a ring, {Mi}i∈I a family of right D-modules with
direct sum denoted M , and {Nj : j ∈ J} a family of left D-modules with direct
sum denoted N . Then the tensor product maps tij : Mi × Nj → Mi ⊗ Nj :
(m,n) �→ m⊗ n induce an isomorphism

Θ :
�

(i,j)∈I×J

Mi ⊗D Nj → M ⊗D N : ⊕i,jtij(mi, nj) �→
�

i,j

ιi(mi)⊗ ιj(nj),

(12.55)
where ιk denotes the canonical injection of the k-th component module in a
direct sum.

If each Mi is also a left R-module, where R is a commutative ring, satis-
fying

(am)d = a(md) (12.56)
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for all a ∈ R,m ∈ Mi, d ∈ D, and all the balanced tensor products are given
the left R-module structures, then Θ is an isomorphism of left R-modules.

If the right D-module M is free with basis {vi}i∈I and the left D-module
N is free with basis {wj}j∈j then M ⊗N is a free Z-module with basis {vi ⊗
wj}(i,j)∈I×J .

Note that the statement about bases applies to the D-modules M and N ,
not to the R-module structures.
Proof. By universality, the bilinear balanced map Mi × Nj → M ⊗D N :
(m,n) �→ ιi(m)⊗ ιj(n) factors through a unique Z-linear map

ιij : Mi ⊗D Nj → M ⊗D N : tij(m,n) �→ ιi(m)⊗ ιj(n). (12.57)

These maps then combine to induce the Z-linear mappingΘ on the direct sum
of the Mi⊗DNj. Since every element of M is a sum of finitely many ιi(mi)’s,
and every element of N is a sum of finitely many ιj(nj)’s it follows that Θ
is surjective. Let πi denote the canonical projection on the i-component in a
direct sum. The map

M ×N → Mi ⊗D Nj : (m,n) �→ πi(m)⊗ πj(n)

is Z-bilinear and balanced and induces a Z-linear map πij : M ⊗D N →
Mi ⊗D Nj. There is also the Z-linear map ιij in (12.57). Now the composite
πk ◦ ιl is 0 if k �= l and is the identity map if k = l. Hence,

πij ◦ ιi�j� =
�
idMi⊗DNj

if (i, j) = (i�, j�);

0 if (i, j) �= (i�, j�).
(12.58)

If x ∈
�

(i,j)∈I×J
Mi ⊗D Nj then, with xij being the Mi ⊗D Nj-component

of x, the relations (12.58) imply xij = πij

�
Θ(x)

�
. Hence, if Θ(x) = 0 then

x = 0.
If all the modules involved are left R-modules satisfying (12.56) then Θ

is R-linear as well. QED
For more on balanced tensor products see Chevalley [13].

12.10 Extension of Base Ring

Let R be a subring of a commutative ring R1, with the multiplicative identity
1 of R1 lying in R. Then R1 is an R-module in the natural way. If M is an
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R-module then we have the tensor product product

R1 ⊗R M,

which is an R-module, to start with. But then it becomes also an R1-module
by means of the multiplication-by-scalar map

R1 × (R1 ⊗M) → R1 ⊗M : (a, b⊗m) �→ (ab)⊗m

that is induced, for each fixed a ∈ R1, from the R-bilinear map fa : R1×M →
R1 ⊗ M : (b,m) �→ (ab) ⊗ m. With this R1-module structure, we denote
R1 ⊗R M by R1M . Dispensing with ⊗, the typical element of R1M looks
like

a1m1 + · · ·+ akmk,

where a1, ..., ak ∈ R1 and m1, ...,mk ∈ M . Pleasantly confirming intuition,
R1M is free with finite basis if M is free with finite basis:

Theorem 12.10.1 Suppose R is a subring of a commutative ring R1 whose
multiplicative identity 1 lies in R. If M is a free R-module with basis b1,...,
bn, then R1 ⊗R M is a free R1-module with basis 1⊗ b1,..., 1⊗ bn.

Proof. View R
n

1 first as an R-module. The mapping

R1 ×M → R
n

1 : (a, c1b1 + · · ·+ cnbn) �→ (ac1, ..., acn),

with c1, . . . , cn ∈ R, is R-bilinear, and hence induces an R-linear mapping

L : R1 ⊗R M → R
n

1 : a⊗ (c1b1 + · · ·+ cnbn) �→ (ac1, . . . , acn).

Viewing now both R1 ⊗R M and R
n

1 as R1-modules, L is clearly R1-linear.
Next we observe that the map L is invertible, with inverse given by

R
n

1 → R1 ⊗R M : (x1, . . . , xn) �→ x1 ⊗ b1 + · · ·+ xn ⊗ bn.

Thus, L is an isomorphism of R1 ⊗R M with the free R1-module R
n

1 . The
elements (1, 0, . . . , 0),..., (0, . . . , 1), forming a basis of Rn

1 , are carried by L
−1

to 1⊗ b1, ..., 1⊗ bn in R1M . This proves that R1M is a free R1-module and
1⊗ b1, ..., 1⊗ bn form a basis of R1M . QED
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12.11 Determinants and Traces of Matrices

The determinant of a matrix M = [Mij]i,j∈[n], with entries Mij in a commu-
tative ring R, is defined to be

detM =
�

σ∈Sn

sgn(σ)M1σ(1) . . .Mnσ(n). (12.59)

As a special case, the determinant of the identity matrix I is 1. Replacing
σ by σ

−1 in (12.59) shows that the determinant of M remains unchanged if
rows and columns are interchanged:

detM = detM t
. (12.60)

If the j-th row and k-th rows of M are identical, for some distinct j, k ∈ [n],
then in the sum (12.59) the term for σ ∈ Sn cancels the one for σ ◦ (j k), and
so detM is 0 in this case. Thus, a matrix with two rows or two columns has
determinant 0.

Continuing with (12.59), for any r ∈ [n], we have

(detM) =
n�

j=1

MrjM̃jr,

where M̃jr is a polynomial in the entries Mkl, with k ∈ [n] − {r} and l ∈
[n] − {j} with coefficients being ±1; more precisely, M̃rj is (−1)r+j times
the determinant of a matrix constructed by removing the r-th row and j-th
colum from M . In fact, a little checking shows that

n�

j=1

MrjM̃js = (detM)δrs,

for all r, s ∈ [n]. Thus, if detM is invertible in R then the matrix M is
invertible, with inverse being the matrix whose (r, s)-entry is (detM)−1

M̃rs.
The trace of a matrix M = [Mij]i,j∈[n], with entries Mij in a commutative

ring R is the sum of the diagonal entries:

Tr (M) =
m�

j=1

Mjj. (12.61)

It is clear that the map Tr from the ring of n× n matrices to R is R-linear.
In the next section we will explore additional perspectives and properties

of the determinant and trace.
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12.12 Exterior Powers

Let E be an R-module, where R is a commutative ring. For any positive
integer m and any R-module L, a map f : Em → L is said to be alternating
if it is multilinear and f(v1, . . . , vm) is 0 whenever (v1, . . . , vm) ∈ E

m has
vi = vj for some distinct i, j ∈ [m]. We will construct an R-module Λm

E

and an alternating map

w : Em → Λm
E : (v1, . . . , vm) �→ v1 ∧ . . . ∧ vm,

which is universal, in the sense that if L is any R-module and f : Em → L

is alternating then there is a unique R-linear map f∗ : Λm
E → L satisfying

f∗ ◦ w = f . The construction is very similar to the construction of E⊗m in
section 12.9. Let Em be the free R-module on the set E

m, and Am be the
subspace spanned by elements of the following forms:

(v1, . . . , vj + v
�
j
, . . . , vm)− (v1, . . . , vj, . . . , vm)− (v1, . . . , v

�
j
, . . . , vm)

(v1, . . . , avj, . . . , vm)− a(v1, . . . , vj, . . . , vm)

(v1, . . . , vm) with vi = vk for some distinct i, k ∈ [m],

(12.62)

where the elements v1, . . . , vm, v�j run over E and a runs over R. We define
the exterior power Λm

E to be the quotient R-module

Λm
E = Em/Am, (12.63)

taken together with the map

w : Em → Λm
E : (v1, . . . , vm) �→ qj(v1, . . . , vm), (12.64)

where j : Em → Em is the canonical injection of Em into the free module Em,
and q : Em → Em/Am is the quotient map. The definition of Am is designed
to ensure that w is indeed an alternating map and satisfies the universal
property mentioned above. If E∧m is an R-module and w∗ : Em → E

∧m is
alternating and also satisfies the universal property mentioned above then
there are unique R-linear maps i : Λm

E → E
∧m and i0 : E∧m → Λm

E such
that w∗ = i ◦ w and w = i0 ◦ w∗, and then, examining the composites i ◦ i0
and i0 ◦ i in light of, again, the universal property, we see that both of these
are the identities on their respective domains. Thus, the universal property
pins down the exterior power uniquely in this sense.
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Now assume that E is a free R-module and suppose it has a finite basis
consisting of distinct elements y1, . . . , yn. Fix m ∈ [n]. Let E∧m be the free
R-module spanned by the

�
n

m

�
indeterminates yI , one for each m-element

subset I ⊂ [n]. Define an alternating map w∗ : Em → E
∧m by requiring that

w∗(yi1 , . . . , yim) = yI

if i1 < . . . < im are the elements of I in increasing order. If L is an R-module
and f : Em → L is alternating then f is completely specified by its values
on (yi1 , . . . , yim) for all i1 < . . . < im in [n], and so f = f∗ ◦ w∗, where f∗ is
the linear map E

∧m → L specified by requiring that f∗(yI) = f(yi1 , . . . , yim)
for all I = {i1 < . . . < im} ⊂ [n]. Thus, f∗ is uniquely specified by requiring
that f = f∗ ◦ w∗. Thus, E∧m is naturally isomorphic to Λm

E, as noted in
the preceding paragraph. Thus, Λm

E is free with a basis consisting of
�
n

m

�

elements. In particular, Λn
E is free with a basis containing just one element.

For any endomorphism A ∈ EndR(E), the map

E
m → Λm

E : (v1, . . . , vm) �→ Av1 ∧ . . . ∧ Avm

is alternating, and, consequently, induces a unique endomorphism Λm
A ∈

EndR(Λm
E). If E is free with a basis containng n elements, so thay Λn

E

is free with a basis consisting of 1 elememt, then Λn
A is multiplication by a

unique element ∆(A) of R:

(Λn
A)(u) = ∆(A)u for all u ∈ Λn

E. (12.65)

To determine the multiplier ∆(A) we can work out the effect of Λn
A on

y1 ∧ . . . ∧ yn, where y1, . . . , yn is a basis of E:

Ay1 ∧ . . . ∧ Ayn = det[Aij] y1 ∧ . . . ∧ yn, (12.66)

by a simple calculation. Hence ∆(A) is called the determinant of the endo-
morphism A, and is equal to the determinant of the matrix of A with respect
to any basis of E. It is denoted detA:

detA = ∆(A) = det[Aij].

In particular, the determinant is independent of the choice of basis. More-
over, it is readily seen from (12.65) that

det(AB) = det(A) det(B) (12.67)
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for all A,B ∈ EndR(E) where, let us recall, E is a free R-module with finite
basis. From (12.67) it follows thatif A is invertible then its determinant is
not 0.

If M and N are n × n matrices with entries in a commutative ring R,
then M and N naturally specify endomorphisms, also denoted by M and
N , of E = R

n

1 , where R1 = R[Mij, Nkl]i,j,k,l∈[n], and so (12.67) implies the
corresponding identity for determinants of matrices:

det(MN) = det(M) det(N).

If A ∈ EndR(E), where E if a free R-module, where R is a commutative
ring, having a basis with n elements, and t is an indeterminate, we have, for
any v1, . . . , vn ∈ E,

[Λm(tI + A)](v1 ∧ . . . vn) =
n�

k=0

t
k
cn−k(A)(v1 ∧ . . . vn), (12.68)

for certain endomorphisms c0(A), . . . , cn(A) ∈ EndR

�
Λn

E
�
; we spare our-

selves the notational change/precision needed in making (12.68) meaningful
for an indeterminate t rather than for t in R. For example, cn(A) = Λn

A,
and

c1(A)(v1 ∧ . . . ∧ vn) =

Av1 ∧ v2 ∧ . . . ∧ vn + v1 ∧ Av2 ∧ v3 ∧ . . . ∧ vn + . . .+ v1 ∧ v2 ∧ . . . ∧ Avn

(12.69)

Each cj(A) is multiplication by a scalar, which we also denoted by cj(A).
Taking the vi in (12.69) to form a basis of E, it follows readily from (12.69)
that c1(A) is the trace of the matrix [Aij] of A with respect to the basis {vi}

c1(A) = Tr [Aij]i,j∈[n] =
n�

i=1

Aii,

and so this may be called the trace of the endomorphism A, and denoted
TrA:

Tr (A)
def
= Tr [Aij]i,j∈[n] =

n�

i=1

Aii. (12.70)

Being equal to the multiplier c1(A), is actually independent of the choice of
basis of E. More generally, cj(A), for j ∈ [n], is equal to cj([Ars]), where cj
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this is defined for an n × n matrix [Mrs]r,s∈[n] with abstract indeterminate
entries Mrs by means of the identity:

det(tI +M) =
n�

k=0

t
k
cn−k(M), (12.71)

with t being, again, an indeterinate. Note that cj(M) is a polynomial in
the entries Mrs with integer coefficients; indeed, looking back at (12.68)
makes it easier to see that cj(M) is the sum of determinants of all the j × j

principal minors (square matrices formed by removing n−j columns and the
corresponding rows from M).

Note that

c0(M) = 1, cn(M) = detM,

for any n× n matrix M .
Now consider n × n matrices [Aij] and [Bij], whose entries are abstract

symbols (indeterminates). Let t be another indeterminate. Then, working
over the field F of fractions of the ring Z[Aij, Bkl]i,j,k,l∈[n], we have

det(tI + AB) = detB−1
B(tI + AB)

= detB(tI + AB)B−1 (by (12.67))

= det(tI +BA).

(12.72)

This shows that

cj(AB) = cj(BA) for all j ∈ {0, 1, . . . , n}. (12.73)

Since this holds for matrices with entries that are indeterminates it holds
also for matrices with entries in any commutative ring (by realizing the in-
determinates in this ring). Going further, since cj of an endomorphism is
equal to cj of the matrix of the endomorphism relative to any basis, (12.73)
holds also when A and B are endomorphisms of an R-module E that has a
basis consisting of n elements, where n is any positive integer. Taking j = 1
produces the following fundamental property of the trace

Tr (AB) = Tr (BA), (12.74)

which can also be verified directly from the definition of trace of a matrix.
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If T is an upper (or lower) triangular matrix then detA is the product of
its diagonal entries. More generally,

cj(T ) = sj(T11, . . . , Tnn) =
�

P∈Pj

�

i∈P

Tii (12.75)

where Pj is the set of all j-element subsets of [n]. The polynomials sj are
called the Newton polynomials. They appear traditionally in studying roots
of equations, via the identity:

n�

i=1

(X − αi) =
n�

j=0

(−1)n−j
sn−j(α1, . . . ,αn)X

j (12.76)

(Comparing with (12.71 shows the relationship with cj for an upper/lower
triangular matrix.)

12.13 Eigenvalues and Eigenvectors

In this section V is a vector space over a field F, with

n = dimF V ≥ 1.

An eigenvalue of an endomorphism T ∈ EndF(V ) is an element λ ∈ F for
which there exists a nonzero v ∈ V satisfying

Tv = λv. (12.77)

Thus, an element λ ∈ F is an eigenvalue of T if and only if ker(T − λI) �= 0,
which is equivalent to T −λI not being invertible. Hence, λ is an eigenvalue
of T if and only if det(T − λI) = 0. Using (12.71), this reads:

n�

j=0

(−1)jcn−j(T )λ
j = 0. (12.78)

If the field F is algebraically closed, this equation has n roots (possibily not
all distinct), and so in this case every endomorphism of V has an eigenvalue.
Looking back at Theorem 12.8.1 shows that when F is algebraically closed
there is a basis of V relative to which the matrix of T is upper triangular.
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Chapter 13

Selected Solutions

1.10 Let Vn be a 1-dimensional vector space, for each n ∈ N = {1, 2, 3, ...},
V =

�
n∈N Vn, and em the element of V that has 0 in all entries except

them-th, in which the entry is 1. LetN be the subspace of V � consisting
of all φ such that {m ∈ N : φ(em) �= 0} is finite (thus, N is isomorphic
to V ). Then N is a proper subspace of V � but the annihilator N0 is all
of V .

1.11 (i) Let S : V → V
�� be specified by (Sv)(φ) = φ(v) for all v ∈ V and

φ ∈ V
�. Then, with ρ denoting the representation of G on V , and

primes denoting duals,

S (ρ(g)v) (φ) = φ (ρ(g)v) = (Sv)(ρ�(g−1)φ),

for all g ∈ G, which says that Sρ(g) = ρ
��(g)S. When V is finite

dimensional, S is a vector space isomorphism. (ii) Let T : V → W be
an intertwining map. Then the dual map T

� : W � → V
� : φ �→ φT is an

intertwining map:

(T �
ρ
�
W
(g)) (φ) = φρW (g−1)T = φTρV (g

−1) = (ρ�
V
(g)T �) (φ),

for all φ ∈ W
�. When V and W are finite dimensional, T is an iso-

morphism of vector spaces if and only if T � is an isomorphism of vector
spaces.

1.14 Among all invariant subspaces of V , choose V1 to be one of minimum
positive dimension. Then V1 is irreducible. Proceed with V/V1.

343
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1.18 (ii) For any v, w ∈ V we have

�S∗v, S∗w� = S(S∗v, w) = S(w, S∗v) = �w, S2
∗v�, (13.1)

and interchanging v and w gives

�S2
∗w, v� = �v, S2

∗w� = �S∗w, S∗v� = �S∗v, S∗w�.

(iii) By (ii), �S2
∗v, v� = �S∗v, S∗v� ≥ 0. Since S �= 0 it is nondegenerate,

by Theorem 1.9.1. Looking at the diagonal form matrix of S∗ it
follows that no diagonal entry is 0, for otherwise that entire column
would be 0. In particular, S∗ is invertible.

(iv) Choose a polynomial P (X) such that P (t) =
√
t for each diagonal

entry t in the diagonal form of the matrix for S2
∗ . Then S0 = P (S2

∗)
and hence commutes with S∗ as well as with all ρ(g), because ρ(g)
commutes with S

2
∗ .

(v) It is clear that C = S∗S
−1
0 is conjugate linear. Next, since S0

commutes with S∗, we have C
2 = S

2
∗S

−2
0 = I. Since S∗ and S0

commute with all ρ(g), so does C.

(vi) Write any v ∈ V as

v =
1

2
(v + Cv) + i

1

2i
(v − Cv)

we observe that the first term is fixed by C and so is 1
2i(v − Cv).

Thus V = VR + iVR, and the sum is direct because VR ∩ iVR = 0
since C acts as I on VR and acts as −I on iVR.

(vii) Since C commutes with ρ(g) we have ρ(g)VR ⊂ VR and hence also
ρ(g)iVR ⊂ iVR. Choosing a real basis of VR we have automatically
a complex basis of V , and since ρ(g) maps VR real-linearly into
itsef, the matrix of ρ(g) in this basis has all entries real.

(viii) Let ρ be a complex irreducible representation of a finite group G

on a vector space V . Suppose u1, ..., ud is a basis of V relative to
which all entries of all matrices ρ(g) are real. Let VR be the real
linear span of u1, ..., ud. Then ρ restricts to a real representation
on VR, and V is the complexification V = VR + iVR. Let B be a
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real inner product on VR and take SR to be the real bilinear form
on VR obtained by symmetrizing B:

SR(v, w) =
�

g∈G

B
�
ρ(g)v, ρ(g)w

�

for all v, w ∈ VR. Then SR is G-invariant and SR(v, v) ≥ 0, with
equality if and only if v = 0. Now extend SR complex-bilinearly
to a complex bilinear form on V . Clearly, S is still G-invariant,
nonzero, and symmetric.

(ix) This is simply an enumeration of all the cases already noted.

1.19 Pick g ∈ G and choose a basis v1, ..., vd of V such that ρ(g)vj = λjvj

for all j ∈ [d] = {1, ..., d}. Then the vectors vj ⊗ vj, for j ∈ [d], and
vj ⊗vk+vk⊗vj, for 1 ≤ j < k ≤ d form a basis of V ⊗̂2, and the matrix
of ρs(g) for this basis is diagonal with entries λ2

j
, for j ∈ [d], and λjλk

for j < k in [d], whence χρs
(g) is

�
j
λ
2
j
+
�

j<k
λjλk, and so

χρs
(g) = [χρ(g

2) + χρ(g)
2]/2. (13.2)

This was noted by Frobenius and Schur [35, eqn (3), section 5] who
refer to earlier work by Molien.

1.20 ρ(g) is given by a diagonal matrix with respect to some basis, with
roots of unity along the diagonal, and so |χρ(g)| ≤ dρ with equality if
and only if all the diagonal entries of ρ(g) are equal.

2.1 Character Table for D5 with generators c and r satisfying c
5 = r

2 = e

and rcr
−1 = c

−1:

2.4 Let c = (123) and r = (12), and specify the representation ρ1 on F
2 by

the matrices

ρ1(c) =

�
−1 −1
1 0

�
, ρ1(r) =

�
0 1
1 0

�
. (13.3)

If v = (x, y) ∈ F
2 is mapped into a multiple λ(x, y) by ρ1(r) then

λ
2 = 1, and so λ ∈ {1,−1}. If λ = 1 then x = y and we can take

both to be 1; then ρ1(c)v = (−2, 1), which is a multiple of v if and
only if 3 = 0 in F. If λ = −1 then we can take v = (1,−1) and
so ρ1(c)v = (0, 1) which, again, is not a multiple of v. Thus, ρ1 is
irreducible, as long as 3 �= 0 in F.
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1 2 2 1
e c c

2
r

ρ+ 1 1 1 1

ρ− 1 1 1 −1

ρ1 2 −1+
√
5

2 −1+
√
5

2 0

ρ2 2 −1+
√
5

2
−1+

√
5

2 0

Table 13.1: Character Table for D5

3.2 Choose g not the identity in G, a = g − 1 and b = 1 + g + · · · + g
n−1

where n = |G|; then ab = 0.

3.3 If v ∈ F[G] then vs = �(v)s, where � : F[G] → F :
�

g∈G x(g)g �→�
g∈G x(g). Thus, F[G]s = Fs. Since s

2 = 0, the submodule F[G]s
contains no nonzero idempotent and hence has no complement.

3.4 It is checked directly that � is a ring homomorphism. Here is a more
‘fundamental’ argument. Let i : G →< G >R: g �→ i(g) be the free
R-module over the set G. Then the map G → R : g �→ 1 induces a ring
homomorphism �1 :< G >R→ R, carrying i(g) to g, for every g ∈ G.
Now R[G] is the quotient of < G >R by the two sided ideal generated
by elements of the form i(g)i(h)− i(gh), and �1 is 0 on such elements.
Hence, with q :< G >R→ R[G] denoting the quotient map, the induced
map � : R[G] → R, carrying q(x) to �1(x) for every x ∈< G >R, is a
ring homomorphism. If v ∈ ker � then v =

�
g
xgg, with

�
g
xg = 0,

and then v =
�

g
xg(g−1). The coefficient of any g �= e in

�
g
λg(g−1)

is λg and so this is 0 if
�

g
λg(g − 1) = 0.

3.5 The multiplicative structure of the center of F[D5] is specified through:

where C = c+ c
4, D = c

2 + c
3, and R = (1 + c+ c

2 + c
3 + c

4)r.

3.6 The central idempotents of F[D5], where F has characteristic 0 and
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1 C D R

1 1 C D R

C C 2 +D C +D 2R

D D C +D 2 + C 2R

R R 2R 2R 5(1 + C +D)

Table 13.2: Multiplication in the center of F[D5]

contains
√
5, are:

0

u+ =
1

10
[1 + C +D +R] and u− =

1

10
[1 + C +D −R]

u1 =
1

10

�
4 + (

√
5− 1)C − (

√
5 + 1)D

�

u2 =
1

10

�
4− (

√
5 + 1)C + (

√
5− 1)D

�

u+ + u−, u+ + u1, u+ + u2, u− + u1, u− + u2, u1 + u2

u+ + u− + u1, u+ + u− + u2, u+ + u1 + u2, u− + u1 + u2

u+ + u− + u1 + u2 = 1
(13.4)

where notation is as in 3.3.

3.7 See Lemma 7.1.1.

3.10 Subtract the first column from all the other columns. This transforms
the Vandermonde determinant to

det




X2 −X1 . . . Xn −X1

... . . .
...

X
n−1
2 −X

n−1
1 . . . X

n−1
n

−X
n−1
1



 .
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Now factor out
�

1<k≤n
(Xk −X1) to obtain

det





1 . . . 1
X2 +X1 . . . Xn +X1

... . . .
...

X
n−2
2 +X

n−3
2 X1 + . . .+X

n−2
1 . . . X

n−2
n

+X
n−3
n

X1 + . . .+X
n−2
1




.

Subtract X1 times each row, except the last, from the next row, to re-
duce to the Vandermonde determinant in X2,...,Xn. Thus, inductively,
we have the full factorization

�
1≤j<k≤n

(Xk −Xj). Alternatively, it is
apparent that if Xi = Xj, in some realization of the indeterminates,
then the determinant is 0, and so the determinant is a multiple of�

1≤j<k≤n
(Xk −Xj); comparing degrees and coefficients now yields the

identity.

4.1 I : F[G] → V : x �→ xv has a nonzero submodule of V as image and
so I is surjective. Let L0 ⊂ F[G] be a complement to the submodule
ker I. Then I0 = I|L0 : L0 → V is an isomorphism of F[G]-modules.

4.2 Multiply the i-th row of D = det[Xi−jmodn] by θ
i, where θ

n = 1, and
add all rows to obtain the factor X0 +X1θ + · · · +Xn−1θ

n−1, and the
product of these n factors, one for each n-th root θ ∈ {1, η, ..., ηn−1},
is a monic polynomial in X0 (with coefficients in Z[X1, ..., Xn−1]) of
degree n just as D is. Alternatively, D applied to the column vector

u =





1
θ

...
θ
n−1




, for θ any of the n n-th roots of unity, is (X0 + X1θ +

· · · + Xn−1θ
n−1) times u, which shows that taking as basis of Cn the

n vectors u, the matrix is diagonalized with diagonal entries being the
factors X0 +X1θ + · · ·+Xn−1θ

n−1.

4.3 Let R(g) : x �→ gx and Rr(g) : x �→ xg, as linear maps on F[G]. Using
the elements of G as a basis for F[G], we have the matrix entries

R(g)ab = δg,ab−1

Rr(h)ab = δh,b−1a.
(13.5)
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So the group matrices, with variables X· and Y·, for the group G and
the opposite group G

opp are

DG(X)
def
=

�

g

XgR(g) = [Xab−1 ]a,b∈G

DGopp(Y )
def
=

�

g

YgRr(g) = [Yb−1a]a,b∈G.
(13.6)

Since each R(g) commutes with each Rr(h), the group matrix DG(X)
commutes with DGopp(Y ).

4.4 Let pi(X) ∈ F[X] be a polynomial of positive degree for which pi(Mi) =
0, and let F1 be the extension of F obtained by adjoining all roots
of the polynomial p1(X) . . . pm(X). Since the matrices Mi commute
with each other, the upper triangular form result in Proposition 12.8.4
shows that there is a basis of Fm

1 relative to which each Mi, viewed
as an endomorphism of F

m

1 , is upper triangular. Let λi1,..., λim be
the diagonal entries for the matrix of Mi in this basis; then FZG, re-
expressed in this basis, is upper triangular with the diagonal entry at
(j, j) being

�
r

i=1 λijXi, and so

detFZG =
r�

j=1

�
r�

i=1

λijXi

�
.

4.8 Any 1-dimensional representation ρ of G generates a 1-dimensional
representation ρ0 of G/G

� given by ρ0(xG�) = ρ(x), and every 1-
dimensional representation ofG/G

� arises in this way from a 1-dimensional
representation of G. Since G/G

� is abelian the number of inequivalent
1-dimensional representations of G/G

�, over the algebraically closed
field F in which |G| and hence |G/G

�| is not 0, is |G/G
�|.

4.10 Let A = Q[G], and let Ac be a complementary subspace to Ay, so that
A = Ay ⊕ Ac. Suppose y

2 = γy. The trace of Ty : A → A : x �→ xy is,
on one hand (by considering g �→ gy), |G|ye = |G|, and it is also equal
to 0 + γ dimQ(Ay), because Ty maps Ac into the complementary space
Ay, and on Ay it acts as multiplication by γ. So

γ = γye = (y2)e =
�

g

ygyg−1 ∈ Z

is a positive integer divisor of |G|, and (γ−1
y)2 = γ

−1
y.
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4.11 We have huτ = τ(h)uτ for every h ∈ G. So F[G]uτ = Fuτ is indecom-
posable.

4.12 Examining the coefficient of g on both sides of the relation gy = y we
have ye = yg.

4.13 Let � : F[G] → F :
�

g
xgg �→

�
g
xg be the augmentation map, which

is a homomorphism of rings. Then ker � is a proper nonzero ideal in
F[G]. If F[G] were semisimple then there would be an idempotent u

such that ker � = F[G]u. For any g ∈ G, the element g − 1 is in ker �
and so (g − 1)u = g − 1, which means (g − 1)w = 0, where w = 1− u,
and this means gw = w. But then, as in 4.12 , the coefficient wg of
g in w is we. This being true for all g ∈ G, the element w must be
0 because G is infinite and, by definition, elements of F[G] are finite
linear combinations of elements of G. Hence u = 1, which contradicts
ker � �= F[G].

4.14 Expressing E0 as the union of disjoint orbits Gx, for x ∈ E0, and noting
that the number of elements in each orbit is a power of p, and {0} is
a one-element orbit, there are at least p one-element orbits. (See the
discussion around equation (12.11).) In particular, there is a nonzero
element w ∈ E0 such that Gw = {w}, and so Rw = R[G]w is an R[G]-
submodule of E, hence equal to E if E is simple. Since Gw = {w} the
action of G on E is trivial.

4.15 Assume F has characteristic p > 0 and |G| = p
n for some positive

integer n. Let y be a nonzero element in a simple left ideal in F[G][G].
Then, by Exercise 4. 14, gy = y for all g ∈ G, and so, by Exercise 4. 12
, y = yes, where s =

�
g
g. Thus Fs is the unique simple left (and

right) ideal in F[G]. In particular, remarkably, every nonzero left ideal
in F[G] contains s. Hence F[G] cannot be the direct sum of two nonzero
left ideals. Let M be a maximal ideal in F[G], and q : F[G] → F[G]/M
the quotient map. The quotient F[G]/M is a simple module over F[G].
By Exercise 4.14, G acts trivially on the simple F[G]-module F[G]/M .
Hence gx − x ∈ M for all g ∈ G and all x ∈ F[G]. In particular,
g − 1 ∈ M . But the elements g − 1 span ker �. So ker � ⊂ M . Since
ker � is a maximal ideal, it follows that M is a maximal ideal. In the
converse direction, assume F has characteristic p > 0, G a finite group,
and F[G] is indecomposable. Suppose q �= p is a prime divisor of |G|;
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then there is an element x ∈ G of order q, and y = q
−1

�
q−1
k=0 x

k is a
nonzero idempotent not equal to 1. The left ideals F[G]y and F[G](1−y)
are nonzero and complementary.

5.1 (a) Is Z a semisimple ring? No. Any ideal in Z is of the form aZ for
some a ∈ Z, and aZ ⊂ bZ if and only if a is an integer multiple of
b; hence Z contains no simple ideal.

(b) Is Q a semisimple ring? Yes. In a field, any nonzero ideal is the
full field itself, and so the field is simple and semisimple.

(c) Is a subring of a semisimple ring also semisimple? No, by (a) and
(b).

5.2 The matrix Ma,b =

�
a b

0 a

�
is an idempotent if and only if it is either

0 or I, and so the nonzero left ideal L = {M0,b : b ∈ C} contains no
nonzero idempotent and therefore cannot have a complement.

5.3 If a is a nonzero element in a commutative simple ring B then aB,
being a nonzero two sided ideal in B, is B, and so ab = 1 for some
a ∈ B.

5.5 Let B = Matrn(D) be the algebra of n×n matrices over a division ring
D.

(a) Let e1, ..., en be the standard basis of Dn, and Eij ∈ Matrn(D) be
the matrix all of whose columns are 0 except the j-th, which is
ei. Let T ∈ Lj be nonzero; then Tlj �= 0 for some l ∈ [n] and then
T

−1
lj

EilT = Eij for every i ∈ [n] and so Lj = BT . Hence Lj is a
simple left ideal.

(b) Identify the matrix ring isomorphically with EndD(Dn), viewing
D

n as a right D-module (or vector space), by considering T ∈ B

as the map D
n → D

n : v �→ Tv, with Tv obtained by ma-
trix multiplication. Choose S ∈ L with, say, the (l, k)-th en-
try nonzero; then T = E1lS is a nonzero element of L with all
rows other than the first being 0. The map T1 : D

n → D :
(a1, . . . , an) �→

�
n

j=1 T1jaj is surjective and a D-linear map of
right D-modules. Pick b1 ∈ D

n with T1b1 = 1; then, for any
v ∈ D

n we have v − b1(T1v) ∈ kerT1, and so the right D-module
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D
n is the direct sum of kerT1 and b1D. A basis of kerT1, to-

gether with b1, forms a basis of Dn, and so dimD kerT1 = n − 1.
Choose a basis b2, . . . , bn of kerT1. Now L = BT and so all
elements of L vanish on b2, . . . , bn. By the argument for (a),
{T ∈ B : Tb2 = · · · = Tbn = 0} is a simple left ideal, and
therefore is equal to L.

(c) Let Eij be the matrix with (i, j)-th entry 1 and all other entries
0. Then each Ejj is an idempotent, generates the simple left ideal
Lj = BEjj, and EjjEkk = 0 if j �= k.

5.7 Assume (i), and suppose f : Ay1 → Ay2 is A-linear, where, by semisim-
plicity, yi is an idempotent with Li = Ayi. Then f(ay1) = f(ay1y1) =
ay1f(y1) ∈ L1L2 = 0, and so (ii) holds. Next assume L1L2 �= 0; then
y1by2 �= 0 for some b ∈ A and so the map Ay1 → Ay2 : x �→ xby2

is a nonzero A-linear map between simple modules and is hence an
isomorphism. Equivalence with (iii) follows by symmetry.

5.8 Assume (i), and suppose f : Av1 → Av2 is A-linear, where, by semisim-
plicity, vi is an idempotent with Ni = Avi. Then f(av1) = f(av1v1) =
av1f(v1) ∈ N1N2 = 0, and so (ii) holds. Next assume N1N2 �= 0; then
v1bv2 �= 0 for some b ∈ A and so the map Av1 → Av2 : x �→ xbv2 is
a nonzero A-linear map. Equivalence with (iii) follows by symmetry.
Equivalence of (ii) and (iv) is seen by decomposing N1 and N2 into
simple submodules and observing that an A-linear map f : N1 → N2 is
nonzero if and only if its restriction to some simple submodule L1 ⊂ N1

is nonzero and hence an isomorphism onto f(L1) ⊂ N2.

5.9 For a0 ∈ A with v = ua0, the map Au → Av : x �→ xa0 is a nonzero
A-linear map and hence an isomorphism.

5.11 It is clear that Du is closed under addition and multiplication, and
uuu = u �= 0 is the multiplicative identity in Du. Next, if uxu �= 0 then
the map fx : Au → Au : w �→ wuxu is A-linear and nonzero, and hence,
by Schur’s Lemma, fx is surjective; thus there exists y ∈ A such that
yuuxu = u and then (uyu)(uxu) = u. Thus every element b ∈ Du has a
left inverse bL; then (bL)L = (bL)Lu = (bL)L(bLb) = [(bL)LbL]b = ub = b.

5.12 Suppose a1, ..., am are the distinct idempotents in I, and let G be the set
of all nonzero elements x1 . . . xm where xj is either aj or 1−aj. Then G
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consists of orthogonal idempotents adding up to
�

m

j=1(aj +1−aj) = 1.
Next let Gj be the set of nonzero elements of the form x1 . . . xm where
xi ∈ {ai, 1−ai} for each i except that xj = aj. Then the elements of Gj

add up to 1 · aj = aj. Moreover, the elements of ∪m

j=1Gj are mutually
orthogonal. Thus, aja = 0 for all a ∈ Gk with k �= j, and aja = a

for all a ∈ Gj, and so if aj is a sum of elements of elements in G then
multiplying by aj makes every term in the sum 0 except those coming
from Gj which remain as they are; hence the sum of the terms coming
from outside Gj is 0, but if a sum of orthogonal idempotents is 0 then
each idempotent appearing in the sum is 0. This proves uniqueness of
decomposition.

5.13 For any polynomial p(X) ∈ F[X] we have p(s) =
�

m

k=1 p(ck)ek. Choose
the polynomials pj(X) such that pj(ck) = δjk; for example, p1(X) =
(X − c2)...(X − cm)/

�
m

k=2(c1 − ck). Then pj(s) = ej. The subset B of
A consisting of all elements of the form p(s), with p(X) running over
F[X], is just the F-linear span of e1, ..., em, and this is closed under
addition and multiplication, has e1 + · · · + em as the multiplicative
identity, and is the sum of the simple ideals Bej = Fej.

5.14 Let c1, . . . , cN be the distinct elements of C, and choose, for each j ∈
[N ], orthogonal nonzero idempotents ej1, ..., ejnj

such that cj is an F-
linear combination of the eji. By Problem 13, each eji is a polynomial
in cj, and so all the eji, for all j and i, commute with each other. Then
by Problem 12 there are orthogonal nonzero idempotents e1, ..., eM such
that each eji is a sum of certain of the er’s, and so each cj is an F-linear
combination of the ei’s.

5.15 Using the isomorphism of rings A �
�

i∈R EndCi
(Li) : a �→ [ai]i∈R, an

element a ∈ A is an idempotent if and only if each of its components
ai ∈ EndCi

(Li) is an idempotent, that is, a projection map. If the
rank of the block matrix [ai] were not 1, then we could write ai as
a sum of two nonzero orthogonal projections, and so a would not be
indecomposable. Conversely, if the rank of [ai]i∈R is 1 then a is clearly
indecomposable.

5.16 The map A →
�

s

i=1 EndF(Li) : x �→ (x1, ..., xs) is an isomorphism,
where xi = ρi(x). Then for each relevant triple (i0, j0, k0) there is a
unique element a ∈ A such that that ρi(a) is given by the di × di
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matrix whose jk entry is δii0δjj0δkk0 . Therefore, the functions ρi,jk are
linearly independent over F. The characters, being made up of sums of
these matrix entries, are then also linearly independent.

5.17 If u and v belong to different Ai then uv = 0. Suppose then that u and
v both belong to the same Ai. Then we may as well assume that they
are di × di matrices over Ci = EndA(Li), where di = dimF(Li). Since
u
2 = u, and u has rank 1, we can choose a basis in which u has entry

1 at the top left corner and has all other entries equal to 0. Then, for
any matrix v, the product uv has all entries 0 except those in the top
row. Let λ be the top left entry of the matrix uv. Then

(uv)n = λ
n−1

uv

If λ = 0 then (uv)2 = 0. If λ �= 0 then λ
−1
uv has 1 as top left

entry and all rows below the top one are 0; hence, λ−1
uv is a rank

1 projection, that is, an indecomposable idempotent. Thus, uv is a
multiple of an indecomposable idempotent. If u and v commute and
uv �= 0 then (uv)2 = u

2
v
2 = uv �= 0, and so λ−1

uv is an indecomposable
idempotent for some λ ∈ F, and then λ

−2 = λ
−1 and so λ = 1, and so

uv is a indecomposable idempotent.

5.18 (i) If S is a nonempty subset of LM then ∩S, the intersection of all
the submodules in S, is the infimum of S, and

�
S, the sum of

all the submodules in S, is the supremum.

(ii) It is clear that (p+m)∩ b ⊃ (p∩ b)+m. If x ∈ p, y ∈ m ⊂ b, and
x+ y ∈ b, then x = (x+ y)− y ∈ b, and so x+ y ∈ (p ∩ b) +m.

(iii) In any nonempty set of left ideals, one of minimum dimension is
minimal.

(iv) Let S be a nonempty set of left ideals, and suppose it does not
contain a maximal element. Pick any L1 ∈ S; then by non-
maximality, there is an L2 ∈ S which strictly contains in L1;
inductively there exist L1 ⊂ L2 ⊂ . . . with each Lj in S and all in-
clusions are strict. The union L of the Lj is a left ideal and hence,
by semisimplicity of A, is of the form Au for some element u.
Then u lies in some Lj; but then since Lj is a left ideal, Au ⊂ Lj,
contradicting the strict inclusion Lj+1 ⊂ Lj.
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(v) Since I is a right ideal, and J a left ideal, IJ is contained inside
I ∩ J . By semisimplicity, J = Au, for some idempotent u ∈ J . So
if a ∈ I ∩ J then a ∈ J and so a = au is in IJ , being a product of
a ∈ I and u ∈ J .

(vi) This follows from (v) on writing the intersection of the ideals as
products of the ideals, in which case the distributive law is easily
checked, noting that II = I ∩ I = I.

5.19 (i) Let tc be a complement of t. Then s = (t + tc) ∩ s = t + (tc ∩ s),
by modularity, and t ∩ (tc ∩ s) ≤ t ∩ tc = 0. So v = tc ∩ s works.

(ii) Suppose S ⊂ A is independent, T ⊂ S and a ∈ S − T . Since a is
an atom y = a∩

�
T is either a or 0. If y = a then a ≤

�
T and

so then
�

S is equal to
�

S − {a}, contradicting independence
of S. Conversely, suppose a ∩

�
T = 0 for every T ⊂ S and all

a ∈ S − T . If T is a proper subset of S then such an a exists and
so

�
T cannot be equal to

�
S.

(iii) Choose a maximal l ∈ L such l ≤ m but l �= m, if m itself is not
an atom. Then by (i) there exists lm such that l + lm = m and
l ∩ lm = 0. Note that lm �= 0; we show now that lm is an atom. If
a ≤ lm then a+ l is ≤ m and so, by maximality of l, is either l or
m. If a+ l = l then a ≤ l and so a ≤ l ∩ lm = 0; if a+ l = m then
a = a ∩ (l + lm) = (a ∩ l) + lm = 0 + lm = lm, using modularity.
Hence lm is an atom.

(iv) Take C = (A + I) ∩ (B + J). Then, by modularity, C + I =
(A+ I)∩ (I +B + J) which is = A+ I since I + J = 1; similarly,
C + J = B + J . The next part follows by induction on observing
that I1+(I2∩ . . . Im) = R by choosing x2, . . . , xm ∈ I1, y2 ∈ I2,...,
ym ∈ Im satisfying xa + ya = 1 for all a, which implies 1 = (x2 +
y2) . . . (xm+ym) = terms involving xa +y1. . .ym ∈ I1+(I2∩ . . . Im)
since each Ia is a two sided ideal.

6.2 For the Youngtabs i j k , where {i, j, k} = {1, 2, 3}, the Young sym-
metrizers are all equal to

�
s∈S3

s. Then F[S3]y 1 2 3
= Fy

1 2 3
and the representation of S3 on this vector space is trivial, with all
elements represented as multipication by 1. Next, skipping ahead to
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the finest partition:

yskew
def
= y

i
j
k

=

�

s∈S3

sgn(s) s

if {i, j, k} = {1, 2, 3}. Then F[S3]yskew = Fyskew, and the representation
is by the even/odd signature. The other symmetrizers are:

y = y
3 2
1

= ι+ (23)− (13)− (132) w = y
3 1
2

= ι+ (13)− (23)− (231)

y
2 3
1

= ι+ (32)− (12)− (123) z = y
2 1
3

= ι+ (12)− (32)− (321)

y
1 3
2

= ι+ (31)− (21)− (213) y
1 2
3

= ι+ (21)− (31)− (312)

Of course, knowing any one of the above yields all the others by re-
naming the numbers. Next,

y2
1 2 3

= 6y
1 2 3

, y
1 2

3

= 3y
1 2

3

, y2skew = 6yskew

The dimensions of F[S3]yT then are obtained as

dimF[S3]y
1 2 3

=
3!

6
= 1, dimF[S3]y

1 2

3

=
3!

3
= 2

dimF[S3]yskew =
3!

6
= 1.

The module F[S3]y has a basis consisting of y and (23)y = y
2 3
1

.

Then the module F[S3]w has basis w and (13)w = y
1 3
2

. These two

modules have direct sum containg F[S3]z, because z = y − (23)y + w.
On F[S3]y, with basis {y, (23)y}, the representation of S3 is specified
explicitly by

(12) −→
�
1 0
−1 −1

�
; (13) −→

�
−1 −1
0 1

�
; (23) −→

�
0 1
1 0

�
;

(123) −→
�
0 1
−1 −1

�
; (132) −→

�
−1 −1
1 0

�
.
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6.3 Let v1, ..., vk be an F-basis of E, and let M be the R-linear span of
{ρ(s)vi : s ∈ G, i ∈ [k]}. Then M is a finitely generated torsion free
R-module and so, by Theorem 12.5.2, has an R-basis w1, . . . , wl. In
particular, each vi is an R-linear combination of the wj, and so E is
spanned by {w1, . . . , wl} over the scalars F. Suppose

�
l

i=1 ciwi = 0,
with ci ∈ F; since F is the field of fractions of R, there is a nonzero
D ∈ R such that Dci ∈ R for each i, and then from

�
l

i=1 Dciwi = 0
and linear independence of wi over R we conclude that Dci = 0 and
hence ci = 0 for each i. Thus, {w1, . . . , wl} is an F-basis of E. Now
the crucial observation is that ρ(s)M ⊂ M , for all s ∈ G, and so the
matrix of ρ(s) relative the the basis B has all entries in the ring R.

6.5 Check that

(i j)[(i k) + (j k)] = (i k j) + (i j k) = [(i k) + (j k)](i j)

for all i < j < k. This implies that Xk commutes with all transposi-
tions in Sk−1. This implies that Xk commute with R[Sk−1], and hence
X1,...,Xn commute with each other and therefore generate a commuta-
tive subalgebra of R[Sn].

7.3 Let M be a Z module that is the Z-linear span of a finite nonempty
subset S, and A : M → M a Z-linear map. For s ∈ S the submodule
of M spanned by {Ak

s : k ∈ {0, 1, 2, ...}} is also finitely generated, say
by p1(A)s, ..., pj(A)s for some polynomials pi(X) ∈ Z[X], and so, if ns

is the degree of p1(X)....pj(X), the element Ans+1
s lies in the Z-linear

span of 1, As, ..., Anss, which means that qs(A)s = 0 for some monic
polynomial qs(X) ∈ Z[X]. Hence A is a root of the monic polynomial�

s∈S qs(X).

7.4 The idempotence relation u
2
i
= ui implies

1

|G|

s�

l=1

χi(C
−1
l

)Cl =
1

|G|2
�

1≤j,k≤s

χi(C
−1
j

)χi(C
−1
k

)CjCk. (13.7)

Then from

CjCk =
s�

l=1

κjk,lCl (13.8)
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we obtain:

χi(C
−1
l

) =
1

|G|
�

1≤j,k≤s

χi(C
−1
j

)χi(C
−1
k

)cjk,l. (13.9)

7.5 In (7.81) let e and f run over basis elements of E and F , respectively,
and e

� and f
� over corresponding dual bases, then sum over e and f :

�

g∈G

χE(g)χF (g
−1) = 0 for E and F not equivalent. (13.10)

7.6 The column vectors Vj = [χi(Cj)]1≤i≤s, for j ∈ {1, ..., s}, are s mutually
orthogonal nonzero vectors in C

s, with the norm of Vj being
�

|G|/|Cj|.
Therefore they are linearly independent, and the determinant of the
character table matrix is nonzero.

7.7 Dedekind factors the determinant by the devilishly clever trick of mul-
tiplying it by ������������

1 1 1 1 1 1
1 ω ω

2 1 ω ω
2

1 ω
2

ω 1 ω
2

ω

1 1 1 −1 −1 −1
1 ω ω

2 −1 −ω −ω
2

1 ω
2

ω −1 −ω
2 −ω

������������

,

which results in amazing simplification of the algebra. Frobenius [31,
§5] uses a more enlightening method.

7.8 By straightforward extension of the argument for (7.98), or by building
inductively on (7.98), we obtain (7.127). Next, let R denote the regular
representation, specified by

R(x) : F[G] → F[G] : x �→ R(x)y = xy for all x ∈ F[G].

Then, as we know, TrR(e) is |G|, and Tr (g) is 0 for all elements g ∈ G

other than e. From the structure of F[G] we also know that F[G] is the
direct sum

F[G] =
s�

i=1

(Li1 ⊕ . . .⊕ Lidi
),
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and R|Lij is irreducible, say with character χi. So

TrR(g) =
s�

i=1

diχi(g) for all g ∈ G.

Using all this we have:

|{(t1, ..., tm) ∈ G
m : t1...tm = e, a1t1...amtm = e}|

=
�

t1...tm=e

TreR(a1t1...amtm)

=
1

|G|
�

t1...tm=e

TrR(a1t1...amtm)

=
1

|G|
�

t1...tm=e

s�

i=1

diχi(a1t1...amtm)

=
1

|G|

s�

i=1

di

�
|G|
di

�m−1

χi(a1) . . .χi(am) (from (7.127) )

=
s�

i=1

�
|G|
di

�m−2

χi(a1) . . .χi(am)

(13.11)

9.1 For any a ∈ A we have ra : A → A : x �→ xa, an element of EndA(A).
Clearly, rab = rbra for all a, b ∈ A, and so A

opp → EndA(A) : a �→ ra

is a ring homomorphism. For any left A-linear f : A → A, we have
f(x) = x(1) for all x ∈ A, and so f = rf(1). Thus, a �→ ra is a ring
isomorphism.

9.2 By Theorem 9.3.5 applied to E = A, viewed as a left A-module, A is
the sum of simple C-submodules of the form yA, where A is now being
viewed as a left C-module, C = EndA(A), and y runs over indecom-
posable idempotents.

9.3 For b ∈ F[G], the map Lb : F[G] → F[G] : a �→ ba preserves addition
and satisfies Lb(ax̂) = bax̂ = Lb(a)x̂. Hence Lb ∈ EndF[G]F[G]R. More-
over, Lbc = LbLc and Lb+c = Lb + Lc; so L : F[G] → EndF[G]F[G]R :
b �→ Lb is a morphism of F-algebras. Since Lb(1) = b, the map L is
injective, Lastly, if f ∈ EndF[G]F[G]R then f(a) = f(1)a = Lf(1)(a) for
all a ∈ F[G], and so L is also surjective.
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9.5 For φ ∈ Ê, writing φ(v) as
�

g∈G φg(v)g, the F[G]-linearity of φ is
equivalent to φg(v) = φe(g−1

v) for all g ∈ G, v ∈ E. Then from
(φ · h)(v) =

�
g
φg(v)gh we have (φ · h)e(v) = φh−1(v) = φ(hv) which

shows that I : Ê → E
� : φ �→ φe is an A-linear map of right A-

modules. Moreover, φ(v) =
�

g
φe(g−1

v)g shows that I is injective,
and the invserse of I is specified by (I−1

f)(v) =
�

g
f(g−1

v)g and it is

readily checked that I−1
f is in Ê.

9.6 Let E be a left A-module, where A is a semisimple ring, C = EndA(E),
and Ê = HomA(E,A). We view E as a left C-module in the natural
way, and view Ê as a right A-module For any nonempty subset S of E
define the subset S# of A to be all finite sums of elements φ(w) with φ

running over Ê and w over S.

(i) If φ ∈ Ê, a ∈ A, then φ · a : E → A : v �→ φ(v)a is in Ê and
(φ · a)(w) = φ(w)a shows that S#a ⊂ S#.

(ii) Show that (aE)# = aE# for all a ∈ A.

(iii) For φ ∈ Ê, v ∈ E, the map E → E : y �→ φ(y)v is A-linear,
which means that it is in C, and hence maps W into itself; hence
φ(w)v ∈ W for all w ∈ W . Consequently, W#E ⊂ W . In the
converse direction use the fact that the right ideal W# has an
idempotent generator u, so that W# = uA. Then for any φ ∈ Ê,
and w ∈ W , we have φ(w) ∈ W# and so uφ(w) = φ(w), which
implies φ(uw − w) = 0. Thus every φ ∈ Ê vanishes on uw − w.
Now decompose x = uw − w as a sum

�
i
xi with xi ∈ Ei, where

the Eiare simple A-submodules of E whose direct sum is E; if
some xj �= 0 then its image in some left ideal, isomorphic to Ei,
in A would be nonzero. Thus x = 0, which means w ∈ uA and so
w = uw ∈ uE = W#E.

(iv) Write U# = uA and W# = wA, with u, w idempotent. If U# ⊂
W# then u ∈ wA and so u = wa for some a ∈ A, and this implies
U = uE ⊂ wE = W .

(v) Proof: Suppose W# is a simple right ideal. Let U ⊂ W be a
C-submodule of E. Then U# ⊂ W# and so U# is {0} or W#. If
U# = {0} then U = {0} (by the argument used for (iii)), while if
U# = W# then U = W by (iii).
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(vi) Let J be a right ideal in A contained inside W#. Then J = vA

and W# = uA for idempotents u ∈ W# and v ∈ J . Then v ∈ uA

and so

vE ⊂ uE = W.

Therefore vE is {0} or uE. Applying # we have vE# is {0} or
uE#. If E# = A then this reads: J is either {0} or W#. Thus,
W# is a simple right ideal.

(vii) If uA ⊂ E# then uA = uuA ⊂ uE# ⊂ uA, and so uA = uE# =
(uE)#. Since u is an indecomposable idempotent, (uE)# is simple
and so uE is a simple C-module.

9.7 For v ∈ yE, let fv : L → E : x �→ xv, which is A-linear, and J(fv) = v.
Let d ∈ D. From d(ay) = d(ayy) = ayd(y), for all a ∈ A, we have
(fv ◦ d)(x) = xd(y)v and so fv ◦ d = fd(y)v.

9.8 If y1, ..., ys are distinct nonzero orthogonal idempotents with sum 1 then
they are linearly independent over the field F, because if

�
i
ciyi = 0

then, multiplying by any yk, we have ckyk = 0 and hence ck = 0
because yk is not 0. Therefore there is a maximal string, of finite
length, e1, ..., eN of nonzero orthogonal idempotents whose sum is 1.
Each ej is the necessarily indecomposable, and so Aej is a simple left
ideal in A and ejE is a simple submodule of the C-module E. Then
the sum E = e1E+ · · ·+eNE, and the latter is a direct sum. Moreover,
by Theorem 9.3.3, each non-zero eiE is a simple C-module.

9.11 (a) Suppose E contains two nonzero submodules Eα and Eβ that are
isomorphic to each other as A-modules and have {0} as intersection.
Let E be the direct sum of Eα, Eβ, and a submodule F . Let T : Eα →
Eβ be an A-linear isomorphism. Define T0 : E → E to be equal to T

on Eα and 0 on Eβ

�
F , and T1 : E → E equal to T

−1 on Eβ and
0 on Eα

�
F . Then T1T0 is the identity on Eα, while T0T1 is 0 on

Eα. Thus, T0, T1 ∈ EndA(E) do not commute. (b) Suppose E is the
direct sum of submodules Eα, with α running over a nonempty index
set I, and Eα is not isomorphic to Eβ for distinct α, β ∈ I. Then any
T ∈ EndA(E) maps each Eα into itself, and so EndA(E) is isomorphic
to the product ring

�
α∈I EndA(Eα) by T �→ (T |Eα)α∈I . So if each

EndA(Eα) is commutative then so is EndA(E).
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10.1 (i) Decompose 1 ∈ A as 1 = yN + yc, with yN ∈ N and yc ∈ Nc.
Then yc = ycyN + y

2
c
shows that y2

c
= yc and ycyN = 0, and, moreover,

a = ayN + ayc is th decomposition of a ∈ A into a component in N

and one in Nc. Thus, Pc(a) = ayc. Then for a right ideal R, we have
Pc(R) = Ryc ⊂ R. (ii) If r�e = 0 then r ∈ N and then Pcr = 0; so
r�e �→ Pcr is well-defined. (iii) If x ∈ Pc(R) then f(x�e) = Pcx = x.

10.2 (i) Let Pc(x) = 1
|H|

�
h∈H xh for all x ∈ F[G]. Then Pc(x) ∈ F[G/H]

and Pc(y) = y for all y ∈ F[G/H], whence P
2
c

= Pc; also, clearly
x − Pcx ∈ N . If w ∈ F[G/H] then w =

�
m

i=1 w(gi)gi
�

h∈H , where
g1H, ..., gmH are the distinct right cosets of H in G, and so is w also
lies in N then, since g1�e, ..., gm�e is a basis of E, it follows that each
w(gi) is 0. Thus every x ∈ F[G] splits uniquely as x = (1−Pc)x+Pcx,
with the first term in N and the second in F[G/H]; that is, F[G] =
N ⊕ F[G/H]. (ii) Let L be a left ideal in F[G]; then L̂ = {x̂ : x ∈ L}
is a right ideal, where x̂ =

�
g∈G x(g)g−1 for all x ∈ F[G]. By Exercise

10.2(i), dimF(L̂�e) = dimF Pc(L̂), and the latter is the trace of the map
Pc|L̂ : L̂ → L̂. Next, by Exercise 10.2(ii),

Tr
�
Pc|L̂ : L̂ → L̂

�
=

1

|H|
�

h∈H

Tr
�
L̂ → L̂ : x �→ xh

�

Using the isomorphism of F-vector-space L → L̂ : x �→ x̂, the trace of
L̂ → L̂ : x �→ xh is equal to the trace of L → L : x �→ h

−1
x, which is

χL(h−1). Combining everything gives

dimF(L̂�e) =
1

|H|
�

h∈H

χL(h).

Finally observe that if y is an idempotent generator of L then L̂�e = ŷE,
because F[G]�e = E.

11.1 If ρ : U(N) → EndC(V ) is a representation, the linear span of ρ
�
U(N)

�

as a subset of the algebra EndC(V ), is a semisimple algebra, being a
subalgebra of the semisimple algebra EndC(V ).

11.5 (i) Fix a basis e1, ..., eN of V , with N ≥ 1, and for fixed i, j ∈ [N ]
let B ∈ E have matrix with all entries 0 except the entry at row j

and column i; then (A,B)Tr = Aij the ij-th entry for the matrix of
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A. Therefore, φA : E → E
� is an isomorphism. (ii) For any subspace

L of V , the dimension of L⊥ is N − dimF L, and clearly L ⊂ (L⊥)⊥;
hence (L⊥)⊥ = L. (iii) This follows from: Tr (AB) = Tr (BA) for all
A,B ∈ E, which implies (A, TBT

−1)Tr = (T−1
AT,B)Tr .
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[28] Frobenius, Ferdinand Georg, Über Gruppencharaktere. Sitzungsberichte
der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 985-
1021 (1896). In the Collected Works: Gesammelte Abhandlungen. Vol
III (pages 1-37) Hrsg. von J.-P. Serre. Springer Verlag (1968).

[29] Frobenius, Ferdinand Georg, Über die Primfactoren der Gruppen-
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[34] Frobenius, Ferdinand Georg, Über die charakterischen Einheiten der
symmetrischen Gruppe. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften zu Berlin, 328-358 (1903). In the Collected
Works: Gesammelte Abhandlungen, Vol III (pages 244-274) Hrsg. von
J.-P. Serre. Springer Verlag (1968).

[35] Frobenius, Ferdinand Georg, and Schur, Issai: Über die reellen Darstel-
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ring, 307
ring of fractions, 316
root of a polynomial, 327
row group, 174
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Schur, 83
Schur’s Lemma, 22, 130

for F[G], 70
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definition, 81
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definition, 81
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simple ring, 253
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of a group, 23

splitting field, group, 219
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submodule, 317
subrepresentation, 16
subring, 310
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symmetric group, 304
symmetric group S4, 55
symmetric tensor algebra, 85
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tensor algebra, 85
tensor product of modules, 336
tensor product, balanced, 337
tensor products
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torsion free, 322, 361
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unitary group U(N), 283
universal property, tensor products,
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upper triangular matrix, 331

Vandermonde determinant, 86, 286,
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vector space , 317

Wedderburn Theorem
for division algebras, 24, 109

Wedderburn theorem, 267
weight of a U(N) representation, 288
Weyl, 83
Weyl U(N) character formula, 292

Weyl dimension formula, 293
Weyl groups, 62
Weyl integration formula, 286

Young complement, 168
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Young symmetrizer, 173
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Young tableau, 166
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