Representing Finite Groups: A Semisimple Introduction

Ambar N. Sengupta

9th March, 2011

To my mother

Contents

Preface 8
1 Concepts and Constructs 11
1.1 Representations of Groups 12
1.2 Representations and their Morphisms 14
1.3 Direct Sums and Tensor Products 14
1.4 Change of Field 15
1.5 Invariant Subspaces and Quotients 16
1.6 Dual Representations 17
1.7 Irreducible Representations 20
1.8 Schur's Lemma 22
1.9 The Frobenius-Schur Indicator 24
1.10 Character of a Representation 26
1.11 Diagonalizability 29
1.12 Unitarity 32
1.13 Rival Reads 33
1.14 Afterthoughts: Lattices 34
Exercises 36
Reckoning 43
2 Basic Examples 45
2.1 Cyclic Groups 46
2.2 Dihedral Groups 49
2.3 The Symmetric Group S_{4} 53
2.4 Quaternionic Units 57
2.5 Afterthoughts: Geometric Groups 59
Exercises 61
3 The Group Algebra 65
3.1 Definition of the Group Algebra 66
3.2 Representations of G and $\mathbb{F}[G]$ 67
3.3 The Center 69
3.4 Deconstructing $\mathbb{F}\left[S_{3}\right]$ 70
3.5 When $\mathbb{F}[G]$ is Semisimple 79
3.6 Afterthoughts: Invariants 83
Exercises 85
4 More Group Algebra 89
4.1 Looking Ahead 90
4.2 Submodules and Idempotents 92
4.3 Deconstructing $\mathbb{F}[G]$, the Module 94
4.4 Deconstructing $\mathbb{F}[G]$, the Algebra 96
4.5 As Simple as Matrix Algebras 102
4.6 Putting $\mathbb{F}[G]$ back together 107
4.7 The Mother of All Representations 109
4.8 The Center 111
4.9 Representing Abelian Groups 113
4.10 Indecomposable Idempotents 113
4.11 Beyond Our Borders 116
Exercises 117
5 Simply Semisimple 125
5.1 Schur's Lemma 126
5.2 Semisimple Modules 127
5.3 Deconstructing Semisimple Modules 130
5.4 Simple Modules for Semisimple Rings 133
5.5 Deconstructing Semisimple Rings 136
5.6 Simply Simple 139
5.7 Commutants and Double Commutants 141
5.8 Artin-Wedderburn Structure 143
5.9 A Module as Sum of its Parts 144
5.10 Readings on Rings 146
5.11 Afterthoughts: Clifford Algebras 146
Exercises 150
6 Representations of S_{n} 157
6.1 Permutations and Partitions 157
6.2 Complements and Young Tableaux 161
6.3 Symmetries of Partitions 165
6.4 Conjugacy Classes to Young Tableaux 168
6.5 Young Tableaux to Young Symmetrizers 169
6.6 Youngtabs to Irreducible Representations 170
6.7 Youngtab Apps 174
6.8 Orthogonality 179
6.9 Deconstructing $\mathbb{F}\left[S_{n}\right]$ 180
6.10 Integrality 183
6.11 Rivals and Rebels 183
6.12 Afterthoughts: Reflections 184
Exercises 187
7 Characters 189
7.1 The Regular Character 190
7.2 Character Orthogonality 194
7.3 Character Expansions 202
7.4 Comparing Z-Bases 205
7.5 Character Arithmetic 207
7.6 Computing Characters 210
7.7 Return of the Group Determinant 214
7.8 Orthogonality for Matrix Elements 216
7.9 Solving Equations in Groups 218
7.10 Character References 227
7.11 Afterthoughts: Connections 227
Exercises 228
8 Induced Representations 233
8.1 Constructions 233
8.2 The Induced Character 236
8.3 Induction Workout 237
8.4 Universality 240
8.5 Universal Consequences 241
8.6 Reciprocity 243
8.7 Afterthoughts: Numbers 245
Exercises 246
9 Commutant Duality 247
9.1 The Commutant 247
9.2 The Double Commutant 249
9.3 Commutant Decomposition of a Module 251
9.4 The Matrix Version 258
Exercises 261
10 Character Duality 265
10.1 The Commutant for S_{n} on $V^{\otimes n}$ 265
10.2 Schur-Weyl Duality 267
10.3 Character Duality, the High Road 268
10.4 Character Duality by Calculations 269
Exercises 276
11 Representations of $U(N)$ 279
11.1 The Haar Integral 280
11.2 The Weyl Integration Formula 281
11.3 Character Orthogonality 282
11.4 Weights 283
11.5 Characters of $U(N)$ 284
11.6 Weyl Dimension Formula 288
11.7 From Weights to Representations 289
11.8 Characters of S_{n} from Characters of $U(N)$ 292
Exercises 296
12 PS: Algebra 299
12.1 Groups and Less 299
12.2 Rings and More 303
12.3 Fields 311
12.4 Modules over Rings 312
12.5 Free Modules and Bases 316
12.6 Power Series and Polynomials 320
12.7 Algebraic Integers 325
12.8 Linear Algebra 326
12.9 Tensor Products 331
12.10Extension of Base Ring 334
12.11Determinants and Traces of Matrices 336
12.12Exterior Powers 337
12.13Eigenvalues and Eigenvectors 341

13 Selected Solutions 343
Bibliography . 363

Preface

Geometry is nothing but an expression of a symmetry group. Fortunately, geometry escaped this stifling straitjacket description, an urban legend formulation of Felix Klein's Erlangen Program. Nonetheless, there is a valuable ge(r)m of truth in this vision of geometry. Arithmetic and geometry have been intertwined since Euclid's development of arithmetic from geometric constructions. A group, in the abstract, is a set of elements, devoid of concrete form, with just one operation satisfying a minimalist set of axioms. Representation theory is the study of how such an abstract group appears in different avatars as symmetries of geometries over number fields or more general fields of scalars. This book is an initiating journey into this subject.

A large part of the route we take passes through the representation theory of semisimple algebras. We will also make a day-tour out of the realm of finite groups to look at the representation theory of unitary groups. These are infinite, continuous groups, but their representation theory is intricately interlinked with the representation theory of the permutation groups, and hence it seemed a worthwhile detour from the main route of this book.

Our navigation system is set to avoiding speedways as well as slick shortcuts. Efficiency and speed are not high priorities in this journey. For many of the ideas we view the same set of results from several vantage points. Sometimes we pause to look back at the territory covered or to peer into what lies ahead. We stop to examine glittering objects - specific examples - up close.

The role played by the characteristic of the field underlying a representation is described carefully in each result. We stay almost always within the semisimple territory, etched out by the requirement that the characteristic of the field does not divide the number of elements of the group. A reasonable alternative choice would be to work with an algebraically closed field of characteristic zero, or even to simply work with $\overline{\mathbb{Q}}$, the algebraic closure of \mathbb{Q}, for the entire book except for the chapter on representations of $U(N)$ where the complex field is needed.

Authors generally threaten readers with the admonishment that they must do the exercises to appreciate the text. This could give rise to insomnia if one wishes to peruse parts of this text at bedtime. However, for daytime readers, there are several exercises to engage in, some of which may call for breaking intellectual sweat, if the eyes glaze over from simply reading.

The style of presentation I have used is uncoventional in some ways. Aside from the very informal tone, and cultural (not always high-brow) and polit-
ical allusions, I have departed from rigid mathematical custom by repeating definitions on occasion instead of sending the reader scurrying back and forth to consult them. I have also included all hypotheses (such as those on the ground field \mathbb{F} of a representation) in the statement of every result, instead of stating them at the beginnings of sections or chapters. The latter practice is easier for the author to do, but can lead to serious confusion for the reader who wishes to take just a quick look at some result (or sees the statement on a sample page online).

For whom is this book? For students, graduate and undergraduate, for teachers, researchers, and also, hopefully, for many who want to simply explore this beautiful subject for itself. This book is an introduction to the subject; at the end, or even part way through, the reader will have enough equipment and experience to take up more specialized monographs to pursue roads not traveled here.

A disclaimer on originality needs to be stated. To the best of my knowledge, there is no result in this book not already "known." Mathematical results evolve in form, from original discovery through mutations and cultural forces, and I have added historical remarks or references only for some of the major results. It has been very enjoyable for me to explore some of the original papers and letters of the creators of this subject, but the reader interested in a more thorough historical analysis should consult works by historians of the subject.

Acknowledgment for much is due to many. To friends, family, strangers, colleagues, students, and a large number of fellow travelers in life and mathematics, I owe thanks for comments, corrections, criticism, encouragement and discouragement. Many discussions with Thierry Lévy have influenced my view of topics in representation theory. It would be unfair not to thank the referees whose comments, ranging from the insightful to the infuriating, led to innumerable improvements in presentation and content. Vaishali Damle, my editor at Springer-Verlag, was a calm and steady guide all through the process of turning the original rough notes to the final form of the book. Financial support for my research program from both Louisiana State University, Baton Rouge, and US National Science Foundation Grant DMS-0601141 is gratefully acknowledged. Here I need to add the required disclaimer: Any opinions, findings and conclusions or recomendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. Beyond all this, I thank Ingeborg for support that can neither be quantified in numbers nor articulated in words.

Chapter 1

Concepts and Constructs

A group is an abstract mathematical object, a set with elements and an operation satisfying certain axioms. A representation of a group realizes the elements of the group concretely as geometric symmetries. The same group may have many different such representations. A group that arises naturally as a specific set of symmetries may have representations as geometric symmetries at different levels.

In quantum physics the group of rotations in three dimensional space gives rise to symmetries of a complex Hilbert space whose rays represent states of a physical system; the same abstract group appears once, classically, in the avatar of rotations in space and then expresses itself at the level of a more 'implicate order' in the quantum theory as unitary transformations on Hilbert spaces.

In this chapter we acquaint ourselves with the basic concepts, defining group representations, irreducibility and characters. We work through certain useful standard constructions with representations, and explore a few results that follow very quickly from the basic notions.

All through this chapter G denotes a group, and \mathbb{F} a field. We will work with vector spaces, usually denoted V, W, or Z, over the field \mathbb{F}. There are no standing hypotheses on G or \mathbb{F}, and any conditions needed will be stated where needed.

1.1 Representations of Groups

A representation ρ of a group G on a vector space V associates to each element $g \in G$ a linear map

$$
\rho(g): V \rightarrow V: v \mapsto \rho(g) v
$$

such that

$$
\begin{align*}
\rho(g h) & =\rho(g) \rho(h) \quad \text { for all } g, h \in G, \text { and } \tag{1.1}\\
\rho(e) & =I,
\end{align*}
$$

where $I: V \rightarrow V$ is the identity map. Here our vector space V is over a field \mathbb{F}, and we denote by

$$
\operatorname{End}_{\mathbb{F}}(V)
$$

the set of all endomorphisms of V. A representation ρ of G on V is thus a map

$$
\rho: G \rightarrow \operatorname{End}_{\mathbb{F}}(V)
$$

satisfying (1.1). The homomorphism condition (1.1), applied with $h=g^{-1}$, implies that each $\rho(g)$ is invertible and

$$
\rho\left(g^{-1}\right)=\rho(g)^{-1} \quad \text { for all } g \in G
$$

A representation ρ of G on V is said to be faithful if $\rho(g) \neq I$ when g is not the identity element in G. Thus, a faithful representation ρ provides an isomorphic copy $\rho(G)$ of G sitting inside $\operatorname{End}_{\mathbb{F}}(V)$.

A complex representation is a representation on a vector space over the field \mathbb{C} of complex numbers.

The vector space V on which the elements $\rho(g)$ operate is the representation space of ρ. We will often say 'the representation V ' instead of 'the representation ρ on the vector space V^{\prime}. Sometimes we write V_{ρ} for the representation space of ρ.

If V is finite dimensional then, on choosing a basis b_{1}, \ldots, b_{n}, the endomorphism $\rho(g)$ is encoded in the matrix

$$
\left[\begin{array}{cccc}
\rho(g)_{11} & \rho(g)_{12} & \ldots & \rho(g)_{1 n} \tag{1.2}\\
\rho(g)_{21} & \rho(g)_{22} & \ldots & \rho(g)_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
\rho(g)_{n 1} & \rho(g)_{n 2} & \ldots & \rho(g)_{n n}
\end{array}\right] .
$$

Indeed, when a fixed basis has been chosen in a context, we will often not make a distinction between $\rho(g)$ and its matrix form.

As an example, consider the group S_{n} of permutations of $[n]=\{1, \ldots, n\}$. This group has a natural action on the vector space \mathbb{F}^{n} by permutation of coordinates:

$$
\begin{align*}
S_{n} \times \mathbb{F}^{n} & \rightarrow \mathbb{F}^{n} \\
\left(\sigma,\left(v_{1}, \ldots, v_{n}\right)\right) & \mapsto R(\sigma)\left(v_{1}, \ldots, v_{n}\right) \stackrel{\text { def }}{=}\left(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(n)}\right) . \tag{1.3}
\end{align*}
$$

Another way to understand this is by specifying

$$
R(\sigma) e_{j}=e_{\sigma(j)} \quad \text { for all } j \in[n] .
$$

Here e_{j} is the j-th vector in the standard basis of \mathbb{F}^{n}; it has 1 in the j-th entry and 0 in all other entries. Thus, for example, for S_{4} acting on \mathbb{F}^{4}, the matrix for $R((134))$ relative to the standard basis of \mathbb{F}^{4} is

$$
R((134))=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

For a transposition $(j k)$, we have

$$
\begin{gathered}
R((j k)) e_{j}=e_{k}, \quad R((j k)) e_{k}=e_{j} \\
R((j k)) e_{i}=e_{i} \text { if } i \notin\{j k\} .
\end{gathered}
$$

We can think of $R((j k))$ geometrically as reflection across the hyperplane $\left\{v \in \mathbb{F}^{n}: v_{j}=v_{k}\right\}$. Writing a general permutation $\sigma \in S_{n}$ as a product of transpositions, $R(\sigma)$ is a product of such reflections. The determinant

$$
\begin{equation*}
\epsilon(\sigma)=\operatorname{det} R(\sigma) \tag{1.4}
\end{equation*}
$$

is -1 on transpositions, and hence is just the signature of σ, being +1 if σ is a product of an even number of transpositions, and -1 otherwise. The signature map ϵ is itself a representation of S_{n}, a one dimensional representation, when each $\epsilon(\sigma)$ is viewed as the linear map $\mathbb{F} \rightarrow \mathbb{F}: c \mapsto \epsilon(\sigma) c$.

Exercise 1.3 develops the idea contained in the representation R a step further to explore a way to construct more representations of S_{n}.

The term 'representation' will, for us, always mean representation on a vector space. However, we will occasionally notice that a particular complex representation ρ on a vector space V has a striking additional feature: there is a basis in V relative to which all the matrices $\rho(g)$ have integer entries, or that all entries lie inside some other subring of \mathbb{C}. This is a glimpse of another territory: representations on modules over rings. We will not explore this theory, but will cast an occasional glance at it.

1.2 Representations and their Morphisms

If ρ_{1} and ρ_{2} are representations of G on vector spaces V_{1} and V_{2} over \mathbb{F}, and

$$
T: V_{1} \rightarrow V_{2}
$$

is a linear map such that

$$
\begin{equation*}
\rho_{2}(g) \circ T=T \circ \rho_{1}(g) \quad \text { for all } g \in G \tag{1.5}
\end{equation*}
$$

then we consider T to be a morphism from the representation ρ_{1} to the representation ρ_{2}. For instance, the identity map $I: V_{1} \rightarrow V_{1}$ is a morphism from ρ_{1} to itself. The condition (1.5) is also described by saying that T is an intertwining operator between the representations ρ_{1} and ρ_{2}.

The composition of two morphisms is clearly also a morphism, and the inverse of an invertible morphism is again a morphism. An invertible morphism of representations is called an isomorphism or equivalence of representations. Thus, representations ρ_{1} and ρ_{2} are equivalent if there is an invertible intertwining operator from one to the other.

1.3 Direct Sums and Tensor Products

If ρ_{1} and ρ_{2} are representations of G on V_{1} and V_{2}, respectively, then we have the direct sum

$$
\rho_{1} \oplus \rho_{2}
$$

representation on $V_{1} \oplus V_{2}$:

$$
\begin{equation*}
\left(\rho_{1} \oplus \rho_{2}\right)(g)=\left(\rho_{1}(g), \rho_{2}(g)\right) \in \operatorname{End}_{\mathbb{F}}\left(V_{1} \oplus V_{2}\right) \tag{1.6}
\end{equation*}
$$

If bases are chosen in V_{1} and V_{2} then the matrix for $\left(\rho_{1} \oplus \rho_{2}\right)(g)$ is block diagonal, with the blocks $\rho_{1}(g)$ and $\rho_{2}(g)$ on the diagonal:

$$
g \mapsto\left[\begin{array}{cc}
\rho_{1}(g) & 0 \\
0 & \rho_{2}(g)
\end{array}\right] .
$$

This notion clearly generalizes to a direct sum (or product) of any family of representations.

We also have the tensor product $\rho_{1} \otimes \rho_{2}$ of the representations, acting on $V_{1} \otimes V_{2}$, specified through

$$
\begin{equation*}
\left(\rho_{1} \otimes \rho_{2}\right)(g)=\rho_{1}(g) \otimes \rho_{2}(g) \tag{1.7}
\end{equation*}
$$

1.4 Change of Field

There is a more subtle operation on vector spaces, involving change of the ground field over which the vector spaces are defined. Let V be a vector space over a field \mathbb{F}, and let $\mathbb{F}_{1} \supset \mathbb{F}$ be a field that contains \mathbb{F} as a subfield. Then V specifies an \mathbb{F}_{1}-vector-space

$$
\begin{equation*}
V_{\mathbb{F}_{1}}=\mathbb{F}_{1} \otimes_{\mathbb{F}} V \tag{1.8}
\end{equation*}
$$

Here we have, on the surface, a tensor product of two \mathbb{F}-vector-spaces: \mathbb{F}_{1}, treated as a vector space over the subfield \mathbb{F}, and V itself. But $V_{\mathbb{F}_{1}}$ acquires the structure of a vector space over \mathbb{F}_{1} by the multiplication rule

$$
c(a \otimes v)=(c a) \otimes v
$$

for all $c, a \in \mathbb{F}_{1}$ and $v \in V$. More concretely, if $V \neq 0$ has a basis B then $V_{\mathbb{F}_{1}}$ can be taken to be the \mathbb{F}_{1}-vector-space with the same set B as basis but now using coefficients from the field \mathbb{F}_{1}.

Now suppose ρ is a representation of a group G on a vector space V over \mathbb{F}. Then a representation $\rho_{\mathbb{F}_{1}}$ on $V_{\mathbb{F}_{1}}$ arises as follows:

$$
\begin{equation*}
\rho_{\mathbb{F}_{1}}(g)(a \otimes v)=a \otimes \rho(g) v \tag{1.9}
\end{equation*}
$$

for all $a \in \mathbb{F}_{1}, v \in V$, and $g \in G$.
To get a concrete feel for $\rho_{\mathbb{F}_{1}}$ let us look at the matrix form. Choose a basis b_{1}, \ldots, b_{n} for V, assumed finite-dimensional and non-zero. Then, almost
by definition, this is also a basis for $V_{\mathbb{F}_{1}}$, only now with scalars to be drawn from \mathbb{F}_{1}. Thus,

$$
\text { the matrix for } \rho_{\mathbb{F}_{1}}(g) \text { is exactly the same as the matrix for } \rho(g)
$$

for every $g \in G$. The difference is only that we should think of this matrix now as a matrix over \mathbb{F}_{1} whose entries happen to lie in the subfield \mathbb{F}.

This raises a fundamental question: given a representation ρ, is it possible to find a basis of the vector space such that all entries of all the matrices $\rho(g)$ lie in some proper subfield of the field we started with? A deep result of Brauer [7] shows that all irreducible complex representations of a finite group can be realized over a field obtained by adjoining suitable roots of unity to the field \mathbb{Q} of rationals.

1.5 Invariant Subspaces and Quotients

A subspace $W \subset V$ is said to be invariant under ρ if

$$
\rho(g) W \subset W \text { for all } g \in G .
$$

In this case,

$$
\rho|W: g \mapsto \rho(g)| W \in \operatorname{End}_{\mathbb{F}}(W)
$$

is a representation of G on W. It is a subrepresentation of ρ. Put another way, the inclusion map

$$
W \rightarrow V: w \mapsto w
$$

is a morphism from $\rho \mid W$ to ρ.
If W is invariant, then a representation on the quotient space

$$
V / W
$$

is obtained by setting

$$
\begin{equation*}
\rho_{V / W}(g): v+W \mapsto \rho(g) v+W, \quad \text { for all } v \in V, \tag{1.10}
\end{equation*}
$$

for all $g \in G$.

1.6 Dual Representations

For a vector space V over a field \mathbb{F}, let V^{\prime} be the dual space of all linear mappings of V into \mathbb{F} :

$$
\begin{equation*}
V^{\prime}=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F}) \tag{1.11}
\end{equation*}
$$

If ρ is a representation of a group G on V, the dual representation ρ^{\prime} on V^{\prime} is defined as follows:

$$
\begin{equation*}
\rho^{\prime}(g) f=f \circ \rho(g)^{-1} \quad \text { for all } g \in G, \text { and } f \in V^{\prime} \tag{1.12}
\end{equation*}
$$

It is readily checked that this does indeed specify a representation ρ^{\prime} of G on V^{\prime}.

The adjoint of $A \in \operatorname{End}_{\mathbb{F}}(V)$ is the element $A^{\prime} \in \operatorname{End}_{\mathbb{F}}\left(V^{\prime}\right)$ given by

$$
\begin{equation*}
A^{\prime} f=f \circ A \tag{1.13}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\rho^{\prime}(g)=\rho\left(g^{-1}\right)^{\prime} \tag{1.14}
\end{equation*}
$$

for all $g \in G$.
Suppose now that V is finite dimensional. For a basis b_{1}, \ldots, b_{n} of V, the corresponding dual basis in V^{\prime} consists of the sequence of elements $b_{1}^{\prime}, \ldots, b_{n}^{\prime} \in$ V^{\prime} specified by the requirement

$$
b_{j}^{\prime}\left(b_{k}\right)=\delta_{j k} \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } j=k \tag{1.15}\\ 0 & \text { if } j \neq k .\end{cases}
$$

It is a pleasant little exercise to check that $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ do indeed form a basis of V^{\prime}; a consequence is that V^{\prime} is also finte dimensional and

$$
\operatorname{dim}_{\mathbb{F}} V^{\prime}=\operatorname{dim}_{\mathbb{F}} V,
$$

under the assumption that this is finite.
Proceeding further with the finite basis b_{1}, \ldots, b_{n} of V, for any $A \in$ $\operatorname{End}_{\mathbb{F}}(V)$, the matrix of A^{\prime} relative to the dual basis $\left\{b_{i}^{\prime}\right\}$ is related to the matrix of A relative to $\left\{b_{i}\right\}$ as follows:

$$
\begin{align*}
A_{j k}^{\prime} & \stackrel{\text { def }}{=}\left(A^{\prime} b_{k}^{\prime}\right)\left(b_{j}\right) \\
& =b_{k}^{\prime}\left(A b_{j}\right) \tag{1.16}\\
& =A_{k j} .
\end{align*}
$$

Thus, the matrix for A^{\prime} is the transpose of the matrix for A. For this reason, the adjoint A^{\prime} is also denoted as A^{t} or $A^{\text {tr }}$:

$$
A^{t}=A^{\operatorname{tr}}=A^{\prime}
$$

From all this we see that the matrix for $\rho^{\prime}(g)$ is the transpose of the matrix for $\rho\left(g^{-1}\right)$:

$$
\begin{equation*}
\rho^{\prime}(g)=\rho\left(g^{-1}\right)^{\mathrm{tr}}, \quad \text { for all } g \in G, \text { as matrices }, \tag{1.17}
\end{equation*}
$$

relative to dual bases.
Here is an illustration of the interplay between a vector space V and its dual V^{\prime}. The annihilator W^{0} in V^{\prime} of a subspace W of V is

$$
\begin{equation*}
W^{0}=\left\{f \in V^{\prime}: f(u)=0 \quad \text { for all } u \in W\right\} . \tag{1.18}
\end{equation*}
$$

This is clearly a subspace in V^{\prime}. Running in the opposite direction, for any subspace N of V^{\prime} we have its annihilator in V :

$$
\begin{equation*}
N_{0}=\{u \in V: f(u)=0 \quad \text { for all } f \in N\} \tag{1.19}
\end{equation*}
$$

The association $W \mapsto W^{0}$, from subspaces of V to subspaces of V^{\prime}, reverses inclusion and has some other nice features that we package into:

Lemma 1.6.1 Let V be a vector space a field \mathbb{F}, W and Z subspaces of V, and N a subspace of V^{\prime}. Then

$$
\begin{equation*}
\left(W^{0}\right)_{0}=W \tag{1.20}
\end{equation*}
$$

and $W^{0} \subset Z^{0}$ if and only if $Z \subset W$. If $A \in \operatorname{End}_{\mathbb{F}}(V)$ maps W into itself then A^{\prime} maps W^{0} into itself. If A^{\prime} maps N into itself then $A\left(N_{0}\right) \subset N_{0}$. If $\iota: W \rightarrow V$ is the inclusion map, and

$$
r: V^{\prime} \rightarrow W^{\prime}: f \mapsto f \circ \iota
$$

the restriction map, then r induces an isomorphism of vector spaces

$$
\begin{equation*}
r_{*}: V^{\prime} / W^{0} \rightarrow W^{\prime}: f+W^{0} \mapsto r(f) . \tag{1.21}
\end{equation*}
$$

When V is finite dimensional,

$$
\begin{align*}
& \operatorname{dim} Z^{0}=\operatorname{dim} V-\operatorname{dim} Z \tag{1.22}\\
& \operatorname{dim} N_{0}=\operatorname{dim} V-\operatorname{dim} N .
\end{align*}
$$

Proof. Clearly $W \subset\left(W^{0}\right)_{0}$. Now consider a vector $v \in V$ outside the subspace W. Choose a basis B of V with $v \in B$ and such that B contains a basis of W. Let f be the linear functional on V for which $f(y)$ is equal to 0 on all vectors $y \in B$ except for $y=v$ on which $f(v)=1$; then $f \in W^{0}$ is not 0 on v, and so v is not in $\left(W^{0}\right)_{0}$. Hence, $\left(W^{0}\right)_{0} \subset W$. This proves 1.20).

The mappings $M \rightarrow M^{0}$ and $L \mapsto L_{0}$ are clearly inclusion reversing. If $W^{0} \subset Z^{0}$ then $\left(W^{0}\right)_{0} \supset\left(Z^{0}\right)_{0}$, and so $Z \subset W$.

If $A(W) \subset W$ and $f \in W^{0}$ then $A^{\prime} f=f \circ A$ is 0 on W, and so $A^{\prime}\left(W^{0}\right) \subset$ W^{0}. Similarly, if $A^{\prime}(N) \subset N$ and $v \in N_{0}$ then for any $f \in N$ we have

$$
f(A v)=\left(A^{\prime} f\right)(v)=0
$$

which means $A v \in N_{0}$.
Now, turning to the restriction map r, first observe that $\operatorname{ker} r=W^{0}$. Next, if $f \in W^{\prime}$ then choose a basis of W and extend it to a basis of V, and define $f_{1} \in V^{\prime}$ by requiring it to agree with f on the basis vectors in W and setting it to 0 on all basis vectors outside W; then $r\left(f_{1}\right)=f$. Thus, r is a surjection onto W^{\prime}, and so induces the isomorphism (1.21).

We will prove the dimension result (1.22) using bases, just to illustrate working with dual bases. Choose a basis b_{1}, \ldots, b_{m} of Z and extend to a basis b_{1}, \ldots, b_{n} of the full space V (so $0 \leq m \leq n$). Let $\left\{b_{j}^{\prime}\right\}$ be the dual basis in V^{\prime}. Then $f \in V^{\prime}$ lies in Z^{0} if and only if $f\left(b_{i}\right)=0$ for $i \in\{1, \ldots, m\}$, and this, in turn, is equivalent to f lying in the span of b_{i}^{\prime} for $i \in\{m+1, \ldots, n\}$. Thus, a basis of Z^{0} is formed by $b_{m+1}^{\prime}, \ldots, b_{n}^{\prime}$, and this proves the first equality in 1.22 . The second equality in 1.22 now follows by viewing the finite dimensional vector space V as the dual of V^{\prime} (see the discussion below). QED

The mapping

$$
V^{\prime} \times V \rightarrow \mathbb{F}:(f, v) \mapsto f(v)
$$

specifies the linear functional f on V when f is held fixed, and specifies a linear functional v_{*} on V^{\prime}, when v is held fixed:

$$
v_{*}: V^{\prime} \rightarrow \mathbb{F}: f \mapsto f(v) .
$$

The map

$$
\begin{equation*}
V \rightarrow\left(V^{\prime}\right)^{\prime}: v \mapsto v_{*} \tag{1.23}
\end{equation*}
$$

is clearly linear as well as injective. If V is finite dimensional then V^{\prime} and hence $\left(V^{\prime}\right)^{\prime}$ both have the same dimension as V, and this forces the injective
linear map $v \mapsto v_{*}$ to be an isomorphism. Thus, a finite dimensional vector space V is isomorphic to its double dual $\left(V^{\prime}\right)^{\prime}$ via the natural isomorphism (1.23).

When working with a vector space and its dual, there is a visually appealing notation due to Dirac often used in quantum physics. (If you find this notation irritating, you will be relieved to hear that we will use this notation very rarely, mainly in a couple of sections in Chapter 7.) A vector in V is denoted
$|v\rangle$
and is called a 'ket', while an element of the dual V ' is denoted

$$
\langle f|
$$

and called a 'bra.' The evaluation of the bra on the ket is then, conveniently, the 'bra-ket'

$$
\langle f \mid v\rangle \in \mathbb{F}
$$

If $\left|b_{1}\right\rangle, \ldots,\left|b_{n}\right\rangle$ is a basis of V then the dual basis is denoted $\left\langle b_{1}\right|, \ldots,\left\langle b_{n}\right| \in V^{\prime}$; hence:

$$
\left\langle b_{j} \mid b_{k}\right\rangle=\delta_{j k} \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } j=k \tag{1.24}\\ 0 & \text { if } j \neq k\end{cases}
$$

There is one small spoiler: the notation $\left\langle b_{j}\right|$ wrongly suggests that it is determined solely by the vector $\left|b_{j}\right\rangle$, when in fact one needs the full basis $\left|b_{1}\right\rangle, \ldots,\left|b_{n}\right\rangle$ to give meaning to it.

1.7 Irreducible Representations

A representation ρ on V is irreducible if $V \neq 0$ and the only invariant subspaces of V are 0 and V. The representation ρ is reducible if V is 0 or has a proper, nonzero invariant subspace.

A starter example of an irreducible representation of the symmetric group S_{n} can be extracted from the representation R of S_{n} as a reflection group in an n-dimensional space we looked at back in (1.3). For any $\sigma \in S_{n}$, the linear map $R(\sigma): \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is specified by

$$
R(\sigma) e_{j}=e_{\sigma(j)} \quad \text { for all } j \in\{1, \ldots, n\}
$$

where e_{1}, \ldots, e_{n} is the standard basis of \mathbb{F}^{n}. In terms of coordinates, R is specified by

$$
\begin{equation*}
S_{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}:(\sigma, v) \mapsto R(\sigma) v=v \circ \sigma^{-1} \tag{1.25}
\end{equation*}
$$

where $v \in \mathbb{F}^{n}$ is to be thought of as a map $v:\{1, \ldots, n\} \rightarrow \mathbb{F}: j \mapsto v_{j}$. The subspaces

$$
\begin{equation*}
E_{0}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n}: v_{1}+\cdots+v_{n}=0\right\} \tag{1.26}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\{(v, v, \ldots, v): v \in \mathbb{F}\} \tag{1.27}
\end{equation*}
$$

are clearly invariant subspaces. Thus, R itself is reducible (if $n \geq 2$). If $n 1_{\mathbb{F}} \neq$ 0 in \mathbb{F} then the subspaces D and E_{0} have in common only the zero vector, and provide a decomposition of \mathbb{F}^{n} into a direct sum of proper invariant nonzero subspaces. In fact, R restricts to irreducible representations on the subspaces D and E_{0} (work this out in Exercise 1,2,

As we will see later, for a finite group G, for which $|G| \neq 0$ in the field \mathbb{F}, every representation is a direct sum of irreducible representations.

A one dimensional representation is automatically irreducible. Our definitions allow the the zero space $V=\{0\}$ as a representation space as well, and we have to try to be careful everywhere to exclude, or include, this case as necessary.

Even with the little technology at hand, we can prove something interesting:

Theorem 1.7.1 Let V be a finite dimensional representation of a group G, and equip V^{\prime} with the dual representation. Then V is irreducible if and only if V^{\prime} is irreducible.

Proof. This is an application of Lemma 1.6.1. If W is an invariant suspace of V then the annihilator W^{0} is an invariant subspace of V^{\prime}, and if W is a proper, nonzero, invariant subspace of V then W^{0} is also a proper, nonzero, invariant subspace of V^{\prime}. In the other direction, for any subspace $N \subset V^{\prime}$, the annihilator N_{0} is invariant as a subspace of V if N is invariant in V^{\prime}. Comparing dimensions by using the second dimensional identity in 1.22 , N_{0} is a proper, nonzero, invariant subspace of V if N is a proper, nonzero, invariant subspace of V^{\prime}. QED

Here is another little useful observation:
Proposition 1.7.1 Any irreducible representation of a finite group is finite dimensional.

Proof. Let ρ be an irreducible representation of the finite group G on a vector space V. Pick any nonzero $v \in V$ and observe that the linear span of the finite set $\{\rho(g) v: g \in G\}$ is a nonzero invariant subspace of V and so, by irreducibility, must be all of V. Thus V is finite dimensional. QED

1.8 Schur's Lemma

The following fundamental result of Schur [66, §2.I] is called Schur's Lemma. We will revisit and reformulate it several times.

Theorem 1.8.1 A morphism between irreducible representations is either an isomorphism or 0 . In more detail, if ρ_{1} and ρ_{2} are irreducible representations of a group G on vector spaces V_{1} and V_{2}, over an arbitrary field \mathbb{F}, and if $T: V_{1} \rightarrow V_{2}$ is a linear map for which

$$
\begin{equation*}
T \rho_{1}(g)=\rho_{2}(g) T \quad \text { for all } g \in G, \tag{1.28}
\end{equation*}
$$

then T is either invertible or is 0 .
If ρ is an irreducible representation of a group G on a finite dimensonal vector space V over an algebraically closed field \mathbb{F} and $S: V \rightarrow V$ is a linear map for which

$$
\begin{equation*}
S \rho(g)=\rho(g) S \quad \text { for all } g \in G \tag{1.29}
\end{equation*}
$$

then $S=c I$ for some scalar $c \in \mathbb{F}$.
Proof. Let ρ_{1}, ρ_{2}, and T be as stated. From the intertwining property (1.28) it follows readily that ker T is invariant under the action of the group. Then, by irreducibility of ρ_{1}, it follows that $\operatorname{ker} T$ is either $\{0\}$ or V_{1}. So, if $T \neq 0$ then T is injective. Next, applying the same reasoning to $\operatorname{Im} T \subset V_{2}$, we see that if $T \neq 0$ then T is surjective. Thus, either $T=0$ or T is an isomorphism.

Now suppose \mathbb{F} is algebraically closed, V is finite dimensional, and S : $V \rightarrow V$ is an intertwining operator from the irreducible representation ρ on V to itself. The polynomial equation in λ given by

$$
\operatorname{det}(S-\lambda I)=0
$$

has a solution $\lambda=c \in \mathbb{F}$. Then $S-c I \in \operatorname{End}_{\mathbb{F}}(E)$ is not invertible. Note that $S-c I$ intertwines ρ with itself (that is, 1.29 holds with $S-c I$ in place
of S). So, by the first half of the result, $S-c I$ is 0 . Thus, $S=c I$, a scalar multiple of the identity. QED

We will repeat the argument used above in proving that $S=\lambda I$ a couple times again later.

Since the conclusion of Schur's Lemma for the algebraically closed case is so powerful, it is meaningful to isolate it as a hypothesis, or concept, in itself. A field \mathbb{F} is called a splitting field for a finite group G if for every irreducible representation ρ of G the only intertwining operators between ρ and itself are the scalar multiples $c I$ of the identity map $I: V_{\rho} \rightarrow V_{\rho}$.

Schur's Lemma is the Incredible Hulk of representation theory. Despite its innocent face-in-the-crowd appearance, it rises up with enormous power to overcome countless challenges. We will see many examples of this, but for now here a somewhat off-label use of Schur's Lemma to prove a simple but significant result first established by Wedderburn. A division algebra \mathbb{D} over a field \mathbb{F} is an \mathbb{F}-algebra with a multiplicative identity $1_{\mathbb{D}} \neq 0$ in which every nonzero element has a multiplicative inverse.

Theorem 1.8.2 If \mathbb{D} is a finite dimensional division algebra over an algebraically closed field \mathbb{F} then $\mathbb{D}=\mathbb{F} 1_{\mathbb{D}}$.

Proof. Consider the representation l of the multiplicative group $\mathbb{D}^{\times}=\{d \in$ $\mathbb{D}: d \neq 0\}$ on \mathbb{D}, viewed as a vector space over \mathbb{F}, given by

$$
l(u): \mathbb{D} \rightarrow \mathbb{D}: v \mapsto u v
$$

for all $u \in \mathbb{D}^{\times}$. This is an irreducible representation since for any nonzero $u_{1}, u \in \mathbb{D}$ we have $l\left(u_{1} u^{-1}\right) u=u_{1}$, which implies that any nonzero invariant subspace of \mathbb{D} contains every nonzero $u_{1} \in \mathbb{D}$ and hence is all of \mathbb{D}. Next, for any $c \in \mathbb{D}$, the map

$$
r_{c}: \mathbb{D} \rightarrow \mathbb{D}: v \mapsto v c
$$

is \mathbb{F}-linear and commutes with the action of each $l(u)$:

$$
l(u) r_{c} v=u v c=r_{c} l(u) v \quad \text { for all } v \in \mathbb{D} \text { and } u \in \mathbb{D}^{\times} .
$$

Then by Schur's Lemma (second part of Theorem 1.8.1), there is a $c_{0} \in \mathbb{F}$ such that $r_{c} v=c_{0} v$ for all $v \in \mathbb{D}$; taking $v=1_{\mathbb{D}}$ shows that $c=c_{0} 1_{\mathbb{D}}$. QED

The preceding proof can, of course, be stripped of its use of Schur's Lemma: for any $c \in \mathbb{D}$, the linear map $r_{c}: \mathbb{D} \rightarrow \mathbb{D}: v \mapsto c v$, with \mathbb{D}
viewed as a finite dimensional vector space over the algebraically closed field \mathbb{F}, has an eigenvalue $c_{0} \in \mathbb{F}$, which means that there is a nonzero $y \in \mathbb{D}$ for which $\left(c-c_{0} 1_{\mathbb{D}}\right) y=r_{c} y-c_{0} y=0$, which implies that $c=c_{0} 1_{\mathbb{D}} \in \mathbb{F}$. This beautiful argument was shared with me anonymously. A longer formulation of the proof can be extracted from the proof of Theorem 5.1.2, which is yet another rendition of Schur's Lemma.

1.9 The Frobenius-Schur Indicator

A bilinear mapping

$$
S: V \times W \rightarrow \mathbb{F}
$$

where V and W are vector spaces over the field \mathbb{F}, is said to be non-degenerate if

$$
\begin{array}{ll}
S(v, w)=0 & \text { for all } w \text { implies that } v=0 \\
S(v, w)=0 & \text { for all } v \text { implies that } w=0 \tag{1.30}
\end{array}
$$

The following result of Frobenius and Schur [35, Section 3] is an illustration of the power of Schur's Lemma.

Theorem 1.9.1 Let ρ be an irreducible representation of a group G on a finite dimensional vector space V over an algebraically closed field \mathbb{F}. Then there exists an element c_{ρ} in \mathbb{F} whose value is 0 or ± 1,

$$
c_{\rho} \in\{0,1,-1\},
$$

such that the following holds: if

$$
S: V \times V \rightarrow \mathbb{F}
$$

is bilinear and satisfies

$$
\begin{equation*}
S(\rho(g) v, \rho(g) w)=S(v, w) \quad \text { for all } v, w \in V, \text { and } g \in G \tag{1.31}
\end{equation*}
$$

then

$$
\begin{equation*}
S(v, w)=c_{\rho} S(w, v) \quad \text { for all } v, w \in V \tag{1.32}
\end{equation*}
$$

If ρ is not equivalent to the dual representation ρ^{\prime} then $c_{\rho}=0$, and thus, in this case, the only G-invariant bilinear form on the representation space of ρ is 0 .

If ρ is equivalent to ρ^{\prime} then $c_{\rho} \neq 0$ and there is a non-degenerate bilinear S, invariant under the G-action as in (1.31), and all nonzero bilinear S satisfying (1.31) are non-degenerate and multiples of each other. Thus if there is a nonzero bilinear form on V that is invariant under the action of G then that form is nondegenerate and either symmetric or skew-symmetric.

When the group G is finite, every irreducible representation is finite dimensional and so the finite dimensionality hypothesis is automatically satisfied. The assumption that the field \mathbb{F} is algebraically closed may be replaced by the requirement that it be a splitting field for G. The scalar c_{ρ} is called the Frobenius-Schur indicator of ρ. We will eventually obtain a simple formula expressing c_{ρ} in terms of the character of ρ; fast-forward to 7.109 for this.
Proof. Define $S_{l}, S_{r}: V \rightarrow V^{\prime}$, where V^{\prime} is the dual vector space to V, by

$$
\begin{align*}
& S_{l}(v): w \mapsto S(v, w) \\
& S_{r}(v): w \mapsto S(w, v) \tag{1.33}
\end{align*}
$$

for all $v, w \in V$. The invariance condition (1.31) translates to

$$
\begin{align*}
& S_{l} \rho(g)=\rho^{\prime}(g) S_{l} \tag{1.34}\\
& S_{r} \rho(g)=\rho^{\prime}(g) S_{r}
\end{align*}
$$

for all $g \in G$, where ρ^{\prime} is the dual representation on V^{\prime} given by $\rho^{\prime}(g) \phi=$ $\phi \circ \rho(g)^{-1}$. Now recall from Theorem 1.7.1 that ρ^{\prime} is also irreducible, since ρ is irreducible. Then by Schur's Lemma, the intertwining condition (1.34) implies that either S_{l} is 0 or it is an isomorphism.

If $S_{l}=0$ then $S=0$, and so the claim (1.32) holds on taking $c_{\rho}=0$ for the case where ρ is not equivalent to its dual.

Next, suppose ρ is equivalent to ρ^{\prime}. Schur's Lemma and the intertwining conditions (1.34) imply that S_{l} is either 0 or an isomorphism. The same holds for S_{r}. Thus, if $S \neq 0$ then S_{l} and S_{r} are both isomorphisms and hence a look back at (1.30) shows that S is nondegenerate. Moreover, Schur's Lemma also implies that S_{l} is a scalar multiple of S_{r}; thus there exists $k_{S} \in \mathbb{F}$ such that

$$
\begin{equation*}
S_{l}=k_{S} S_{r} \tag{1.35}
\end{equation*}
$$

Note that since S is not 0 , the scalar k_{S} is uniquely determined by S, but, at least at this stage, could potentially depend on S. The equality (1.35) spells out to:

$$
S(v, w)=k_{S} S(w, v) \quad \text { for all } v, w \in V
$$

and so, applying this twice, we have

$$
S(v, w)=k_{S} S(w, v)=k_{S}^{2} S(v, w)
$$

for all $v, w \in V$. Since S is not 0 , it follows then that $k_{S}^{2}=1$ and so $k_{S} \in\{1,-1\}$. It remains just to show that k_{S} is independent of the choice of S. Suppose $T: V \times V \rightarrow \mathbb{F}$ is also a nonzero G-invariant bilinear map. Then the argument used above for S_{l} and S_{r}, when applied to S_{l} and T_{l} implies that there is a scalar $k_{S T} \in \mathbb{F}$ such that

$$
T=k_{S T} S
$$

Then

$$
\begin{align*}
T(v, w) & =k_{S T} S(v, w) \\
& =k_{S T} k_{S} S(w, v)=k_{S} k_{S T} S(w, v) \tag{1.36}\\
& =k_{S} T(w, v)
\end{align*}
$$

for all $v, w \in V$, which shows that $k_{T}=k_{S}$. Thus we can set c_{ρ} to be k_{S} for any choice of nonzero G-invariant bilinear $S: V \times V \rightarrow \mathbb{F}$.

To finish up, observe that $\rho \simeq \rho^{\prime}$ means that there is a linear isomorphism $T: V \rightarrow V^{\prime}$, which intertwines ρ and ρ^{\prime}. Take $S(v, w)$ to be $T(v)(w)$, for all $v, w \in V$. Clearly, S is bilinear, G-invariant, and, since T is a bijection, S is non-degenerate. QED

Exercise 1.18 explores the consequences of the behavior of the bilinear map S in the preceding result.

1.10 Character of a Representation

The trace of a square matrix is the sum of the diagonal entries. The trace of an endomorphism $A \in \operatorname{End}_{\mathbb{F}}(V)$, where V is a finite dimensional vector space, is the trace of the matrix of A relative to any basis of V :

$$
\begin{equation*}
\operatorname{Tr} A=\sum_{j=1}^{n} A_{j j} \tag{1.37}
\end{equation*}
$$

where $\left[A_{j k}\right]$ is the matrix of A relative to a basis b_{1}, \ldots, b_{n}. It is a basic but remarkable fact that the trace is independent of the choice of basis used in
(1.37). Closely related to this is the fact that the trace is invariant under conjugation:

$$
\begin{equation*}
\operatorname{Tr}\left(C A C^{-1}\right)=\operatorname{Tr} A \tag{1.38}
\end{equation*}
$$

for all $A, C \in \operatorname{End}_{\mathbb{F}}(V)$, with C invertible. More generally,

$$
\begin{equation*}
\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \tag{1.39}
\end{equation*}
$$

for all $A, B \in \operatorname{End}_{\mathbb{F}}(V)$. As we have seen in (1.16), the matrix of the adjoint A^{\prime} is just the transpose of the matrix of A, relative to dual bases, and so the trace, being the sum of the common diagonal terms, is the same for both A and A^{\prime} :

$$
\begin{equation*}
\operatorname{Tr} A=\operatorname{Tr} A^{\prime} \tag{1.40}
\end{equation*}
$$

Proofs of these results and more information on the trace are in sections 12.11 and 12.12 .

The character χ_{ρ} of a representation of a group G on a finite dimensional vector space V is the function on G given by

$$
\begin{equation*}
\chi_{\rho}(g) \stackrel{\text { def }}{=} \operatorname{Tr} \rho(g) \quad \text { for all } g \in G \tag{1.41}
\end{equation*}
$$

For the simplest representation, where $\rho(g)$ is the identity I on V for all $g \in G$, the character is the constant function with value $\operatorname{dim}_{\mathbb{F}} V$. (For the case of $V=\{0\}$, we can set the character to be 0 .)

It may seem odd to single out the trace, and not, say, the determinant or some other such natural function of $\rho(g)$. But observe that if we know the trace of $\rho(g)$, with g running over all the elements of G, then we know the traces of $\rho\left(g^{2}\right), \rho\left(g^{3}\right)$, etc., which means that we know the traces of all powers of $\rho(g)$, for every $g \in G$. This is clearly a lot of information about a matrix. Indeed, as we shall see later in Proposition 1.11.2, $\rho(g)$ can, in the cases of interest, be written as a diagonal matrix with respect to some basis (generally dependent on g). Then knowing traces of all powers of $\rho(g)$ would mean that we know this diagonal matrix, with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ completely, up to permutation of the λ_{j}; this is because, by the traditional Newton identities for roots of equations, elements $\lambda_{1}, \ldots, \lambda_{n}$ in a field can be recovered from the values of the power sums $\sum_{j=1}^{n} \lambda_{j}^{k}$ for $k \in\{1, \ldots, n\}$. For a good computational procedure for this, work out Exercise 1,21 after you have read section 1.11 below.

Thus, knowledge of the character of ρ specifies each $\rho(g)$ up to basis change. In other words, under some simple assumptions, if ρ_{1} and ρ_{2} are
finite dimensional non-zero representations with the same character then for each g, there are bases relative to which the matrix of $\rho_{1}(g)$ is the same as the matrix of $\rho_{2}(g)$. This leaves open the possibility, however, that the special choice of bases might depend on g. Remarkably, this is not so! As we see much later, in Theorem 7.1.2, the character determines the representation up to equivalence. For now we will be satisfied with a simple observation:

Proposition 1.10.1 If ρ_{1} and ρ_{2} are equivalent representations of a group G on finite dimensional vector spaces then

$$
\begin{equation*}
\chi_{\rho_{1}}(g)=\chi_{\rho_{2}}(g) \quad \text { for all } g \in G \text {. } \tag{1.42}
\end{equation*}
$$

Proof. Let v_{1}, \ldots, v_{d} be a basis for the representation space V for ρ_{1} (if this space is $\{0\}$ then the result is obviously and trivially true, and so we discard this case). Then in the representation space W for ρ_{2}, the vectors $w_{i}=T v_{i}$ form a basis, where T is any isomorphism $V \rightarrow W$. We take for T the isomorphism that intertwines ρ_{1} and ρ_{2} :

$$
\rho_{2}(g)=T \rho_{1}(g) T^{-1} \quad \text { for all } g \in G
$$

Then, for any $g \in G$, the matrix for $\rho_{2}(g)$ relative to the basis w_{1}, \ldots, w_{d} is the same as the matrix of $\rho_{1}(g)$ relative to the basis v_{1}, \ldots, v_{d}. Hence, the trace of $\rho_{2}(g)$ equals the trace of $\rho_{1}(g)$. QED

The following observations are readily checked by using bases:
Proposition 1.10.2 If ρ_{1} and ρ_{2} are representations of a group on finite dimensional vector spaces then

$$
\begin{align*}
& \chi_{\rho_{1} \oplus \rho_{2}}=\chi_{\rho_{1}}+\chi_{\rho_{2}} \tag{1.43}\\
& \chi_{\rho_{1} \otimes \rho_{2}}=\chi_{\rho_{1}} \chi_{\rho_{2}}
\end{align*}
$$

Let us work out the character of the representation R of the permutation group S_{n} on \mathbb{F}^{n}, and on the subspaces D and E_{0} given in 1.26) and 1.27, discussed earlier in section 1.7. Recall that for $\sigma \in S_{n}$, and any standardbasis vector e_{j} of \mathbb{F}^{n},

$$
R(\sigma) e_{j} \stackrel{\text { def }}{=} e_{\sigma(j)}
$$

Hence,

$$
\begin{equation*}
\chi_{R}(\sigma)=\text { number of fixed points of } \sigma . \tag{1.44}
\end{equation*}
$$

Now consider the restriction R_{D} of this action to the 'diagonal' subspace $D=\mathbb{F}\left(e_{1}+\cdots+e_{n}\right)$. Clearly, $R_{D}(\sigma)$ is the identity map for every $\sigma \in S_{n}$, and so the character of R_{D} is given by

$$
\chi_{D}(\sigma)=1 \quad \text { for all } \sigma \in S_{n}
$$

Then the character χ_{0} of the representation $R_{0}=R(\cdot) \mid E_{0}$ is given by:

$$
\begin{equation*}
\chi_{0}(\sigma)=\chi_{R}(\sigma)-\chi_{D}(\sigma)=|\{j: \sigma(j)=j\}|-1 \tag{1.45}
\end{equation*}
$$

Characters can get confusing when working with representations over different fields at the same time. Fortunately there is no confusion in the simplest natural situation:

Proposition 1.10.3 If ρ is a representation of a group G on a finite dimensional vector space V over a field \mathbb{F}, and $\rho_{\mathbb{F}_{1}}$ is the corresponding representation on $V_{\mathbb{F}_{1}}$, where \mathbb{F}_{1} is a field containing \mathbb{F} as a subfield, then

$$
\begin{equation*}
\chi_{\rho_{\mathrm{P}_{1}}}=\chi_{\rho} . \tag{1.46}
\end{equation*}
$$

Proof. As seen in section 1.4, $\rho_{\mathbb{F}_{1}}$ has exactly the same matrix as ρ, relative to suitable bases. Hence the characters are the same as well. QED

If ρ_{1} is a one dimensional representation of a group G then, for each $g \in G$, the operator $\rho_{1}(g)$ is simply multiplication by a scalar, denoted again by $\rho_{1}(g)$. Then the character of ρ_{1} is ρ_{1} itself! In the converse direction, if χ is a homomorphism of G into the multiplicative group of invertible elements in the field then χ provides a one dimensional representation.

1.11 Diagonalizability

Let G be a finite group and ρ a representation of G on a finite dimensional vector space V over a field \mathbb{F}. Remarkably, under some mild conditions on the field \mathbb{F} as described below in Proposition 1.11.1, every element $\rho(g)$ can be expressed as a diagonal matrix relative to some basis (depending on g) in V, with the diagonal entries being roots of unity in \mathbb{F} :

$$
\rho(g)=\left[\begin{array}{cccccc}
\zeta_{1}(g) & 0 & 0 & \ldots & 0 & \\
0 & \zeta_{2}(g) & 0 & \ldots & 0 & \\
\vdots & \vdots & \vdots & \ldots & \vdots & \\
0 & 0 & 0 & & \cdots & \zeta_{d}(g)
\end{array}\right]
$$

where each $\zeta_{j}(g)$, when raised to the $|G|$-th power, gives 1 .
An m-th root of unity in a field \mathbb{F} is an element $\zeta \in \mathbb{F}$ for which $\zeta^{m}=1$. There are m distinct m-th roots of unity in an extension of \mathbb{F} if and only if m is not divisible by the characteristic of \mathbb{F} (Theorem 12.6.1).

Proposition 1.11.1 Suppose \mathbb{F} is a field that contains m distinct m-th roots of unity, for some $m \in\{1,2,3, .$.$\} . If V \neq 0$ is a vector space over \mathbb{F} and $S: V \rightarrow V$ is a linear map for which $S^{m}=I$, then there is a basis of V relative to which the matrix for S is diagonal and each diagonal entry is an m-th root of unity.
 $X^{m}-1$ factors as

$$
X^{m}-1=\left(X-\eta_{1}\right) \ldots\left(X-\eta_{m}\right)
$$

Then

$$
\left(S-\eta_{1} I\right) \ldots\left(S-\eta_{m} I\right)=S^{m}-I=0
$$

A result from linear algebra (Theorem 12.8.1) assures us that V has a basis with respect to which the matrix for S is diagonal, with entries drawn from the η_{i}. QED

As consequence we have:
Proposition 1.11.2 Suppose G is a group in which $g^{m}=e$ for all $g \in G$, for some positive integer m; for instance, G is finite of order m. Let \mathbb{F} be a field containing m distinct m-th roots of unity. Then, for any representation ρ of G on a vector space $V_{\rho} \neq 0$ over \mathbb{F}, for each $g \in G$ there is a basis of V_{ρ} with respect to which the matrix of $\rho(g)$ is diagonal and the diagonal entries are each m-th roots of unity in \mathbb{F}.

When the representation space is finite dimensional this gives us an unexpected and intriguing piece of information about characters:

Theorem 1.11.1 Suppose G is a group in which $g^{m}=e$ for all $g \in G$, for some positive integer m; for instance, G may be finite of order m. Let \mathbb{F} be a field containing m distinct m-th roots of unity. Then the character χ of any representation of G on a finite dimensional vector space over \mathbb{F} is a sum of m-th roots of unity.

A form of this result was proved by Maschke [56], and raised the question as to when there is a basis of the vector space relative to which all $\rho(g)$ have entries in some number field generated by a root of unity.

There is a way to bootstrap our way up to a stronger form of the preceding result. Suppose that it is not the field \mathbb{F}, but rather an extension, a larger field $\mathbb{F}_{1} \supset \mathbb{F}$ which contains m distinct m-th roots of unity; for instance, \mathbb{F} might be the reals \mathbb{R} and \mathbb{F}_{1} is the field \mathbb{C}. The representation space V can be dressed up to $V_{1}=\mathbb{F}_{1} \otimes_{\mathbb{F}} V$, which is a vector space over \mathbb{F}_{1}, and then a linear map $T: V \rightarrow V$ produces an \mathbb{F}_{1}-linear map

$$
\begin{equation*}
T_{1}: V_{1} \rightarrow V_{1}: 1 \otimes v \mapsto 1 \otimes T v . \tag{1.47}
\end{equation*}
$$

If B is a basis of V then $\{1 \otimes w: w \in B\}$ is a basis of V_{1}, and the matrix of T_{1} relative to this basis is the same as the matrix of T relative to B, and so

$$
\begin{equation*}
\operatorname{Tr} T_{1}=\operatorname{Tr} T \tag{1.48}
\end{equation*}
$$

(We have seen this before in 1.46).) Consequently, if in Theorem 1.11.1 we require simply that there be an extension field of \mathbb{F} in which there are m distinct m-th roots of unity and ρ is a finite dimensional representation over \mathbb{F} then the values of the character χ_{ρ} are again sums of m-th roots of unity in \mathbb{F}_{1} (which, themselves, need not lie in \mathbb{F}).

Suppose the field \mathbb{F} has an automorphism, call it conjugation,

$$
\mathbb{F} \rightarrow \mathbb{F}: z \mapsto \bar{z}
$$

that takes each root of unity to its inverse; let us call self-conjugate elements real. For instance, if \mathbb{F} is a subfield of \mathbb{C} then the usual complex conjugation provides such an automorphism. Then, under the hypotheses of Proposition 1.11.2, for each $g \in G$ and representation ρ of G on a finite dimensional vector space $V_{\rho} \neq 0$, there is a basis of V_{ρ} relative to which the matrix of $\rho(g)$ is diagonal with entries along the diagonal being roots of unity; hence, $\rho\left(g^{-1}\right)$, relative to the same basis, has a diagonal matrix, with the diagonal entries being the conjugates of those for $\rho(g)$. Hence

$$
\begin{equation*}
\chi_{\rho}\left(g^{-1}\right)=\overline{\chi_{\rho}(g)} . \tag{1.49}
\end{equation*}
$$

In particular, if an element of G is conjugate to its inverse, then the value of any character on such an element is real. In the symmetric group S_{n}, every element is conjugate to its own inverse, and so:
the characters of all complex representations of S_{n} are real-valued.
This is an amazing, specific result about a familiar concrete group that falls out immediately from some of the simplest general observations. Later, with greater effort, it will become clear that, in fact, the characters of S_{n} have integer values!

1.12 Unitarity

Suppose now that our field \mathbb{F} is a subfield of \mathbb{C}, the field of complex numbers, and G is a finite group.

Consider any hermitian inner product $\langle\cdot, \cdot\rangle$ on V, a vector space over \mathbb{F}. This is a map

$$
V \times V \rightarrow \mathbb{F}:(v, w) \mapsto\langle v, w\rangle
$$

such that

$$
\begin{align*}
\left\langle a v_{1}+v_{2}, w\right\rangle & =a\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle \\
\left\langle v, a w_{1}+w_{2}\right\rangle & =\bar{a}\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle \tag{1.50}\\
\langle v, v\rangle & \geq 0 \quad \text { (in particular, }\langle v, v\rangle \text { is real) } \\
\langle v, v\rangle & =0 \quad \text { if and only if } v=0,
\end{align*}
$$

for all $v, w, v_{1}, v_{2}, w_{1}, w_{2} \in V$ and $a \in \mathbb{F}$. The norm $\|v\|$ of any $v \in V$ is defined by

$$
\begin{equation*}
\|v\|=\sqrt{\langle v, v\rangle} \tag{1.51}
\end{equation*}
$$

Note that in (1.50) we used the complex conjugation $z \mapsto \bar{z}$. If \mathbb{F} is the field \mathbb{R} of real numbers then the conjugation operation is just the identity map.

It is a bit sad that mathematical convention has chosen $\langle v, w\rangle$ to be linear in v and conjugate linear in w. The physics literature generally takes exactly the opposite convention, requiring that $w \mapsto\langle v, w\rangle$ be linear. This appears even more sensible in the bra-ket notation

$$
\langle v|:|w\rangle \mapsto\langle v \mid w\rangle
$$

is linear in the physics convention (which we do not use).
Let us modify the inner product so that it sees all $\rho(g)$ equally; this is done by averaging:

$$
\begin{equation*}
\langle v, w\rangle_{0}=\frac{1}{|G|} \sum_{g \in G}\langle\rho(g) v, \rho(g) w\rangle \tag{1.52}
\end{equation*}
$$

for all $v, w \in V$. Then it is clear that

$$
\langle\rho(h) v, \rho(h) w\rangle_{0}=\langle v, w\rangle_{0},
$$

for all $h \in G$ and all $v, w \in V$. You can quickly check through all the properties needed to certify $\langle\cdot, \cdot\rangle_{0}$ as an inner product on V.

Thus we have proved:
Proposition 1.12.1 Let G be a finite group and ρ a representation of G on a vector space V over a subfield \mathbb{F} of \mathbb{C}. Then there is a hermitian inner product $\langle\cdot, \cdot\rangle_{0}$ on V such that for every $g \in G$ the operator $\rho(g)$ is unitary in the sense that

$$
\langle\rho(g) v, \rho(g) w\rangle_{0}=\langle v, w\rangle_{0} \quad \text { for all } v, w \in V \text { and } g \in G .
$$

In matrix algebra one knows that a unitary matrix can be diagonalized by choosing a suitable orthonormal basis in the space. Then our result here gives an alternative way to understand Proposition 1.11.2.

1.13 Rival Reads

There are many books on representation theory, even for finite groups, ranging from elementary introductions to extensive expositions. An encyclopedic, yet readable, volume is the work of Curtis and Reiner [16]. The book of Burnside [9] (2nd edition), from the early years of the theory, is still worth exploring, as is the book of Littlewood [55]. Among modern books, Weintraub [75] provides an efficient and extensive development of the theory, especially the arithmetic aspects of the theory and the behavior of representations under change of the ground field. The book of Serre [70] is a classic. With a very different flavor, Simon [71] is a fast paced exposition and crosses the bridge from finite to compact groups. For the representation theory of compact groups, for which there is a much larger library of literature, we recommend Hall [40]. Another introduction which bridges finite and compact groups, and explores a bit of the non-compact group $S L_{2}(\mathbb{R})$ as well, is the slim volume of Thomas [72]. Returning to finite groups, Alperin and Bell [1] and James and Liebeck [48] offer introductions with a view to understanding the structure of finite groups. Hill [43] is an elegant and readable introduction which pauses to examine many enlightening examples. Lang's Algebra [53] includes a rapid but readable account of finite group representation theory, covering the basics and some deeper results.

1.14 Afterthoughts: Lattices

Logic and geometry interweave in an elegant, and abstract, lattice framework developed by von Neumann and Birkhoff [4] for classical and quantum physics. There is an extensive exposition of this theory, and much more, in Varadarajan [73].

A symmetry transforms one entity to another, preserving certain features of interest. The minimal setting for such a transformation is simply as a mapping of a set into itself. An action of a group G on a set S is a mapping

$$
G \times P \rightarrow P:(g, p) \mapsto L_{g}(p)=g \cdot p,
$$

for which $e \cdot p=p$ for all $p \in P$, where e is the identity in G, and $g \cdot(h \cdot p)=$ $(g h) \cdot p$ for all $g, h \in G$, and $p \in P$. Taking h to be g^{-1} shows that each mapping $L_{g}: p \mapsto g \cdot p$ is a bijection of S into itself. As a physical example, think of S as the set of states of some physical system; for instance, S could be the phase space of a classical dynamical system. If instead of a single point p of S we consider a subset $A \subset S$, the action of $g \in G$ carries A into the subset $L_{g}(A)$. Thus,

$$
A \mapsto L_{g}(A)
$$

specifies an action of G on the set $\mathcal{P}(S)$ of all subsets of S. Unlike S, the set $\mathcal{P}(S)$ does have some structure: it has a partial ordering given by inclusion $A \subset B$, and there is a minimum element $0=\emptyset$ and a maximum element $1=S$. This partial order relation makes $\mathcal{P}(S)$ a lattice in the sense that any $A, B \in \mathcal{P}(S)$ have both an infimum $A \wedge B=A \cap B$ and a supremum $A \vee B=A \cup B$. This lattice structure has several additional nice features; for one thing, it is distributive:

$$
\begin{align*}
& (P \cup M) \cap B=(P \cap B) \cup(M \cap B) \tag{1.53}\\
& P \cup(M \cap B)=(P \cup M) \cap(P \cup B),
\end{align*}
$$

for all $P, M, B \in \mathcal{P}(S)$. Moreover, the complementation $A \mapsto A^{c}$ specified by

$$
\begin{equation*}
A \cap A^{c}=\emptyset \quad \text { and } \quad A \cup A^{c}=S \tag{1.54}
\end{equation*}
$$

is an order-reversing bijection of $\mathcal{P}(S)$ into itself, and is an involution, in the sense that $\left(A^{c}\right)^{c}=A$ for all $A \in \mathcal{P}(S)$. The action of G on $\mathcal{P}(S)$ clearly preserves the partial order relation and hence the lattice structure, given by infimum and supremum, as well as complements. Conversely, at least for a
finite set S, if a group G acts on $\mathcal{P}(S)$, preserving its partial ordering, then this action arises from an action of G on the underlying set S.

Birkhoff and von Neumann [4] proposed that in quantum theory classical Boolean logic, an example of which is the lattice structure of $\mathcal{P}(S)$, is replaced by a different lattice, encoding the 'logic of quantum mechanics'. This is a lattice $\mathbb{L}(\mathbb{H})$ of subspaces of a vector space \mathbb{H}, with additional properties of the lattice being reflected in the nature of \mathbb{F} and an inner product on \mathbb{H}. The set of subspaces is ordered by inclusion, the infimum is again the intersection, but the supremum of subspaces $A, B \in \mathbb{L}(\mathbb{H})$ is the minimal subspace in $\mathbb{L}(\mathbb{H})$ containing the sum $A+B$. Unlike the Boolean lattice $\mathcal{P}(S)$, the distributive laws do not hold; a weaker form, the modular law does hold:

$$
\begin{equation*}
(P+M) \cap B=(P \cap B)+M \quad \text { if } M \subset B \tag{1.55}
\end{equation*}
$$

(We will meet this again later in (5.29).
The construction of the field \mathbb{F} and the vector space \mathbb{H} is part of classical projective geometry. The inner product arises from logical negation, which is expressed as a complementation in $\mathbb{L}(\mathbb{H})$: Birkhoff and von Neumann [4, Appendix] show how a complementation $A \mapsto A^{\perp}$ in the lattice $\mathbb{L}(\mathbb{H})$ induces, when $\operatorname{dim} \mathbb{H}>3$, an inner product on \mathbb{H} for which A^{\perp} is the orthogonal complement of A. In the standard form of quantum theory \mathbb{F} is the field \mathbb{C} of complex numbers, and $\mathbb{L}(\mathbb{H})$ is the lattice of closed subspaces of a Hilbert space \mathbb{H}. More broadly, one could consider the scalars to be drawn from a division ring, such as the quaternions. Consider now a set \mathcal{A} of closed subspaces of \mathbb{H} such that any two distinct elements of \mathcal{A} are orthogonal to each other, and the closed sum of elements of \mathcal{A} is all of \mathbb{H}. Then the set $\mathbb{L}(\mathcal{A})$ of all subspaces that are direct sums of elements of \mathcal{A} is a Boolean algebra, corresponding to a classical physical system, unlike the full lattice $\mathbb{L}(\mathbb{H})$ that describes a quantum system. The simplest instance of this is seen for $\mathbb{H}=$ \mathbb{C}^{2}, with two complementary atoms, which are orthogonal one dimensional subspaces, that is the model Hilbert space of a 'single qubit' quantum system. Aside from the lattice framework, an analytically more useful structure is the algebra of operators obtained as suitable (strong) limits of complex linear combinations of projection operators onto the closed subspaces of \mathbb{H}. This is a quantum form of the commutative algebra formed by using only the subspaces in the Boolean algebra $\mathbb{L}(\mathcal{A})$.

A symmetry of the physical system in this framework is an automorphism of the complemented lattice $\mathbb{L}(\mathbb{H})$ and, combining fundamental theorems
from projective geometry and a result of Wigner, such a symmetry is realized by a linear or conjugate-linear unitary mapping $\mathbb{H} \rightarrow \mathbb{H}$ (see Varadarajan [73] for details and more). If ρ is a unitary representation of a finite group G on a finite dimensional inner product space \mathbb{H}, then $\rho_{g}: A \mapsto \rho(g) A$, for $A \in$ $\mathbb{L}(\mathbb{H})$, is an automorphism of the complemented lattice $\mathbb{L}(\mathbb{H})$, and thus such a representation ρ of G provides a group of symmetries of a quantum system. The requirement that ρ be a representation may be weakened, requiring only that it be a projective representation, where $\rho(g) \rho(h)$ must only be a multiple of $\rho(g h)$, for it to produce a group of symmetries of $\mathbb{L}(\mathbb{H})$.

Exercises

1. Let G be a finite group, P a nonempty set on which G acts; this means that there is a map

$$
G \times P \rightarrow P:(g, p) \mapsto g \cdot p
$$

for which $e \cdot p=p$ for all $p \in P$, where e is the identity in G, and $g \cdot(h \cdot p)=(g h) \cdot p$ for all $g, h \in G$, and $p \in P$. The set P, along with the action of G, is called a G-set. Now suppose V is a vector space over a field \mathbb{F}, with P as basis. Define, for each $g \in G$, the map $\rho(g): V \rightarrow V$ to be the linear map induced by permutation of the basis elements by the action of g :

$$
\rho(g): V \rightarrow V: \sum_{p \in P} a_{p} p \mapsto \sum_{p \in P} a_{p} g \cdot p .
$$

Show that ρ is a representation of G. Interpret the character value $\chi_{\rho}(g)$ in terms of the action of g on P. Next, if P_{1} and P_{2} are G-sets with corresponding representations ρ_{1} and ρ_{2}, interpret the representation ρ_{12} corresponding to the natural action of G on the product $P_{1} \times P_{2}$ in terms of the tensor product $\rho_{1} \otimes \rho_{2}$.
2. Let $n \geq 2$ be a positive integer, \mathbb{F} a field in which $n 1_{\mathbb{F}} \neq 0$, and consider the representation R of S_{n} on \mathbb{F}^{n} given by

$$
\begin{aligned}
R(\sigma)\left(v_{1}, \ldots, v_{n}\right)= & \left(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(n)}\right) \\
& \text { for all }\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n} \text { and } \sigma \in S_{n} .
\end{aligned}
$$

Let

$$
D=\{(v, \ldots, v): v \in \mathbb{F}\} \subset \mathbb{F}^{n}
$$

and

$$
E_{0}=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n}: v_{1}+\cdots+v_{n}=0\right\}
$$

Show that:
(i) no nonzero vector in E_{0} is in D (since $n \geq 2, E_{0}$ does contain a nonzero vector!);
(ii) each vector $e_{1}-e_{j}$ lies in the span of $\left\{R(\sigma) w: \sigma \in S_{n}\right\}$, for any $w \in E_{0} ;$
(iii) the restriction R_{0} of R to the subspace E_{0} is an irreducible representation of S_{n}.
3. Let P_{n} be the set of all partitions of $[n]=\{1, \ldots, n\}$ into k disjoint nonempty subsets, where $k \in[n]$. For $\sigma \in S_{n}$ and $p \in P_{k}$, let $\sigma \cdot p=$ $\{\sigma(B): B \in p\}$. In this way S_{n} acts on P_{k}. Now let V_{k} be the vector space, over a field \mathbb{F}, with basis P_{k}, and let $R_{k}: S_{n} \rightarrow \operatorname{End}_{\mathbb{F}}\left(V_{k}\right)$ be the corresponding representation given by the method of Exercise 1.1. What is the relationship of this to the representation R in Exercise 1,2?
4. Determine all one-dimensional representations of S_{n} over any field.
5. Prove Proposition 1.10.2,
6. Let $n \in\{3,4, \ldots\}$, and \mathbb{F} a field of characteristic 0 . Denote by R_{0} the restriction of the representation of S_{n} on \mathbb{F}^{n} to the subspace $E_{0}=\{x \in$ $\left.\mathbb{F}^{n}: x_{1}+\cdots+x_{n}=0\right\}$. Let ϵ be the one-dimensional representation of S_{n} on \mathbb{F} given by the signature, where $\sigma \in S_{n}$ acts by multiplication by the signature $\epsilon(\sigma) \in\{+1,-1\}$. Show that $R_{1}=R_{0} \otimes \epsilon$ is an irreducible representation of S_{n}. Show that R_{1} is not equivalent to R_{0}.
7. Consider S_{3}, which is generated by the cyclic permutation $c=(123)$ and the transposition $r=(12)$, subject to the relations

$$
c^{3}=\iota, \quad r^{2}=\iota, \quad r c r^{-1}=c^{2}
$$

Let \mathbb{F} be a field. The group S_{3} acts on \mathbb{F}^{3} by permutation of coordinates, and preserves the subspace $E_{0}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0\right\}$; the restriction of the action to E_{0} is a 2-dimensional representation R_{0} of S_{3}. Work out the matrices for $R_{0}(\cdot)$ relative to the basis $u_{1}=(1,0,-1)$
and $u_{2}=(0,1,-1)$ of E_{0}. Then work out the values of the character χ_{0} on all the six elements of S_{3}. Compute the sum

$$
\sum_{\sigma \in S_{3}} \chi_{0}(\sigma) \chi_{0}\left(\sigma^{-1}\right)
$$

8. Consider A_{4}, the group of even permutations on $\{1,2,3,4\}$, acting through permutation of coordinates of \mathbb{F}^{4}, where \mathbb{F} is a field. This action restricts to a representation R_{0} on the subspace $E_{0}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\right.$ $\left.\mathbb{F}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=0\right\}$. Work out the values of the character of R_{0} on all elements of A_{4}.
9. Give an example of a representation ρ of a finite group G on a finite dimensional vector space V over a field of characteristic 0 , such that there is an element $g \in G$ for which $\rho(g)$ is not diagonal in any basis of V.
10. Explore the validity of the statement of Theorem 1.7 .1 when V is infinite dimensional.
11. Let V and W be finite dimensional representations of a group G, over the same field. Show that: (i) $V^{\prime \prime} \simeq V$ and (ii) $V \simeq W$ if and only if $V^{\prime} \simeq W^{\prime}$, where \simeq denotes equivalence of representations.
12. Suppose ρ is an irreducible representation of a finite group G on a vector space V over a field \mathbb{F}. If $\mathbb{F}_{1} \supset \mathbb{F}$ is an extension field of \mathbb{F}, is the representation $\rho_{\mathbb{F}_{1}}$ on $V_{\mathbb{F}_{1}}$ necessarily irreducible?
13. If H is a normal subgroup of a finite group G, and ρ a representation of the group G / H, then let ρ_{G} be the representation of G specified by

$$
\rho_{G}(g)=\rho(g H) \quad \text { for all } g \in G
$$

Show that ρ_{G} is irreducible if and only if ρ is irreducible. Work out the character of ρ_{G} in terms of the character of ρ.
14. Let ρ be a representation of a group G on a finite dimensional vector space $V \neq 0$.
(i) Show that there is a subspace of V on which ρ restricts to an irreducible representation.
(ii) Show that there is a chain of subspaces $V_{1} \subset V_{2} \subset \cdots \subset V_{m}=V$, such that (a) each V_{j} is invariant under the action of $\rho(G)$, (b) the representation $\rho \mid V_{1}$ is irreducible, and (c) the representation obtained from ρ on the quotient V_{j} / V_{j-1} is irreducible, for each $j \in\{2, \ldots, m\}$.
15. Let ρ be a representation of a group G on a vector space V over a field \mathbb{F}, and suppose b_{1}, \ldots, b_{n} is a basis of V. There is then a representation τ of G on $\operatorname{End}_{\mathbb{F}}(V)$ given by:

$$
\tau(g) A=\rho(g) \circ A \quad \text { for all } g \in G \text { and } A \in \operatorname{End}_{\mathbb{F}}(V)
$$

Let

$$
S: \operatorname{End}_{\mathbb{F}}(V) \rightarrow V \oplus \cdots \oplus V: A \mapsto\left(A b_{1}, \ldots, A b_{n}\right)
$$

Show that S is an equivalence from τ to $\rho \oplus \cdots \oplus \rho$ (n-fold direct sum of ρ with itself).
16. Let ρ_{1} and ρ_{2} be representations of a group G on vector spaces V_{1} and V_{2}, respectively, over a common field \mathbb{F}. For $g \in G$, let $\rho_{12}(g)$: $\operatorname{Hom}\left(V_{1}, V_{2}\right) \rightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ be given by

$$
\rho_{12}(g) T=\rho_{2}(g) T \rho_{1}(g)^{-1} .
$$

Show that ρ_{12} is a representation of G. Taking V_{1} and V_{2} to be finite dimensional, show that this representation is equivalent to the tensor product representation $\rho_{1}^{\prime} \otimes \rho_{2}$ on $V_{1}^{\prime} \otimes V_{2}$.
17. Let ρ be a representation of a group G on a finite dimensional vector space V over a field \mathbb{F}. There is then a representation σ of $G \times G$ on $\operatorname{End}_{\mathbb{F}} V$ given by:

$$
\sigma(g, h) A=\rho(g) \circ A \circ \rho(h)^{-1} \quad \text { for all } g \in G \text { and } A \in \operatorname{End}_{\mathbb{F}}(V)
$$

Let

$$
B: V^{\prime} \otimes V \rightarrow \operatorname{End}_{\mathbb{F}}(V) \rightarrow\langle f| \otimes|v\rangle \mapsto|v\rangle\langle f|,
$$

where $|v\rangle\langle f|$ is the map $V \rightarrow V$ carrying any vector $|w\rangle \in V$ to $\langle f \mid w\rangle\langle v|$. Show that B is an equivalence from σ to the representation θ of $G \times G$ on $V^{\prime} \otimes V$ specified by

$$
\theta(g, h)\langle f| \otimes|v\rangle=\rho^{\prime}(h)\langle f| \otimes \rho(g)|v\rangle,
$$

where ρ^{\prime} is the dual representation on V^{\prime}.
18. Let G be a group and ρ an irreducible representation of G on a finite dimensional complex vector space V. Assume that there is a hermitian inner product $\langle\cdot, \cdot \cdot\rangle$ on V that is invariant under G, thus making ρ a unitary representation. Assume, moreover, that there is a nonzero symmetric bilinear mapping

$$
S: V \times V \rightarrow \mathbb{C}
$$

which is G-invariant:

$$
S(\rho(g) v, \rho(g) w)=S(v, w) \quad \text { for all } v, w \in V \text { and } g \in G
$$

For $v \in V$ let $S_{*}(v)$ be the unique element of V for which

$$
\begin{equation*}
\left\langle w, S_{*}(v)\right\rangle=S(w, v) \quad \text { for all } w \in V \tag{1.56}
\end{equation*}
$$

(i) Check that $S_{*}: V \rightarrow V$ is conjugate linear, in the sense that

$$
S_{*}(a v+w)=\bar{a} S_{*}(v)+S_{*}(w)
$$

for all $v, w \in V$ and $a \in \mathbb{C}$. Consequently, S_{*}^{2} is linear. Check that

$$
S_{*}(\rho(g) v)=\rho(g)\left(S_{*} v\right)
$$

and

$$
S_{*}^{2} \rho(g)=\rho(g) S_{*}^{2}
$$

for all $g \in G$ and $v \in V$.
(ii) Show from the symmetry of S that S_{*}^{2} is a hermitian operator:

$$
\left\langle S_{*}^{2} w, v\right\rangle=\left\langle S_{*} v, S_{*} w\right\rangle=\left\langle w, S_{*}^{2} v\right\rangle
$$

for all $v, w \in V$.
(iii) Since S_{*}^{2} is hermitian, there is an orthonormal basis B of V relative to which S_{*}^{2} has all off-diagonal entries 0 . Show that all the diagonal entries are positive.
(iv) Let S_{0} be the unique linear operator $V \rightarrow V$ that, relative to the basis B in (iii), has matrix which has all off diagonal entries 0 and the diagonal entries are the positive square roots of the corresponding entries for the matrix of S_{*}^{2}. Thus, $S_{0}=\left(S_{*}^{2}\right)^{1 / 2}$ in the
sense that $S_{0}^{2}=S_{*}^{2}$ and S_{0} is hermitian and positive: $\left\langle S_{0} v, v\right\rangle \geq 0$ with equality if and only if $v=0$. Show that

$$
S_{0} \rho(g)=\rho(g) S_{0} \text { for all } g \in G,
$$

and also that S_{0} commutes with S_{*}.
(v) Let

$$
\begin{equation*}
C=S_{*} S_{0}^{-1} \tag{1.57}
\end{equation*}
$$

Check that $C: V \rightarrow V$ is conjugate linear, $C^{2}=I$, the identity map on V, and $C \rho(g)=\rho(g) C$ for all $g \in V$.
(vi) By writing any $v \in V$ as

$$
v=\frac{1}{2}(v+C v)+i \frac{1}{2 i}(v-C v),
$$

show that

$$
V=V_{\mathbb{R}} \oplus i V_{\mathbb{R}}
$$

where $V_{\mathbb{R}}$ is the real vector space consisting of all $v \in V$ for which $C v=v$.
(vii) Show that $\rho(g) V_{\mathbb{R}} \subset V_{\mathbb{R}}$ for all $g \in G$. Let $\rho_{\mathbb{R}}$ be the representation of G on the real vector space $V_{\mathbb{R}}$ give by the restriction of ρ. Show that ρ is the complexification of $\rho_{\mathbb{R}}$. In particular, there is a basis of V relative to which all matrices $\rho(g)$ have all entries real.
(viii) Conversely, show that if there is a basis of V for which all entries of all the matrices $\rho(g)$ are real then there is a nonzero symmetric G-invariant bilinear form on V.
(ix) Prove that for an irreducible complex character χ of a finite group, the Frobenius-Schur indicator has value 0 if the character is not real-valued, has value 1 if the character arises from the complexification of a real representation, and has value -1 if the character is real-valued but does not arise from the complexification of a real representation.
19. Let ρ be a representation of a group G on a vector space V over a field \mathbb{F}. Show that the subspace $V^{\hat{\otimes} 2}$ consisting of symmetric tensors in $V \otimes V$ is invariant under the tensor product representation $\rho \otimes \rho$. Assume that G is finite, containing m elements, and the field \mathbb{F} has
characteristic $\neq 2$ and contains m distinct m-th roots of unity. Work out the character of the representation ρ_{s} that is given by the restriction of $\rho \otimes \rho$ to $V^{\hat{\otimes} 2}$. (Hint: Diagonalize.)
20. Let ρ be an irreducible complex representation of a finite group G on a space of dimension d_{ρ}, and χ_{ρ} its character. If g is an element of G for which $\left|\chi_{\rho}(g)\right|=d_{\rho}$, show that $\rho(g)$ is of the form $c I$ for some root of unity c.
21. Let χ be the character of a representation ρ of a finite group G on a finite dimensional complex vector space $V \neq 0$. Dixon [24] describes a computationally convenient way to recover the diagonalized form of $\rho(g)$ from the values of χ on the powers of g; in fact, he explains how to recover the diagonalized form of $\rho(g)$, and hence also the value of $\chi(g)$, given only approximate values of the character. Here is a pathway through these ideas:
(i) Suppose U is an $n \times n$ complex diagonal matrix such that $U^{d}=I$, where d is a positive integer. Let ζ be any d-th root of unity. Show that

$$
\frac{1}{d} \sum_{k=0}^{d-1} \operatorname{Tr}\left(U^{k}\right) \zeta^{-k}
$$

$=$ number of times ζ appears on the diagonal of U.
(Hint: If $w^{d}=1$, where d is a positive integer, then $1+w+w^{2}+$ $\cdots+w^{d-1}$ is 0 of $w \neq 1$, and is d if $w=1$.)
(ii) If all the values of the character χ are known, use (i) to explain how the diagonalized form of $\rho(g)$ can be computed for every $g \in G$.
(iii) Now consider $g \in G$, and let d be a positive integer for which $g^{d}=e$. Suppose we know the values of χ on the powers of g within an error margin $<1 / 2$. In other words, suppose we have complex numbers z_{1}, \ldots, z_{d} with $\left|z_{j}-\chi\left(g^{j}\right)\right|<1 / 2$ for all $j \in\{1, \ldots, d\}$. Show that, for any d-th root of unity ζ, the integer closest to $d^{-1} \sum_{k=1}^{d} z_{k} \zeta^{-k}$ is the multiplicity of ζ in the diagonalized form of $\rho(g)$. Thus, the values z_{1}, \ldots, z_{k} can be used to compute the diagonalized form of $\rho(g)$ and hence also the exact value of χ on the powers of g. Modify to allow for approximate values of the powers of ζ as well.

A Reckoning

He sits in a seamless room staring
into the depths
of a wall that is not a wall,
opaque,
unfathomable.
Though deep understanding lies
just beyond that wall, the vision he desires
can be seen
only from within the room.
Sometimes a sorrow transports him through the door that is not a door, down stairs that are not stairs to the world beyond the place of seeking:

> down fifty steps
hand carved into the mountains stony side to a goat path that leads to switchbacks, becoming a trail that becomes a road; and thus he wanders to the town beyond.

Though barely dusk,
the night lights brighten
guiding him
to the well known place of respite.
They were boisterous within,
but they respect him as the one who seeks, and so they sit subdued, waiting,
hoping for the revelation that never comes.
Amidst the quiet clinking of glasses
and the softly whispered reverence, a woman approaches, escorts him to their accustomed place.

They speak with words that are not words about ideas that are not ideas enshrouded by a silence that is not silence.

His presence stifles their gaiety, her gaiety,
and so he soon grows restless and desires to return to his hopeless toil.

The hand upon his cheek, the tear glistening in her eye, the whispered words husband mine, will linger with him until he once again attains his room that is not a room.

As he leaves,
before the door can slam behind him, he hears their voices
rise
once again
in blessed celebration, hers distinctly above the others.
But he follows his trail and his switchbacks
and his goat path
and the fifty steps
to his seamless world
prepared once again
to let his god
who is not a god
take potshots at his soul.

Charlie Egedy

Chapter 2

Basic Examples

We will work our way through examples in this chapter, looking at representations and characters of some familiar finite groups. We focus on complex representations, but any algebraically closed field of characteristic zero (for instance, the algebraic closure $\overline{\mathbb{Q}}$ of the rationals) could be substituted for \mathbb{C}.

Recall that the character χ_{ρ} of a finite dimensional representation ρ of a group G is the function on the group specified by

$$
\begin{equation*}
\chi_{\rho}(g)=\operatorname{Tr} \rho(g) . \tag{2.1}
\end{equation*}
$$

Characters are invariant under conjugation and so χ_{ρ} takes a constant value $\chi_{\rho}(C)$ on any conjugacy class C. As we have seen before in (1.49),

$$
\begin{equation*}
\chi_{\rho}\left(g^{-1}\right)=\overline{\chi_{\rho}(g)} \quad \text { for all } g \in G \tag{2.2}
\end{equation*}
$$

for any complex representation ρ. We say that a character is irreducible if it is the character of an irreducible representation. A complex character is the character of a complex representation.

It will be useful to keep at hand some facts (proofs are in Chapter 7) about complex representations of any finite group G : (i) there are only finitely many inequivalent irreducible complex representations of G and these are all finite dimensional; (ii) two finite dimensional complex representations of G are equivalent if and only if they have the same character; (iii) a complex representation of G is irreducible if and only if its character χ_{ρ} satisfies

$$
\begin{equation*}
\sum_{g \in G}\left|\chi_{\rho}(g)\right|^{2}=\sum_{C \in \mathcal{C}_{G}}|C|\left|\chi_{\rho}(C)\right|^{2}=|G| ; \tag{2.3}
\end{equation*}
$$

and (iv) the number of inequivalent irreducible complex representations of G is equal to the number of conjugacy classes in G.

We denote by \mathcal{R}_{G} a maximal set of inequivalent irreducible complex representations of G. Let \mathcal{C}_{G} be the set of all conjugacy classes in G. If C is a conjugacy class then we denote by C^{-1} the conjugacy class consisting of the inverses of the elements in C.

In going through the examples in this chapter we will sometimes pause to use or verify some standard properties of complex characters of a fnite group G (again, proofs are in Chapter 7). These properties are summarized in the orthogonality relations among complex characters:

$$
\begin{align*}
& \sum_{h \in G} \chi_{\rho}(g h) \chi_{\rho_{1}}\left(h^{-1}\right)=|G| \chi_{\rho}(g) \delta_{\rho \rho_{1}} \\
& \sum_{\rho \in \mathcal{R}_{G}} \chi_{\rho}\left(C^{\prime}\right) \chi_{\rho}\left(C^{-1}\right)=\frac{|G|}{|C|} \delta_{C^{\prime} C} \tag{2.4}
\end{align*}
$$

where $\delta_{a b}$ is 1 if $a=b$ and is 0 otherwise, the relations above being valid for all $\rho, \rho_{1} \in \mathcal{R}_{G}$, all conjugacy classes $C, C^{\prime} \in \mathcal{C}_{G}$, and all elements $g \in G$. Specializing this to specific cases (such as $\rho=\rho_{1}$, or $g=e$), we have:

$$
\begin{align*}
\sum_{\rho \in \mathcal{R}_{G}}(\operatorname{dim} \rho)^{2} & =|G| \\
\sum_{\rho \in \mathcal{R}_{G}} \operatorname{dim} \rho \chi_{\rho}(g) & =0 \quad \text { if } g \neq e \tag{2.5}\\
\sum_{g \in G} \chi_{\rho_{1}}(g) \chi_{\rho_{2}}\left(g^{-1}\right) & =|G| \delta_{\rho_{1} \rho_{2}} \operatorname{dim} \rho \quad \text { for } \rho_{1}, \rho_{2} \in \mathcal{R}_{G} .
\end{align*}
$$

2.1 Cyclic Groups

Let us work out all irreducible representations of a cyclic group C_{n} containing n elements. Being cyclic, C_{n} contains a generator c, which is an element such that C_{n} consists exactly of the powers c, c^{2}, \ldots, c^{n}, where c^{n} is the identity e in the group.

Let ρ be a representation of C_{n} on a complex vector space $V \neq 0$. By Proposition 1.11.2, there is a basis of V relative to which the matrix of $\rho(c)$

Figure 2.1: A picture for the cyclic group C_{8}
is diagonal, with each entry being an n-th root of unity:

$$
\text { matrix of } \rho(c)=\left[\begin{array}{ccccc}
\eta_{1} & 0 & 0 & \ldots & 0 \\
0 & \eta_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & \eta_{d}
\end{array}\right]
$$

Since c generates the full group C_{n}, the matrix for ρ is diagonal on all the elements c^{j} in C_{n}. Thus, V is a direct sum of one dimensional subspaces, each of which provides a representation of C_{n}. Of course, any one dimensional representation is automatically irreducible.

Let us summarize our observations:
Theorem 2.1.1 Let C_{n} be a cyclic group of order $n \in\{1,2, \ldots\}$. Every complex representation of C_{n} is a direct sum of irreducible representations. Each irreducible complex representation of C_{n} is one dimensional, specified by the requirement that a generator element $c \in G$ act through multiplication by an n-th root of unity. Each n-th root of unity provides, in this way, an irreducible complex representation of C_{n}, and these representations are mutually inequivalent.

Thus, there are exactly n inequivalent irreducible complex representations of C_{n}.

Everything we have done here goes through for representations of C_{n} over a field containing n distinct roots of unity.

Let us now take a look at what happens when the field does not contain the requisite roots of unity. Consider, for instance, the representations of
C_{3} over the field \mathbb{R} of real numbers. There are three geometrically apparent representations:
(i) the one dimensional ρ_{1} representation that associates the identity operator (multiplication by 1) to every element of C_{3};
(ii) the two dimensional representation ρ_{2}^{+}on \mathbb{R}^{2} in which c is associated with rotation by 120°;
(iii) the two-dimensional representation ρ_{2}^{-}on \mathbb{R}^{2} in which c is associated with rotation by -120^{0}.
These are clearly all irreducible. Moreover, any irreducible representation of C_{3} on \mathbb{R}^{2} is clearly either (ii) or (iii).

Now consider a general real vector space V on which C_{3} has a representation ρ. Choose a basis B in V, and let $V_{\mathbb{C}}$ be the complex vector space with B as basis (put another way, $V_{\mathbb{C}}$ is $\mathbb{C} \otimes_{\mathbb{R}} V$, viewed as a complex vector space). Then ρ gives, naturally, a representation of C_{3} on $V_{\mathbb{C}}$. Then $V_{\mathbb{C}}$ is a direct sum of complex one dimensional subspaces, each invariant under the action of C_{3}. Since a complex one dimensional vector space is a real two dimensional space, and we have already determined all two dimensional real representations of C_{3}, we are done with classifying all real representations of C_{3}. Too fast, you say? Then proceed to Exercise 2, 6 .

Finite abelian groups are products of cyclic groups. This could give the impression that nothing much interesting lies in the representations of such groups. But even a very simple representation can be of great use. For any prime p, the nonzero elements in $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$ form a group \mathbb{Z}_{p}^{*} under multiplication. Then for any $a \in \mathbb{Z}_{p}^{*}$ define

$$
\lambda_{p}(a)=a^{(p-1) / 2}
$$

this being 1 in the case $p=2$. Since its square is $a^{p-1}=1, \lambda_{p}(a)$ is necessarily ± 1. Clearly,

$$
\lambda_{p}: \mathbb{Z}_{p}^{*} \rightarrow\{1,-1\}
$$

is a group homomorphism, and hence gives a 1-dimensional representation, which is the same as a 1 -dimensional character of \mathbb{Z}_{p}^{*}. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined for any integer a by

$$
\left(\frac{a}{p}\right)= \begin{cases}\lambda_{p}(a \bmod p) & \text { if } a \text { is coprime to } p \\ 0 & \text { if } a \text { is divisible by } p\end{cases}
$$

The celebrated law of quadratic reciprocity, conjectured by Euler and Legendre and proved first, and many times over, by Gauss, states that

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2}(-1)^{(q-1) / 2}
$$

if p and q are odd primes. For an extension of these ideas using the character theory of general finite groups, see the paper of Duke and Hopkins [25].

2.2 Dihedral Groups

The dihedral group D_{n}, for n any positive integer, is a group of $2 n$ elements generated by two elements c and r, where c has order n, r has order 2 , and conjugation by r turns c into c^{-1} :

$$
\begin{equation*}
c^{n}=e, \quad r^{2}=e, \quad r c r^{-1}=c^{-1} . \tag{2.6}
\end{equation*}
$$

Geometrically, think of c as counterclockwise rotation in the plane by the angle $2 \pi / n$ and r as reflection across a fixed line through the origin. The distinct elements of D_{n} are

$$
e, c, c^{2}, \ldots, c^{n-1}, r, c r, c^{2} r, \ldots, c^{n-1} r .
$$

Figure 2.2: A picture for the dihedral group D_{4}
The geometric view of D_{n} immediately yields a real two dimensional representation: let c act on \mathbb{R}^{2} through counterclockwise rotation by angle $2 \pi / n$ and r through reflection across the x-axis. Complexifying this and going
over to a different basis gives a two dimensional complex representation ρ_{1} on \mathbb{C}^{2} :

$$
\rho_{1}(c)=\left[\begin{array}{cc}
\eta & 0 \tag{2.7}\\
0 & \eta^{-1}
\end{array}\right], \quad \rho_{1}(r)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

where η is a primitive n-th root of unity, say

$$
\eta=e^{2 \pi i / n}
$$

More generally, we have the representation ρ_{m} specified by requiring

$$
\rho_{m}(c)=\left[\begin{array}{cc}
\eta^{m} & 0 \\
0 & \eta^{-m}
\end{array}\right], \quad \rho_{m}(r)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

for any $m \in \mathbb{Z}$; of course, to avoid repetition, we may focus on $m \in$ $\{1,2, \ldots, n-1\}$. The values of ρ_{m} on all elements of D_{n} are given by:

$$
\rho_{m}\left(c^{j}\right)=\left[\begin{array}{cc}
\eta^{m j} & 0 \\
0 & \eta^{-m j}
\end{array}\right], \quad \rho_{m}\left(c^{j} r\right)=\left[\begin{array}{cc}
0 & \eta^{m j} \\
\eta^{-m j} & 0
\end{array}\right]
$$

(Having written this, we notice that this representation makes sense over any field \mathbb{F} containing n-th roots of unity. However, we stick to the ground field \mathbb{C}, or at least \mathbb{Q} with any primitive n-th root of unity adjoined.)

Clearly, ρ_{m} repeats itself whem m changes by multiples of n. Thus we need only focus on $\rho_{1}, \ldots, \rho_{n-1}$.

Is ρ_{m} reducible? Yes if, and only if, there is a non-zero vector $v \in \mathbb{C}^{2}$ fixed by $\rho_{m}(r)$ and $\rho_{m}(c)$. Being fixed by $\rho_{m}(r)$ means that such a vector must be a multiple of $(1,1)$ in \mathbb{C}^{2}. But $\mathbb{C}(1,1)$ is also invariant under $\rho_{m}(c)$ if and only if η^{m} is equal to η^{-m}.

Thus, ρ_{m}, for $m \in\{1, \ldots, n-1\}$, is irreducible if $n \neq 2 m$, and is reducible if $n=2 m$.

Are we counting things too many times? Indeed, the representations ρ_{m} are not all inequivalent. Interchanging the two axes, converts ρ_{m} into $\rho_{-m}=\rho_{n-m}$. Thus, we can narrow our focus onto ρ_{m} for $1 \leq m<n / 2$.

We have now identified $n / 2-1$ irreducible two dimensional complex representations if n is even, and $(n-1) / 2$ irreducible two dimensional complex representations if n is odd.

The character χ_{m} of ρ_{m} is obtained by taking the trace of ρ_{m} on the elements of the group D_{n} :

$$
\chi_{m}\left(c^{j}\right)=\eta^{m j}+\eta^{-m j}, \quad \chi_{m}\left(c^{j} r\right)=0 .
$$

Now consider a one dimensional complex representation θ of D_{n}. First, from $\theta(r)^{2}=1$, we see that $\theta(r)= \pm 1$. Applying θ to the relation that $r r^{-1}$ equals c^{-1} it follows that $\theta(c)$ must also be ± 1. But then, from $c^{n}=e$, it follows that $\theta(c)$ can be -1 only if n is even. Thus, we have the one dimensional representations specified by:

$$
\begin{gather*}
\theta_{+, \pm}(c)=1, \quad \theta_{+, \pm}(r)= \pm 1 \quad \text { if } n \text { is even or odd } \tag{2.8}\\
\theta_{-, \pm}(c)=-1, \quad \theta_{-, \pm}(r)= \pm 1 \quad \text { if } n \text { is even. }
\end{gather*}
$$

This gives us 4 one dimensional complex representations if n is even, and 2 if n is odd. (Indeed, the reasoning here works for any ground field.)

Thus, for n even we have identified a total of $3+n / 2$ irreducible representations, and for n odd we have identified $(n+3) / 2$ irreducible representations.

As noted in the first equation in 2.5 , the sum $\sum_{\chi \in \mathcal{R}_{G}} d_{\chi}^{2}$ over all distinct complex irreducible characters of a finite group G is the total number of elements in G. In this case the sum should be $2 n$. Working out the sum over all the irreducible characters χ we have determined, we obtain:

$$
\begin{array}{ll}
\left(\frac{n}{2}-1\right) 2^{2}+4=2 n & \text { for even } n \\
\left(\frac{n-1}{2}\right) 2^{2}+2=2 n & \text { for odd } n \tag{2.9}
\end{array}
$$

Thus, our list of irreducible complex representations contains all irreducible complex representations, up to equivalence.

Our next objective is to work out all complex characters of D_{n}. Since characters are constant on conjugacy classes, let us first determine the conjugacy classes in D_{n}.

Since $r c r^{-1}$ is c^{-1}, it follows that

$$
r\left(c^{j} r\right) r^{-1}=c^{-j} r=c^{n-j} r .
$$

This already indicates that the conjugacy class structure is different for n even and n odd. In fact notice that conjugating $c^{j} r$ by c results in increasing j by 2 :

$$
c\left(c^{j} r\right) c^{-1}=c^{j+1} c r=c^{j+2} r .
$$

If n is even, the conjugacy classes are:

$$
\begin{align*}
\{e\},\left\{c, c^{n-1}\right\}, & \left\{c^{2}, c^{n-2}\right\}, \ldots,\left\{c^{n / 2-1}, c^{n / 2+1}\right\},\left\{c^{n / 2}\right\}, \tag{2.10}\\
& \left\{r, c^{2} r, \ldots, c^{n-2} r\right\},\left\{c r, c^{3} r, \ldots, c^{n-1} r\right\} .
\end{align*}
$$

Note that there are $3+n / 2$ conjugacy classes, and this exactly matches the number of inequivalent irreducible complex representations obtained earlier.

To see how this plays out in practice let us look at D_{4}. Our analysis shows that there are five conjugacy classes:

$$
\{e\},\left\{c, c^{3}\right\},\left\{c^{2}\right\},\left\{r, c^{2} r\right\},\left\{c r, c^{3} r\right\}
$$

There are 4 one dimensional complex representations $\theta_{ \pm, \pm}$, and one irreducible two dimensional complex representation ρ_{1} specified through

$$
\rho_{1}(c)=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \quad \rho_{1}(r)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Table 2.1 is the character table of D_{4}, listing the values of the irreducible complex characters of D_{4} on the various conjugacy classes. The latter are displayed in a row (second from top), each conjugacy class identified by an element it contains; above each conjugacy class we have listed the number of elements it contains. Each row in the main body of the table displays the values of a character on the conjugacy classes.

	1	2	1	2	2
	e	c	c^{2}	r	$c r$
$\theta_{+,+}$	1	1	1	1	1
$\theta_{+,-}$	1	1	1	-1	-1
$\theta_{-,+}$	1	-1	1	1	-1
$\theta_{-,-}$	1	-1	1	-1	1
χ_{1}	2	0	-2	0	0

	1	2	3
	e	c	r
$\theta_{+,+}$	1	1	1
$\theta_{+,-}$	1	1	-1
χ_{1}	2	-1	0

Table 2.2: Complex irreducible characters of $D_{3}=$ S_{3}
Table 2.1: Complex irreducible characters of D_{4}

The case for odd n proceeds similarly. Take, for instance, $n=3$. The group D_{3} is generated by elements c and r subject to the relations

$$
c^{3}=e, \quad r^{2}=e, \quad r c r^{-1}=c^{-1}
$$

The conjugacy classes are:

$$
\{e\},\left\{c, c^{2}\right\},\left\{r, c r, c^{2} r\right\}
$$

The irreducible complex representations are: $\theta_{+,+}, \theta_{+,-}, \rho_{1}$. Their values are displayed in Table 2.2, where the first row displays the number of elements in the conjugacy classes listed (by choice of an element) in the second row. The dimensions of the representations can be read off from the first column in the main body of the table. Observe that the sum of the squares of the dimensions of the representations of S_{3} listed in the table is

$$
1^{2}+1^{2}+2^{2}=6,
$$

which is exactly the number of elements in D_{3}. This verifies the first property listed earlier in (2.5).

2.3 The Symmetric Group S_{4}

The symmetric group S_{3} is isomorphic to the dihedral group D_{3}, and we have already determined the irreducible representations of D_{3} over the complex numbers. Let us turn now to the symmetric group S_{4}, which is the group of permutations of $\{1,2,3,4\}$. Geometrically, this is the group of rotational symmetries of a cube.

Two elements of S_{4} are conjugate if and only if they have the same cycle structure; thus, for instance, (134) and (213) are conjugate, and these are not conjugate to $(12)(34)$. The following elements belong to all the distinct conjugacy classes:

$$
\iota, \quad(12), \quad(123), \quad(1234), \quad(12)(34)
$$

where ι is the identity permutation. The conjugacy classes, each identified by one element it contains, are listed with the number of elements in each conjugacy class in Table 2.3.

There are two 1-dimensional complex representations of S_{4} we are familiar with: the trivial one, associating 1 to every element of S_{4}, and the signature representation ϵ whose value is +1 on even permutations and -1 on odd ones.

Number of elements	1	6	8	6	3
Conjugacy class of	ι	(12)	(123)	(1234)	$(12)(34)$

Table 2.3: Conjugacy classes in S_{4}

We also have seen a 3-dimensional irreducible complex representation of S_{4}; recall the representation R of S_{4} on \mathbb{C}^{4} given by permutation of coordinates:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(4)}\right)
$$

Equivalently,

$$
R(\sigma) e_{j}=e_{\sigma(j)} \quad \text { for } j \in\{1,2,3,4\}
$$

where e_{1}, \ldots, e_{4} are the standard basis vectors of \mathbb{C}^{4}. The 3 -dimensional subspace

$$
E_{0}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{C}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=0\right\}
$$

is mapped into itself by the action of R, and the restriction to E_{0} gives an irreducible representation R_{0} of S_{4}. In fact,

$$
\mathbb{C}^{4}=E_{0} \oplus \mathbb{C}(1,1,1,1)
$$

decomposes the space \mathbb{C}^{4} into complementary invariant, irreducible subspaces. The subspace $\mathbb{C}(1,1,1,1)$ carries the trivial representation (all elements act through the identity map). Examining the effect of the group elements on the standard basis vectors, we can work out the character of R. For instance, $R((12))$ interchanges e_{1} and e_{2}, and leaves e_{3} and e_{4} fixed, and so its matrix is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and the trace is

$$
\chi_{R}((12))=2 .
$$

Subtracting off the trivial character, which is 1 on all elements of S_{4}, we obtain the character χ_{0} of the representation R_{0}. All this is displayed in the first three rows of Table 2.4.

Conjugacy class of	ι	(12)	(123)	(1234)	$(12)(34)$
χ_{R}	4	2	1	0	0
χ_{0}	3	1	0	-1	-1
χ_{1}	3	-1	0	1	-1

Table 2.4: The characters χ_{R} and χ_{0} on conjugacy classes

We can manufacture another 3-dimensional complex representation R_{1} by tensoring R_{0} with the signature ϵ :

$$
R_{1}=R_{0} \otimes \epsilon
$$

The character χ_{1} of R_{1} is then written down by taking products, and is displayed in the fourth row in Table 2.4.

Since R_{0} is irreducible and R_{1} acts by a simple ± 1 scaling of R_{0}, it is clear that R_{1} is also irreducible. Thus, we now have two 1 -dimensional complex representations and two 3 -dimensional complex irreducible representations. The sum of the squares of the dimensions is

$$
1^{2}+1^{2}+3^{2}+3^{2}=20
$$

From the first relation in 2.5 we know that the sum of the squares of the dimensions of all the inequivalent irreducible complex representations is $\left|S_{4}\right|=24$. Thus, looking at the equation

$$
24=1^{2}+1^{2}+3^{2}+3^{2}+?^{2}
$$

we see that we are missing a 2 -dimensional irreducible complex representation R_{2}. Leaving the entries for this blank, we have Table 2.5.

As an illustration of the power of character theory, let us work out the character χ_{2} of this 'missing' representation R_{2}, without even bothering to search for the representation itself. Recall from (2.5) the relation

$$
\sum_{\rho}(\operatorname{dim} \rho) \chi_{\rho}(\sigma)=0, \quad \text { if } \sigma \neq \iota
$$

Table 2.5: Character Table for S_{4} with missing row
where the sum runs over a maximal set of inequivalent irreducible complex representations of S_{4} and σ is any element of S_{4}. This means that the vector formed by the first column in the main body of the table (that is, the column for the conjugacy class $\{\iota\}$) is orthogonal to the vectors formed by the columns for the other conjugacy classes. Using this we can work out the missing entries of the character table. For instance, taking $\sigma=(12)$, we have

$$
2 \chi_{2}((12))+3 * \underbrace{(-1)}_{\chi_{1}((12))}+3 * 1+1 *(-1)+1 * 1=0
$$

which yields

$$
\chi_{2}((12))=0 .
$$

For $\sigma=(123)$, we have

$$
2 \chi_{2}((123))+3 * \underbrace{0}_{\chi_{1}((123))}+3 * 0+1 * 1+1 * 1=0
$$

which produces

$$
\chi_{2}((123))=-1 .
$$

Filling in the entire last row of the character table in this way produces Table 2.6

Just to be sure that the indirectly detected character χ_{2} is irreducible let us run the check given in (2.3) for irreducible complex characters: the sum of

	1	6	8	6	3
	ι	(12)	(123)	(1234)	$(12)(34)$
trivial	1	1	1	1	1
ϵ	1	-1	1	-1	1
χ_{0}	3	1	0	-1	-1
χ_{1}	3	-1	0	1	-1
χ_{2}	2	0	-1	0	2

Table 2.6: Character Table for S_{4}
the quantities $\left|C \| \chi_{2}(C)\right|^{2}$ over all the conjugacy classes C should work out to 24 . Indeed, we have

$$
\sum_{C}\left|C \| \chi_{2}(C)\right|^{2}=1 * 2^{2}+6 * 0^{2}+8 *(-1)^{2}+6 * 0^{2}+3 * 2^{2}=24=\left|S_{4}\right|
$$

a pleasant proof of the power of the theory and tools promised to be developed in the chapters ahead.

2.4 Quaternionic Units

Before moving on to general theory in the next chapter, let us look at another example which springs a little surprise. The unit quaternions

$$
1,-1, i,-i, j,-j, k,-k
$$

form a group Q under multiplication. We can take

$$
-1, i, j, k
$$

as generators, with the relations

$$
(-1)^{2}=1, i^{2}=j^{2}=k^{2}=-1, i j=k .
$$

The conjugacy classes are

$$
\{1\},\{-1\},\{i,-i\},\{j,-j\},\{k,-k\} .
$$

We can spot the 1-dimensional representations as follows. Since

$$
i j i j=k^{2}=-1=i^{2}=j^{2},
$$

the value of any 1-dimensional representation τ on -1 must be 1 because

$$
\begin{equation*}
\tau(-1)=\tau(i j i j)=\tau(i) \tau(j) \tau(i) \tau(j)=\tau\left(i^{2} j^{2}\right)=\tau(1)=1 \tag{2.11}
\end{equation*}
$$

and then the values on i and j must each be ± 1. (For another formulation of this argument see Exercise 4.7.) A little thought shows that $(\tau(i), \tau(j))$ could be taken to be any of the four possible values $(\pm 1, \pm 1)$ and this would specify a one dimensional representation τ. Thus, there are four 1-dimensional representations. Given that Q contains 8 elements, writing this as a sum of squares of dimensions of irreducible complex representations, we have

$$
8=1^{2}+1^{2}+1^{2}+1^{2}+?^{2}
$$

Clearly, what we are missing is an irreducible complex representation of dimension 2. The incomplete character table is displayed in Table 2.7.

	1	2	1	2	2
	1	i	-1	j	k
$\chi_{+1,+1}$	1	1	1	1	1
$\chi_{+1,-1}$	1	1	1	-1	-1
$\chi_{-1,+1}$	1	-1	1	1	-1
$\chi_{-1,-1}$	1	-1	1	-1	1
χ_{2}	2	$?$	$?$	$?$	$?$

Table 2.7: Character Table for Q, missing last row

	1	2	1	2	2
1	i	-1	j	k	
$\chi_{+,+}$	1	1	1	1	1
$\chi_{+,-}$	1	1	1	-1	-1
$\chi_{-,+}$	1	-1	1	1	-1
$\chi_{-,-}$	1	-1	1	-1	1
χ_{2}	2	0	-2	0	0

Table 2.8: Character Table for Q

Remarkably, everything here, with the potential exception of the missing last row, is identical to the information in Table 2.1 for the dihedral group D_{4}.

Then, since the last row is entirely determined by the information available, the entire character table for Q must be identical to that of D_{4}. Thus the complete character table for Q is as in Table 2.8 .

A guess at this stage would be that Q must be isomorphic to D_{4}, a guess bolstered by the observation that certainly the conjugacy classes look much the same, in terms of number of elements at least. But this guess is dashed upon second thought: the dihedral group D_{4} has four elements $r, c r, c^{2} r, c^{3} r$ each of order 2 , whereas the only element of order 2 in Q is -1 . So we have an interesting observation here: two non-isomorphic groups can have identical character tables!

2.5 Afterthoughts: Geometric Groups

In closing this chapter let us note some important classes of finite groups, though we will not explore their representations specifically.

The group Q of special quaternions we studied in section 2.4 is a particular case of a more general setting. Let V be a finite dimensional real vector space equipped with an inner product $\langle\cdot, \cdot\rangle$. There is then the Clifford algebra $C_{\text {real, }, d}$, which is an associative algebra over \mathbb{R}, with a unit element 1 , whose elements are linear combinations of formal products $v_{1} \ldots v_{m}$ (with this being 1 if $m=0$), linear in each $v_{i} \in V$, with the requirement that

$$
v w+w v=-2\langle v, w\rangle 1 \quad \text { for all } v, w \in V
$$

If e_{1}, \ldots, e_{d} form an orthonormal basis of V, then the products $\pm e_{i_{1}} \ldots e_{i_{k}}$, for $k \in\{0, \ldots, d\}$, form a group Q_{d} under the multiplication operation of the algebra $C_{\text {real, } d}$. When $d=2$, we write $i=e_{1}, j=e_{2}$, and $k=e_{1} e_{2}$, and obtain $Q_{2}=\{1,-1, i,-i, j,-j, k,-k\}$, the quaternionic group.

In chemistry one studies crystallographic groups, which are finite subgroups of the group of Euclidean motions in \mathbb{R}^{3}. Reflection groups are groups generated by reflections in Euclidean spaces. Let V be a finite dimensional real vector space with an inner product $\langle\cdot, \cdot\rangle$. If w is a unit vector in V then the reflection r_{w} across the hyperplane

$$
w^{\perp}=\left\{v \in \mathbb{R}^{n}:\langle v, w\rangle=0\right\}
$$

takes w to $-w$ and holds all vectors in the 'mirror' w^{\perp} fixed; thus

$$
\begin{equation*}
r_{w}(v)=v-2\langle v, w\rangle w, \quad \text { for all } v \in V \tag{2.12}
\end{equation*}
$$

If r_{1} and r_{2} are reflections across planes w_{1}^{\perp} and w_{2}^{\perp}, where w_{1} and w_{2} are unit vectors in V with angle $\theta=\cos ^{-1}\left\langle w_{1}, w_{2}\right\rangle \in[0, \pi]$ between them, then, geometrically,

$$
\begin{align*}
r_{1}^{2} & =r_{2}^{2}=I \\
r_{1} r_{2} & =r_{2} r_{1} \quad \text { if }\left\langle w_{1}, w_{2}\right\rangle=0 \tag{2.13}\\
r_{1} r_{2} & =\text { rotation by angle } 2 \theta \text { in the } w_{1}-w_{2} \text { plane. }
\end{align*}
$$

An abstract Coxeter group is a group generated by a family of elements r_{i} of order 2, with the restriction that certain pair products $r_{i} r_{j}$ also have finite order. Of course, for such a group to be finite, every pair product $r_{i} r_{j}$ needs to have finite order. An important class of finite Coxeter groups is formed by the Weyl groups that arise in the study of Lie algebras. Consider a very special type of Weyl group: the group generated by reflections across the hyperplanes $\left(e_{j}-e_{k}\right)^{\perp}$, where e_{1}, \ldots, e_{n} form the standard basis of \mathbb{R}^{n}, and j, k are distinct elements running over $[n]$. We can recognize this as essentially the symmetric group S_{n}, realized geometrically through the faithful representation R back in (1.3). In this point of view, S_{n} can be viewed as being generated by elements r_{1}, \ldots, r_{n-1}, with r_{i} standing for the transposition $(i i+1)$, satisfying the relations

$$
\begin{align*}
r_{j}^{2} & =\iota \quad \text { for all } j \in[n-1], \\
r_{j} r_{j+1} r_{j} & =r_{j+1} r_{j} r_{j+1} \quad \text { for all } j \in[n-2], \tag{2.14}\\
r_{j} r_{k} & =r_{j} r_{k} \quad \text { for all } j, k \in[n-1] \text { with }|j-k| \geq 2,
\end{align*}
$$

where ι is the identity element. It would seem to be more natural to write the second equation as $\left(r_{j} r_{j+1}\right)^{3}=\iota$, which would be equivalent provided each r_{j}^{2} is ι. However, just holding on to the second and third equations generates another important class of groups, the braid groups B_{n}, where B_{n} is generated abstractly by elements r_{1}, \ldots, r_{n-1} subject to just the second and third conditions in (2.14). Thus, there is a natural surjection $B_{n} \rightarrow S_{n}$ mapping r_{i} to $(i i+1)$ for each $i \in[n-1]$.

If \mathbb{F} is a subfield of a field \mathbb{F}_{1}, such that $\operatorname{dim}_{\mathbb{F}} \mathbb{F}_{1}<\infty$, then the set of all automorphisms σ of the field \mathbb{F}_{1} for which $\sigma(c)=c$ for all $c \in \mathbb{F}$, is a finite group under composition. This is the Galois group of \mathbb{F}_{1} over \mathbb{F}; the classical case is where \mathbb{F}_{1} is defined by adjoining to \mathbb{F} roots of polynomial equations over \mathbb{F}. Morally related to these ideas are fundamental groups of surfaces; an instance of this, the fundamental group of a compact oriented
surface of genus g, is the group with $2 g$ generators $a_{1}, b_{1}, \ldots, a_{g}, b_{g}$ satisfying the constraint

$$
\begin{equation*}
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=e \tag{2.15}
\end{equation*}
$$

Such equations, with a_{i} and b_{j} represented in more concrete groups, have come up in two and three dimensional gauge theories. Far earlier, in his first major work in developing character theory, Frobenius [28] studied the number of solutions of equations of this and related types, with each a_{i} and b_{j} represented in some finite group. In section 7.9 we will study Frobenius' formula for counting the number of solutions of the equation

$$
s_{1} \ldots s_{m}=e
$$

for s_{1}, \ldots, s_{m} running over specified conjugacy classes in a finite group G. In the case $G=S_{n}$, restricting the s_{i} to run over transpositions, a result of Hurwitz relates this number to counting n-sheeted Riemann surfaces with m branch points (see Curtis [15] for related history).

Exercises

1. Work out the character table of D_{5}.
2. Consider the subgroup of S_{4} given by

$$
V_{4}=\{\iota,(12)(34),(13)(24),(14)(23)\} .
$$

Being a union of conjugacy classes, V_{4} is a normal subgroup of S_{4}. Now view S_{3} as the subgroup of S_{4} consisting of the permutations that fix 4. Thus, $V_{4} \cap S_{3}=\{\iota\}$. Show that the mapping

$$
S_{3} \rightarrow S_{4} / V_{4}: \sigma \mapsto \sigma V_{4}
$$

is an isomorphism. Obtain an explicit form of a 2-dimensional irreducible complex representation of S_{4} for which the character is χ_{2} as given in Table 2.6 .
3. In S_{3} there is the cyclic group C_{3} generated by (123), which is a normal subgroup. The quotient $S_{3} / C_{3} \simeq S_{2}$ is a two-element group. Work out the one dimensional representation of S_{3} that arises from this by the method of Problem 2. 2 above.
4. Construct a two dimensional irreducible representation of S_{3}, over any field \mathbb{F} in which $3 \neq 0$, using matrices that have integer entries.
5. The alternating group A_{4} consists of all even permutations in S_{4}. It is generated by the elements

$$
c=(123), \quad x=(12)(34), \quad y=(13)(24), \quad z=(14)(23)
$$

satisfying the relations

$$
c x c^{-1}=z, \quad c y c^{-1}=x, \quad c z c^{-1}=y, \quad c^{3}=\iota, \quad x y=y x=z .
$$

	1	3	4	4
	ι	$(12)(34)$	(123)	(132)
ψ_{0}	1	1	1	1
ψ_{1}	1	1	ω	ω^{2}
ψ_{2}	1	1	ω^{2}	ω
χ_{1}	$?$	$?$	$?$	$?$

Table 2.9: Character table for A_{4}
(i) Show that the conjugacy classes are

$$
\{\iota\},\{x, y, z\},\{c, c x, c y, c z\},\left\{c^{2}, c^{2} x, c^{2} y, c^{2} z\right\} .
$$

Note that c and c^{2} are in different conjugacy classes in A_{4}, even though in S_{4} they are conjugate.
(ii) Show that the group A_{4} generated by all commutators $a b a^{-1} b^{-1}$ is $V_{4}=\{\iota, x, y, z\}$, which is just the set of commutators in A_{4}.
(iii) Check that there is an isomorphism given by

$$
C_{3} \mapsto A_{4} / V_{4}: c \mapsto c V_{4} .
$$

(iv) Obtain three 1-dimensional representations of A_{4}.
(v) The group $A_{4} \subset S_{4}$ acts by permutation of coordinates on \mathbb{C}^{4} and preserves the 3-dimensional subspace $E_{0}=\left\{\left(x_{1}, \ldots, x_{4}\right): x_{1}+\cdots+\right.$ $\left.x_{4}=0\right\}$. Work out the character χ_{3} of this representation of A_{4}.
(vi) Work out the full character table for A_{4}, by filling in the last row of Table 2.9.
6. Let V be a real vector space and $T: V \rightarrow V$ a linear mapping with $T^{m}=I$, for some positive integer m. Choose a basis B of V, and let $V_{\mathbb{C}}$ be the complex vector space with basis B. Define the conjugation $\operatorname{map} C: V_{\mathbb{C}} \rightarrow V_{\mathbb{C}}: v \mapsto \bar{v}$ by

$$
C\left(\sum_{b \in B} v_{b} b\right)=\sum_{b \in B} \overline{v_{b}} b
$$

where each $v_{b} \in \mathbb{C}$, and on the right we just have the ordinary complex conjugates \bar{v}_{b}. Show that

$$
x=\frac{1}{2}(v+C v) \text { and } y=-\frac{i}{2}(v-C v)
$$

are in V for every $v \in V_{\mathbb{C}}$. If $v \in V_{\mathbb{C}}$ is an eigenvector of T, show that T maps the subspace $\mathbb{R} x+\mathbb{R} y$ of V spanned by x and y into itself.
7. Work out an irreducible representation of the group

$$
Q=\{1,-1, i,-i, j,-j, k,-1\}
$$

of unit quaternions on \mathbb{C}^{2}, by associating suitable 2×2 matrices to the elements of Q.

Chapter 3

The Group Algebra

The simplest meaningful object we can construct out of a field \mathbb{F} and a group G is a vector space over \mathbb{F}, with basis the elements of G. A typical element of this vector space is a linear combination

$$
a_{1} g_{1}+\cdots+a_{n} g_{n},
$$

where g_{1}, \ldots, g_{n} are the elements of G, and a_{1}, \ldots, a_{n} are drawn from \mathbb{F}. This vector space, denoted $\mathbb{F}[G]$, is endowed with a natural representation $\rho_{\text {reg }}$ of the group G, specified by:

$$
\rho_{\mathrm{reg}}(g)\left(a_{1} g_{1}+\cdots+a_{n} g_{n}\right)=a_{1} g g_{1}+\cdots+a_{n} g g_{n}
$$

Put another way, the elements of the group G form a basis of $\mathbb{F}[G]$, and the action of G simply permutes this basis by left-multiplication.

The representation $\rho_{\text {reg }}$ on $\mathbb{F}[G]$ is the mother of all irreducible representations: if the group G is finite and $|G| 1_{\mathbb{F}} \neq 0$ then the representation ρ_{reg} on $\mathbb{F}[G]$ decomposes as a direct sum of irreducible representations of G, and
every irreducible representation of G is equivalent to one of the representations appearing in the decompostion of ρ_{reg}.

This result, and much more, will be proved in Chapter 4, where we will examine the representation $\rho_{\text {reg }}$ in detail. For now, in this chapter, we will introduce $\mathbb{F}[G]$ officially, and establish some of its basic features.

Beyond being a vector space, $\mathbb{F}[G]$ is also an algebra: there is a natural multiplication operation in $\mathbb{F}[G]$ arising from the multiplication of the
elements of the group G. We will explore this algebra structure in a specific example, with G being the permutation group S_{3}, and draw some valuable lessons and insights from this example. We will also prove a wonderful structural property of $\mathbb{F}[G]$ called semisimplicity that is at the heart of the decomposability of representations of G into irreducible ones.

3.1 Definition of the Group Algebra

It is time to delve into the formal definition of the group algebra

$$
\mathbb{F}[G]
$$

where G is a group and \mathbb{F} a field. As a set, this consists of all formal linear combinations

$$
a_{1} g_{1}+\cdots+a_{n} g_{n},
$$

where g_{1}, \ldots, g_{n} are elements of G, and $a_{1}, \ldots, a_{n} \in \mathbb{F}$. We add and multiply these new objects in the only natural way that is sensible. For example,

$$
\left(2 g_{1}+3 g_{2}\right)+\left(-4 g_{1}+5 g_{3}\right)=(-2) g_{1}+3 g_{2}+5 g_{3}
$$

and

$$
\left(2 g_{1}-4 g_{2}\right)\left(g_{4}+g_{3}\right)=2 g_{1} g_{4}+2 g_{1} g_{3}-4 g_{2} g_{4}-4 g_{2} g_{3}
$$

Officially, $\mathbb{F}[G]$ consists of all maps

$$
x: G \mapsto \mathbb{F}: g \mapsto x_{g}
$$

such that x_{g} is 0 for all except finitely many $g \in G$; thus, $\mathbb{F}[G]$ is the direct sum of copies of the field \mathbb{F}, one copy for each element of G. In the case of interest to us, G is finite and $\mathbb{F}[G]$ is simply the set of all \mathbb{F}-valued functions on G.

It turns out to be very convenient, indeed intuitively crucial, to write $x \in \mathbb{F}[G]$ in the form

$$
x=\sum_{g \in G} x_{g} g
$$

To avoid clutter we usually write \sum_{g} when we mean $\sum_{g \in G}$.

Addition and multiplication, as well as multiplication by elements $c \in \mathbb{F}$, are defined in the obvious way:

$$
\begin{align*}
\sum_{g} x_{g} g+\sum_{g} y_{g} g & =\sum_{g}\left(x_{g}+y_{g}\right) g \\
\sum_{g} x_{g} g \sum_{h} y_{h} h & =\sum_{g}\left(\sum_{h} x_{h} y_{h^{-1} g}\right) g \tag{3.1}\\
c \sum_{g} x_{g} g & =\sum_{g} c x_{g} g
\end{align*}
$$

It is readily checked that $\mathbb{F}[G]$ is an algebra over \mathbb{F} : it is a ring as well as an \mathbb{F}-module, and the multiplication

$$
\mathbb{F}[G] \times \mathbb{F}[G] \rightarrow \mathbb{F}[G]:(x, y) \mapsto x y
$$

is \mathbb{F}-bilinear, associative, and has a non-zero multiplicative identity element $1 e$, where e is the identity in G.

Sometimes it is useful to think of G as a subset of $\mathbb{F}[G]$, by identifying $g \in G$ with the element $1 g \in \mathbb{F}[G]$. But the multiplicative unit $1 e$ in $\mathbb{F}[G]$ will also be denoted 1 , and in this way \mathbb{F} may be viewed as a subset of $\mathbb{F}[G]$:

$$
\mathbb{F} \rightarrow \mathbb{F}[G]: c \mapsto c e .
$$

Occasionally we will also work with $R[G]$, where R is a commutative ring such as \mathbb{Z}. This is defined just as $\mathbb{F}[G]$ is, except that the field \mathbb{F} is replaced by the ring R, and $R[G]$ is an algebra over the ring R.

3.2 Representations of G and $\mathbb{F}[G]$

The algebra $\mathbb{F}[G]$ has a very useful feature: any representation

$$
\rho: G \rightarrow \operatorname{End}_{\mathbb{F}}(E)
$$

defines, in a unique way, a representation of the algebra $\mathbb{F}[G]$ in terms of operators on E. More specifically, for each element

$$
x=\sum_{g} x_{g} g \in \mathbb{F}[G]
$$

we have an endomorphism

$$
\begin{equation*}
\rho(x) \stackrel{\text { def }}{=} \sum_{g} x_{g} \rho(g) \in \operatorname{End}_{\mathbb{F}}(E) . \tag{3.2}
\end{equation*}
$$

This induces an $\mathbb{F}[G]$-module structure on E :

$$
\begin{equation*}
\left(\sum_{g} x_{g} g\right) v=\sum_{g} x_{g} \rho(g) v \tag{3.3}
\end{equation*}
$$

It is very useful to look at representations in this way.
Put another way, we have an extension of ρ to an algebra-homomorphism

$$
\begin{equation*}
\rho: \mathbb{F}[G] \rightarrow \operatorname{End}_{\mathbb{F}}(E): \sum_{g} a_{g} g \mapsto \sum_{g} a_{g} \rho(g) \tag{3.4}
\end{equation*}
$$

Thus, a representation of G specifies a module over the ring $\mathbb{F}[G]$. Conversely, if E is an $\mathbb{F}[G]$-module, then we have a representation of G on E, by restricting multiplication to the elements in $\mathbb{F}[G]$ that are in G.

In summary, representations of G on vector spaces over \mathbb{F} correspond naturally to $\mathbb{F}[G]$-modules. Depending on the context, it is sometimes useful to think in terms of representations of G and sometimes in terms of $\mathbb{F}[G]$ modules.

A subrepresentation or invariant subspace corresponds to a submodule, and direct sums of representations correspond to direct sums of modules. A morphism of representations corresponds to an $\mathbb{F}[G]$-linear map, and an isomorphism, or equivalence, of representations is an isomorphism of $\mathbb{F}[G]$ modules.

An irreducible representation corresponds to a simple module, which is a non-zero module with no proper non-zero submodules.

Here is Schur's Lemma (Theorem 1.8.1) in module language:

Theorem 3.2.1 Let G be a finite group, and \mathbb{F} a field. Suppose E and F are simple $\mathbb{F}[G]$-modules, and $T: E \rightarrow F$ an $\mathbb{F}[G]$-linear map. Then either T is 0 or T is an isomorphism of $\mathbb{F}[G]$-modules. If, moreover, \mathbb{F} is algebraically closed then any $\mathbb{F}[G]$-linear map $S: E \rightarrow E$ is of the form $S=\lambda I$ for some scalar $\lambda \in \mathbb{F}$.

3.3 The Center

A natural first question about an algebra is whether it has an interesting center. By center of an algebra we mean the set of all elements in the algebra that commute with every element of the algebra.

It is easy to determine the center Z of the group algebra $\mathbb{F}[G]$ of a group G over a field \mathbb{F}. An element

$$
x=\sum_{h \in G} x_{h} h
$$

belongs to the center if and only if it commutes with every $g \in G$:

$$
g x g^{-1}=x,
$$

which expands out to

$$
\sum_{h \in G} x_{h} g h g^{-1}=\sum_{h \in G} x_{h} h .
$$

Thus x lies in Z if and only if

$$
\begin{equation*}
x_{g^{-1} h g}=x_{h} \quad \text { for every } g, h \in G . \tag{3.5}
\end{equation*}
$$

This means that the function $g \mapsto x_{g}$ is constant on conjugacy classes in G. Thus, x is in the center if and only if it can be expressed as a linear combination of the elements

$$
\begin{equation*}
z_{C}=\sum_{g \in C} g, \quad C \text { a finite conjugacy class in } G \tag{3.6}
\end{equation*}
$$

We are primarily interested in finite groups, and then the added qualifier of finiteness of the conjugacy classes is not needed.

If C and C^{\prime} are distinct conjugacy classes then z_{C} and $z_{C^{\prime}}$ are sums over disjoint sets of elements of G, and so the collection of all such z_{C} is linearly independent. This yields a simple but important result:

Theorem 3.3.1 Suppose G is a finite group, \mathbb{F} a field, and let $z_{C} \in \mathbb{F}[G]$ be the sum of all the elements in a conjugacy class C in G. The center Z of $\mathbb{F}[G]$ is a vector space over \mathbb{F} and the elements z_{C}, with C running over all conjugacy classes of G, form a basis of Z. In particular, the dimension of the center of $\mathbb{F}[G]$ is equal to the number of conjugacy classes in G.

The center Z of $\mathbb{F}[G]$ is, of course, also an algebra in its own right. Since we have a handy basis, consisting of the vectors z_{C}, of Z, we can get a full grip on the algebra structure of Z by working out all the products between the basis elements z_{C}. There is one simple, yet remarkable fact here:

Proposition 3.3.1 Suppose G is a finite group, and C_{1}, \ldots, C_{s} all the distinct conjugacy classes in G. For each $j \in[s]$, let $z_{j} \in \mathbb{Z}[G]$ be the sum of all the elements of C_{j}. Then for any $l, n \in[s]$, the product $z_{l} z_{n}$ is a linear combination of the vectors z_{m} with coefficients that are non-negative integers. Specifically,

$$
\begin{equation*}
z_{l} z_{n}=\sum_{C \in \mathcal{C}} \kappa_{l, m n} z_{m} \tag{3.7}
\end{equation*}
$$

where $\kappa_{l, m n}$ counts the number of solutions of the equation $c=a b$, for any fixed $c \in C_{m}$ with a, b running over C_{l} and C_{n}, respectively:

$$
\begin{equation*}
\kappa_{l, m n}=\left|\left\{(a, b) \in C_{l} \times C_{n} \mid c=a b\right\}\right| \tag{3.8}
\end{equation*}
$$

for any fixed $c \in C_{m}$.

The numbers $\kappa_{l, m n}$ are sometimes called the structure constants of the group G. As we shall see later in section 7.6 these constants can be used to work out all the irreducible characters of the group.
Proof. Note first that $c=a b$ if and only if $\left(g a g^{-1}\right)(g b g)^{-1}=g c g^{-1}$ for every $g \in G$, and so the number $\kappa_{l, m n}$ is completely specified by the conjugacy class C_{m} in which c lies in the definition (3.8). In the product $z_{l} z_{n}$, the coefficient of $c \in C_{m}$ is clearly $\kappa_{l, m n}$. QED

If you wish, you can leap ahead to section 3.5 and then proceed to the next chapter.

3.4 Deconstructing $\mathbb{F}\left[S_{3}\right]$

To get a hands-on feel for the group algebra we will work out the structure of the group algebra $\mathbb{F}\left[S_{3}\right]$, where \mathbb{F} is a field in which $6 \neq 0$; thus, the characteristic of the field is not 2 or 3 . The reason for imposing this condition will become clear as we proceed. We will work through this example slowly, avoiding fast tricks/tracks, and it will serve us well later. The method we use will introduce and highlight many key ideas and techniques that we will
use later to analyze the structure of $\mathbb{F}[G]$ for general finite groups, and also for general algebras.

From what we have learnt in the preceding section, the center Z of $\mathbb{F}\left[S_{3}\right]$ is a vector space with basis constructed from the conjugacy classes of S_{3}. These classes are

$$
\{\iota\},\left\{c, c^{2}\right\},\left\{r, c r, c^{2} r\right\}
$$

where $r=(12)$ and $c=(123)$. The center Z has basis

$$
\iota, \quad C=c+c^{2}, \quad R=r+c r+c^{2} r
$$

Table 3.1 shows the multiplicative structure of Z. Notice that the structure constants of S_{3} can be read off from this table.

	1	C	R
1	1	C	R
C	C	$2+C$	$2 R$
R	R	$2 R$	$3+3 C$

Table 3.1: Multiplication in the center of $\mathbb{F}\left[S_{3}\right]$
The structure of the algebra $\mathbb{F}[G]$, for any finite group G, can be probed by means of idempotent elements. An element $u \in \mathbb{F}[G]$ is an idempotent if

$$
u^{2}=u
$$

Idempotents u and v are called orthogonal if $u v$ and $v u$ are 0 . In this case, $u+v$ is also an idempotent:

$$
(u+v)^{2}=u^{2}+u v+v u+v^{2}=u+0+0+v
$$

Clearly, 0 and 1 are idempotent. But what is really useful is to find a maximal set of orthogonal idempotents u_{1}, \ldots, u_{m} in the center Z that are not 0 or 1 , and have the spanning property

$$
\begin{equation*}
u_{1}+\cdots+u_{m}=1 \tag{3.9}
\end{equation*}
$$

An idempotent in an algebra which lies in the center of the algebra is called a central idempotent.

The spanning condition (3.9) for the central idempotents u_{i} implies that any element $a \in \mathbb{F}[G]$ can be decomposed as

$$
a=a 1=a u_{1}+\cdots+a u_{m}
$$

and the orthogonality property, along with the centrality of the idempotents u_{j}, shows that

$$
a u_{j} a u_{k}=a a u_{j} u_{k}=0 \quad \text { for } j \neq k .
$$

In view of this, the map

$$
I: \mathbb{F}[G] u_{1} \times \ldots \times \mathbb{F}[G] u_{m} \rightarrow \mathbb{F}[G]:\left(a_{1}, \ldots, a_{m}\right) \mapsto a_{1}+\cdots+a_{m}
$$

is an isomorphism of algebras, in the sense that it is a bijection, and preserves multiplication and addition:

$$
\begin{align*}
I\left(a_{1}+a_{1}^{\prime}, \ldots, a_{m}+a_{m}^{\prime}\right) & =I\left(a_{1}, \ldots, a_{m}\right)+I\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right) \\
I\left(a_{1} a_{1}^{\prime}, \ldots, a_{m} a_{m}^{\prime}\right) & =I\left(a_{1}, \ldots, a_{m}\right) I\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right) . \tag{3.10}
\end{align*}
$$

All this is verified easily. The multiplicative property as well as the injectivity of I follow from the orthogonality and centrality of the idempotents u_{1}, \ldots, u_{m}.

Thus, the isomorphism I decomposes $\mathbb{F}[G]$ into a product of the smaller algebras $\mathbb{F}[G] u_{j}$. Notice that within the algebra $\mathbb{F}[G] u_{j}$ the element u_{j} plays the role of the multiplicative unit.

Now we are motivated to search for central idempotents in $\mathbb{F}\left[S_{3}\right]$. Using the basis of Z given by $1, C, R$, we consider

$$
u=x \iota+y C+z R
$$

with $x, y, z \in \mathbb{F}$. We are going to do this brute force; in a later chapter, in Theorem 7.4.1, we will see how the character table of a group can be used systematically to obtain the central idempotents in the group algebra. The condition for idempotence, $u^{2}=u$, leads to three (quadratic) equations in the three unknowns x, y, z. The solutions lead to the following elements:

$$
\begin{array}{r}
u_{1}=\frac{1}{6}(1+C+R), \quad u_{2}=\frac{1}{6}(1+C-R), \quad u_{3}=\frac{1}{3}(2-C) \\
u_{1}+u_{2}=\frac{1}{3}(1+C), \quad u_{2}+u_{3}=\frac{1}{6}(5-C-R), \quad u_{3}+u_{1}=\frac{1}{6}(5-C+R) \tag{3.11}
\end{array}
$$

The division by 6 is the reason for the condition that $6 \neq 0$ in \mathbb{F}. We check readily that u_{1}, u_{2}, u_{3} are orthogonal; for instance,
$(1+C+R)(1+C-R)=1+2 C+C^{2}-R^{2}=1+2 C+2+C-3-3 C=0$.
For now, as an aside, we can observe that there are idempotents in $\mathbb{F}\left[S_{3}\right]$ that are not central; for instance,

$$
\frac{1}{2}(1+r), \quad \frac{1}{2}(1-r)
$$

are readily checked to be orthogonal idempotents, adding up to 1 , but they are not central.

Thus, we have a decomposition of $\mathbb{F}\left[S_{3}\right]$ into a product of smaller algebras:

$$
\begin{equation*}
\mathbb{F}\left[S_{3}\right] \simeq \mathbb{F}\left[S_{3}\right] u_{1} \times \mathbb{F}\left[S_{3}\right] u_{2} \times \mathbb{F}\left[S_{3}\right] u_{3} \tag{3.12}
\end{equation*}
$$

Simple calculations show that

$$
c u_{1}=u_{1} \quad \text { and } \quad r u_{1}=u_{1},
$$

which imply that $\mathbb{F}\left[S_{3}\right] u_{1}$ is simply the one-dimensional space generated by u_{1} :

$$
\mathbb{F}\left[S_{3}\right] u_{1}=\mathbb{F} u_{1} .
$$

In fact, what we see is that left-multiplication by elements of S_{3} on $\mathbb{F}\left[S_{3}\right] u_{1}$ is a 1 -dimensional representation of S_{3}, the trivial one.

Next,

$$
c u_{2}=u_{2}, \quad \text { and } \quad r u_{2}=-u_{2}
$$

which imply that $\mathbb{F}\left[S_{3}\right] u_{2}$ is also 1-dimensional:

$$
\mathbb{F}\left[S_{3}\right] u_{2}=\mathbb{F} u_{2} .
$$

Moreover, multiplication on the left by elements of S_{3} on $\mathbb{F}\left[S_{3}\right] u_{2}$ gives a one-dimensional representation ϵ of S_{3}, this time the one given by the parity: on even permutations ϵ is 1 , and on odd permutations it is -1 .

We know that the full space $\mathbb{F}\left[S_{3}\right]$ has a basis consisting of the six elements of S_{3}. Thus,

$$
\operatorname{dim} \mathbb{F}\left[S_{3}\right] u_{3}=6-1-1=4
$$

We can see this more definitively by working out the elements of $\mathbb{F}\left[S_{3}\right] u_{3}$. For this we should resist the thought of simply multiplying each element of
$\mathbb{F}\left[S_{3}\right]$ by u_{3}; this might not be a method that would give any general insights which would be meaningful for groups other than S_{3}. Instead, observe that
an element $x \in \mathbb{F}\left[S_{3}\right]$ lies in $\mathbb{F}\left[S_{3}\right] u_{3}$ if and only if $x u_{3}=x$.
This follows readily from the idempotence of u_{3}. Then, taking an element

$$
x=\alpha+\beta c+\gamma c^{2}+\theta r+\phi c r+\psi c^{2} r \in \mathbb{F}\left[S_{3}\right]
$$

we can work out what the condition $x u_{3}=x$ says about the coefficients α, β, $\ldots, \psi \in \mathbb{F}$:

$$
\begin{align*}
\alpha+\beta+\gamma & =0 \tag{3.14}\\
\theta+\phi+\psi & =0
\end{align*}
$$

This leaves four (linearly) independent elements among the six coefficients α, \ldots, ψ, verifying again that $\mathbb{F}\left[S_{3}\right] u_{3}$ is four dimensional. Dropping α and θ as coordinates, writes $x \in \mathbb{F}\left[S_{3}\right] u_{3}$ as

$$
\begin{equation*}
x=\beta(c-1)+\gamma\left(c^{2}-1\right)+\phi(c-1) r+\psi\left(c^{2}-1\right) r . \tag{3.15}
\end{equation*}
$$

With this choice, we see that

$$
\begin{equation*}
c-1,\left(c^{2}-1\right),(c-1) r,\left(c^{2}-1\right) r \text { form a basis of } \mathbb{F}\left[S_{3}\right] u_{3} . \tag{3.16}
\end{equation*}
$$

Another choice would be to 'split the difference' between the multipliers 1 and r, and bring in the two elements

$$
r_{+}=\frac{1}{2}(1+r), \quad r_{-}=\frac{1}{2}(1-r) .
$$

The nice thing about these elements is that they are idempotents, and we will use them again shortly. So we have another choice of basis for $\mathbb{F}\left[S_{3}\right] u_{3}$:

$$
\begin{equation*}
b_{1}^{+}=(c-1) r_{+}, b_{2}^{+}=\left(c^{2}-1\right) r_{+}, b_{1}^{-}=(c-1) r_{-}, b_{2}^{-}=\left(c^{2}-1\right) r_{-} \tag{3.17}
\end{equation*}
$$

How does the representation $\rho_{\text {reg }}$, restricted to $\mathbb{F}\left[S_{3}\right] u_{3}$, look relative to this basis? Simply eyeballing the vectors in the basis we can see that the first two span a subspace invariant under left-multiplication by all elements of S_{3}, and so is the span of the last two vectors. For the subspace spanned by the b_{j}^{+}, the matrices for left-multiplication by c and r are given by

$$
c \mapsto\left[\begin{array}{cc}
-1 & -1 \tag{3.18}\\
1 & 0
\end{array}\right], \quad r \mapsto\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

This representation is irreducible: clearly, any vector fixed (or taken to its negative) by the action of r would have to be a multiple of $(1,1)$, and the only such multiple fixed by the action of c is the zero vector. Observe that the character χ_{2} of this representation is specified on the conjugacy classes by

$$
\chi_{2}(c)=-1, \quad \chi_{2}(r)=0
$$

For the subspace spanned by the vectors b_{j}^{-}, these matrices are given by

$$
c \mapsto\left[\begin{array}{cc}
-1 & -1 \tag{3.19}\\
1 & 0
\end{array}\right] \quad r \mapsto\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

At first it isn't obvious how this relates to (3.18). However, we can use a new basis given by

$$
B_{1}^{-}=\frac{1}{2} b_{1}^{-}-b_{2}^{-}, \quad B_{2}^{-}=b_{1}^{-}-\frac{1}{2} b_{2}^{-}
$$

and with respect to this basis, the matrices for the left-multiplication action of c and r are given again by exactly the same matrices as in (3.18):

$$
c B_{1}^{-}=-B_{1}^{-}+B_{2}^{-}, \quad c B_{2}^{-}=-B_{1}^{-}
$$

Thus, we have a decomposition of $\mathbb{F}\left[S_{3}\right] u_{3}$ into subspaces

$$
\mathbb{F}\left[S_{3}\right] u_{3}=\left(\operatorname{span} \text { of } b_{1}^{+}, b_{2}^{+}\right) \oplus\left(\operatorname{span} \text { of } B_{1}^{-}, B_{2}^{-}\right),
$$

each of which carries the same representation of S_{3}, specified as in (3.18).
Observe that from the way we constructed the invariant subspaces,

$$
\text { span of } b_{1}^{+}, b_{2}^{+}=\mathbb{F}\left[S_{3}\right] u_{3} r_{+} \quad \text { and } \quad \text { span of } B_{1}^{-}, B_{2}^{-}=\mathbb{F}\left[S_{3}\right] u_{3} r_{-}
$$

Thus, we have a clean and complete decomposition of $\mathbb{F}\left[S_{3}\right]$ into subspaces

$$
\begin{equation*}
\mathbb{F}\left[S_{3}\right]=\mathbb{F}\left[S_{3}\right] u_{1} \oplus \mathbb{F}\left[S_{3}\right] u_{2} \oplus\left(\mathbb{F}\left[S_{3}\right] y_{1} \oplus \mathbb{F}\left[S_{3}\right] y_{2}\right), \tag{3.20}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{1}=\frac{1}{2}(1+r) u_{3}, \quad y_{2}=\frac{1}{2}(1-r) u_{3} . \tag{3.21}
\end{equation*}
$$

Each of these subspaces carries a representation of S_{3} given by multiplication on the left; moreover, each of these is an irreducible representation.

Having done all this we still don't have a complete analysis of the structure of $\mathbb{F}\left[S_{3}\right]$ as an algebra. What remains is to analyze the structure of the smaller algebra

$$
\mathbb{F}\left[S_{3}\right] u_{3} .
$$

Perhaps we should try our idempotent trick again? Clearly

$$
\begin{equation*}
v_{1}=\frac{1}{2}(1+r) u_{3}, \quad v_{2}=\frac{1}{2}(1-r) u_{3} \tag{3.22}
\end{equation*}
$$

are orthogonal idempotents and add up to u_{3}.
In the absence of centrality, we cannot use our previous method of identifying the algebra with products of certain subalgebras. However, we can do something similar, using the fact that v_{1}, v_{2} are orthogonal idempotents in $\mathbb{F}\left[S_{3}\right] u_{3}$ whose sum is u_{3}, which is the multiplicative identity in this algebra $\mathbb{F}\left[S_{3}\right] u_{3}$. We can decompose any $x \in \mathbb{F}\left[S_{3}\right] u_{3}$ as:

$$
\begin{equation*}
x=\left(y_{1}+y_{2}\right) x\left(y_{1}+y_{2}\right)=y_{1} x y_{1}+y_{1} x y_{2}+y_{2} x y_{1}+y_{2} x y_{2} . \tag{3.23}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
x_{j k}=y_{j} x y_{k} \tag{3.24}
\end{equation*}
$$

Observe next that for $x, w \in \mathbb{F}\left[S_{3}\right] u_{3}$, the product $x w$ decomposes as

$$
x w=\left(x_{11}+x_{12}+x_{21}+x_{22}\right)\left(w_{11}+w_{12}+w_{21}+w_{22}\right)=\sum_{j, k=1}^{2}\left(\sum_{m=1}^{2} x_{j m} w_{m k}\right) .
$$

Using the orthogonality of the idempotents y_{1}, y_{2} we have

$$
(x w)_{j k}=y_{j}(x w) y_{k}=\sum_{m=1}^{2} x_{j m} w_{m k}
$$

Does this remind us of something? Sure, it is matrix multiplication! Thus, the association

$$
x \mapsto\left[\begin{array}{ll}
x_{11} & x_{12} \tag{3.25}\\
x_{21} & x_{22}
\end{array}\right]
$$

preserves multiplication. Clearly, it also preserves/respects addition, and multiplication by scalars (elements of \mathbb{F}). Thus, we have identified $\mathbb{F}\left[S_{3}\right] u_{3}$ as an algebra of matrices.

However, there is something not clear yet: what kind of objects are the entries of the matrix $\left[x_{j k}\right]$? Since we know that $\mathbb{F}\left[S_{3}\right] u_{3}$ is a 4 -dimensional
vector space over \mathbb{F} it seems that the entries of the matrix ought to be scalars drawn from \mathbb{F}. To see if or in what way this is true, we need to explore the nature of the quantities

$$
x_{j k}=y_{j} x y_{k} \quad \text { with } x \in \mathbb{F}\left[S_{3}\right] u_{3} .
$$

We have reached the 'shut up and calculate' point; for

$$
x=\beta(c-1)+\gamma\left(c^{2}-1\right)+\phi(c-1) r+\psi\left(c^{2}-1\right) r
$$

as in (3.15), the matrix $\left[x_{j k}\right]$ works out to

$$
\begin{align*}
& {\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]} \\
& \quad=\left[\begin{array}{cc}
-\frac{3}{2}(\beta+\gamma+\phi+\psi) y_{1} & (\beta-\gamma-\phi+\psi) \frac{1}{4}(1+r)\left(c-c^{2}\right) \\
(\beta-\gamma-\phi-\psi) \frac{1}{4}(1-r)\left(c-c^{2}\right) & -\frac{3}{2}(\beta+\gamma-\phi-\psi) y_{2}
\end{array}\right] . \tag{3.26}
\end{align*}
$$

Perhaps then we should associate the matrix

$$
\left[\begin{array}{cc}
-\frac{3}{2}(\beta+\gamma+\phi+\psi) & (\beta-\gamma-\phi+\psi) \\
(\beta-\gamma-\phi-\psi) & -\frac{3}{2}(\beta+\gamma-\phi-\psi)
\end{array}\right]
$$

to $x \in \mathbb{F}\left[S_{3}\right] u_{3}$? This would certainly identify $\mathbb{F}\left[S_{3}\right] u_{3}$, as a vector space, with the vector space of 2×2 matrices with entries in \mathbb{F}. But to also properly encode multiplication in $\mathbb{F}\left[S_{3}\right] u_{3}$ into matrix multiplication we observe, after calculations, that

$$
\frac{1}{4}(1+r)\left(c-c^{2}\right) \frac{1}{4}(1-r)\left(c-c^{2}\right)=-\frac{3}{4} y_{1} .
$$

The factor of $-3 / 4$ can throw things off balance. So we use the mapping

$$
x \mapsto\left[\begin{array}{cc}
-\frac{3}{2}(\beta+\gamma+\phi+\psi) & -\frac{3}{4}(\beta-\gamma-\phi+\psi) \tag{3.27}\\
(\beta-\gamma-\phi-\psi) & -\frac{3}{2}(\beta+\gamma-\phi-\psi)
\end{array}\right] .
$$

This identifies the algebra $\mathbb{F}\left[S_{3}\right] u_{3}$ with the algebra of all 2×2 matrices with entries drawn from the field \mathbb{F} :

$$
\begin{equation*}
\mathbb{F}\left[S_{3}\right] u_{3} \simeq \operatorname{Matr}_{2 \times 2}(\mathbb{F}) \tag{3.28}
\end{equation*}
$$

Thus, we have completely worked out the structure of the algebra $\mathbb{F}\left[S_{3}\right]$:

$$
\begin{equation*}
\mathbb{F}\left[S_{3}\right] \simeq \mathbb{F} \times \mathbb{F} \times \operatorname{Matr}_{2 \times 2}(\mathbb{F}) \tag{3.29}
\end{equation*}
$$

where the first two terms arise from the 1-dimensional algebras $\mathbb{F}\left[S_{3}\right] u_{1}$ and $\mathbb{F}\left[S_{3}\right] u_{2}$.

What are the lessons of this long exercise? Here is a summary, writing A for the algebra $\mathbb{F}\left[S_{3}\right]$:

- We found a basis of the center Z of A consisting of idempotents u_{1}, u_{2}, u_{3}. Then A is realized as isomorphic to a product of smaller algebras:

$$
A \simeq A u_{1} \times A u_{2} \times A u_{3}
$$

- $A u_{1}$ and $A u_{2}$ are 1-dimensional, and hence carry 1-dimensional irreducible representations of $\mathbb{F}\left[S_{3}\right]$ by left-multiplication.
- The subspace $A u_{3}$ was decomposed again by the method of idempotents: we found orthogonal idempotents y_{1}, y_{2}, adding up to u_{3}, and then

$$
A u_{3}=A y_{1} \oplus A y_{2}
$$

with $A y_{1}$ and $A y_{2}$ being irreducible representations of S_{3} under leftmultiplication

- The set

$$
\left\{y_{j} x y_{k} \mid x \in A u_{3}\right\}
$$

is a 1 -dimensional subspace of $A y_{k}$, for each $j, k \in\{1,2\}$.

- There is then a convenient decompostion of each $x \in A u_{3}$ as

$$
x=y_{1} x y_{1}+y_{1} x y_{2}+y_{2} x y_{1}+y_{2} x y_{2},
$$

which suggests the association of a matrix to x :

$$
x \mapsto\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]
$$

- $A u_{3}$, as an algebra, is isomorphic to the algebra $\operatorname{Matr}_{2 \times 2}(\mathbb{F})$.

Remarkably, much of this goes through even when we take a general finite group G in place of S_{3}. Indeed, a lot of it works even for algebras that can be decomposed into a sum of subspaces which are invariant under leftmultiplication by elements of the algebra. In Chapter 5 we will traverse this territory.

Let us not forget that all the way through we were dividing by 2 and 3, and indeed even in forming the idempotents we needed to divide by 6 . So for our analysis of the structure of $\mathbb{F}\left[S_{3}\right]$ we needed to assume that 6 is not 0 in the field \mathbb{F}. What is special about 6 ? It is no coincidence that 6 is just the number of elements of S_{3}. In the more general setting of $\mathbb{F}[G]$, we will need to assume that $|G| 1_{\mathbb{F}} \neq 0$, to make progress in understanding the structure of $\mathbb{F}[G]$.

There are also some other observations we can make, which are more specific to S_{3}. For instance, the representation on each irreducible subspace is given by matrices with integer entries! This is not something we can expect to hold for a general finite group. But it does raise a question: perhaps some groups have a kind of 'rigidity' that forces irreducible representations to be realizable in suitable integer rings? (Leap ahead to Exercise 6.3 to dip your foot in these waters.)

3.5 When $\mathbb{F}[G]$ is Semisimple

Closing out this chapter, we will prove a fundamental structural property of the group algebra $\mathbb{F}[G]$ that will yield a large trove of results about representations of G. This property is semisimplicity.

A module E over a ring is semisimple if for any submodule F in E there is a submodule F_{c} in E, such that E is the direct sum of F and F_{c}. A ring is semisimple if it is semisimple as a left module over itself.

If E is the direct sum of submodules F and F_{c}, then these submodules are said to be complements of each other.

Our immediate objective here is to prove Maschke's theorem:
Theorem 3.5.1 Suppose G is a finite group, and \mathbb{F} a field whose characteristic is not a divisor of $|G|$. Then every module over the ring $\mathbb{F}[G]$ is semisimple. In particular, $\mathbb{F}[G]$ is semisimple.

Note the condition that $|G|$ is not divisible by the characteristic of \mathbb{F}. We have seen this condition arise in the study of the structure of $\mathbb{F}\left[S_{3}\right]$. In fact,
the converse of the above theorem also holds: if $\mathbb{F}[G]$ is semisimple then the characteristic of \mathbb{F} is not a divisor of $|G|$; this is Exercise $2 \sqrt{3}$.
Proof. Let E be an $\mathbb{F}[G]$-module, and F a submodule. We have then the \mathbb{F}-linear inclusion

$$
j: F \rightarrow E .
$$

Since E and F are vector spaces over \mathbb{F}, there is an \mathbb{F}-linear map

$$
P: E \rightarrow F
$$

satisfying

$$
\begin{equation*}
P j=\mathrm{id}_{F} . \tag{3.30}
\end{equation*}
$$

(Choose a basis of F and extend to a basis of E. Then let P be the map that keeps each of the basis elements of F fixed, but maps all the other basis elements to zero.)

All we have to do is modify P to make it $\mathbb{F}[G]$-linear. Observe that the inclusion map j is invariant under 'conjugation' by any element of G :

$$
g j g^{-1}=j \quad \text { for all } g \in G
$$

Consequently:

$$
\begin{equation*}
g P g^{-1} j=g P j g^{-1}=\operatorname{id}_{F} \quad \text { for all } g \in G . \tag{3.31}
\end{equation*}
$$

So we have

$$
P_{0} j=\operatorname{id}_{F},
$$

where P_{0} is the G-averaged version of P :

$$
P_{0}=\frac{1}{|G|} \sum_{g \in G} g P g^{-1}
$$

here the division makes sense because $|G| \neq 0$ in \mathbb{F}. Clearly, P_{0} is G-invariant and hence $\mathbb{F}[G]$-linear. Moreover, just as P, the G-averaged version P_{0} is also a 'projection' onto F in the sense that $P_{0} v=v$ for all v in F.

We can decompose any $x \in E$ as

$$
x=\underbrace{P_{0} x}_{\in F}+\underbrace{x-P_{0} x}_{\in F_{c}} .
$$

This shows that E splits as a direct sum of $\mathbb{F}[G]$-submodules:

$$
E=F \oplus F_{c}
$$

where

$$
F_{c}=\operatorname{ker} P_{0}
$$

is also an $\mathbb{F}[G]$-submodule of E. Thus, every submodule of an $\mathbb{F}[G]$-module has a complementary submodule. In particular, this applies to $\mathbb{F}[G]$ itself, and so $\mathbb{F}[G]$ is semisimple. QED

The version above is a long way, in evolution of formulation, from Maschke's original result [57] which was reformulated and reproved by Frobenius, Burnside, Schur, and Weyl (see [15, III.4]).

The map

$$
\begin{equation*}
\mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto \hat{x}=\sum_{g \in G} x_{g} g^{-1} \tag{3.32}
\end{equation*}
$$

turns left into right:

$$
\widehat{(x y)}=\hat{y} \hat{x}
$$

This makes every right $\mathbb{F}[G]$-module a left $\mathbb{F}[G]$-module by defining the left module structure through

$$
g \cdot v=v g^{-1}
$$

and then every sub-right-module is a sub-left-module. Thus, $\mathbb{F}[G]$, viewed as a right module over itself, is also semisimple.

Despite the ethereal appearance of the proof of Theorem 3.5.1, the argument can be exploited to obtain a slow but sure algorithm for decomposing a representation into irreducible components, at least over an algebraically closed field. If a representation ρ on E is not irreducible, and has a proper non-zero invariant subspace $F \subset E$, then starting with an ordinary linear projection map $P: E \rightarrow F$ we obtain a G-invariant one by averaging:

$$
P_{0}=\frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} P \rho(g)
$$

This provides us with a decomposition

$$
E=\operatorname{ker} P_{0}+\operatorname{ker}\left(I-P_{0}\right)
$$

into complementary, invariant subspaces F and $\left(I-P_{0}\right)(E)$ of lower dimension than E and so, repeating this procedure breaks down the original space
E into irreducible subspaces. But how do we find the starter projection P ? Since we have nothing to go on, we can try taking any linear map $T: E \rightarrow E$, and average it to

$$
T_{0}=\frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} T \rho(g)
$$

Then we can take a suitable polynomial in T_{0} that provides a projection map; specifically, if λ is an eigenvalue of T_{0} (and that always exists if the field is algebraically closed) then the projection onto the corresponding eigensubspace is a polynomial in T_{0} and hence is also G-invariant. This provides us with P_{0}, without needing to start with a projection P. There is, however, still something that could throw a spanner in the works: what if T_{0} turns out to be just a multiple of the identity I ? If this were the case for every choice of T then there would in fact be no proper non-zero G-invariant projection map, and ρ would be irreducible and we could halt to program right there. Still, it seems unpleasant to have to go searching through all endomorphisms of E for some T that would yield a T_{0} which is not a multiple of I. Fortunately, we can simply try out all the elements in any basis of $\operatorname{End}_{\mathbb{F}}(E)$, for if all such elements lead to multiples of the identity then of course ρ must be irreducible.

We can now sketch a first draft of an algorithm for breaking down a given representation into subrepresentations. For convenience, let us assume the field of scalars is \mathbb{C}. Let us choose an inner product on E that makes each $\rho(g)$ unitary. Instead of endomorphisms of the N-dimensional space E, we work with $N \times N$ matrices. The usual basis of the space of all $N \times N$ matrices consists of the matrices $E_{j k}$, where $E_{j k}$ has 1 at the (j, k) position and 0 elsewhere, for $j, k \in\{1, \ldots, N\}$. It will be more convenient to work with a basis consisting of hermitian matrices. To this end, replace, for $j \neq k$, the pair of matrices $E_{j k}, E_{k j}$ by the pair of hermitian matrices

$$
E_{j k}+E_{k j}, \quad i\left(E_{j k}-E_{k j}\right) .
$$

This produces a basis $B_{1}, \ldots, B_{N^{2}}$ of the space of $N \times N$ matrices, where each B_{j} is hermitian. The sketch algorithm is:

- For each $1 \leq k \leq N^{2}$, work out

$$
\frac{1}{|G|} \sum_{g \in G} \rho(g) B_{k} \rho(g)^{-1}
$$

(which, you can check, is hermitian) and set T_{0} equal to the first such matrix which is not a multiple of the identity matrix I.

- Work out, using a suitable matrix-algebra 'subroutine', the projection operator P_{0} onto an eigensubspace of T_{0}.

Obviously, this needs more work to actually turn into code. For details and more on computational representation theory see the papers of Blokker and Flodmark [5] and Dixon [23, 24].

3.6 Afterthoughts: Invariants

Though we focus almost entirely on finite dimensional representations of a group, there are infinite dimensional representations that are of natural and classic interest. Let ρ be a representation of a finite group G on a finite dimensional vector space V over a field \mathbb{F}. Then each tensor power $V^{\otimes n}$ carries the representation $\rho^{\otimes n}$:

$$
\begin{equation*}
\rho^{\otimes n}(g)\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\rho(g) v_{1} \otimes \ldots \otimes \rho(g) v_{n} \tag{3.33}
\end{equation*}
$$

Hence the tensor algebra

$$
\begin{equation*}
T(V)=\bigoplus_{n \in\{0,1,2, \ldots\}} V^{\otimes n} \tag{3.34}
\end{equation*}
$$

carries the corresponding direct sum representation of all the tensor powers $\rho^{\otimes n}$, with $\rho^{\otimes 0}$ being the trivial representation (given by the identity map) on $V^{\otimes 0}=\mathbb{F}$. The group S_{n} of all permutations of $[n]$ acts naturally on $V^{\otimes n}$ by

$$
\sigma \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)}
$$

The subspace of all $x \in V^{\otimes n}$ that are fixed, with $\sigma \cdot x=x$ for all $\sigma \in S_{n}$, is the symmetric tensor power $V^{\hat{\otimes} n}$; for $n=0$ we take this to be \mathbb{F}. Clearly, $\rho^{\otimes n}$ leaves $V^{\hat{\otimes} n}$ invariant, and so the tensor algebra representation restricts to the symmetric tensor algebra

$$
\begin{equation*}
S(V)=\bigoplus_{n \in\{0,1,2, \ldots\}} V^{\hat{\otimes} n} \tag{3.35}
\end{equation*}
$$

There is a more concrete and pleasant way of working with the symmetric tensor algebra representation. For this it is convenient to work with the
dual space V^{\prime} and the dual representation ρ^{\prime} on V^{\prime}. Choosing a basis in V, we denote the dual basis in V^{\prime} by X_{1}, \ldots, X_{n}, which we could also think of as abstract (commuting) indeterminates. An element of the tensor algebra $S\left(V^{\prime}\right)$ is then a finite linear combination of monomials $X_{1}^{w_{1}} \ldots X_{n}^{w_{n}}$ with $\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Thus, $S\left(V^{\prime}\right)$ is identifiable with the polynomial algebra $\mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$. The action by ρ^{\prime} is specified through

$$
g X_{j} \stackrel{\text { def }}{=} \rho^{\prime}(g) X_{j}=X_{j} \circ \rho(g)^{-1} .
$$

A fundamental task, the subject of invariant theory, is to determine the set I_{ρ} of all polynomials $f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ that are fixed by the action of G. Clearly, I_{ρ} is closed both under addition and multiplication, and also contains all scalars in \mathbb{F}. Thus, the invariants form a ring, or, more specifically, an algebra over \mathbb{F}. A deep and fundamental result of Noether shows that there is a finite set of generators for this ring.

The most familiar example in this context is the symmetric group S_{n} acting on polynomials in X_{1}, \ldots, X_{n} in the natural way specified by $\sigma X_{j}=$ $X_{\sigma^{-1}(j)}$. The ring of invariants is generated by the elementary symmetric polynomials

$$
E_{k}\left(X_{1}, \ldots, X_{n}\right)=\sum_{B \in P_{k}} \prod_{j \in B} X_{j},
$$

where P_{k} is the set of all k-element subsets of $[n]$, and $k \in\{0,1, \ldots, n\}$. Another choice of generators is given by the power sums

$$
N_{k}\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{n} X_{j}^{k}
$$

for $k \in\{0, \ldots, n\}$. The Jacobian

$$
\begin{align*}
\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial N_{1}}{\partial X_{1}} & \cdots & \frac{\partial N_{1}}{\partial X_{n}} \\
\vdots & \cdots & \vdots \\
\frac{\partial N_{n}}{\partial X_{1}} & \cdots & \frac{\partial N_{n}}{\partial X_{n}}
\end{array}\right] & =n!\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{2} & \ldots & X_{n} \\
\vdots & \vdots & \ldots & \vdots \\
X_{1}^{n-1} & X_{2}^{n-1} & \ldots & X_{n}^{n-1}
\end{array}\right] \tag{3.36}\\
& =n!\prod_{1 \leq j<k \leq n}\left(X_{k}-X_{j}\right),
\end{align*}
$$

where in the last step we have the formula for the Vandermonde determinant which we will meet again in other contexts (see Exercise 3.10). The simple
observation that the determinant is not identically 0 already has a substantial consequence: the polynomials N_{1}, \ldots, N_{n} are algebraically independent. Here is a 'one sentence' proof: if f is a polynomial in n variables, of least total degree, for which $f\left(N_{1}, \ldots, N_{n}\right)$, as a polynomial in the X_{i}, is 0 , then the row vector

$$
\left[\partial_{1} f\left(N_{1}, \ldots, N_{n}\right), \ldots, \partial_{n} f\left(N_{1}, \ldots, N_{n}\right)\right]
$$

multiplied on the right by the Jacobian matrix in (3.36) is 0 , and so, since the determinant of this matrix is not 0 , each $\partial_{i} f\left(N_{1}, \ldots, N_{n}\right)$ is 0 , from which, by minimality of the degree of f, it follows that f is constant and hence 0 . The factorization that takes place in the last step in (3.36) is no coincidence; it is an instance of a deeper fact about reflection groups, of which the symmetric group S_{n} is an example.

The slim but carefully detailed volume of Dieudonné and Carrell [22] and the beautiful text of Neusel [60] are excellent introductions to this subject.

Exercises

1. Let G be a finite group, \mathbb{F} a field, and G^{*} the set of all non-zero multiplicative homomorphisms $G \rightarrow \mathbb{F}$. For $f \in G^{*}$, let

$$
s_{f}=\sum_{g \in G} f\left(g^{-1}\right) g .
$$

Show that $\mathbb{F} s_{f}$ is an invariant subspace of $\mathbb{F}[G]$. The representation of G on $\mathbb{F} s_{f}$ given by left-multiplication is f, in the sense that $g v=f(g) v$ for all $g \in G$ and $v \in \mathbb{F} s_{f}$.
2. Show that if G is a finite group containing more than one element, and \mathbb{F} any field, then $\mathbb{F}[G]$ contains nonzero elements a and b whose product $a b$ is 0 .
3. Suppose \mathbb{F} is a field of characteristic $p>0$, and G is a finite group with $|G|$ a multiple of p. Let $s=\sum_{g \in G} g \in \mathbb{F}[G]$. Show that the submodule $\mathbb{F}[G] s$ contains no nonzero idempotent and conclude that $\mathbb{F}[G] s$ has no complementary submodule in $\mathbb{F}[G]$. (Exercise 4.15 pushes this much further.) Thus $\mathbb{F}[G]$ is not semisimple if the characteristic of \mathbb{F} is a divisor of $|G|$.
4. For any finite group G and commutative ring R, explain why the augmentation map

$$
\begin{equation*}
\epsilon: R[G] \rightarrow R: \sum_{g} x_{g} g \mapsto \sum_{g} x_{g} \tag{3.37}
\end{equation*}
$$

is a homomorphism of rings. Show that $\operatorname{ker} \epsilon$, which is an ideal in $R[G]$, is free as an R-module, with basis $\{g-1: g \in G, g \neq e\}$.
5. Work out the multiplication table specifying the algebra structure of the center $Z\left(D_{5}\right)$ of the dihedral group D_{5}. Take the generators of the group to be c and r, satisfying $c^{5}=r^{2}=e$ and $r c r^{-1}=c^{-1}$. Take as basis for the center the conjugacy sums $1, C=c+c^{4}, D=c^{2}+c^{3}$, and $R=\left(1+c+c^{2}+c^{3}+c^{4}\right) r$.
6. Determine all the central idempotents in the algebra $\mathbb{F}\left[D_{5}\right]$, where D_{5} is the dihedral group of order 10 , and \mathbb{F} is a field of characteristic 0 containing a square-root of 5 . Show that some of these form a basis of the center Z of $\mathbb{F}\left[D_{5}\right]$. Then determine the structure of the algebra $\mathbb{F}\left[D_{5}\right]$ as a product of two 1-dimensional algebras and two 4-dimensional matrix algebras.
7. Let G be a finite group, \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$. Suppose E is a simple $\mathbb{F}[G]$-module. Fix an \mathbb{F}-linear map $P: E \rightarrow E$ that is a projection onto a one-dimensional subspace V of E, and let $P_{0}=\frac{1}{|G|} \sum_{g \in G} g P g^{-1}$. Show by computing the trace of P_{0} and then again by using Schur's Lemma (specifically, the second part of Theorem 3.2.1 that $\operatorname{dim}_{\mathbb{F}} E$ is not divisible by the characteristic of \mathbb{F}.
8. For $g \in G$, let $R_{g}: \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto g x$. Show that

$$
\operatorname{Tr}\left(R_{g}\right)= \begin{cases}|G| & \text { if } g=e ; \tag{3.38}\\ 0 & \text { if } g \neq e\end{cases}
$$

9. For $g, h \in G$, let $T_{(g, h)}: \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto g x h^{-1}$. Show that

$$
\operatorname{Tr}\left(T_{(g, h)}\right)= \begin{cases}0 & \text { if } g \text { and } h \text { are not conjugate } \tag{3.39}\\ \frac{|G|}{|C|} & \text { if } g \text { and } h \text { belong to the same conjugacy class } C .\end{cases}
$$

10. Prove the Vandermonde determinant formula:

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{3.40}\\
X_{1} & X_{2} & \ldots & X_{n} \\
\vdots & \vdots & \ldots & \vdots \\
X_{1}^{n-1} & X_{2}^{n-1} & \ldots & X_{n}^{n-1}
\end{array}\right]=\prod_{1 \leq j<k \leq n}\left(X_{k}-X_{j}\right) .
$$

Chapter 4

More Group Algebra

We are now ready to plunge into a fuller exploration of the group algebra $\mathbb{F}[G]$. The group G is, for us, always finite, and the field \mathbb{F} will often be required to satisfy some standard conditions: its characteristic should not be a divisor of the order of the group, and, for some results, we need the field to be algebraically closed.

Recall that $\mathbb{F}[G]$ is the vector space, over the field \mathbb{F}, with the elements of G as basis. Thus, its dimension is $|G|$, the number of elements in G. The typical element of $\mathbb{F}[G]$ is of the form

$$
x=\sum_{g \in G} x_{g} g
$$

with each x_{g} in \mathbb{F}. The multiplication map

$$
\mathbb{F}[G] \times \mathbb{F}[G] \rightarrow \mathbb{F}[G]:(x, y) \mapsto x y=\sum_{g \in G}\left(\sum_{h \in G} x_{g h^{-1}} y_{h}\right) g
$$

is bilinear, associative, and has $1=1 e$, where e is the identity element of G, has multiplicative identity. Thus, $\mathbb{F}[G]$ is an algebra over the field \mathbb{F}.

The regular representation ρ_{reg} of G associates to each $g \in G$ the map

$$
\begin{equation*}
\rho_{\mathrm{reg}}(g): \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto g x=\sum_{h \in G} x_{h} g h \tag{4.1}
\end{equation*}
$$

for all elements $x=\sum_{h \in G} x_{h} h$ in $\mathbb{F}[G]$. It is very useful to view a representation ρ of G on a vector space E as specifying, and specified by, an
$\mathbb{F}[G]$-module structure on E :

$$
\left(\sum_{g \in G} x_{g}\right) v=\sum_{g \in G} x_{g} \rho(g) v
$$

for all $v \in E$ and all $a(g) \in \mathbb{F}$, with g running over the finite group G. With this notation, we can stop writing ρ and write $g v$ instead of $\rho(g) v$. The tradeoff between notational ambiguity and clarity is worth it. A subrepresentation then is just a submodule. An irreducible representation E corresponds to a simple module, in the sense that $E \neq 0$ and E has no submodules other than 0 and E itself. We will use the terms 'irreducible' and 'simple' interchangeably in the context of modules.

Inside the algebra $\mathbb{F}[G]$, viewed as a left module over itself, a submodule is a left ideal, which means a subset closed under addition and also under multiplication on the left by elements of $\mathbb{F}[G]$. A simple submodule of $\mathbb{F}[G]$ is thus a simple left ideal, in the sense that it is a nonzero left ideal that contains, as proper subset, no nonzero left ideal.

In the previous chapter we saw how the group algebra $\mathbb{F}\left[S_{3}\right]$ decomposes as a product of smaller algebras, each of the form $\mathbb{F}\left[S_{3}\right] u$ for some central idempotent element u, and then we decomposed each $\mathbb{F}\left[S_{3}\right] u$ as a direct sum of simple submodules that are also of the form $\mathbb{F}\left[S_{3}\right] y$ with y idempotent but not necessarily central. In this chapter we will develop this procedure for the group algebra of a general finite group.

4.1 Looking Ahead

Let us take a quick look at the terrain ahead. We work with a finite group G and a field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. The significance and endlessly useful consequence of this assumption about $|G|$ is that the algebra $\mathbb{F}[G]$ is semisimple.

Semisimplicity says that any submodule of $\mathbb{F}[G]$ has a complementary submodule, so that their direct sum is all of $\mathbb{F}[G]$. Thus it is no surprise, as we shall prove in Proposition 4.3.1, that $\mathbb{F}[G]$ splits up into a direct sum of simple left ideals M_{j} :

$$
\mathbb{F}[G]=M_{1} \oplus \cdots \oplus M_{m}
$$

By Schur's Lemma (Theorem 3.2.1) it follows that for any pair j, k, either M_{j} and M_{k} are isomorphic as $\mathbb{F}[G]$-modules, or there is no non-zero module morphism $M_{j} \rightarrow M_{k}$. Clearly it makes sense then to pick out a maximal set
of non-isomorphic simple left ideals L_{1}, \ldots, L_{s}, and group the M_{j} 's together according to which L_{i} they are isomorphic to. This produces the decomposition

$$
\mathbb{F}[G]=\underbrace{L_{11}+\cdots+L_{1 d_{1}}}_{A_{1}}+\cdots+\underbrace{L_{s 1}+\cdots+L_{s d_{s}}}_{A_{s}}
$$

which is a direct sum, with the first d_{1} left ideals being isomorphic to L_{1}, the next d_{2} to L_{2}, and so on, with the last d_{s} ones isomorphic to L_{s}. Thus,

$$
\begin{equation*}
\mathbb{F}[G] \simeq L_{1}^{d_{1}} \oplus \cdots \oplus L_{s}^{d_{s}} \tag{4.2}
\end{equation*}
$$

We will show that each A_{i} is a two sided ideal, closed under multiplication both on the left and on the right by elements of $\mathbb{F}[G]$. It also contains an idempotent u_{i} that serves as a multiplicative unit inside A_{i}. Thus, each A_{i} is an algebra in itself. Moreover, it is a minimal algebra, in the sense that the only two sided ideals inside it are 0 and A_{i}. Furthermore, using Schur's Lemma again, we will show that

$$
A_{j} A_{k}=0 \quad \text { if } j \neq k
$$

All this leads to an identification of $\mathbb{F}[G]$ with the product of the algebras A_{i} :

$$
\prod_{i=1}^{s} A_{i} \simeq \mathbb{F}[G]
$$

by identifying $\left(a_{1}, \ldots, a_{s}\right)$ with the sum $a_{1}+\cdots+a_{s}$.
A central result is the realization of $\mathbb{F}[G]$ as an algebra of matrices. The way this works is that for each $b \in \mathbb{F}[G]$ we have the map

$$
r_{b}: \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto x b
$$

and the key point here is that r_{b} is $\mathbb{F}[G]$-linear, on viewing $\mathbb{F}[G]$ as a left module over itself. The decomposition of $\mathbb{F}[G]$ as a direct sum in (4.2):

$$
\mathbb{F}[G] \simeq L_{1}^{d_{1}} \oplus \cdots \oplus L_{s}^{d_{s}}
$$

provides a matrix for r_{b} whose entries are $\mathbb{F}[G]$-linear maps $L_{j} \rightarrow L_{k}$; by Schur's Lemma, these are all 0 except, potentially, when $j=k$. As we will prove later, $\operatorname{End}_{\mathbb{F}[G]}\left(L_{k}\right)$ is a division algebra. This realizes $\mathbb{F}[G]$ as an algebra of block-diagonal matrices, with each block being a matrix with entries in a
division algebra (these algebras being different in the different blocks). In the special case where \mathbb{F} is algebraically closed, the division algebras collapse down to \mathbb{F} itself, and $\mathbb{F}[G]$ is realized as an algebra of block-diagonal matrices with entries in \mathbb{F}. Thus r_{b} has a block diagonal form and we have

$$
b \quad \leftrightarrow \quad r_{b}=\left[\begin{array}{ccccc}
{\left[b_{1}\right]} & 0 & 0 & \cdots & 0 \tag{4.3}\\
0 & {\left[b_{2}\right]} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & {\left[b_{s}\right]}
\end{array}\right]
$$

Decomposing $\mathbb{F}[G]$ into simple left ideals provides a decomposition of the regular representation into irreducible components. The interplay between the regular representation, as given by multiplications on the left, and the representation on $\mathbb{F}[G]$ by multiplications on the right is part of a powerful larger story which we will see recurring later in Schur-Weyl duality.

If you are eager to hike ahead on your own you can explore along the path laid out in Exercise 4.5, in which, to add to the adventure, you are not allowed to semisimplify!

4.2 Submodules and Idempotents

Let us begin with a closer look at why idempotents arise in constructing submodules of $\mathbb{F}[G]$. Idempotents were introduced and used with great effectiveness by Frobenius in unravelling the structure of $\mathbb{F}[G]$.

Recall that an idempotent in the algebra $\mathbb{F}[G]$ is an element v whose square is itself:

$$
v^{2}=v
$$

Idempotents u and v are said to be orthogonal if

$$
u v=v u=0 .
$$

The sum of two orthogonal idempotents is clearly again an idempotent. An idempotent is said to be primitive or indecomposable if it is not zero and cannot be expressed as a sum of two nonzero orthogonal idempotents.

An element v in a left ideal L is called a generator if $L=\mathbb{F}[G] v$. Here is a very useful little fact:
for an idempotent y, an element x lies in $\mathbb{F}[G] y$ if and only if $x y=x$.
(You can verify this as a moment's-thought exercise.)
Indecomposability of idempotents translates to indecomposability of the generated left ideals:

Proposition 4.2.1 Let G be any finite group and \mathbb{F} a field. An idempotent $y \in \mathbb{F}[G]$ is indecomposable if and only if $\mathbb{F}[G] y$ cannot be decomposed as a direct sum of two distinct non-zero left ideals in $\mathbb{F}[G]$.

Proof. Suppose y is an indecomposable idempotent, and $\mathbb{F}[G] y$ is the direct sum of left ideals L_{1} and M_{1}. Then

$$
\begin{equation*}
y=y_{1}+v_{1} \tag{4.5}
\end{equation*}
$$

for unique $y_{1} \in L_{1}$ and $v_{1} \in M_{1}$. Since $y_{1} \in L_{1} \subset \mathbb{F}[G] y$, we can write $y_{1}=a y$ for some $a \in \mathbb{F}[G]$ and then, since y is an idempotent, we have $y_{1} y=y_{1}$. Left-multiplying 4.5) by y_{1} produces

$$
\underbrace{y_{1} y}_{=y_{1}}=\underbrace{y_{1} y_{1}}_{\in L_{1}}+\underbrace{y_{1} v_{1}}_{\in M_{1}}
$$

and so, again by unique decomposition,

$$
y_{1}=y_{1}^{2} \quad \text { and } \quad y_{1} v_{1}=0 .
$$

Similarly, v_{1} is also an idempotent and $v_{1} y_{1}$ is 0 . Since y is indecomposable, at least one of y_{1} and v_{1} is 0 . Say $v_{1}=0$. But then $y=y_{1}$, and so $\mathbb{F}[G] y \subset L_{1}$, which implies $M_{1}=0$.

For the converse, suppose $y=y_{1}+v_{1}$, where y_{1} and v_{1} are nonzero orthogonal idempotents. For any $x \in \mathbb{F}[G] y$, we have $x=a y$ for some $a \in \mathbb{F}[G]$, and then

$$
x=x y=\underbrace{x y_{1}}_{\in \mathbb{F}[G] y_{1}}+\underbrace{x v_{1}}_{\in \mathbb{F}[G] v_{1}} .
$$

So $\mathbb{F}[G] y$ is the sum of the left ideals $\mathbb{F}[G] y_{1}$ and $\mathbb{F}[G] v_{1}$. This sum is direct because if

$$
a y_{1}+b v_{1}=0
$$

then, on right-multiplying by the idempotent y_{1} which is orthogonal to v_{1}, we have $a y_{1}=0$, and then $b v_{1}$ is also 0 . Finally, note that $\mathbb{F}[G] y_{1}$ contains y_{1} and so is not $\{0\}$, and similarly also $\mathbb{F}[G] v_{1} \neq\{0\}$. QED

With semisimplicity, every left ideal has an idempotent generator:

Proposition 4.2.2 Let G be any finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. If L is a left ideal in the algebra $\mathbb{F}[G]$ then there is an idempotent element $y \in \mathbb{F}[G]$ such that

$$
L=\mathbb{F}[G] y
$$

Proof. By semisimplicity, L has a complementary left ideal L_{c} such that $\mathbb{F}[G]$ is the direct sum of L and L_{c}. Decompose $1 \in \mathbb{F}[G]$ as

$$
1=y+z
$$

where $y \in L$ and $z \in L_{c}$. Then for any $x \in \mathbb{F}[G]$,

$$
x=\underbrace{x y}_{\in L}+\underbrace{x z}_{\in L_{c}}
$$

and so x lies in L if and only if x is, in fact, equal to $x y$. Hence, $L=\mathbb{F}[G] y$, and also y equals $y y$, which means that y is an idempotent. QED

4.3 Deconstructing $\mathbb{F}[G]$, the Module

Semisimplicity decomposes $\mathbb{F}[G]$ into simple left ideals:
Proposition 4.3.1 For any finite group G and field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$, the algebra $\mathbb{F}[G]$, viewed as a left module over itself, decomposes as a direct sum of simple submodules. There are indecomposable orthogonal idempotents $e_{1}, \ldots, e_{m} \in \mathbb{F}[G]$ such that

$$
1=e_{1}+\cdots+e_{m},
$$

and the simple left ideals $\mathbb{F}[G] e_{1}, \ldots, \mathbb{F}[G] e_{m}$ provide a decomposition of $\mathbb{F}[G]$ as a direct sum:

$$
\mathbb{F}[G]=\mathbb{F}[G] e_{1} \oplus \cdots \oplus \mathbb{F}[G] e_{m}
$$

In the language of representations, this decomposes the regular representation into a direct sum of irreducible representations.
Proof. Choose a submodule M_{1} in $\mathbb{F}[G]$ that has the smallest non-zero dimension as a vector space over \mathbb{F}. Then, of course, M_{1} has to be a simple submodule.

Take now the largest integer m such that there exist simple submodules M_{1}, \ldots, M_{m}, such that the sum $M=M_{1}+\cdots+M_{m}$ is a direct sum; such an m exists because $\mathbb{F}[G]$ is finite dimensional as a vector space over \mathbb{F}. If M is not all of $\mathbb{F}[G]$ then there is, by semisimplicity, a complementary submodule N that is not zero. Inside N choose a submodule M_{m+1} of smallest positive dimension as vector space over \mathbb{F}. But then M_{m+1} is a simple submodule and the sum $M_{1}+\cdots+M_{m+1}$ is direct, which contradicts the definition of m. Hence, M is all of $\mathbb{F}[G]$:

$$
\mathbb{F}[G]=M_{1} \oplus \cdots \oplus M_{m}
$$

Splitting the element $1 \in \mathbb{F}[G]$ as a sum of components $e_{j} \in M_{j}$, we have

$$
1=e_{1}+\cdots+e_{m}
$$

Then for any $x \in \mathbb{F}[G]$,

$$
x=\underbrace{x e_{1}}_{\in M_{1}}+\cdots+\underbrace{x e_{m}}_{\in M_{m}}
$$

and so x lies in M_{j} if and only if $x=x e_{j}$ and $x e_{k}=0$ for all $k \neq j$. This means, in particular, that

$$
e_{j}^{2}=e_{j}, \quad \text { and } \quad e_{j} e_{k}=0 \quad \text { if } j \neq k,
$$

and

$$
M_{j}=\mathbb{F}[G] e_{j},
$$

for all $j, k \in\{1, \ldots, m\}$ QED
We can make another observation here, for which we use the versatile power of Schur's Lemma (Theorem 3.2.1).

Proposition 4.3.2 Let G be a finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. View $\mathbb{F}[G]$ as a left module over itself, and let M_{1}, \ldots, M_{m} be simple submodules whose direct sum is $\mathbb{F}[G]$. If L is any simple submodule in $\mathbb{F}[G]$ then L is isomorphic to some M_{j}, and is a subset of the sum of those M_{j} that are isomorphic to L.

Proof. Since $\mathbb{F}[G]$ is the direct sum of the submodules M_{j}, every element $x \in \mathbb{F}[G]$ decomposes uniquely as a sum

$$
x=\underbrace{x_{1}}_{\in M_{1}}+\cdots+\underbrace{x_{m}}_{\in M_{m}}
$$

with $x_{j} \in M_{j}$ for each $j \in\{1, \ldots, m\}$. Thus there are the projection maps

$$
\pi_{j}: \mathbb{F}[G] \rightarrow M_{j}: x \mapsto x_{j} .
$$

The uniqueness of the decomposition, along with the fact that $a x_{j} \in M_{j}$ for every $a \in \mathbb{F}[G]$, implies that π_{j} is linear as a map between $\mathbb{F}[G]$-modules:

$$
\pi_{j}(a x+y)=a \pi_{j}(x)+\pi_{j}(y)
$$

for all $a, x, y \in \mathbb{F}[G]$. Consider now a simple submodule $L \subset \mathbb{F}[G]$. The restriction $\pi_{j} \mid L$ is an $\mathbb{F}[G]$-linear map $L \rightarrow M_{j}$. Then by Schur's Lemma (Theorem 3.2.1), this must be either 0 or an isomorphism. Looking at any $x \in L$, as a sum of the components $x_{j}=\pi_{j}(x)$, the components that lie in the M_{k} not isomorphic to L are all zero, and so at least one of the other components must be non-zero when $x \neq 0$. This implies that L is isomorphic to some M_{j}, and lies inside the sum of those M_{j} to which it is isomorphic. QED

4.4 Deconstructing $\mathbb{F}[G]$, the Algebra

We turn to the task of decomposing $\mathbb{F}[G]$, viewed now as an algebra, as a product of smaller, simpler algebras. Recall that an algebra, over a field \mathbb{F}, is a vector space over \mathbb{F} equipped with a bilinear multiplication map $A \times A \rightarrow A:(a, b) \mapsto a b$, which is associative and has an identity element $1 \neq 0$.

If S and T are subsets of $\mathbb{F}[G]$, then by $S T$ we mean the set of all elements that are finite sums of products st with $s \in S$ and $t \in T$:

$$
S T=\left\{s_{1} t_{1}+\cdots+s_{k} t_{k}: k \in\{1,2, \ldots\}, s_{1}, \ldots, s_{k} \in S, t_{1}, \ldots, t_{k} \in T\right\}
$$

Thus, with this notation, a subset $J \subset A$, for which $J+J \subset J$, is a left ideal if $A J \subset J$, is a right ideal if $J A \subset J$, and is a two sided ideal if $A J A \subset J$.

Let us make a few starter observations about left ideals.
Proposition 4.4.1 Let G be a finite group, \mathbb{F} a field, and L a simple left ideal in the algebra $A=\mathbb{F}[G]$. Then :
(i) $L=\mathbb{F}[G] u$ for any non-zero $u \in L$;
(ii) if $v \in \mathbb{F}[G]$ then either $L v$ is 0 or it is isomorphic to L, as left $\mathbb{F}[G]$ modules;
(iii) if M is a simple left ideal and $L M \neq 0$ then $M=L v$ for some $v \in \mathbb{F}[G]$;
(iv) $L A$, which is the sum of all the right-translates $L v$, is a two sided ideal in $\mathbb{F}[G]$;
(v) if L and M are simple left ideals, and M is not isomorphic to L, then

$$
(L A)(M A)=0 .
$$

Notice, as a curiosity at least, that for once we do not need the semisimplicity condition that $|G|$ not be divisible by the characteristic of \mathbb{F}.
Proof. If L is a simple left ideal and $u \in L$ is not zero then $\mathbb{F}[G] u$ is a non-zero left ideal contained inside L and hence must be equal to L.

For any $v \in \mathbb{F}[G], L v$ is clearly a left ideal in $\mathbb{F}[G]$. The map

$$
f: L \rightarrow L v: a \mapsto a v
$$

is $\mathbb{F}[G]$-linear, and so $\operatorname{ker} f$ is a left ideal in $\mathbb{F}[G]$ contained inside L. Since L is simple, Schur's Lemma implies that either $f=0$, which means $L v=0$, or f is an isomorphism of L onto $L v$. Thus, either $L v$ is 0 or it is isomorphic, as a left $\mathbb{F}[G]$-module, to L.

Next suppose M is also a simple left ideal, and $L M \neq 0$. Choose $u \in L$ and $v \in M$ with $u v \neq 0$. Then $M=\mathbb{F}[G] v$ and so $L v \subset M$. Since M is simple and $L v$, which contains $u v$, is not 0 , we have $M=L v$.

It is clear that $L A$ is both a left ideal and a right ideal.
Now suppose L and M are both simple left ideals, and $(L A)(M A) \neq 0$. Then $(L x)(M y) \neq 0$ for some $x, y \in \mathbb{F}[G]$. Then $L x \neq 0$ and $M y \neq 0$, and so $L x \simeq L$ and $M y \simeq M$, by (ii). In particular, $L x$ and $M y$ are also simple left ideals. Since $L x M y \neq 0$ it follows by (iii) that $M y$ is a right translate of $L x$, which then, by (ii), implies that $L x \simeq M y$. But, as we have already noted, $L x \simeq L$ and $M y \simeq M$. Hence $L \simeq M$. QED

Semisimplicity gives us a bit more: if $\mathbb{F}[G]$ is semisimple and L and M are simple left ideals that are isomorphic as $\mathbb{F}[G]$-modules then M is a right translate of L. This is because semisimplicity implies $L=\mathbb{F}[G] y$ for an idempotent y and so if $f: L \rightarrow M$ is an isomorphism of modules then

$$
M=f(L)=f(L y)=L f(y),
$$

showing that M is a right translate of L. If we add up all the simple left ideals that are isomorphic to a given simple left ideal L, we get

$$
\sum_{x \in \mathbb{F}[G]} L x=L \mathbb{F}[G]
$$

and this is a two sided ideal, clearly the smallest two sided ideal containing L. Such two sided ideals form the key structural pieces in the decomposition of the algebra $\mathbb{F}[G]$.

Theorem 4.4.1 Let G be a finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. Then there are subspaces $A_{1}, \ldots, A_{s} \subset \mathbb{F}[G]$ such that each A_{j} is an algebra under the multiplication operation inherited from $\mathbb{F}[G]$, and the map

$$
I: \prod_{j=1}^{s} A_{j} \rightarrow \mathbb{F}[G]:\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1}+\cdots+a_{s}
$$

is an isomorphism of algebras. Moreover,
(i) every simple left ideal is contained inside exactly one of A_{1}, \ldots, A_{s},
(ii) $A_{j} A_{k}=0$ if $j \neq k$,
(iii) each A_{j} is a two sided ideal in $\mathbb{F}[G]$,
(iv) each A_{j} is of the form $\mathbb{F}[G] u_{j}$, with u_{1}, \ldots, u_{s} being orthogonal idempotents, all lying in the center of the algebra $\mathbb{F}[G]$, and with

$$
u_{1}+\cdots+u_{s}=1
$$

(v) every two sided ideal in $\mathbb{F}[G]$ is a sum of some of the A_{1}, \ldots, A_{s},
(vi) for every $j \in[s]$, the only two sided ideals of A_{j} are 0 and A_{j} itself,
(vii) no u_{j} can be decomposed as a sum of two non-zero central idempotents.

This is a lot and the proof is lengthy, but not hard. Parts (i)-(iv), and also (vii), hold even when $\mathbb{F}[G]$ is not semisimple; for this, following an alternate route, you can work through Exercise 4,5 .
Proof. First view $\mathbb{F}[G]$ as a left module over itself. We saw in Proposition 4.3.1 that $\mathbb{F}[G]$ is a direct sum of a finite set of simple submodules M_{1}, \ldots, M_{m}.

Moreover, by Proposition 4.3.2, every simple submodule is isomorphic to one of these submodules and also lies inside the sum of those M_{j} to which it is isomorphic. Thus, it would be good to group together all the M_{j} that are mutually isomorphic and form their sums.

Let L_{1}, \ldots, L_{s} be a maximal set of simple submodules among the M_{j} such that no two are isomorphic with each other. Now, for each j, set A_{j} to be the sum of all those M_{i} that are isomorphic to L_{j}. Then $\mathbb{F}[G]$ is the direct sum of the submodules A_{j} :

$$
\begin{equation*}
\mathbb{F}[G]=A_{1} \oplus \cdots \oplus A_{s} \tag{4.6}
\end{equation*}
$$

Let us keep in mind, from Proposition 4.3.2, that any simple submodule which is isomorphic to L_{j} actually lies inside A_{j}. Thus, A_{j} is the sum of all the simple submodules that are isomorphic to L_{j}. Since all such submodules are right-translates $L_{j} y$ of L_{j}, and conversely every right-translate $L_{j} y$ is either 0 or isomorphic to L_{j}, we have

$$
A_{j}=L_{j} \mathbb{F}[G] .
$$

From this it is clear that A_{j} is also a right ideal.
By Proposition 4.4.1(v) it follows that

$$
A_{j} A_{k}=0 \quad \text { if } j \neq k
$$

Thus, if $x, y \in \mathbb{F}[G]$ decompose as

$$
x=x_{1}+\cdots+x_{s}, \quad y=y_{1}+\cdots+y_{s},
$$

with $x_{j}, y_{j} \in A_{j}$, for each j, then

$$
x y=x_{1} y_{1}+\cdots+x_{s} y_{s} .
$$

Let us now express 1 as a sum of components $u_{j} \in A_{j}$:

$$
1=u_{1}+\cdots+u_{s} .
$$

Since $A_{j} A_{k}$ is 0 for $j \neq k$, it follows on working out the product $u_{j} 1$ that

$$
u_{j}=u_{j}^{2} \quad \text { and } \quad u_{j} u_{k}=0 \quad \text { for all } j, k \in\{1, \ldots, s\} \text { with } j \neq k .
$$

Thus, the u_{j} are orthogonal idempotents that add up to 1 .

For $x \in \mathbb{F}[G]$ we have

$$
x=x 1=x u_{1}+\cdots x u_{s},
$$

which gives the decomposition of x into the component pieces in the A_{j}, and also shows that x lies inside A_{j} if and only if $x u_{j}$ is x itself; hence,

$$
A_{j}=\mathbb{F}[G] u_{j} \quad \text { for all } j \in\{1, \ldots, s\} .
$$

Clearly, u_{j} is the multiplicative identity element in A_{j}, which is thus an algebra in itself. Note that if u_{j} were 0 then A_{j} would be 0 and this is impossible because A_{j} is a sum of simple, hence non-zero, modules.

It is now clear that the mapping

$$
\prod_{j=1}^{s} A_{j} \rightarrow \mathbb{F}[G]:\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1}+\cdots+a_{s}
$$

is an isomorphism of algebras.
Let us check that each u_{j} is in the center of $\mathbb{F}[G]$. For any $x \in \mathbb{F}[G]$ we have

$$
x=1 x=\underbrace{u_{1} x}_{\in A_{1}}+\cdots+\underbrace{u_{s} x}_{\in A_{s}}
$$

Comparing with the decomposition 'on the left'

$$
x=x 1=\underbrace{x u_{1}}_{\in A_{1}}+\cdots+\underbrace{x u_{s}}_{\in A_{s}}
$$

and using the uniqueness of decomposition of $\mathbb{F}[G]$ as a direct sum of the A_{j}, we see that x commutes with each u_{j}. Hence, u_{1}, \ldots, u_{s} are all in the center of $\mathbb{F}[G]$.

Now consider a two sided ideal $B \neq 0$ in $\mathbb{F}[G]$. Let $j \in[s]$. The set $B A_{j}$, consisting of all sums of elements $b a_{j}$ with b drawn from B and a_{j} from A_{j}, is a two sided ideal and is clearly contained inside $B \cap A_{j}$. If $B A_{j}$ contains a non-zero element x then, working with a minimal left ideal L contained in $\mathbb{F}[G] x \subset B A_{j}$, it follows that $B A_{j}$ contains all right translates of L; thus, if $B A_{j} \neq 0$ then $B A_{j} \supset A_{j}$, and hence $B A_{j}=A_{j}$. Thus, looking at the decomposition

$$
B=B A=B A_{1}+\cdots+B A_{s}
$$

we see that B is the sum of those A_{j} for which $B A_{j} \neq 0$.

Now we show that the algebra A_{j} is minimal in the sense that any two sided ideal in it is either 0 or A_{j}. Suppose J is a two sided ideal in the algebra A_{j}. For any $x \in \mathbb{F}[G]$, and $y \in A_{j}$, we know that $x y$ equals $x_{j} y$, where x_{j} is the component of x in A_{j} in the decomposition of A as the direct sum of A_{1}, \ldots, A_{s}. Consequently, any left ideal within A_{j} is a left ideal in the full algebra $\mathbb{F}[G]$. Similarly, any right ideal in A_{j} is a right ideal in $\mathbb{F}[G]$. Hence a two sided ideal J inside the algebra A_{j} is a two sided ideal in $\mathbb{F}[G]$ and hence is a sum of certain of the ideals A_{i}. But these ideals are complementary and J lies inside A_{j}; hence, J is equal to A_{j}.

Finally, let us show that the central idempotent generators u_{j} are indecomposable within the class of central idempotents. Suppose

$$
u_{j}=u+v
$$

where u and v are orthogonal central idempotents. Then

$$
u u_{j}=u u+u v=u^{2}+0=u
$$

and so

$$
\mathbb{F}[G] u=\mathbb{F}[G] u u_{j} \subset \mathbb{F}[G] u_{j}=A_{j} .
$$

Furthermore, since u is central, the left ideal $\mathbb{F}[G] u$ is also a right ideal. Being a two sided ideal lying inside A_{j} it must then be either 0 or A_{j} itself. If $\mathbb{F}[G] u$ is 0 then $u=1 u$ is 0 . If $u \neq 0$ then $\mathbb{F}[G] u=A_{j}$ and so $u_{j}=x u$ for some $x \in \mathbb{F}[G]$, and then $v=u_{j} v=x u v$ is 0 . Thus, in the decomposition of u_{j} into a sum of two central orthogonal idempotents one of them must be 0 . QED

The next task is to determine the structure of an algebra that does not contain any non-zero proper two sided ideals. But before turning to that we note the following uniqueness of the decompositon:

Theorem 4.4.2 Let G be a finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. Suppose $B_{1}, \ldots, B_{r} \subset \mathbb{F}[G]$, where each B_{j} is non-zero, closed under addition and multiplication, and contains no non-zero proper two sided ideals, and such that

$$
I: B_{1} \times \cdots \times B_{r} \rightarrow \mathbb{F}[G]:\left(b_{1}, \ldots, b_{r}\right) \mapsto b_{1}+\cdots b_{r}
$$

preserves addition and multiplication. Then $r=s$ and

$$
\left\{B_{1}, \ldots, B_{r}\right\}=\left\{A_{1}, \ldots, A_{s}\right\}
$$

where A_{1}, \ldots, A_{s} are the two sided ideals in $\mathbb{F}[G]$ described in Theorem 4.4.1.

Proof. The fact that I preserves multiplication implies that

$$
B_{j} B_{k}=0 \quad \text { if } j \neq k
$$

Each B_{j} is a two sided ideal in $\mathbb{F}[G]$, because

$$
B B_{j} \subset B_{1} B_{j}+\cdots B_{r} B_{j}=0+B_{j} B_{j}+0 \subset B_{j}
$$

and, similarly, $B_{j} B \subset B_{j}$.
Then, by Theorem 4.4.1, each B_{j} is the sum of some of the two sided ideals A_{i}. The condition that B_{j} contains no proper nonzero two sided ideal then implies that B_{j} is equal to some A_{i}. Hence, I maps

$$
\{(0,0, \ldots, \underbrace{b_{j}}_{\mathrm{j}-\text { th position }}, 0, \ldots, 0): b_{j} \in B_{j}\}
$$

onto A_{i}. Now the sets A_{1}, \ldots, A_{s} are all distinct. Since the map I is a bijection it follows that B_{1}, \ldots, B_{r} are all distinct. Hence $r=s$ and $\left\{B_{1}, \ldots, B_{r}\right\}$ is the same as $\left\{A_{1}, \ldots, A_{s}\right\}$. QED

4.5 As Simple as Matrix Algebras

We turn now to the determination of the structure of finite dimensional algebras that contain no nonzero proper two sided ideals. We will revisit this topic in a more general setting later in section 5.6 .

Suppose B is a finite dimensional, algebra over a field \mathbb{F}, and L a left ideal in B of minimum positive dimension. Then L, being of minimum dimension, is simple. Let

$$
D=\operatorname{End}_{B}(L)
$$

which is the set of all B-linear maps $f: L \rightarrow L$. By Schur's Lemma, any such f is either 0 or an isomorphism. Thus, D is a division ring: it is a ring, with mutliplicative identity $(\neq 0)$, in which every non-zero element has a multiplicative inverse. Note that here D contains \mathbb{F} and is also a vector space over \mathbb{F}, necessarily finite dimensional because it is contained inside the finite dimensional space $\operatorname{End}_{\mathbb{F}}(L)$.

Theorem 4.5.1 Suppose B is a finite dimensional algebra over a field \mathbb{F} and assume that the only two sided ideals in B are 0 and B itself. Then B is
isomorphic to the algebra of $n \times n$ matrices over a division ring D, for some positive integer n. The division ring is $D=\operatorname{End}_{B}(L)$, where L is any simple left ideal in B, with multiplication given by composition in the opposite order: $f \circ \circ_{\text {op }} g=g \circ f$ for $f, g \in \operatorname{End}_{B}(L)$.

This fundamental result, evolved in formulation, grew out of the dissertations of Molien [58] and Wedderburn [74].

To indicate that the multiplication is in the opposite order to the standard multiplication in $\operatorname{End}_{B}(L)$, we write

$$
D=\operatorname{End}_{B}(L)^{\mathrm{opp}}
$$

The appearance of a division ring, as opposed to a field, might seem disappointing. But much of the algebra here is a sharper shadow of synthetic geometry, a subject nearly lost to mathematical history, where, logically if not historically, division rings appear more naturally (that is, from fewer geometric axioms) than fields.
Proof. There are two main steps in realizing B as an algebra of matrices. First, we will show that B is naturally isomorphic to the algebra $\operatorname{End}_{B}(B)$ of all B-linear maps $B \rightarrow B$, with a little twist applied. Next we will show by breaking B up into a direct sum of translates of any simple left ideal that any element of $\operatorname{End}_{B}(B)$ can be viewed as a matrix with entries in D.

Any element $b \in B$ specifies a B-linear map

$$
r_{b}: B \rightarrow B: x \mapsto x b
$$

and b is recovered from r_{b} by applying r_{b} to 1 :

$$
b=r_{b}(1)
$$

Conversely, if $f \in \operatorname{End}_{B}(B)$ then

$$
f(x)=f(x 1)=x f(1)=r_{f(1)}(x) \quad \text { for all } x \in B
$$

Thus $b \mapsto r_{b}$ is a bijection $B \rightarrow \operatorname{End}_{B}(B)$, and is clearly linear over the field \mathbb{F}. Let us look now at how r interacts with mutliplication:

$$
r_{a} r_{b}(x)=r_{a}(x b)=x(b a)=r_{b a}(x)
$$

Thus, the map $b \mapsto r_{b}$ reverses multiplication. Then we have an isomorphism of algebras

$$
B \rightarrow \operatorname{End}_{B}(B)^{\mathrm{opp}}
$$

where the superscript indicates that multiplication of endomorphisms should be done in the order opposite to the usual.

Now let L be a left ideal in B of minimum positive dimension, as a vector space over \mathbb{F}. The minimum dimension condition implies that L is a simple left ideal. Since $L B$ is a nonzero two sided ideal in B, it is equal to B. But $L B$ is the sum of all right translates $L b$ with b running over B. If $b \in B$ is such that $L b \neq 0$ then the mapping between the left B-modules L and $L b$ given by

$$
\phi_{b}: L \rightarrow L b: x \mapsto x b
$$

is clearly B-linear and surjective, and $\operatorname{ker} \phi_{b}$, which is not L because $L b \neq 0$, must be $\{0\}$ and this means that ϕ_{b} is an isomorphism of B-modules. Thus, any nonzero $L b$ is a simple left ideal isomorphic as a B-module to L.

Let n be the largest integer for which there exist $b_{1}, \ldots, b_{n} \in B$ such that the sum $L b_{1}+\cdots+L b_{n}$ is a direct sum and each $L b_{j}$ is nonzero. As noted above, the mapping

$$
\begin{equation*}
\phi_{j}: L \rightarrow L b_{j}: x \mapsto x b_{j} \tag{4.7}
\end{equation*}
$$

is an isomorphism of B-modules and $L b_{j}$ is a simple left ideal in B.
Note that $n \geq 1$ and also that $n \leq \operatorname{dim}_{\mathbb{F}} B$, which is finite by hypothesis. If $L b_{1}+\cdots+L b_{n}$ is not all of $L B$ then there is some $L b$ not contained in $S=L b_{1}+\cdots+L b_{n}$; but then $L b \cap S=\{0\}$ by simplicity of $L b$ and this would contradict the definition of n. Thus,

$$
\begin{equation*}
B=L B=L b_{1} \oplus \cdots \oplus L b_{n} . \tag{4.8}
\end{equation*}
$$

Putting the maps ϕ_{j} together yields an isomorphism of left B-modules

$$
\Phi: L^{n} \rightarrow B:\left(a_{1}, \ldots, a_{n}\right) \mapsto \phi_{1}\left(a_{1}\right)+\cdots+\phi_{n}\left(a_{n}\right)
$$

Then any $b \in B$ corresponds to a B-linear map

$$
r_{b}^{\prime}=\Phi^{-1} \circ r_{b} \circ \Phi: L^{n} \rightarrow L^{n}
$$

that gives rise to a matrix

$$
\left[b_{j k}\right]_{1 \leq j, k \leq n},
$$

where

$$
b_{j k}=p_{k} \circ r_{b}^{\prime} \circ i_{j}: L \rightarrow L,
$$

with $p_{k}: L^{n} \rightarrow L$ being the projection onto the k-th component and

$$
i_{j}: L \rightarrow L^{n}: x \mapsto(0, \ldots, \underbrace{x}_{j-\text { th term }}, \ldots, 0)
$$

Note that

$$
\sum_{j=1}^{n} i_{j} p_{j}=\operatorname{id}_{L^{n}}
$$

Now we have a key observation: each component $b_{j k}$ is in $\operatorname{End}_{B}(L)$, and is thus an element of the division ring D. Thus, we have associated to each $b \in B$ a matrix $\left[b_{j k}\right]$ with entries in D.

If $a, b \in B$ then

$$
\begin{align*}
(a b)_{j k} & =p_{k} \Phi^{-1} r_{a b} \Phi i_{j} \\
& =p_{k} \Phi^{-1} r_{b} r_{a} \Phi i_{j} \\
& =\sum_{l=1}^{n} p_{k} \Phi^{-1} r_{b} \Phi i_{l} p_{l} \Phi^{-1} r_{a} \Phi i_{j} \\
& =\sum_{l=1}^{n} b_{l k} a_{j l} \tag{4.9}\\
& =\sum_{l=1}^{n} a_{j l} \circ_{\text {op }} b_{l k}
\end{align*}
$$

Thus,

$$
\left[(a b)_{j k}\right]=\left[a_{j l}\right]\left[b_{l k}\right]
$$

as a product of matrices with entries in the ring $D=\operatorname{End}_{B}(L)^{\text {opp }}$. It is clear that there is no twist in addition:

$$
\left[(a+b)_{j k}\right]=\left[a_{j k}\right]+\left[b_{j k}\right]
$$

Thus, the mapping

$$
a \mapsto\left[a_{j k}\right]
$$

preserves addition and multiplication. Clearly it preserves multiplication by scalars from \mathbb{F}, and also carries the multiplicative identity 1 in B to the identity matrix.

If $\left[c_{j k}\right]$ is any $n \times n$ matrix with entries in D then it corresponds to the B-linear mapping

$$
L^{n} \rightarrow L^{n}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\sum_{j=1}^{n} c_{j 1} x_{j}, \ldots, \sum_{j=1}^{n} c_{j n} x_{j}\right)
$$

which, by the identification $L^{n} \simeq B$, corresponds to an element $f \in \operatorname{End}_{B}(B)$, which in turn corresponds to the element $c=f(1)$ in B. This recovers c from the matrix $\left[c_{j k}\right]$. QED

A ring which is the sum of simple left ideals that are all isomorphic to each other is called a simple ring. In the preceding proof, specifically in 4.8), we saw that a finite dimensional algebra B that contains no nonzero proper two sided ideals is a simple ring. By a simple algebra we mean an algebra which is a simple ring. We study simple rings in section 5.6 .

In applying Theorem 4.5.1 to the algebras A_{i} contained inside $\mathbb{F}[G]$ as two sided ideals, we note that a simple left ideal L in A_{i} is also a simple left ideal when viewed as a subset of $\mathbb{F}[G]$, because if $x \in \mathbb{F}[G]$ is decomposed as $x_{1}+\cdots+x_{s}$, with $x_{j} \in A_{j}$ for each j, then

$$
x L=\left(x_{1}+\cdots+x_{s}\right) L=0+x_{i} L+0 \subset L,
$$

with the last inclusion holding because $x_{i} \in A_{i}$ and L is a left ideal in A_{i}. In fact, essentially the same argument shows that if $f: L \rightarrow L$ is linear over A_{i} then it is linear over the big algebra $\mathbb{F}[G]$. Thus,

$$
\operatorname{End}_{A_{i}}(L)=\operatorname{End}_{\mathbb{F}[G]}(L),
$$

for any minimal two sided ideal A_{i} in $\mathbb{F}[G]$ and simple left ideal $L \subset A_{i}$.
Recall in this context Wedderburn's result Theorem 1.8 .2 stating that any finite dimensional division algebra \mathbb{D} over any algebraically closed field \mathbb{F} is equal to \mathbb{F}, identified natually as a subset of \mathbb{D}. There is another similar result also discovered by Wedderburn [74]: if \mathbb{F} is a finite field then every finite dimensional division algebra over \mathbb{F} is a field.

We have introduced the notion of splitting field for a group algebra. More generally, a field \mathbb{F} is a splitting field for a finite dimensional \mathbb{F}-algebra A if for every simple A-module E, the only A-linear mappings $E \rightarrow E$ are of the form $c I$, where I is the identity mapping on E and $c \in \mathbb{F}$; more compactly, the condition is that $\operatorname{End}_{A}(E)=\mathbb{F} I$.

4.6 Putting $\mathbb{F}[G]$ back together

It is time to look back and see how all the pieces fit together to form the algebra $\mathbb{F}[G]$. We assume that G is a finite group and \mathbb{F} is a field in which $|G| 1_{\mathbb{F}} \neq 0$. Then:

- $\mathbb{F}[G]$ is a direct sum of simple left ideals.
- Choose a maximal collection of simple left ideals L_{1}, \ldots, L_{s} such that no two are isomorphic to each other as $\mathbb{F}[G]$-modules; let

$$
A_{i}=\text { sum of all simple left ideals isomorphic to } L_{i} .
$$

Then each A_{i} is a minimal two sided ideal in $\mathbb{F}[G]$, it is an algebra in itself under the operations inherited from $\mathbb{F}[G]$, and in the algebra A_{i} the only two sided ideals are 0 and A_{i}.

- The map

$$
\prod_{j=1}^{s} A_{j} \rightarrow \mathbb{F}[G]:\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1}+\cdots+a_{s}
$$

is an algebra-isomorphism of the product algebra $\prod_{j=1}^{s} A_{j}$ onto the group algebra $\mathbb{F}[G]$; in particular,

$$
A_{1} \oplus \cdots \oplus A_{n}=\mathbb{F}[G] \quad \text { and } \quad A_{j} A_{k}=0 \quad \text { if } j \neq k
$$

- There are orthogonal central idempotents $u_{1}, \ldots, u_{s} \in \mathbb{F}[G]$ such that

$$
A_{i}=\mathbb{F}[G] u_{i}
$$

and

$$
u_{1}+\cdots+u_{s}=1
$$

No u_{j} can be decomposed as a sum of two non-zero orthogonal central idempotents.

- Each A_{i} is a direct sum of simple left ideals, and they can be chosen in the following way:

$$
A_{i}=\underbrace{\mathbb{F}[G] y_{i 1}}_{L_{i}} \oplus \cdots \oplus \mathbb{F}[G] y_{i d_{i}}
$$

where $y_{i 1}, \ldots, y_{i d_{i}}$ are orthogonal indecomposable idempotents that add up to u_{i}.

- Fix an isomorphism $L_{i} \rightarrow \mathbb{F}[G] y_{i j}$, for each $i \in[s]$ and $j \in\left[d_{i}\right]$, and using this, identify A_{i} with

$$
L_{i}^{d_{i}}=\underbrace{L_{i} \oplus \cdots \oplus L_{i}}_{d_{i}},
$$

as left modules over $\mathbb{F}[G]$. Associating to each $b \in \mathbb{F}[G]$ the right multiplication

$$
r_{b}: \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto x b
$$

identifies $\mathbb{F}[G]$ with the algebra of $\mathbb{F}[G]$-linear maps $\mathbb{F}[G] \rightarrow \mathbb{F}[G]$. Using the identification of $\mathbb{F}[G]$ with $\oplus_{i=1}^{s} L_{i}^{d_{i}}$, the right multiplication operator r_{b} is specified by a matrix consisting of blocks B_{1}, \ldots, B_{s} going down the main diagonal:

$$
\left[\begin{array}{ccccc}
B_{1} & 0 & 0 & \cdots & 0 \\
0 & B_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & 0 & \\
0 & 0 & 0 & \cdots & B_{s}
\end{array}\right]
$$

where each B_{i} is a $d_{i} \times d_{i}$-matrix with entries in the division algebra $D_{i}=\operatorname{End}_{\mathbb{F}[G]}\left(L_{i}\right)$, and all other entries are 0.

- If the field \mathbb{F} is algebraically closed then each division algebra D_{i} coincides with \mathbb{F}, and so the entire group algebra $\mathbb{F}[G]$ is realized as an algebra of matrices consisting of block-diagonal matrices.

Here is a central result of Frobenius that drops out from this analysis:
Theorem 4.6.1 If G is a finite group, and \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F}, then

$$
\begin{equation*}
|G|=\sum_{i=1}^{s} d_{i}^{2} \tag{4.10}
\end{equation*}
$$

where $d_{i}=\operatorname{dim}_{\mathbb{F}} L_{i}$, and L_{1}, \ldots, L_{s} is a maximal collection of simple left ideals in $\mathbb{F}[G]$ such that no two are isomorphic as $\mathbb{F}[G]$-modules.

Proof. We simply have to count the dimension, over \mathbb{F}, of the algebra of block matrices as described above, and equate it to $\operatorname{dim}_{\mathbb{F}} \mathbb{F}[G]=|G|$. QED

Later we will prove that each d_{i} is a divisor of $|G|$, and no d_{i} is divisible by the characteristic of \mathbb{F}.

4.7 The Mother of All Representations

Let ρ be an irreducible representation of a finite group G on a vector space V over a field \mathbb{F}. Assume that $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F}. Then $\mathbb{F}[G]$ is semisimple, and so $\mathbb{F}[G]$ is a direct sum of subspaces each of which is irreducible under $\rho_{\text {reg }}$. In particular,

$$
1=y_{1}+\cdots+y_{N}
$$

for some y_{1}, \ldots, y_{N} lying in the distinct irreducible subspaces. For any nonzero $v \in V$ we then have

$$
v=y_{1} v+\cdots+y_{N} v
$$

and so at least one of the terms on the right, say $y_{j} v$, is non-zero, where y_{j} lies in a simple submodule $L \subset \mathbb{F}[G]$. Then the map

$$
L \rightarrow V: x \mapsto \rho(x) v
$$

is not zero, and is clearly a morphism from $\rho_{\text {reg }} \mid L$ to ρ and so by Schur's Lemma (Theorem 1.8.1), it is an isomorphism. Thus, we have a remarkable conclusion:

Theorem 4.7.1 Suppose G is a finite group, and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. Then every irreducible representation of G is equivalent to a subrepresentation of the regular representation ρ_{reg} of G on the group algebra $\mathbb{F}[G]$. In particular, every irreducible representation of a finite group is finite dimensional.

For an alternative proof see Exercise 4.1.
Thus, the regular representation is no ordinary representation: it contains the pieces that make up all representations. If you think of what $\mathbb{F}[G]$ is, the vector space with the elements of G as basis and on which G acts by permutations through multiplication on the left, it is not so surprising that it contains just about all there is to know about the representations of G.

When examining the structure of $\mathbb{F}[G]$ we observed that there is a finite number s, indeed $s \leq \operatorname{dim}_{\mathbb{F}} \mathbb{F}[G]=|G|$, such that there are simple left ideals L_{1}, \ldots, L_{s} in $\mathbb{F}[G]$, such that any simple left ideal is isomorphic as an $\mathbb{F}[G]$ module to exactly one of the L_{i}.

Theorem 4.7.2 Suppose G is a finite group, and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. Then there is a finite number s, and simple left ideals L_{1}, \ldots, L_{s} in $\mathbb{F}[G]$ such that every irreducible representation of G is equivalent to the restriction $\rho_{\mathrm{reg}} \mid L_{i}$ for exactly one $i \in\{1, \ldots, s\}$. Moreover, if \mathbb{F} is algebraically closed then

$$
|G|=\sum_{i=1}^{s} d_{i}^{2}
$$

where $d_{i}=\operatorname{dim}_{\mathbb{F}} L_{i}$.

A remark about computing representations is in order. Recall the procedure we sketched in section 3.5 for decomposing a representation into irreducible components. If that procedure is applied to the regular representation, where each element of G is represented by a nice permutation matrix, then the algorithm leads to a determination of all irreducible (complex) representations of G.

Theorem 4.7.3 Suppose G is a finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. Then every $\mathbb{F}[G]$-module E is a direct sum of simple submodules. In other words, every representation of G, on a vector space over the field \mathbb{F}, is a direct sum of irreducible representations.

Proof. We will prove this here under the assumption that E has finite dimension as a vector space over \mathbb{F}, which makes it possible to use an inductive argument. (The general case is proved later in Theorem 5.2.1 using a more sophisticated induction procedure, namely Zorn's Lemma.) If $E=0$ there is nothing to prove, so suppose $\operatorname{dim}_{\mathbb{F}} E$ is positive but finite. Any submodule of E of minimal positive dimension as vector space over \mathbb{F} is a simple submodule. So there is a largest positive integer m such that there exist simple submodules E_{1}, \ldots, E_{m} whose sum $F=E_{1}+\cdots+E_{m}$ is a direct sum. If $F \neq E$ then there is a nonzero complementary submodule F_{c} in E; in other words, a submodule F_{c} for which E is the direct sum of F and F_{c}. Inside F_{c} choose a submodule E_{m+1} of minimal positive dimension (notice that this works because we are working with finite dimensional vector spaces!). But then the sum $E_{1}+\cdots+E_{m+1}$ is a direct sum, contradicting the defintion of m. Thus, $F=E$, and so E is a direct sum of irreducible subspaces. QED

4.8 The Center

Let G be a finite group and \mathbb{F} a field.
We know from Proposition 3.3 .1 that the center Z of $\mathbb{F}[G]$ has a basis consisting of the conjugacy class sums

$$
z_{C}=\sum_{g \in C} g
$$

where C runs over all conjugacy classes of G. We will compare this now with what the matrix realization of $\mathbb{F}[G]$ says about Z and draw some interesting conclusions.

Let A_{1}, \ldots, A_{s} be a collection of non-zero two sided ideals in $\mathbb{F}[G]$ whose direct sum is $\mathbb{F}[G]$ (we will eventually specialize to the case where s is the largest integer for which there is such a finite collection). Then

$$
A_{j} A_{k} \subset A_{k} \cap A_{k}=\{0\} \quad \text { if } j \neq k
$$

Decomposing 1 uniquely as a sum of elements in the A_{i} we have

$$
1=u_{1}+\cdots+u_{s},
$$

with $u_{i} \in A_{i}$ for each i. Left/right-multiplying by u_{i} we have

$$
u_{i}=u_{i}^{2}+0,
$$

which shows that each u_{i} is an idempotent. Then, multiplying 1 by any $x \in \mathbb{F}[G]$, we have

$$
\sum_{i=1}^{s} \underbrace{x u_{i}}_{\in A_{i}}=x=\sum_{i=1}^{s} \underbrace{u_{i} x}_{\in A_{i}}
$$

which shows that (i) each u_{i} is in the center Z of $\mathbb{F}[G]$, (ii) $y u_{i}=y$ if $y \in A_{i}$ (and, in particular, $u_{i} \neq 0$), and (iii) $u_{i} x=0$ if $x \in A_{j}$ with $j \neq i$. The idempotents u_{i} are linearly independent, for if $\sum_{i=1}^{s} c_{i} u_{i}=0$, with coefficients c_{i} all in \mathbb{F}, then multiplying by u_{j} shows that $c_{j} u_{j}=0$ and hence $c_{j}=0$. As seen before,

$$
\begin{equation*}
\prod_{i=1}^{s} A_{i} \rightarrow A:\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1}+\cdots+a_{s} \tag{4.11}
\end{equation*}
$$

is an isomorphism of algebras.

Thus, with no assumptions on the field \mathbb{F}, we have found a natural set of orthogonal central idempotents u_{1}, \ldots, u_{s} that are linearly independent over \mathbb{F} and all lie in the center Z. Moreover, from the isomorphism (4.11) it follows that

$$
Z=Z\left(A_{1}\right)+\cdots+Z\left(A_{s}\right)
$$

where $Z\left(A_{i}\right)$ is the center of A_{i}.
Now assume that $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F}. Then we have seen that A_{1}, \ldots, A_{s} exist such that A_{i} is isomorphic to the algebra of $d_{i} \times d_{i}$ matrices over a division ring D_{i}, where d_{i} is the number of copies of a simple module L_{i} whose direct sum is isomorphic to A_{i}. If we now, further, assume that \mathbb{F} is algebraically closed then the division rings D_{i} are all equal to \mathbb{F}. Now the center of the algebra of all $d_{i} \times d_{i}$ consists just of the scalar matrices (multiples of the identity matrix). From this we see that if \mathbb{F} is algebraically closed and $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F} then

$$
Z\left(A_{i}\right)=\mathbb{F} u_{i} .
$$

We have thus proved:
Proposition 4.8.1 Let G be a finite group, \mathbb{F} any field, and Z the center of the group algebra $\mathbb{F}[G]$. Let u_{1}, \ldots, u_{s} be a maximal string of nonzero central idempotents adding up to 1 in $\mathbb{F}[G]$. Then

$$
\begin{equation*}
s \leq \operatorname{dim}_{\mathbb{F}} Z \tag{4.12}
\end{equation*}
$$

If, moreover, \mathbb{F} is algebraically closed and $|G| 1_{\mathbb{F}} \neq 0$, then u_{1}, \ldots, u_{s} form a basis for Z, and so

$$
\begin{equation*}
s=\operatorname{dim}_{\mathbb{F}} Z \quad \text { if } \mathbb{F} \text { is algebraically closed and }|G| 1_{\mathbb{F}} \neq 0 . \tag{4.13}
\end{equation*}
$$

We saw in Theorem 3.3.1 that the dimension of the center Z, as a vector space over \mathbb{F}, is just the number of conjugacy classes in G. Putting this together with the observations we have made in this section, we have a remarkable conclusion:

Theorem 4.8.1 Suppose G is a finite group, \mathbb{F} a field, and Z the center of the group algebra $\mathbb{F}[G]$. Let s be the number of distinct isomorphism classes of irreducible representations of G, over the field \mathbb{F}. Then

$$
\begin{equation*}
s \leq \text { number of conjugacy classes in } G \text {. } \tag{4.14}
\end{equation*}
$$

If the field \mathbb{F} is also algebraically closed, and $|G| 1_{\mathbb{F}} \neq 0$, then s equals the number of conjugacy classes in G.

As usual, the condition that \mathbb{F} is algebraically closed can be replaced by the requirement that it be a splitting field for G, since that is what is actually used in the argument. If the characteristic p of the field \mathbb{F} is a divisor of $|G|$ (taking us outside our semisimple comfort zone) then, with \mathbb{F} still being a splitting field for G, the number of distinct isomorphism classes of irreducible representations of G is equal to the number of conjugacy classes of elements whose orders are coprime to p; for a proof see [64, Theorem 1.5].

4.9 Representing Abelian Groups

Let G be a finite group and \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$. Let $L_{1}, . ., L_{s}$ be a maximal set of irreducible, inequivalent representations of G over \mathbb{F}. Then the formula

$$
|G|=\sum_{i=1}^{s}\left[\operatorname{dim}_{\mathbb{F}}\left(L_{i}\right)\right]^{2}
$$

shows that each L_{i} is 1-dimensional if and only if the number s is equal to $|G|$. Thus, each irreducible representation of G is 1-dimensional if and only if the number of conjugacy classes in G equals $|G|$, in other words if each conjugacy class contains just one element. But this means that G is abelian. We state this formally:

Theorem 4.9.1 Assume the ground field \mathbb{F} is algebraically closed and G is a finite group with $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F}. All irreducible representations of G are 1-dimensional if and only if G is abelian.

If \mathbb{F} is not algebraically closed then the above result is not true. For example, the representation of the cyclic group \mathbb{Z}_{4} on \mathbb{R}^{2} given by rotations, with $1 \in \mathbb{Z}_{4}$ going to rotation by 90°, is irreducible. In a different twist, if the characteristic of \mathbb{F} is a divisor of $|G|$, so that we are off our semsimple comfort zone, one can end up with a situation where every irreducible representation of G is one dimensional even if G is not abelian; Exercise 4.14 develops an example.

4.10 Indecomposable Idempotents

Before closing off our study of $\mathbb{F}[G]$ let us return briefly to one corner that we left unexplored but which will prove useful later. How do we decide if a
given idempotent is indecomposable?
In understanding the discussion in this section it will be useful to think of $\mathbb{F}[G]$ realized as a matrix algebra. An idempotent is then a projection matrix.

Proposition 4.10.1 Let A be a finite dimensional algebra over a field \mathbb{F}; for instance, $A=\mathbb{F}[G]$, where G is a a finite group. If a nonzero idempotent $u \in A$ satisfies the condition

$$
\begin{equation*}
u A u=\mathbb{F} u \tag{4.15}
\end{equation*}
$$

then u is indecomposable.
Proof. Assume that the idempotent u satisfies 4.15): for every $x \in A$,

$$
u x u=\lambda_{x} u
$$

for some $\lambda_{x} \in \mathbb{F}$. Now suppose u decomposes as

$$
u=v+w,
$$

where v and w are orthogonal idempotents:

$$
v^{2}=v, \quad w^{2}=w, \quad v w=w v=0 .
$$

Now

$$
u v u=(v+w) v(v+w)=v+0=v,
$$

and so, by (4.15), it follows that v is a multiple of u :

$$
v=\lambda u \quad \text { for some } \lambda \in \mathbb{F}
$$

Since both u and v are idempotents, it follows that

$$
\lambda^{2}=\lambda
$$

and so λ is 0 or 1 . Hence, u is indecomposable. QED
We can take the first step to understanding how inequivalence of simple left ideals reflects on the generators of such ideals:

Theorem 4.10.1 Suppose G is a finite group and \mathbb{F} a field. If y_{1} and y_{2} are nonzero idempotents in $\mathbb{F}[G]$ for which

$$
\begin{equation*}
y_{2} \mathbb{F}[G] y_{1}=0 \tag{4.16}
\end{equation*}
$$

then the left ideals $\mathbb{F}[G] y_{1}$ and $\mathbb{F}[G] y_{2}$ are not isomorphic as $\mathbb{F}[G]$-modules.
Proof. Let $f: \mathbb{F}[G] y_{1} \rightarrow \mathbb{F}[G] y_{2}$ be $\mathbb{F}[G]$-linear, where y_{1}, y_{2} are idempotents in $\mathbb{F}[G]$. Then the image $f\left(y_{1}\right)$ is of the form $x y_{2}$ for some $x \in \mathbb{F}[G]$, and so

$$
f\left(a y_{1}\right)=f\left(a y_{1} y_{1}\right)=a y_{1} f\left(y_{1}\right)=a y_{1} x y_{2},
$$

for all $a \in \mathbb{F}[G]$, and so $f=0$ if condition (4.16) holds. In particular, $\mathbb{F}[G] y_{1}$ and $\mathbb{F}[G] y_{2}$ are not isomorphic as $\mathbb{F}[G]$-modules, unless they are both zero. QED

With semisimplicity thrown in, we have in the converse direction:
Theorem 4.10.2 Suppose G is a finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. If y_{1} and y_{2} are indecomposable idempotents such that the left ideals $\mathbb{F}[G] y_{1}$ and $\mathbb{F}[G] y_{2}$ are not isomorphic as $\mathbb{F}[G]$-modules then

$$
\begin{equation*}
y_{2} \mathbb{F}[G] y_{1}=0 . \tag{4.17}
\end{equation*}
$$

Proof. By Proposition 4.2.1, $\mathbb{F}[G] y_{2}$ and $\mathbb{F}[G] y_{1}$ are simple modules. Fix any $x \in \mathbb{F}[G]$, and consider the map

$$
f: \mathbb{F}[G] y_{2} \rightarrow \mathbb{F}[G] y_{1}: y \mapsto y x y_{1}
$$

which is clearly $\mathbb{F}[G]$-linear. By Schur's Lemma (Theorem 3.2.1), f is either 0 or an isomorphism. By the hypothesis, f is not an isomorphism, and hence it is 0 . In particular, $f\left(y_{2}\right)$ is 0 . Thus, $y_{2} x y_{1}$ is 0 . QED

In our warm up exercise (look back to equation (3.24)) decomposing $\mathbb{F}\left[S_{3}\right]$ we found it useful to associate to each $x \in \mathbb{F}\left[S_{3}\right]$ a matrix with entries $y_{j} x y_{k}$, where the y_{j} are indecomposable idempotents. We also saw there that $\left\{y_{j} x y_{k}: x \in \mathbb{F}\left[S_{3}\right]\right\}$ is one-dimensional over \mathbb{F}. We can now prove this for $\mathbb{F}[G]$, with some assumptions on the field and the group. One way to visualize the following is by thinking of the full algebra $\mathbb{F}[G]$ as a matrix algebra in which the idempotent y_{2} is the matrix for a projection operator onto a one-dimensional subspace; then $\left\{y_{2} x y_{1}: x \in \mathbb{F}[G]\right\}$ consists of all scalar multiples of y_{2}.

Theorem 4.10.3 Suppose G is a finite group and \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$. If y_{1} and y_{2} are indecomposable idempotents that generate left ideals that are isomorphic as left $\mathbb{F}[G]$-modules, that is $\mathbb{F}[G] y_{1} \simeq$ $\mathbb{F}[G] y_{2}$, then $\left\{y_{2} x y_{1}: x \in \mathbb{F}[G]\right\}$ is a one dimensional vector space over \mathbb{F}.

See Exercise 5. 11 for a more general formulation.
Proof. Let A denote the algebra $\mathbb{F}[G]$. By Schur's Lemma (Theorem 3.2.1), $\operatorname{Hom}_{A}\left(A y_{2}, A y_{1}\right)$ is a one-dimensional vector space over \mathbb{F}. Fix a non-zero $f_{0} \in \operatorname{Hom}_{A}\left(A y_{2}, A y_{1}\right)$ then $f_{0}\left(y_{2}\right)$ is of the form $x_{0} y_{1}$ for some $x_{0} \in A$, and so

$$
f_{0}(y)=f_{0}\left(y y_{2} y_{2}\right)=y y_{2} f\left(y_{2}\right)=y y_{2} x_{0} y_{1},
$$

for all $y \in A y_{2}$. Now take any $x \in A$; then the map $A y_{2} \rightarrow A y_{1}: y \mapsto y y_{2} x y_{1}$ is A-linear, and so is an \mathbb{F}-multiple of f_{0}; in particular, $f\left(y_{2}\right)$ is an \mathbb{F}-multiple of $f_{0}\left(y_{2}\right)$, which just says that $y_{2} x y_{1}$ is an \mathbb{F}-multiple of $y_{2} x_{0} y_{1}$. QED

4.11 Beyond Our Borders

Our study of the group algebra $\mathbb{F}[G]$ is entirely focused on the case where the group G is finite. Semisimplicity can play a powerful role even beyond, for infinite groups (despite the observation in Exercise 4.13). If our focus does not seem to do full justice to the enduring power of semisimplicity see Chalabi [12] on group algebras for infinite groups. A comprehensive development of the theory is given in the book of Passman 63]

Our exploration of $\mathbb{F}[G]$ stays almost always within semisimple territory. Modular representation theory, which stays with finite groups but goes deep into fields of finite characteristic, is much harder. To make matters worse for an initiation, books in this subject follow a shock-and-awe style of exposition that leaves the beginner with the wrong impression that this is a subject where 'stuff happens', making it hard to discern a coherent structure or philosophy. The works of Puttaswamiah and Dixon [64] and Feit [27] are substantial accounts, but Curtis and Reiner [16], despite its encyclopedic scope, is more readable, as is the concise introduction in the book of Weintraub [75].

There is an entirely different territory to explore when one veers off $\mathbb{F}[G]$ into a 'deformation' of its algebraic structure. For instance, consider a finite group W generated by a family of reflections r_{1}, \ldots, r_{m} across hyperplanes in some Euclidean space \mathbb{R}^{N}. In the group algebra $\mathbb{F}[W]$, the relations $r_{j}^{2}=1$
hold. Now consider an algebra $\mathbb{F}[W]_{q}$, with q being a, possibly formal, parameter, generated by elements r_{1}, \ldots, r_{m} satisfying the relations that the reflections r_{j} satisfy except that each relation $r_{j}^{2}=1$ is replaced by a 'deformation':

$$
r_{j}^{2}=q 1-(1-q) r_{j} .
$$

When $q=0$ this reduces to the group algebra $\mathbb{F}[W]$. This leads to the study of Hecke algebras and the general idea of deformation of algebras. This notion of deformation sees an instance in the relationship between certain algebras of functions, or observables, for a classical physical system and algebras for the corresponding observables for the quantum theory of the physical systems.

Exercises

1. Let G be a group and \mathbb{F} a field such that the algebra $\mathbb{F}[G]$ is semisimple. Let L be a simple $\mathbb{F}[G]$-module and consider the map $I: \mathbb{F}[G] \rightarrow L$: $x \mapsto x v$, for any fixed nonzero $v \in L$. Using I, and just the fact that every submodule of $\mathbb{F}[G]$ has a complement, produce a submodule of $\mathbb{F}[G]$ that is isomorphic to L.
2. Let G be a finite group and \mathbb{F} a field, and for each $g \in G$ let $R(g)$: $\mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto g x$ provide the regular representation. Using the elements of G as basis of $\mathbb{F}[G]$ check that the (a, b)-th entry of the matrix for $R(g)$ is

$$
R(g)_{a b} \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } g=a b^{-1} \tag{4.18}\\ 0 & \text { if } g \neq a b^{-1}\end{cases}
$$

Now introduce a variable X_{g} for each $g \in G$, and verify that the matrix

$$
\begin{equation*}
D_{G}=\sum_{g \in G} R(g) X_{g} \tag{4.19}
\end{equation*}
$$

has (a, b)-th entry $X_{a b^{-1}}$. The determinant of the matrix D_{G} was introduced by Dedekind [19] and named the group determinant; its factorization, now among the many memes lost to mutations in mathematical evolution, gave rise to the notion of characters of groups. We will return to this in section 7.7. For now show that the group determinant
for a cyclic group of order n factors as a product of linear terms:

$$
\begin{array}{|}
\left|\begin{array}{ccccc}
X_{0} & X_{n-1} & X_{n-2} & \ldots & X_{1} \\
X_{1} & X_{0} & X_{n-1} & \ldots & X_{2} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
X_{n-1} & X_{n-2} & X_{n-3} & \ldots & X_{0}
\end{array}\right| \\
& =\prod_{i=1}^{n}\left(X_{0}+\eta^{j} X_{1}+\eta^{2 j}+\cdots+\eta^{(n-1) j} X_{n-1}\right), \tag{4.20}
\end{array}
$$

where η is any primitive n-th root of unity. The type of determinant on the left in (4.20) is (or, more accurately, was) called a circulant.
3. Let G be a finite group, and for each $g \in G$ consider indeterminates X_{g} and Y_{g}. Explain the the matrix commutation identity:

$$
\begin{equation*}
\left[X_{a b^{-1}}\right]_{a, b \in G}\left[Y_{b^{-1} a}\right]_{a, b \in G}=\left[Y_{b^{-1} a}\right]_{a, b \in G}\left[X_{a b^{-1}}\right]_{a, b \in G} . \tag{4.21}
\end{equation*}
$$

4. Let C_{1}, \ldots, C_{r} be the distinct conjugacy classes in G. For each $i \in[r]=$ $\{1, \ldots, r\}$ we have the central element $z_{i} \in \mathbb{F}[G]$ that is the sum of all the elements of C_{i}. Recall from (3.7) the structure constants $\kappa_{i j k}$ of G, specified by requiring that

$$
z_{i} z_{k}=\sum_{j=1}^{r} \kappa_{i, j k} z_{j} .
$$

Thus $\kappa_{i, j k}$ is the number of solutions $(a, c) \in C_{i} \times C_{k}$, of the equation $a=b c^{-1}$, for fixed $b \in C_{j}$. Next let

$$
M_{i}=\left[\kappa_{i, j k}\right]_{j, k \in[r]}
$$

be the $r \times r$ matrix of the restriction of $R\left(z_{i}\right)$ to the center Z of $\mathbb{F}[G]$, relative to the basis $\left\{z_{j}: j \in[r]\right\}$. Since everything is in the center, the matrices M_{1}, \ldots, M_{r} commute with each other. Now attach a variable Y_{g} to each g but with the condition that $Y_{g}=Y_{h}$ if g and h are in the same conjugacy class; also denote this common variable for the conjugacy class C_{i} as Y_{i}. Consider the $r \times r$ matrix

$$
\begin{equation*}
F_{Z G}=\operatorname{det}\left[\sum_{i=1}^{r} M_{i} Y_{i}\right] . \tag{4.22}
\end{equation*}
$$

Explain why $F_{Z G}$ is a product of linear factors of the type $\lambda_{1} Y_{1}+\cdots+$ $\lambda_{m} Y_{m}$.
5. In the following, G is a finite group, \mathbb{F} a field, and $A=\mathbb{F}[G]$. No assumption is made about the characteristic of \mathbb{F}. An A-module is said to be indecomposable if it is not 0 and is not the direct sum of two non-zero submodules.
(a) Show that if e and f_{1} are idempotents in A with $f_{1} e=f_{1}$ then $e_{1} \stackrel{\text { def }}{=} e f_{1} e$ and $e_{2} \stackrel{\text { def }}{=} e-e_{1}$ are orthogonal idempotents, with $e=e_{1}+e_{2}$, with $e_{1} e=e_{1}$ and $e_{2} e=e_{2}$.
(b) Show that if y is an indecomposable idempotent in A then the left ideal $A y$ cannot be written as a direct sum of two distinct non-zero left ideals.
(c) Suppose L is a left ideal in A that has a complementary ideal L_{c}, such that A is the direct sum of L and L_{c}. Show that there is an idempotent $y \in L$ such that $L=A y$.
(d) Prove that there is a largest positive integer n such that there exist non-zero orthogonal idempotents y_{1}, \ldots, y_{n} in A whose sum is 1 . Show that each y_{i} is indecomposable.
(e) Prove that there is a largest positive integer s such that there exist non-zero central idempotents u_{1}, \ldots, u_{s} for which $u_{1}+\cdots+u_{s}=1$.
(f) Show that, with notation as in (5e), $u_{j} u_{k}=0$ if $j \neq k$ and $j, k \in$ $\{1, \ldots, s\}$.
(g) Prove that any central idempotent u is a sum of some of the u_{i} of (5e). Then show that the set $\left\{u_{1}, \ldots, u_{s}\right\}$ is uniquely specified as the largest set of nonzero central idempotents adding up to 1 .
(h) With u_{1}, \ldots, u_{s} as above, show that each u_{i} is a sum of some of the idempotents e_{1}, \ldots, e_{n} in (5d). If e_{i} appears in the sum for u_{r} then $e_{i} u_{r}=e_{i}$ and $e_{i} u_{t}=0$ for $t \neq r$.
(i) Show that $A u_{i}$ is indecomposable in the sense that it is not the direct sum of two non-zero left ideals, and that the map

$$
\prod_{i=1}^{s} A u_{i} \rightarrow A:\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1}+\cdots+a_{s}
$$

is an isomorphism of algebras.
(j) Show that A is the direct sum of indecomposable submodules V_{1}, \ldots, V_{n}.
(k) Let E be a finite dimensional indecomposable A-module. Prove that there is a submodule $E_{0} \subset E$ that is maximal in the sense that E is the only submodule of E which contains E_{0} as a proper subset. Then show that E / E_{0} is a simple A-module.
(l) Let $\phi: \mathbb{F} \rightarrow \mathbb{F}$ be an automorphism of the field \mathbb{F} (for example, ϕ could be simply the identity or, in the case of the complex field, ϕ could be conjugation). Suppose $\Phi: A \rightarrow A$ is a bijection which is additive, ϕ-linear:

$$
\Phi(k x)=\phi(k) \Phi(x) \quad \text { for all } k \in \mathbb{F} \text { and } x \in \mathbb{F}[G]
$$

and for which either $\Phi(a b)=\Phi(a) \Phi(b)$ for all $a, b \in A$ or $\Phi(a b)=$ $\Phi(b) \Phi(a)$ for all $a, b \in A$. Show that

$$
\left\{\Phi\left(u_{1}\right), \ldots, \Phi\left(u_{s}\right)\right\}=\left\{u_{1}, \ldots, u_{s}\right\}
$$

Thus, for each i there is a unique $\Phi(i)$ such that $\Phi\left(u_{i}\right)=u_{\Phi(i)}$.
(m) Let

$$
\operatorname{Tr}_{e}: \mathbb{F}[G] \rightarrow \mathbb{F}: x \mapsto x_{e}
$$

Show that

$$
\operatorname{Tr}_{e}(x y)=\operatorname{Tr}_{e}(y x)
$$

Assuming that Φ maps G into itself show that

$$
\operatorname{Tr}_{e} \Phi(x)=\phi\left(\operatorname{Tr}_{e} x\right)
$$

(n) Consider the pairing

$$
(\cdot, \cdot)_{\Phi}: A \times A \rightarrow \mathbb{F}:(x, y) \mapsto \operatorname{Tr}_{e}(x \Phi(y))
$$

which is linear in x and ϕ-linear in y. Prove that this pairing is nondegenerate in the sense that: (a) if $(x, y)_{\Phi}=0$ for all $y \in A$ then x is 0 , and (b) if $(x, y)_{\Phi}=0$ for all $x \in A$ then y is 0 . Check that this means that the map $y \mapsto y^{\prime}$ of A to its dual vector space A^{\prime} specified by

$$
y^{\prime}(x)=(x, y)_{\Phi}
$$

is an isomorphism of vector spaces over \mathbb{F}, where for the vector space structure on A^{\prime} multiplication by scalars is specified by

$$
(c f)(x)=\phi(c) f(x)
$$

for all $c \in \mathbb{F}, f \in A^{\prime}$, and all $x \in A$. Assuming that Φ maps G into itself, show that

$$
(\Phi(x), \Phi(y))_{\Phi}=\phi\left((x, y)_{\Phi}\right)
$$

(o) Show that for each $i \in\{1, \ldots, s\}$ the pairing

$$
A u_{i} \times A u_{j} \rightarrow A:(x, y) \mapsto(x, y)_{\Phi}
$$

is non-degenerate if $j=\Phi^{-1}(i)$, and is 0 otherwise.
(p) Take the special case Ψ for Φ given by

$$
\Psi(x)=\check{x}=\sum_{g \in G} x(g) g^{-1}
$$

Show that the pairing $(\cdot, \cdot)_{\Psi}$ is G-invariant in the sense that

$$
(g x, g y)_{\Psi}=(x, y)_{\Psi}
$$

for all $x, y \in \mathbb{F}[G]$ and $g \in G$. Then show that the induced map $A \rightarrow A^{\prime}: y \mapsto y^{\prime}$ is an isomorphism of left $\mathbb{F}[G]$-modules, where the dual space A^{\prime} is a left $\mathbb{F}[G]$-module through the dual representation of G on A^{\prime} given by

$$
\rho_{\mathrm{reg}}^{\prime}(g) f \stackrel{\text { def }}{=} f \circ \rho_{\mathrm{reg}}(g)^{-1}
$$

(q) Let $L_{k}=A y_{k}$, where y_{k} is one of the idempotents in a string of orthogonal indecomposable idempotents y_{1}, \ldots, y_{n} adding up to 1. Prove that the dual vector space L_{k}^{\prime}, with the left $\mathbb{F}[G]$-module structure given by the dual representation $\left(\rho_{\mathrm{reg}} \mid L_{k}\right)^{\prime}$, is isomorphic to L_{j} for some $j \in[n]$. (We have seen a version of this back in Theorem 1.7.1.) Moreover, $L_{k} \simeq L_{j}^{\prime}$.
(r) Let E be an indecomposable left A-module, and let y_{1}, \ldots, y_{n} be a string of indecomposable orthogonal idempotents in A adding up to 1 . Show that $y_{j} E \neq 0$ for some $j \in[n]$.
(s) Let F be a simple left A-module, and suppose $y_{j} F \neq 0$, as above. Let $W=\left\{x \in A y_{j}: x F=0\right\}$, which is a left ideal of A contained inside $A y_{j}$. Show that $A y_{j} / W \simeq F$, isomorphic as A-modules, and conclude that W is a maximal proper submodule of $A y_{j}$.
(t) Let E be a simple left A-module, and, apply the previous step with $F=E^{\prime}$, where E^{\prime} is the dual vector space with the usual dual representation/ A-module structure, to obtain $j \in[n]$ with $y_{j} E^{\prime} \neq 0$ and a maximal proper submodule W in $A y_{j}$. Continuing notation from above, $A y_{j} \simeq\left(A y_{k}\right)^{\prime}$ (we use \simeq to denote isomorphism of A-modules) for some $k \in[n]$. Let \tilde{W} the image of W in $\left(A y_{k}\right)^{\prime} \simeq A y_{j}$. Then

$$
\begin{equation*}
\left(A y_{j}\right) / W \simeq\left(A y_{k}\right)^{\prime} / \tilde{W} \simeq \tilde{W}_{0}^{\prime} \tag{4.23}
\end{equation*}
$$

where we used Lemma 1.6.1 with \tilde{W}_{0} being the annihilator

$$
\begin{equation*}
\tilde{W}_{0} \stackrel{\text { def }}{=}\left\{x \in A y_{k}: f(x)=0 \text { for all } f \in \tilde{W}\right\}, \tag{4.24}
\end{equation*}
$$

as A-modules. Using Lemma 1.6.1 show that \tilde{W}_{0} is a simple submodule of $A y_{k}$. Conclude (by Exercise 1. 11) that

$$
\begin{equation*}
E^{\prime} \simeq \tilde{W}_{0}^{\prime} \tag{4.25}
\end{equation*}
$$

and then $E \simeq W_{0}$, as A-modules (see Exercise 111). Thus, every simple A-module is isomorphic to a submodule of one of the indecomposable A-modules $A y_{k}$.
6. Work out all idempotents in the algebra $\mathbb{Z}_{2}\left[S_{3}\right]$.
7. Let τ be a 1-dimensional representation of a group G. Show that τ maps all elements of the commutator subgroup (the subgroup generated by $a b a^{-1} b^{-1}$ with a, b running over G) to 1 . Use this to show that in the case $G=Q=\{ \pm 1, \pm i, \pm j, \pm k\}$, the group of unit quaternions, $\tau(-1)$ must be 1 and hence that $\tau(i)$ and $\tau(j)$ must be ± 1. (We saw this earlier in (2.11).
8. Let G be a finite group and \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}}$ is not 0 . Show that the number of inequivalent 1-dimensional representations of G over \mathbb{F} is $\left|G / G^{\prime}\right|$, where G^{\prime} is the commutator subgroup of G.
9. Let G be a cyclic group, and \mathbb{F} algebraically closed in which $|G| 1_{\mathbb{F}}$ is not 0 . Decompose $\mathbb{F}[G]$ as a direct sum of 1-dimensional representations of G.
10. Let $y=\sum_{g \in G} y_{g} g \in \mathbb{Z}[G]$, and suppose that y^{2} is a rational multiple of y and $y_{e}=1$.
(i) Show that there is a positive integer γ which is a divisor of $|G|$, and for which $\gamma^{-1} y$ is an idempotent.
(ii) Show that the dimension of the representation space for the idempotent $\gamma^{-1} y$ is a divisor of $|G|$.
11. Let $\tau: G \rightarrow \mathbb{F}^{\times}$be a homomorphism of the finite group G into the group of invertible elements of the field \mathbb{F}, and assume that the characteristic of \mathbb{F} is not a divisor of $|G|$. Let

$$
u_{\tau}=\frac{1}{|G|} \sum_{g \in G} \tau\left(g^{-1}\right) g
$$

Show that u_{τ} is an indecomposable idempotent.
12. Let R be a commutative ring, G a finite group, and y an element of $R[G]$ for which $g y=y$ for all $g \in G$. Show that $y=y_{e} s$, where $s=\sum_{g} g$.
13. Show that, for any field \mathbb{F}, the ring $\mathbb{F}[G]$ is not semisimple if G is an infinite group.
14. Let R be a commutative ring of prime characteristic $p>0, G$ a group with $|G|=p^{n}$ for some positive integer n, and E an $R[G]$-module. Choose a nonzero $v \in E$ and let E_{0} be the \mathbb{Z}-linear span of $G v=\{g v$: $g \in G\}$ in E. Then E_{0} is a finite dimensional vector space over the field \mathbb{Z}_{p}, and so $\left|E_{0}\right|=p^{d}$, where $d=\operatorname{dim}_{\mathbb{Z}_{p}} E_{0} \geq 1$. By partitioning the set E_{0} into the union of disjoint orbits under the action of G, show that there exists a nonzero $w \in E_{0}$ for which $g w=w$ for all $g \in G$. Now show that if the $R[G]$-module E is simple then $E=R w$ and $g v=v$ for all $v \in E$.
15. Let \mathbb{F} is a field of characteristic $p>0$, and G a group with $|G|=p^{n}$ for some positive integer n. Prove that $\mathbb{F}[G]$ is indecomposable, and $\mathbb{F} s$,
where $s=\sum_{g} g$, is the unique simple left ideal in $\mathbb{F}[G]$. Show also that ker ϵ is the unique maximal ideal in $\mathbb{F}[G]$, where $\epsilon: \mathbb{F}[G] \rightarrow \mathbb{F}: \sum_{g} x_{g} \mapsto$ $\sum_{g} x_{g}$. In the converse direction, prove that if \mathbb{F} has characteristic $p>0$ and G is a finite group such that $\mathbb{F}[G]$ is indecomposable then $|G|=p^{n}$ for some positive integer n.

Chapter 5

Simply Semisimple

We have seen that the group algebra $\mathbb{F}[G]$ is especially rich and easy to explore when $|G|$, the number of elements in the group G, is not divisible by the characteristic of the field \mathbb{F}. What makes everything flow so well in this case is that the algebra $\mathbb{F}[G]$ is semisimple. In this chapter we are going to fly over largely the same terrain as we have already, but this time replacing $\mathbb{F}[G]$ by a more general ring, and looking at everything directly through semisimplicity. This chapter can be read idependently of the previous ones, although occasional look backs would be pleasant.

We will be working with modules over a ring A with unit $1 \neq 0$. So, all through this chapter A denotes such a ring. Note that A need not be commutative. Occasionally, we will comment on the case where the ring A is an algebra over a field \mathbb{F}.

By definition, a module E over the ring A is semisimple if for any submodule F in E there is a submodule F_{c} in E, such that E is the direct sum of F and F_{c}.

A ring is said to be semisimple if it is semisimple as a left module over itself.

A module is said to be simple if it is not 0 and contains no submodule other than 0 and itself.

A (termino)logical pitfall to note: the zero module 0 is semisimple but not simple.

Aside from the group ring $\mathbb{F}[G]$, the algebra $\operatorname{End}_{\mathbb{F}} V$ of all endomorphisms of a finite dimensional vector space V over a field \mathbb{F} is a semisimple algebra (a matrix formalism verification is traced out in Exercise 5.5).

5.1 Schur's Lemma

Suppose

$$
f: E \rightarrow F
$$

is linear, where E is a simple A-module and F an A-module. The kernel

$$
\operatorname{ker} f=f^{-1}(0)
$$

is a submodule of E and hence is either $\{0\}$ or E itself. If, moreover, F is also simple then $f(E)$, being a submodule of F, is either $\{0\}$ or F. This is Schur's Lemma:

Theorem 5.1.1 If E and F are simple modules over a ring A, then every non-zero element in

$$
\operatorname{Hom}_{A}(E, F)
$$

is an isomorphism of E onto F.
For a simple A-module $E \neq 0$, this implies that every non-zero element in the ring

$$
\operatorname{End}_{A}(E)
$$

has a multiplicative inverse. Such a ring is called a division ring; it falls short of being a field only in that multiplication (which is composition in this case) is not necessarily commutative.

We can now specialize to a case of interest, where A is a finite dimensional algebra over an algebraically closed field \mathbb{F}. We can view \mathbb{F} as a subring of $\operatorname{End}_{A}(E)$:

$$
\mathbb{F} \simeq \mathbb{F} 1 \subset \operatorname{End}_{A}(E)
$$

where 1 is the identity element in $\operatorname{End}_{A}(E)$. The assumption that \mathbb{F} is algebraically closed implies that \mathbb{F} has no proper finite extension, and this leads to the following consequence:

Theorem 5.1.2 Suppose A is a finite dimensional algebra over an algebraically closed field \mathbb{F}. Then for any simple A-module E that is finite dimensional as a vector space over \mathbb{F} :

$$
\operatorname{End}_{A}(E)=\mathbb{F}
$$

upon identifying \mathbb{F} with $\mathbb{F} 1 \subset \operatorname{End}_{A}(E)$. Moreover, if E and F are simple A-modules, then $\operatorname{Hom}_{A}(E, F)$ is either $\{0\}$ or a 1-dimensional vector space over \mathbb{F}.

Proof. Let $x \in \operatorname{End}_{A}(E)$. Suppose $x \notin \mathbb{F} 1$. Note that x commutes with all elements of $\mathbb{F} 1$. Since $\operatorname{End}_{A}(E) \subset \operatorname{End}_{\mathbb{F}}(E)$ is a finite-dimensional vector space over \mathbb{F}, there is a smallest natural number $n \in\{1,2, \ldots\}$ such that $1, x, \ldots, x^{n}$ are linearly dependent over \mathbb{F}; put another way, there is a polynomial $p(X) \in \mathbb{F}[X]$, of lowest degree, with $\operatorname{deg} p(X)=n \geq 1$, such that

$$
p(x)=0
$$

Since \mathbb{F} is algebraically closed, $p(X)$ factorizes over \mathbb{F} as

$$
p(X)=(X-\lambda) q(X)
$$

for some $\lambda \in \mathbb{F}$. Consequently, $x-\lambda 1$ is not invertible, for otherwise $q(x)$, of lower degree, would be 0 . Thus, by Schur's Lemma (Theorem 5.1.1), $x=\lambda 1 \in \mathbb{F} 1$.

Now suppose E and F are simple A-modules, and suppose there is a nonzero element $f \in \operatorname{Hom}_{A}(E, F)$. By Theorem 5.1.1, f is an isomorphism. If g is also an element of $\operatorname{Hom}_{A}(E, F)$, then $f^{-1} g$ is in $\operatorname{End}_{A}(E, E)$, and so, by the first part, is an \mathbb{F}-multiple of the identity element in $\operatorname{End}_{A}(E)$. Consequently, g is an \mathbb{F}-multiple of f QED

The preceding proof can be shortened by appeal to Wedderburn's result that every finite dimensional division algebra \mathbb{D} over any algebraically closed field \mathbb{F} is \mathbb{F} itself, viewed as a subset of \mathbb{D} (Theorem 1.8.2).

5.2 Semisimple Modules

We will work with modules over a ring A with unit element $1 \neq 0$.
Proposition 5.2.1 Submodules and quotient modules of semisimple modules are semisimple.

Proof. Let F be a submodule of a semisimple module E. We will show that F is also semisimple. To this end, let L be a submodule of F. Then, by semisimplicity of E, the submodule L has a complement L_{c} in E :

$$
E=L \oplus L_{c}
$$

If $f \in F$ we can decompose it uniquely as

$$
f=\underbrace{a}_{\in L}+\underbrace{a_{c}}_{\in L_{c}}
$$

Then

$$
a_{c}=f-a \in F
$$

and so, in the decomposition of $f \in F$ as $a+a_{c}$, both a and a_{c} are in F. Hence

$$
F=L \oplus\left(L_{c} \cap F\right)
$$

Having found a complement of any submodule inside F, we have semisimplicity of F.

If F_{c} is the complementary submodule to F in E, then we have the isomorphism of modules:

$$
F_{c} \rightarrow E / F: x \mapsto x+F .
$$

So E / F, being isomorphic to the submodule F_{c}, is semisimple. QED
For another perspective on the preceding result see Exercise 19 .
Complements are not unique but something can be said about different choices of complements:

Proposition 5.2.2 Let L be a submodule of a module E over a ring. Then E is the direct sum of L and a submodule L_{c} of E if and only if the quotient map $E \rightarrow E / L$ restricts to an isomorphism of L_{c} onto E / L.

Proof. Let $q: E \rightarrow E / L$ be the quotient map. If $E=L+L_{c}$ as a sum then $q\left(L_{c}\right)=q(E)=E / L$. Next, $\operatorname{ker}\left(q \mid L_{c}\right)=L_{c} \cap L$ and so $q \mid L_{c}$ is injective if and only if the sum $L+L_{c}$ is direct. QED

Our goal is to decompose a module over a semisimple ring into direct sum of simple submodules. The first obstacle in reaching this goal is a strange one: how do we even know there is a simple submodule? If the module happens to come automatically equipped with a vector space structure then we can use dimension as the steps of a ladder to climb down all the way to a minimal dimensional submodule. Without a vector space structure, it seems we are looking down an endless abyss of uncountable descent. Fortunately, this transfinite abyss can be plumbed using Zorn's Lemma.

Proposition 5.2.3 Let E be a nonzero semisimple module over a ring A. Then E contains a simple submodule.

Proof. Pick a nonzero $v \in E$, and consider $A v$. A convenient feature of $A v$ is that a submodule of $A v$ is proper if and only if it does not contain v. We will
produce a simple submodule inside $A v$, as complement of a maximal proper submodule. A maximal proper submodule is produced using Zorn's Lemma. Let \mathcal{F} be the set of all proper submodules of $A v$. If \mathcal{G} is a nonempty subset of \mathcal{F} that is a chain in the sense that if $H, K \in \mathcal{G}$ then $H \subset K$ or $K \subset H$, then $\cup \mathcal{G}$ is a submodule of $A v$ that does not contain v. Hence, Zorn's Lemma is applicable to \mathcal{F} and implies that there is a maximal element M in \mathcal{F}. This means that a submodule of $A v$ that contains M is $A v$ or M itself. Now we use semisimplicity of E which implies that $A v$ is also semisimple. Then there is a submodule $M_{c} \subset A v$ such that $A v$ is the direct sum of M and M_{c}. We claim that M_{c} is simple. First, $M_{c} \neq 0$ because otherwise M would be all of $A v$ which it isn't since it is missing v. Next, if L is a nonzero submodule of M_{c} then $M+L$ is a submodule of $A v$ properly containing M and hence is all of $A v$, and this implies $L=M_{c}$. Thus, M_{c} is a simple module. QED

Now we will prove some convenient equivalent forms of semisimplicity. The idea of producing a minimal module as complement of a maximal one will come in useful. The argument, at one point, will also use the reasoning that leads to a basic fact about vector spaces: if T is a linearly independent subset of a vector space, and S a subset that spans the whole space, then a basis of the vector space is formed by adjoining to T a maximal subset of S which respects linear independence.

Theorem 5.2.1 The following conditions are equivalent for an A-module E :
(i) E is semisimple;
(ii) E is a sum of simple submodules;
(iii) E is a direct sum of simple submodules.

If $E=\{0\}$ then the sums in (ii) and (iii) are empty sums. The proof also shows that if E is the sum of a set of simple submodules then E is a direct sum of a subset of this collection of submodules.
Proof. Assume that (i) holds. Let F be the sum of a maximal collection of simple submodules of E; such a collection exists, by Zorn's Lemma. Then $E=F \oplus F_{c}$, for a submodule F_{c} of E. We will show that $F_{c}=0$. Suppose $F_{c} \neq 0$. Then, by Proposition 5.2.3, F_{c} has a simple submodule, and this contradicts the maximality of F. Thus, E is a sum of simple submodules.

Now let E be any A-module, and F a submodule that is contained in the sum of a family $\left\{E_{j}\right\}_{j \in J}$ of simple submodules of E :

$$
F \subset \sum_{j \in J} E_{j}
$$

Zorn's lemma extracts a maximal subset K (possibly empty) of J such that the sum

$$
H=F+\sum_{k \in K} E_{k}
$$

is a direct sum of the family $\{F\} \cup\left\{E_{k}: k \in K\right\}$. For any $j \in J$, the intersection $E_{j} \cap H$ is a submodule of E_{j} and so is either 0 or E_{j}. It cannot be 0 by maximality of K. Thus, $E_{j} \subset H$ for all $j \in J$, and so $\sum_{j \in J} E_{j} \subset H$. Thus,

$$
\sum_{j \in J} E_{j}=F+\sum_{k \in K} E_{k}
$$

which is a direct sum of the family $\{F\} \cup\left\{E_{k}: k \in K\right\}$.
Applying the conclusion above to the case where $\left\{E_{j}\right\}_{j \in J}$ span all of E, and taking $F=0$, we see that E is a direct sum of some of the simple submodules E_{k}. This proves that (ii) implies (iii).

Next, applying our observation to a family $\left\{E_{j}\right\}_{j \in J}$ that gives a direct sum decomposition of E, and taking F to be any submodule of E, it follows that

$$
E=F \oplus F_{c},
$$

where F_{c} is a direct sum of some of the simple submodules E_{k}. Thus, (iii) implies (i). QED

5.3 Deconstructing Semisimple Modules

In Theorem 5.2.1 we saw that a semisimple module is a sum of simple submodules. In this section we will use this to reach a full structure theorem for semisimple modules.

We begin with an observation about simple modules that is analogous to the situation for vector spaces. Indeed, the proof is accomplished by viewing a module as a vector space (for more logical handwringing see Theorem 5.3.3).

Theorem 5.3.1 If E is a simple A-module, then E is a vector space over the division ring $\operatorname{End}_{A}(E)$. If $E^{n} \simeq E^{m}$ as A-modules, then $n=m$.

Proof. If E is a simple A-module then, by Schur's lemma,

$$
D \stackrel{\text { def }}{=} \operatorname{End}_{A}(E)
$$

is a division ring. Thus, E is a vector space over D. Then E^{n} is the product vector space over D. If $\operatorname{dim}_{D} E$ were finite, then we would be done. In the absence of this, there is a clever alternative route. Look at $\operatorname{End}_{A}\left(E^{n}\right)$. This is a vector space over D, because for any $\lambda \in D$ and A-linear $f: E^{n} \rightarrow E^{n}$, the map λf is also A-linear. In fact, each element of $\operatorname{End}_{A}\left(E^{n}\right)$ can be displayed, as usual, as an $n \times n$ matrix with entries in D. Moreover, this effectively provides a basis of the D-vector space $\operatorname{End}_{A}\left(E^{n}\right)$ consisting of n^{2} elements. Thus, $E^{n} \simeq E^{m}$ implies $n=m$. QED

Now we can turn to the uniqueness of the structure of semisimple modules of finite type:

Theorem 5.3.2 Suppose a module E over a ring A can be expressed as

$$
\begin{equation*}
E \simeq E_{1}^{m_{1}} \oplus \ldots \oplus E_{n}^{m_{n}} \tag{5.1}
\end{equation*}
$$

where E_{1}, \ldots, E_{n}, are non-isomorphic simple modules, and each m_{i} is a positive integer. Suppose also that E can be expressed also as

$$
E \simeq F_{1}^{j_{1}} \oplus \ldots \oplus F_{m}^{j_{m}}
$$

where F_{1}, \ldots, F_{m}, are non-isomorphic simple modules, and each j_{i} is a positive integer. Then $m=n$, and each E_{a} is isomorphic to one and only one F_{b}, and then $m_{a}=j_{b}$. Every simple submodule of E is isomorphic to E_{j} for exactly one $j \in[n]$.

Proof. Let H be any simple module isomorphic to a submodule of E. Then composing an isomorphism $H \rightarrow E$ with the projection $E \rightarrow E_{r}$, we see that there exists an a for which the composite $H \rightarrow E_{a}$ is not zero and hence $H \simeq E_{a}$. Similarly, there is a b such that $H \simeq F_{b}$. Thus each E_{a} is isomorphic to some F_{b}. The rest follows by Theorem 5.3.1. QED

The preceding results, or variations on them, are generally called, in combination, the Krull-Schmidt theorem. There is a way to understand them without peering too far into the internal structure or elements of a module; instead we can look at the partially ordered set, or lattice, of submodules of a module. Exercises 5,18 and 5,19 provide a glimpse into this approach, and
we include it as a token tribute to Dedekind's much-maligned foundation of lattice theory [17, 18] (see the ever readable Rota [65] for historical context).

The arguments proving the preceding results rely on the uniqueness of dimension of a vector space over a division ring. The proof of this is identical to the case of vector spaces over fields, and is elementary in the finite dimensional case. The proof of uniqueness of dimension for infinite dimensional spaces is an unpleasant application of Zorn's Lemma (see Hungerford [46]). Alternatively, the tables can be turned and the decomposition theory for semisimple modules, specialized all the way down to the case of division rings can be used as proof for the existence of basis and uniqueness of dimension of a vector space over a division ring. With this perspective, we have (adapted from Chevalley [13]):

Theorem 5.3.3 Let E and F be modules over a ring A, such that E and F are both sums of simple submodules. Assume that every simple submodule of E is isomorphic to every simple submodule of F. Then the following are equivalent: (i) E and F are isomorphic; (ii) any set of simple submodules of E whose direct sum is all of E has the same cardinality as any set of simple submodules of F whose direct sum is F. In particular, if A is a division ring then any two bases of a vector space over A have the same cardinality.

Proof. By Theorem 5.2.1, if a module is the sum of simple submodules then it is also a direct sum of a family of simple submodules. Let E be the direct sum of simple submodules E_{i}, with i running over a set I, and F the direct sum of simple submodules F_{j} with j running over a set J. Suppose that each E_{i} is isomorphic to each F_{j}; if $|I|=|J|$ then we clearly obtain an isomorphism $E \rightarrow F$.

Now assume, for the converse, that $f: E \rightarrow F$ is an isomorphism. First we work with the case when I is a finite set. The argument is by induction on $|I|$. If $I=\emptyset$ then $E=0$ and so $F=0$ and $J=\emptyset$. Now suppose $I \neq \emptyset$, assume the claimed result for smaller values of $|I|$, and pick $a \in I$. Then, by Theorem 5.2.1, a complement H of $f\left(E_{a}\right)$ in F is formed by adding up a suitable set of F_{j} 's:

$$
F=f\left(E_{a}\right)+{ }_{d} H
$$

where $+_{d}$ signifies (internal) direct sum, with

$$
H=\sum_{j \in S} F_{j}
$$

and S is a subset of J. Now choose $b \in J$ such that F_{b} is not contained inside H; such a b exists because $f\left(E_{a}\right)$, being an isomorphic copy of the simple module E_{a}, is not 0 . Then the quotient map $q: F \rightarrow F / H$ is not 0 when restricted to F_{b} and so, by Schur's Lemma used on the simplicity of F_{b} and of $F / H \simeq f\left(E_{a}\right) \simeq E_{a}$, the restriction $q \mid F_{b}: F_{b} \rightarrow F / H$ is an isomorphism. Then by Proposition 5.2.2, F_{b} is also a complement of H. But then

$$
F_{b}+_{d} \sum_{j \in S} F_{j}=F_{b}+_{d} H=F=F_{b}+_{d} \sum_{j \in J-\{b\}} F_{j},
$$

and, these being direct sums, we conclude that $S=J-\{b\}$. Combining the various isomorphisms, we have

$$
E / E_{a} \simeq F / f\left(E_{a}\right) \simeq H \simeq F / F_{b} .
$$

This implies that the direct sum of the simple modules E_{i}, with $i \in I-\{a\}$, is isomorphic to the direct sum of the simple modules F_{j} with $j \in J-\{b\}$. Then by the induction hypothesis, $|I-\{a\}|=|J-\{b\}|$, whence $|I|=|J|$.

Consider now the case of infinite I. For any $i \in I$, pick nonzero $x_{i} \in E_{i}$, and observe that there is a finite set $S_{i} \subset J$ such that $f\left(x_{i}\right) \in \sum_{j \in S_{i}} F_{i}$, whence $f\left(E_{i}\right) \subset \sum_{j \in S_{i}} F_{j}$. Let S_{*} be the union of all the S_{i}; then

$$
f(E) \subset \sum_{j \in S_{*}} F_{j}
$$

But $f(E)=F$, and so $S_{*}=J$. The cardinality of S_{*} is the same as that of I, because I is infinite (this is a little set theory observation courtesy of Zorn's Lemma). Hence, $|I|=|J|$.

Lastly, suppose A is a division ring. Observe that an A-module is simple if and only if it is of the form $A v$ for a nonzero element v in the module. Thus every decomposition $\left\{E_{i}\right\}_{i \in I}$ of an A-module E into a direct sum of simple modules gives rise to a choice of a basis $\left\{v_{i}\right\}_{i \in I}$ for E of the same cardinality $|I|$ and, conversely, every choice of basis of E gives rise to a decomposition into a direct sum of simple submodules. QED

5.4 Simple Modules for Semisimple Rings

An element y in a ring A is an idempotent if $y^{2}=y$. Idempotents v, w are orthogonal if $v w=w v=0$. An idempotent y is indecomposable if it is not
zero and is not the sum of two nonzero, orthogonal idempotents. A central idempotent is one which lies in the center of A.

Here is an ambidextrous upgrade on Proposition 4.2.1, formulated without using semisimplicity.

Proposition 5.4.1 If y is an idempotent in a ring A then the following are equivalent:
(i) y is an indecomposable idempotent;
(ii) Ay cannot be decomposed as a direct sum of two nonzero left ideals in A;
(iii) $y A$ cannot be decomposed as a direct sum of two nonzero right ideals in A.

We omit the proof, which you can read out by replacing $\mathbb{F}[G]$ with A in the proof of Proposition 4.2.1, and then going through a second run with 'left' replaced by 'right.'

If a left ideal can be expressed as $A y$ we say that y is a generator of the ideal. Similarly, if a right ideal has the form $y A$ we call y a generator of the ideal.

Theorem 5.4.1 Let L be a left ideal in a ring A. The following are equivalent:
(a) there is a left ideal L_{c} such that A is the direct sum of L and L_{c};
(b) there is an idempotent $y_{L} \in L$ such that $L=A y_{L}$.

If (a) and (b) hold then

$$
\begin{equation*}
L L=L . \tag{5.2}
\end{equation*}
$$

Proof. Suppose

$$
A=L \oplus L_{c}
$$

where L_{c} is also a left ideal in A. Then the multiplicative unit $1 \in A$ decomposes as

$$
1=y_{L}+y_{c}
$$

where $y_{L} \in L$ and $y_{c} \in L_{c}$. For any $a \in A$ we then have

$$
a=a 1=\underbrace{a y_{L}}_{\in L}+\underbrace{a y_{c}}_{\in L_{c}}
$$

This shows that a belongs to L if and only if it is equal to $a y_{L}$. In particular, y_{L}^{2} equals y_{L}, and $L=A y_{L}$. Moreover,

$$
L=A y_{L}=A y_{L} y_{L} \subset L L
$$

Of course, L being a left ideal, we also have $L L \subset L$. Thus, $L L$ equals L.
Conversely, suppose $L=A y_{L}$, where $y_{L} \in L$ is an idempotent. Then A is the direct sum of $L=A y_{L}$ and and $L_{c}=A\left(1-y_{L}\right)$. QED

Next we see why simple modules are isomorphic to simple left ideals. The criteria obtained here for simple modules to be isomorphic will prove useful later.

Theorem 5.4.2 Let L be a left ideal in a ring A, and E a simple left A module. Then exactly one of the following holds:
(i) $L E=0$;
(ii) $L E=E$ and L is isomorphic to E.

If, moreover, the ring A is semisimple, and $L E=0$ then E is not isomorphic to L as a left A-module.

Proof. Since $L E$ is a submodule of E, it is either $\{0\}$ or E. Suppose $L E=E$. Then take a $y \in E$ with $L y \neq 0$. By simplicity of E, then $L y=E$. The map

$$
L \mapsto E=L y: a \mapsto a y
$$

is an A-linear surjection, and it is injective because its kernel, being a submodule of the simple module L, is $\{0\}$. Thus, if $L E=E$ then L is isomorphic to E.

Now assume that A is semisimple. If $f: L \rightarrow E$ is A-linear then

$$
f(L)=f(L L)=L f(L)=L E
$$

Thus, if f is an isomorphism, so that $f(L)=E$, then $E=L E$. QED
Finally a curious, but convenient fact about left ideals that are isomorphic as A-modules:

Proposition 5.4.2 If L and M are isomorphic left ideals in a semisimple ring A then

$$
L=M x
$$

for some $x \in A$.
Proof. We know that $M=A y_{M}$, for some idempotent y_{M}. Let $f: M \rightarrow L$ be an isomorphism of A-modules. Then

$$
L=f(M)=f\left(A y_{M} y_{M}\right)=A y_{M} f\left(y_{M}\right)=M x
$$

where $x=f\left(y_{M}\right)$. QED

5.5 Deconstructing Semisimple Rings

We will work with a semisimple ring A. Recall that this means that A is semisimple as a left module over itself.

Semisimplicity decomposes A as a direct sum of simple submodules. A submodule in A is just a left ideal. Thus, we have a decomposition

$$
A=\sum\{\text { all simple left ideals of } A .\}
$$

Let

$$
\left\{L_{i}\right\}_{i \in \mathcal{R}}
$$

be a maximal family of non-isomorphic simple left ideals in A; such a family exists by Zorn's Lemma. Let

$$
A_{i}=\sum\left\{L: L \text { is a left ideal isomorphic to } L_{i}\right\}
$$

Another convenient way to express A_{i} is as $L_{i} A$:

$$
A_{i}=L_{i} A,
$$

which makes it especially clear that A_{i} is a two sided ideal.
By Theorem 5.4.2, we have

$$
L L^{\prime}=0 \quad \text { if } L \text { is not isomorphic to } L^{\prime}
$$

So

$$
\begin{equation*}
A_{i} A_{j}=0 \quad \text { if } i \neq j \tag{5.3}
\end{equation*}
$$

Since A is semisimple, it is the sum of all its simple left ideals, and so

$$
A=\sum_{i \in \mathcal{R}} A_{i} .
$$

Thus, A is a sum of two sided ideals A_{i}. As it stands there seems to be no reason why \mathcal{R} should be a finite set; yet, remarkably, it is finite!

The finiteness of \mathcal{R} becomes visible when we look at the decomposition of the unit element $1 \in A$:

$$
\begin{equation*}
1=\sum_{i \in \mathcal{R}} \underbrace{u_{i}}_{\in A_{i}} . \tag{5.4}
\end{equation*}
$$

The sum here, of course, is finite; that is, all but finitely many u_{i} are 0 . For any $a \in A$ we can write

$$
a=\sum_{i \in \mathcal{R}} a_{i} \quad \text { with each } a_{i} \text { in } A_{i} .
$$

Then, on using (5.3),

$$
a_{j}=a_{j} 1=a_{j} u_{j}=a u_{j} .
$$

Thus a determines the 'components' a_{j} uniquely, and so
the sum $A=\sum_{i \in \mathcal{R}} A_{i}$ is a direct sum.
If some u_{j} were 0 then all the corresponding a_{j} would be 0 , which cannot be since each A_{j} is non-zero. Consequently,
the index set \mathcal{R} is finite.
Since we also have, for any $a \in A$,

$$
a=1 a=\sum_{i \in \mathcal{R}} u_{i} a
$$

we have from the fact that the sum $A=\sum_{i} A_{i}$ is direct,

$$
u_{i} a=a_{i}=a u_{i} .
$$

Hence, u_{i} is the multiplicative identity in A_{i}.
We have arrived at a first view of the structure of semisimple rings:

Theorem 5.5.1 Suppose A is a semisimple ring. Then there are finitely many left ideals L_{1}, \ldots, L_{r} in A such that every left ideal of A is isomorphic, as a left A-module, to exactly one of the L_{j}. Furthermore,

$$
A_{j}=L_{j} A=\text { sum of all left ideals isomorphic to } L_{j}
$$

is a two sided ideal, with a non-zero unit element u_{j}, and A is the product of the rings A_{j}, in the sense that the map

$$
\begin{equation*}
\prod_{i=j}^{r} A_{i} \rightarrow A:\left(a_{1}, \ldots, a_{r}\right) \mapsto a_{1}+\cdots+a_{r} \tag{5.5}
\end{equation*}
$$

is an isomorphism of rings. Any simple left ideal in A_{j} is isomorphic to L_{j}. Moreover,

$$
\begin{align*}
1 & =u_{1}+\cdots+u_{r} \\
A_{j} & =A u_{j} \tag{5.6}\\
A_{i} A_{j} & =0 \quad \text { for } i \neq j .
\end{align*}
$$

Here is a summary of the properties of the elements u_{i} :
Proposition 5.5.1 Let L_{1}, \ldots, L_{r} be simple left ideals in a semisimple ring A such that every left ideal of A is isomorphic, as a left A-module, to exactly one of the L_{j}. Let $A_{j}=L_{j} A$ and u_{j} an idempotent generator of A_{j}. Then u_{1}, \ldots, u_{r} are non-zero, lie in the center of the algebra, and satisfy

$$
\begin{align*}
u_{i}^{2} & =u_{i}, \quad u_{i} u_{j}=0 \quad \text { if } i \neq j \tag{5.7}\\
u_{1}+\cdots+u_{r} & =1
\end{align*}
$$

Moreover, u_{1}, \ldots, u_{r} is a longest set of nonzero central idempotents satisfying (5.7). Multiplication by u_{i} in A is the identity on A_{i} and is 0 on all A_{j} for $j \neq 1$.

The two sided ideals A_{j} are, it turns out, minimal two sided ideals, and every two sided ideal in A is a sum of certain A_{j}.

Theorem 5.5.2 Let $A_{j}=L_{j} A$, where L_{1}, \ldots, L_{s} are simple left ideals in a semisimple ring A such that every simple left ideal is isomorphic, as a left A-module, to exactly one of the L_{i}. Then A_{j} is a ring in which the only two sided ideals are 0 and A_{j}. Every two sided ideal in A is a sum of some of the A_{j}.

Proof. Suppose $J \neq 0$ is a two sided ideal of A_{j}. Since $A_{i} A_{k}=0$ if $i \neq k$ it follows that J is also a two sided ideal in A. Since A is semisimple, so is J as a left submodule of A. Then J is a sum of simple left ideals of A. Let L be a simple left ideal of A contained inside J. Now recall that A_{j} is the sum of all left ideals isomorphic to a certain simple left ideal L_{j}, and that all such left ideals are of the form $L_{j} x$ for $x \in A$. Then, since J is also a right ideal, each such $L_{j} x$ is inside J and so $A_{j} \subset J$. Thus, the only non zero two sided ideals of A_{j} are 0 and itself.

Now consider any two sided ideal I in A. Then $A I \subset I$, but also $I \subset A I$ since $1 \in A$. Hence

$$
I=A I=A_{1} I+\cdots+A_{r} I
$$

Note that $A_{j} I$ is a two sided ideal, and $A_{j} I \subset A_{j}$. By the property we have already proved it follows that $A_{j} I$ is either 0 or A_{j}. Consequently,

$$
I=\sum_{j: A_{j} I \neq 0} A_{j} . \quad \mathrm{QED}
$$

5.6 Simply Simple

Let A be a semisimple ring; as we have seen, A is the product of minimal two sided ideals A_{1}, \ldots, A_{r}, where each A_{j} is the sum of all left ideals isomorphic, as left A-modules, to a specific simple left ideal L_{j}. Each subring A_{j} is isotypical, in that it is the sum of simple left ideals that are all isomorphic to one common left ideal.

We say that a ring B is simple if it is a sum of simple left ideals that are all isomorphic to each other as left B-modules.

Since, by Proposition 5.4.2, all isomorphic left ideals are right translates of one another, a simple ring B is a sum of right translates of any given simple left ideal L. Consequently,

$$
\begin{equation*}
B=L B \quad \text { if } B \text { is a simple ring, and } L \text { any simple left ideal. } \tag{5.8}
\end{equation*}
$$

As consequence we have:
Proposition 5.6.1 The only two sided ideals in a simple ring are 0 and the whole ring itself.

Proof. Let I be a two sided ideal in a simple ring B, and suppose $I \neq 0$. By simplicity, I is a sum of simple left ideals, and so, in particular, contains
a simple left ideal L. Then by $(5.8$ we see that $L B=B$. But $L B \subset I$, because I is also a right ideal. Thus, $I=B$. QED

For a ring B, any B-linear map $f: B \rightarrow B$ is completely specified by the value $f(1)$, because

$$
f(b)=f(b 1)=b f(1)
$$

Moreover, if $f, g \in \operatorname{End}_{B}(B)$ then

$$
(f g)(1)=f(g(1))=g(1) f(1)
$$

and so we have a ring isomorphism

$$
\begin{equation*}
\operatorname{End}_{B}(B) \rightarrow B^{\mathrm{opp}}: f \mapsto f(1) \tag{5.9}
\end{equation*}
$$

where $B^{\text {opp }}$, the opposite ring, is the ring B with multiplication in 'opposite' order:

$$
(a, b) \mapsto b a
$$

We then have
Theorem 5.6.1 If B is a simple ring, then B is isomorphic to a ring of matrices

$$
\begin{equation*}
B \simeq \operatorname{Matr}_{n}\left(D^{\mathrm{opp}}\right), \tag{5.10}
\end{equation*}
$$

where n is a positive integer, and D is the division ring $\operatorname{End}_{B}(M)$ for any simple left ideal M in B.

Proof. We know that B is the sum of a finite number of simple left ideals, each of which is isomorphic, as a left B-module, to any one simple left ideal M. Then $B \simeq M^{n}$, as left B-modules, for some positive integer n. We also know that there are ring isomorphisms

$$
B^{\mathrm{opp}} \simeq \operatorname{End}_{B}(B)=\operatorname{End}_{B}\left(M^{n}\right) \simeq \operatorname{Matr}_{n}(D)
$$

Taking the opposite ring, we obtain an isomorphism of B with $\operatorname{Matr}_{n}(D)^{\mathrm{opp}}$. But now consider the transpose of $n \times n$ matrices:

$$
\operatorname{Matr}_{n}(D)^{\mathrm{opp}} \rightarrow \operatorname{Matr}_{n}\left(D^{\mathrm{opp}}\right): A \mapsto A^{\operatorname{tr}}
$$

Then, working in components of the matrices, and denoting 'opposite' multiplication by $*$:

$$
(A * B)_{i k}^{\operatorname{tr}}=(B A)_{k i}=\sum_{j=1}^{n} B_{k j} A_{j i}=\sum_{j=1}^{n} A_{j i} * B_{k j}
$$

which is the ordinary matrix product $A^{\text {tr }} B^{\text {tr }}$ in $\operatorname{Matr}_{n}\left(D^{\text {opp }}\right)$. Thus, the transpose gives an isomorphism $\operatorname{Matr}_{n}(D)^{\mathrm{opp}} \simeq \operatorname{Matr}_{n}\left(D^{\mathrm{opp}}\right)$. QED

The opposite ring often arises in matrix representations of endomorphisms. If M is a 1-dimensional vector space over a division ring D, with a basis element v, then to each $T \in \operatorname{End}_{D}(M)$ we can associate the 'matrix' element $\hat{T} \in D$ specified through $T(v)=\hat{T} v$. But then, for any $S, T \in \operatorname{End}_{D}(M)$ we have

$$
\widehat{S T}=\hat{T} \hat{S}
$$

Thus, $\operatorname{End}_{D}(M)$ is isomorphic to $D^{\text {opp }}$, via its matrix representation.

5.7 Commutants and Double Commutants

There is a more abstract, 'coordinate free' version of Theorem 5.6.1. First let us observe that for a module M over a ring A, the endomorphism ring

$$
A_{\mathrm{c}}=\operatorname{End}_{A}(M)
$$

is the commutant for A, consisting of all additive maps $M \rightarrow M$ that commute with the action of A. Next,

$$
A_{\mathrm{dc}}=\operatorname{End}_{A_{\mathrm{c}}}(M)
$$

is the commutant of A_{c}. Since, for any $a \in A$, the multiplication

$$
\begin{equation*}
l_{a}: M \rightarrow M: x \mapsto a x \tag{5.11}
\end{equation*}
$$

commutes with every element of A_{c}, it follows that

$$
l_{a} \in A_{\mathrm{dc}}
$$

Note that

$$
l_{a b}=l_{a} l_{b}
$$

and l maps the identity element in A to that in A_{dc}, and so l is a ring homomorphism. The following result is due to Rieffel (see Lang [53]):

Theorem 5.7.1 Let B be a simple ring, L a non-zero left ideal in B,

$$
B_{\mathrm{c}}=\operatorname{End}_{B}(L), \quad B_{\mathrm{dc}}=\operatorname{End}_{B_{\mathrm{c}}}(L)
$$

and

$$
l: B \rightarrow B_{\mathrm{dc}}
$$

the natural ring homomorhism given by (5.11). Then l is an isomorphism. In particular, every simple ring is isomorphic to the ring of endomorphisms on a module.

Proof. To avoid confusion, it is useful to keep in mind that elements of B_{c} and $B_{\text {dc }}$ are all maps \mathbb{Z}-linear maps $L \rightarrow L$.

The ring morphism

$$
l: B \rightarrow B_{\mathrm{dc}}: b \mapsto l_{b}
$$

is given explicitly by

$$
l_{b} x=b x, \quad \text { for all } b \in B, \text { and } x \in L
$$

It maps the unit element in B to the unit element in B_{dc}, and so is not 0 . The kernel of $l \neq 0$ is a two sided ideal in a simple ring, and hence is 0 . Thus, l is injective.

We will show that $l(B)$ is B_{dc}. Since $1 \in l(B)$, it will suffice to prove that $l(B)$ is a left ideal in B_{dc}.

Since $L B$ contains L as a subset, and is thus not $\{0\}$, and is clearly a two sided ideal in B, it is equal to B :

$$
L B=B
$$

Hence

$$
l(L) l(B)=l(B)
$$

Thus, it will suffice to prove that $l(L)$ is a left ideal in $B_{\text {dc }}$. We can check this as follows: if $f \in B_{\mathrm{dc}}, b \in B$, and $y \in L$ then

$$
\begin{aligned}
\left(f l_{b}\right)(y) & =f(b y) \\
& =f(b) y \text { because } L \rightarrow L: x \mapsto x y \text { is in } B_{c}=\operatorname{End}_{B}(L) \\
& =l_{f(b)}(y)
\end{aligned}
$$

thus showing that

$$
f \cdot l_{b}=l_{f(b)}
$$

and hence $l(L)$ is a left ideal in B_{dc}. QED
Lastly, let us make an observation about the center of a simple ring:

Proposition 5.7.1 If B is a simple ring then its center $Z(B)$ is a field. If B is a finite dimensional simple algebra over an algebraically closed field \mathbb{F}, then $Z(B)=\mathbb{F} 1$.

Proof. For each $z \in Z(B)$ the map

$$
l_{z}: B \rightarrow B: b \mapsto z b
$$

is both left and right B-linear. As we have seen before, $l_{z} \in B_{\mathrm{dc}}$. Assume now that $z \neq 0$. We need to produce z^{-1}. We have the ring isomorphism

$$
B \rightarrow B_{\mathrm{dc}}: x \mapsto l_{x}
$$

so we need only produce l_{z}^{-1}. Now $l_{z}: B \rightarrow B: a \mapsto z a$ is left and right B-linear, and so ker l_{z} is a two sided ideal. This ideal is not B because $z \neq 0$; so $\operatorname{ker} l_{z}=0$, and so the two sided ideal $l_{z}(B)$ in B is all of B. So l_{z} is invertible as an element of B_{dc}, and so z is invertible. Thus, every non-zero element in $Z(B)$ is invertible. Since $Z(B)$ is also commutative and contains $1 \neq 0$, it is a field.

Suppose now that B is a finite dimensional \mathbb{F}-algebra, and \mathbb{F} is algebraically closed. Then any $z \in Z(B)$ not in \mathbb{F} would give rise to a proper finite extension of \mathbb{F} and this is impossible (see the proof of Theorem 5.1.2). QED

5.8 Artin-Wedderburn Structure

We need only bring together the understanding we have gained of the structure of semisimple rings to formulate the full structure theorem for semisimple rings:

Theorem 5.8.1 If A is a semisimple ring then there are positive integers s, d_{1}, \ldots, d_{s}, and division rings D_{1}, \ldots, D_{s}, and an isomorphism of rings

$$
\begin{equation*}
A \rightarrow \prod_{j=1}^{s} M_{d_{j}}\left(D_{j}\right) \tag{5.12}
\end{equation*}
$$

where $M_{d_{j}}\left(D_{j}\right)$ is the ring of $d_{j} \times d_{j}$ matrices with entries in D_{j}. Conversely, the ring $M_{d}(D)$, for any positive integer d and division ring D, is simple and every finite product of such rings is semisimple. If a semisimple ring A is a finite dimensional algebra over an algebraically closed field \mathbb{F} then each D_{j} is the field \mathbb{F}.

The decomposition of a semisimple ring into a product of matrix rings is generally called the Artin-Wedderburn theorem.
Proof. In Theorem 5.5.1 we proved that every semisimple ring is a product of simple rings. Then in Theorem 5.6.1 we proved that every simple ring is isomorphic to a matrix ring over a division ring. For the convserse direction work out Exercise 5.5(a). By Theorem 5.6.1, the division ring D_{j} is the opposite ring of $\operatorname{End}_{A}\left(L_{j}\right)$, for a suitable simple left ideal L_{j} in A, and then by Schur's Lemma (in the form of Theorem 5.1.2) $D_{j}=\mathbb{F}$ if \mathbb{F} is algebraically closed. QED

Note that, for the second part of the conclusion in the preceding result, all we need is for \mathbb{F} to be a splitting field for the algebra A.

5.9 A Module as Sum of its Parts

We will now see how the decomposition of a semisimple ring A yields a decomposition of any A-module E.

Let A be a semisimple ring. Recall that there is a finite collection of simple left ideals

$$
L_{1}, \ldots, L_{r} \subset A
$$

such that every simple left ideal is isomorphic to L_{i} for exactly one $i \in[r]$. Moreover,

$$
A_{i} \stackrel{\text { def }}{=} \text { sum of all left ideals isomorphic to } L_{i}
$$

is a two sided ideal in A, and A is the direct sum of these ideals as well as being isomorphic to their product:

$$
A \simeq \prod_{i=1}^{r} A_{i}
$$

Recall that each A_{i} has a unit element u_{i}, and

$$
u_{1}+\cdots+u_{r}=1
$$

Every $a \in A$ decomposes uniquely as

$$
a=\sum_{i=1}^{r} a_{i},
$$

where

$$
a u_{i}=a_{i}=u_{i} a \in A_{i} .
$$

Consider now any left A-module E. Any element $x \in E$ can then be decomposed as

$$
x=1 x=\sum_{j=1}^{r} \underbrace{u_{j} x}_{\in E_{j}=u_{j} E}
$$

Note that

$$
\begin{equation*}
u_{j} x \in E_{j} \stackrel{\text { def }}{=} A_{j} E \tag{5.13}
\end{equation*}
$$

and E_{j} is a submodule of E. Observe also that since

$$
A_{j}=u_{j} A
$$

we have

$$
E_{j}=u_{j} E
$$

Moreover,

$$
E_{j}=A_{j} E=\sum_{\text {left ideal } L \simeq L_{j}} L E .
$$

Proposition 5.9.1 If A is a semisimple ring and $E \neq\{0\}$ is an A-module then E has a submodule isomorphic to some simple left ideal in A. In particular, every simple A-module is isomorphic to a simple left ideal in A.

Proof. Observe that $E=A E \neq\{0\}$. Now A is the sum of its simple left ideals. Thus, there is a simple left ideal L in A, and an element $v \in E$, such that $L v \neq\{0\}$. The map

$$
L \rightarrow L v: x \mapsto x v
$$

is surjective and, by simplicity of L, is also injective. Thus, $L \simeq L v$, and $L v$ is therefore a simple submodule of E. QED

Theorem 5.9.1 Suppose A is a semisimple ring. Let L_{1}, \ldots, L_{s} be left ideals of A such that every simple left ideal of A is isomorphic, as a left A-module, to L_{i} for exactly one $i \in[s]$, and let A_{j} be the sum of all left ideals of A isomorphic to L_{j}. Let u_{i} be a central idempotent for which $A_{i}=A u_{i}$, for each $i \in[s]$. If E is a left A-module then

$$
E=E_{1} \bigoplus \ldots \bigoplus E_{s}
$$

where

$$
E_{i}=A_{i} E=u_{i} E
$$

is the sum of all simple left submodules of E isomorphic to L_{i}, this sum being taken to be $\{0\}$ when there is no such submodule.

Proof. Let F be a simple submodule of E. We know that it must be isomorphic to one of the simple ideals L_{j} in A. Then, since $L F=0$ whenever L is a simple ideal not isomorphic to L_{j}, we have

$$
F=A F=A_{j} F \subset E_{j}
$$

Thus, every submodule isomorphic to L_{j} is contained in E_{j}. On the other hand, A_{j} is the sum of simple left ideals isomorphic to L_{j}, and so $E_{j}=A_{j} E$ is a sum of simple submodules isomorphic to L_{j}. The module E is the direct sum of simple submodules, and each such submodule is isomorphic to some L_{j}. Summing up the submodules isomorphic to L_{j} yields E_{j}. QED

5.10 Readings on Rings

The general subject of which we have seen a special sample in this chapter is the theory of noncommutative rings. Books on noncommutative rings and algebras generally subscribe to the 'beatings shall continue until morale improves' school of exposition. A delightful exception is the page-turner account in the book of Lam [50]. The accessible book of Farb and Dennis [26] also includes a slim yet substantive chapter on representations of finite groups. Lang's Algebra is also a very convenient and readable reference for the basic major results.

5.11 Afterthoughts: Clifford Algebras

Clifford algebras are algebras of great use and interest that lie just at the borders of our exploration. Here we take a very quick look at this family of algebras.

A quadratic form Q on a vector space V, over a field \mathbb{F}, is a mapping $Q: V \rightarrow \mathbb{F}$ for which

$$
Q(c v)=c^{2} Q(v) \quad \text { for all } c \in \mathbb{F} \text { and } v \in V
$$

and such that the map

$$
V \times V \rightarrow \mathbb{F}:(u, v) \mapsto B_{Q}(u, v) \stackrel{\text { def }}{=} Q(u+v)-Q(u)-Q(v)
$$

is bilinear.
If $w \in V$ has $Q(w) \neq 0$, then the mapping

$$
r_{w}: V \rightarrow V: v \mapsto v-\frac{B_{Q}(v, w)}{Q(w)} w
$$

fixes each point on the subspace $w^{\perp}=\left\{v \in V: B_{Q}(v, w)=0\right\}$, and maps w to $-w$. This is therefore the reflection across w^{\perp}, if the characteristic of \mathbb{F} is not 2 . In case the characteristic of \mathbb{F} is 2 , you can construct reflections 'by hand': for a hyperplane H in V, and a vector w outside H, fix a vector $v_{0} \in H$, a reflection is produced by taking the linear map on V for which fixes each point on H and maps w to $w+v_{0}$.

The Clifford algebra C_{Q} for a quadratic form Q on a vector space V is the quotient algebra

$$
\begin{equation*}
C_{Q}=T(V) / J_{Q}, \tag{5.14}
\end{equation*}
$$

where $T(V)$ is the tensor algebra

$$
T(V)=\mathbb{F} \oplus V \oplus V^{\otimes 2} \oplus \ldots
$$

and J_{Q} is the two sided ideal in $T(V)$ generated by all elements of the form

$$
v \otimes v+Q(v) 1, \quad \text { for all } v \in V
$$

The natural injection $V \rightarrow T(V)$ induces, by composition with the projection down to the quotient $C_{Q}(V)$, a linear map

$$
\begin{equation*}
j_{Q}: V \rightarrow C_{Q}(V) \tag{5.15}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
j_{Q}(v)^{2}+Q(v)=0 \quad \text { for all } v \in V \tag{5.16}
\end{equation*}
$$

The map $j_{Q}: V \rightarrow C_{Q}(V)$ specifies $C_{Q}(V)$ as the 'minimal' such algebra in the sense that it has the 'universal property' that if $f: V \rightarrow A$ is any linear map from V to an \mathbb{F}-algebra A for which $f(v)^{2}+Q(v)=0$, for all $v \in V$, then there is a unique algebra morphism $f_{Q}: C_{Q}(V) \rightarrow A$ such that

$$
f=f_{Q} \circ j_{Q}
$$

For our discussion, let us focus on a complex vector space V of finite dimension d, and the bilinear form B_{Q} is specified by the matrix

$$
B_{Q}\left(e_{a}, e_{b}\right)=-2 \delta_{a b}, \quad \text { for all } a, b \in[d],
$$

where e_{1}, \ldots, e_{d} is some basis of V. The corresponding Clifford algebra, which we denote by C_{d}, can be taken to be the complex algebra generated by the e_{1}, \ldots, e_{d}, subject to the relations

$$
\begin{equation*}
\left\{e_{a}, e_{b}\right\} \stackrel{\text { def }}{=} e_{b} e_{b}+e_{b} e_{a}=-2 \delta_{a b} 1 \quad \text { for all } a, b \in[d] \tag{5.17}
\end{equation*}
$$

A basis of the algebra is given by all products of the form

$$
e_{s_{1} \ldots e_{s_{m}}}
$$

where $m \geq 0$, and $1 \leq s_{1}<s_{2}<\cdots \leq s_{m} \leq d$. Writing S for such a set $\left\{s_{1}, \ldots, s_{m}\right\} \subset\{1, \ldots, d\}$, with the elements s_{i} always in increasing order, we see that the algebra has a basis consisting of one element e_{S} for each subset S of $\{1, \ldots, d\}$. Notice also that the condition (5.17) implies that every time a term $e_{s} e_{t}$, with $s>t$, is replaced by $e_{t} e_{s}$, one picks up a minus sign:

$$
\begin{equation*}
e_{t} e_{s}=-e_{s} e_{t} \quad \text { if } s \neq t \tag{5.18}
\end{equation*}
$$

Keeping in mind also the condition $e_{s}^{2}=1$ for all $s \in[d]$, we have

$$
\begin{equation*}
e_{S} e_{T}=\epsilon_{S T} e_{S \Delta T} \tag{5.19}
\end{equation*}
$$

where $S \Delta T$ is the symmetric difference of the sets S and T, and

$$
\begin{gather*}
\epsilon_{S T}=\prod_{s \in S, t \in T} \epsilon_{s t}, \\
\epsilon_{s t}= \begin{cases}+1 & \text { if } s<t \\
+1 & \text { if } s=t \\
-1 & \text { if } s>t\end{cases} \tag{5.20}
\end{gather*}
$$

and the empty product, which occurs if S or T is \emptyset, is taken to be 1 . The algebra C_{d} can be reconstructed more officially as the 2^{d}-dimensional free vector space over the set of formal variables e_{S}, and then specifying multiplication by (5.19). (For more see the book of Artin [2].)

Each basis vector e_{a} gives rise to idempotents

$$
\frac{1}{2}\left(1+e_{a}\right) \quad \text { and } \quad \frac{1}{2}\left(1-e_{a}\right) .
$$

In fact, the relation

$$
\begin{equation*}
\left(e_{s_{1}} \ldots e_{s_{m}}\right)^{2}=(-1)^{m(m-1)} \tag{5.21}
\end{equation*}
$$

shows that any basis element e_{S} in C_{d}, where $S=\left\{s_{1}, \ldots, s_{m}\right\}$ contains m elements, produces orthogonal idempotents

$$
y_{+, S}=\frac{1}{2}\left(1-(-1)^{m(m-1) / 2} e_{S}\right) \quad \text { and } \quad y_{-, S}=\frac{1}{2}\left(1+(-1)^{m(m-1) / 2} e_{S}\right)
$$

If d is odd then the full product $e_{[d]}=e_{1} \ldots e_{d}$ is in the center of the algebra C_{d}, and the idempotents $y_{ \pm,[d]}$ are central idempotents. Thus, for d odd, C_{d} is the product of 2 two sided ideals $C_{d} y_{+,[d]}$ and $C_{d} y_{-,[d]}$.

Particularly useful are the orthogonal idempotents arising from pairs $\{a, b\} \subset[d]:$

$$
y_{+,\{a, b\}}=\frac{1}{2}\left(1+e_{a} e_{b}\right) \quad \text { and } \quad y_{-,\{a, b\}}=\frac{1}{2}\left(1-e_{a} e_{b}\right),
$$

where $a<b$. Could this be an indecomposable idempotent? Recall the criterion for indecomposability from Proposition 4.10.1 for a nonzero idempotent y :
y is indecomposable if $y x y$ is a scalar multple of y for every $x \in C_{d}$.
A simple calculation shows that

$$
y_{ \pm,\{a, b\}} e_{c}= \begin{cases}e_{c} y_{ \pm,\{a, b\}} & \text { if } c \notin\{a, b\} ; \tag{5.23}\\ e_{c} y_{\mp,\{a, b\}} & \text { if } c \in\{a, b\} .\end{cases}
$$

Thus, to construct an indecomposable idempotent we can take a product of the idempotents $y_{ \pm,\{a, b\}}$. Suppose first that d is even, and let π_{d} be the partition of $[d]$ into pairs of consecutive integers:

$$
\pi_{d}=\{\{1,2\}, \ldots,\{d-1, d\}\} .
$$

Let ϵ be any mapping of π_{d} to $\{+1,-1\}$, giving a choice of sign for each pair $\{j, j+1\}$ in π_{d}. Then we have the idempotent

$$
\begin{equation*}
y_{\epsilon}=\prod_{B \in \pi_{d}} y_{\epsilon(B), B}, \tag{5.24}
\end{equation*}
$$

where, observe, the terms $y_{\epsilon(B), B}$ commute with each other since the distinct B 's are disjoint. An example of such an idempotent, for $d=4$, is

$$
\frac{1}{2}\left(1+e_{1} e_{2}\right) \frac{1}{2}\left(1-e_{3} e_{4}\right) .
$$

Applying the criterion (5.22) with $x=e_{c}$, and using (5.23), it follows that the idempotent y_{ϵ} is indecomposable. Thus, we have the full decomposition of C_{d}, for even d, into simple left ideals

$$
\begin{equation*}
C_{d}=\bigoplus_{\epsilon \in\{+1,-1\}^{\pi_{d}}} C_{d} y_{\epsilon} . \tag{5.25}
\end{equation*}
$$

This explicitly exhibits the semisimple structure of C_{d} for even d. A straightforward extension produces the semsimple structure of C_{d} for odd d, on using the central idempotents $y_{ \pm,[d]}$.

If one thinks of e_{1}, \ldots, e_{d} as forming an orthonormal basis for a real vector space V_{0} sitting inside V, the relation $e_{a}^{2}=1$ is suggestive of reflection across the hyperplane e_{a}^{\perp}. More precisely, for any nonzero vector $w \in V_{0}$, the map

$$
V_{0} \rightarrow V_{0}: v \mapsto-w v w^{-1}
$$

takes w to $-w$ and takes any $v \in w^{\perp}$ to

$$
-w v w^{-1}=v w w^{-1}=v,
$$

and is thus just the reflection map r_{w} across the hyperplane w^{\perp}. A linear map $T: V_{0} \rightarrow V_{0}$ is an orthogonal transformation, relative to Q, if $Q(T v)=Q(v)$ for all $v \in V_{0}$. A general orthogonal transformations is a composition of reflections, and so the Clifford algebra is a crucial structure in the study of representations of the group of orthogonal transformations.

Exercises

1. Sanity check:
(a) Is \mathbb{Z} a semisimple ring?
(b) Is \mathbb{Q} a semisimple ring?
(c) Is a subring of a semisimple ring also semisimple?
2. Show that in the ring of all matrices $M_{a, b}=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$, with a, b running over \mathbb{C}, the left ideal $\left\{M_{0, b}: b \in \mathbb{C}\right\}$ has no complement.
3. Show that a commutative simple ring is a field.
4. Let A be a finite-dimensional semisimple algebra over a field \mathbb{F}, and define $\chi_{\text {reg }}: A \rightarrow \mathbb{F}$ by

$$
\begin{equation*}
\chi_{\mathrm{reg}}(a)=\operatorname{Tr}\left(\rho_{\mathrm{reg}}(a)\right), \quad \text { where } \rho_{\mathrm{reg}}(a): A \rightarrow A: x \mapsto a x \tag{5.26}
\end{equation*}
$$

Let L_{1}, \ldots, L_{s} be a maximal collection of non-isomorphic simple left ideals in A, so that $A \simeq \prod_{i=1}^{s} A_{i}$, where A_{i} is the two sided ideal formed by the sum of all left ideals isomorphic to L_{i}. As usual, let $1=$ $u_{1}+\cdots+u_{s}$ be the decomposition of 1 into idempotents $u_{i} \in A_{i}=A u_{i}$. Viewing L_{i} as a vector space over \mathbb{F}, define

$$
\begin{equation*}
\chi_{i}(a)=\operatorname{Tr}\left(\rho_{\mathrm{reg}}(a) \mid L_{i}\right) \tag{5.27}
\end{equation*}
$$

Note that since L_{i} is a left ideal, $\rho_{\mathrm{reg}}(a)\left(L_{i}\right) \subset L_{i}$. Show that:
(i) $\chi_{\text {reg }}=\sum_{i=1}^{s} d_{i} \chi_{i}$, where d_{i} is the integer for which $A_{i} \simeq L_{i}^{d_{i}}$ as A-modules.
(ii) $\chi_{i}\left(u_{j}\right)=\delta_{i j} \operatorname{dim}_{\mathbb{F}} L_{i}$
(iii) Assume that the characteristic of \mathbb{F} does not divide any of the numbers $\operatorname{dim}_{\mathbb{F}} L_{i}$ (in Exercise 3.7 there is an important case of this). Use (ii) to show that the functions $\chi_{1}, \ldots, \chi_{s}$ are linearly independent over \mathbb{F}.
(iv) Let E be an A-module, and define $\chi_{E}: A \rightarrow \mathbb{F}$ by

$$
\begin{equation*}
\chi_{E}(a)=\operatorname{Tr}\left(\rho_{E}(a)\right), \quad \text { where } \rho_{E}(a): E \rightarrow E: x \mapsto a x . \tag{5.28}
\end{equation*}
$$

Show that χ_{E} is a linear combination of the functions χ_{i} with non-negative integer coefficients:

$$
\chi_{E}=\sum_{i=1}^{s} n_{i} \chi_{i}
$$

where n_{i} is the number of copies of L_{i} in a decomposition of E into simple A-modules.
(v) Under the assumption made in (iii), show that if E and F are A-modules with $\chi_{E}=\chi_{F}$ then $E \simeq F$.
5. Let $B=\operatorname{Matr}_{n}(D)$ be the algebra of $n \times n$ matrices over a division ring D.
(a) Show that for each $j \in\{1, \ldots, n\}$, the set L_{j} of all matrices in B that have all entries 0 except possibly those in column j is a simple left ideal. Since $B=L_{1}+\cdots+L_{n}$, this implies that B is a semisimple ring.
(b) Show that if L is a simple left ideal in B then there is a basis b_{1}, \ldots, b_{n} of D^{n}, treated as a right D-module, such that L consists exactly of those matrices T for which $T b_{i}=0$ whenever $i \neq 1$.
(c) With notation as in (a), produce orthogonal idempotent generators in L_{1}, \ldots, L_{n}.
6. Prove that if a module N over a ring is the direct sum of simple submodules, no two of which are isomorphic to each other then every simple submodule of N is one of these submodules.
7. Suppose L_{1} and L_{2} are simple left ideals in a semisimple ring A. Show that the following are equivalent: (i) $L_{1} L_{2}=0$; (ii) L_{1} and L_{2} are not isomorphic as A-modules; (iii) $L_{2} L_{1}=0$.
8. Suppose N_{1} and N_{2} are left ideals in a semisimple ring A. Show that the following are equivalent: (i) $N_{1} N_{2}=0$; (ii) there is no nonzero A linear map $N_{1} \rightarrow N_{2}$; (iii) $N_{2} N_{1}=0$; (iv) there is a simple submodule of N_{1} which is isomorphic to a submodule of N_{2}.
9. Let u and v be indecomposable idempotents in a semisimple ring A for which $u A=v A$. Show that $A u$ is isomorphic to $A v$ as left A-modules.
10. Prove the results of section 4.10 for semsimple algebras, and, where needed, assume that the algebra is finite dimensional over an algebraically closed field.
11. Suppose y is an idempotent in a ring A such that the left ideal $A y$ is simple. Show that $D_{y}=\{y x y: x \in A\}$ is a division ring under the addition and multiplication operations inherited from A.
12. Let I be a nonempty finite set of commuting nonzero idempotents in a ring A. Show that there is a set G of orthogonal nonzero idempotents in A which add up to 1 such that every element of I is the sum of a unique subset of G.
13. For an algebra A over a field \mathbb{F}, define an element $s \in A$ to be semisimple if $s=c_{1} e_{1}+\cdots+c_{m} e_{m}$ for some distinct orthogonal nonzero idempotents e_{j} and $c_{1}, \ldots, c_{m} \in \mathbb{F}$. For such s, show that each e_{j} is equal to $p_{j}(s)$ for some polynomial $p_{j}(X) \in \mathbb{F}[X]$. Show also that the elements in A that are polynomials in s form a semisimple subalgebra of A.
14. Let C be a finite nonempty set of commuting semisimple elements in an algebra A over a field \mathbb{F}. Show that there are orthogonal nonzero idempotents e_{1}, \ldots, e_{n} such that every element of C is an \mathbb{F}-linear combination of the e_{j}.
15. Let A be a semisimple algebra over an algebraically closed field \mathbb{F}, $\left\{L_{i}\right\}_{i \in \mathcal{R}}$ a maximal collection of non-isomorphic simple left ideals in A, and A_{i} the sum of all left ideals isomorphic to L_{i}. We know that $A_{i} \simeq$ $\operatorname{End}_{\mathbb{F}}\left(L_{i}\right)$ and $A \simeq \prod_{i \in \mathcal{R}} A_{i}$, as algebras. Show that an element $a \in A$ is an idempotent if and only if its representative block diagonal matrix in $\prod_{i \in \mathcal{R}} \operatorname{End}_{\mathbb{F}}\left(L_{i}\right)$ is a projection matrix, and that it is an indecomposable idempotent if and only if the matrix is a projection matrix of rank 1.
16. Let A be a finite dimensional semisimple algebra over an algebraically closed field \mathbb{F}. Let L_{1}, \ldots, L_{s} be simple left ideals in A such that every simple A-module is isomorphic to L_{i} for exactly one $i \in[s]$. For every $a \in A$ let $\rho_{i}(a)$ be the $d_{i} \times d_{i}$ matrix for the map $L_{i} \rightarrow L_{i}: x \mapsto a x$ relative to a fixed basis $\left|b_{1}(i)\right\rangle, \ldots,\left|b_{d_{i}}(i)\right\rangle$ of L_{i}. Prove that the matrixentry functions $\rho_{i, j k}: a \mapsto\left\langle b_{j}(i), a b_{k}(i)\right\rangle$, with $j, k \in\left\{1, \ldots, d_{i}\right\}$ and $i \in\{1, \ldots, r\}$, are linearly independent over \mathbb{F}. Using this conclude that the characters $\chi_{i}=\operatorname{Tr} \rho_{i}$ are linearly independent.
17. Show that if u and v are indecomposable idempotents in a semisimple \mathbb{F}-algebra A, where \mathbb{F} is algebraically closed, then $u v$ is either 0 , or has square equal to 0 , or is an \mathbb{F}-multiple of an indecomposable idempotent. What can be said if u and v are commuting indecomposable idempotents?
18. A partially ordered set (S, \leq) is said to be a lattice if for any $a, b \in S$ there is a least element that is \geq both a and b, and there is a greatest element $a \wedge b$ that is \leq both a and b; the lattice is complete if every $T \subset S$ has an infimum (greatest lower bound) and a supremum (least upper bound). The least element in S is denoted 0, and the greatest element 1, if they exist. An atom in S is an element $a \in S$ such that $a \neq 0$ and if $b \leq a$ then $b \in\{0, a\}$. If S is a subset of a partially ordered set, a maximal element of S is an element $a \in S$ such that if $b \in S$ with $a \leq b$ then $b=a$; a minimal element of S is an element $a \in S$ such that if $b \in S$ with $b \leq a$ then $b=a$. A partially ordered set (S, \leq) satisfies the ascending chain condition if every nonempty subset of S contains a maximal element; it satisfies the descending chain condition if every nonempty subset of S contains a minimal element. Now let \mathbb{L}_{M} be the set of all submodules of a module M over a ring A, and take the inclusion relation $L_{1} \subset L_{2}$ as a partial order on \mathbb{L}_{M}. Thus an atom in \mathbb{L}_{M} is a simple submodule. Prove the following:
(i) \mathbb{L}_{M} is a complete lattice.
(ii) The lattice \mathbb{L}_{M} is modular:

$$
\begin{equation*}
\text { If } p, m, b \in \mathbb{L}_{M} \text { and } m \subset b \text { then }(p+m) \cap b=(p \cap b)+m \text {. } \tag{5.29}
\end{equation*}
$$

(The significance of modularity in a lattice was underlined by Dedekind [17, section 4, eqn. (M)], [18, section II.8].).)
(iii) Prove that if A is a finite dimensional algebra over a field then A is left Artinian in the sense that the lattice of left ideals in A satisfies the descending chain condition.
(iv) If A is a semisimple ring then A is left Noetherian in the sense that the lattice of left ideals in A satisfies the ascending chain condition.
(v) If A is a semisimple ring and I and J are two sided ideals in A then $I \cap J=I J$.
(vi) If A is a semisimple ring then the lattice of two sided ideals in A is distributive:

$$
\begin{align*}
& I \cap(J+K)=(I \cap J)+(I \cap K) \\
& I+(J \cap K)=(I+J) \cap(I+K), \tag{5.30}
\end{align*}
$$

for all two sided ideals I, J, K in A.
19. Let (\mathbb{L}, \leq) be a modular lattice with 0 and 1 (these and other related terms are as defined in Exercise 5.18). Let \mathcal{A} be the set of atoms in \mathbb{L}. Denote by $a+b$ the supremum of $\{a, b\}$, and by $a \cap b$ the infimum of $\{a, b\}$, and, more generally, denote the supremum of a subset $S \subset \mathbb{L}$ by $\sup S$ or by $\sum S$. Elements $a, b \in \mathbb{L}$ are complements of each other if $a+b=1$ and $a \cap b=0$. Say that a subset $S \subset \mathcal{A}$ is linearly independent if $\sum T_{1}=\sum T_{2}$ for some finite subsets $T_{1} \subset T_{2} \subset S$ implies $T_{1}=T_{2}$.
(i) Suppose every element of \mathbb{L} has a complement. Show that if $t \leq s$ in \mathbb{L} then there exists $v \in \mathbb{L}$ such that $t+v=s$ and $t \cap v=0$.
(ii) $S \subset \mathcal{A}$ is independent if and only if $a \cap \sum T=0$ for every finite $T \subset S$ and all $a \in S-T$.
(iii) Suppose every $s \in \mathbb{L}$ has a complement and \mathbb{L} satisfies the ascending chain condition. Show that for every nonzero $m \in \mathbb{L}$ there is an $a \in \mathcal{A}$ with $a \leq m$.
(iv) Here is a primitive (in the logical, not historical) form of the Chinese Remainder Theorem : For any elements A, B, I and J in a modular lattice for which $J+K=1$, show that there is an element C such that $C+I=A+I$ and $C+J=B+J$. Next, working with the lattice \mathbb{L}_{R} of two sided ideals in a ring R, show that if $I_{1}, \ldots, I_{m} \in \mathbb{L}_{R}$ for which $I_{a}+I_{b}=R$ for $a \neq b$, and if K_{1}, $\ldots, K_{m} \in \mathbb{L}_{R}$, then there exists $C \in \mathbb{L}_{R}$ such that $C+I_{a}=K_{a}+I_{a}$ for all $a \in\{1, \ldots, m\}$.

Chapter 6

Representations of S_{n}

Having survived the long exploration of semisimple structure, it may seem that midway in our journey we are in deep woods, the right path lost. But this is no time to abandon hope; instead we plunge right into untangling the structure of representations of an important family of groups, the permutation groups S_{n}. This will be the only important class of finite groups to which we will apply all the machinery we have manufactured. A natural pathway beyond this is the study of representations of reflection groups.

There are several highly efficient ways to speed through the basics of the representations of S_{n}. We choose a more leisurely path, beginning with a look at permutations of $[n]=\{1, \ldots, n\}$ and partitions of $[n]$. This will lead us naturally to a magically powerful device: Young tableaux, which package special pairs of partitions of $[n]$. We will then proceed to Frobenius' construction of indecomposable idempotents, or, equivalently, irreducible representations of S_{n}, by using symmetries of Young tableaux.

6.1 Permutations and Partitions

To set the strategy for constructing the irreducible representations of S_{n} in its natural context, let us begin by looking briefly at the relationship between subgroups of S_{n} and partitions of $[n]=\{1, \ldots, n\}$.

A partition π of $[n]$ is a set of disjoint nonempty subsets of $[n]$ whose union is $[n]$; we will call the elements of π the blocks of π. For example, the set

$$
\{\{2,5,3\},\{1\},\{4,6\}\}
$$

is a partition of [6] consisting of the blocks $\{2,3,5\},\{1\},\{4,6\}$. Let

$$
\begin{equation*}
\mathbb{P}_{n}=\text { the set of all partitions of }[n] . \tag{6.1}
\end{equation*}
$$

Any subgroup H of S_{n} produces a partition π_{H} of $[n]$ through the orbits: two elements $j, k \in[n]$ lie in a block of π_{H} if and only if $j=s(k)$ for some $s \in H$.

A cycle is a permutation that has at most one block of size >1; we call this block the support of the cycle, which we take to be \emptyset for the identity permutation ι. A cycle c is displayed as

$$
c=\left(i_{1} i_{2} \ldots i_{k}\right),
$$

where $c\left(i_{1}\right)=i_{2}, \ldots, c\left(i_{k-1}\right)=i_{k}, c\left(i_{k}\right)=i_{1}$. Two cycles are said to be disjoint if their supports are disjoint. Disjoint cycles commute. The length of a cycle is the size of the largest block minus 1 ; thus, the length of the cycle (1235) is 3 , and the length of a transposition $(a b)$ is 1 . If $s \in S_{n}$ then a cycle of s is a cycle that coincides with s on some subset of $[n]$ and is the identity outside it. Then s is the product, in any order, of its distinct cycles. For example, the permutation

$$
1 \mapsto 1,2 \mapsto 5,3 \mapsto 2,4 \mapsto 6,5 \mapsto 3,6 \mapsto 4
$$

is written as

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 5 & 2 & 6 & 3 & 4
\end{array}\right)
$$

and has the cycle decomposition

$$
(253)(46),
$$

not writing the identity cycle. The length $l(s)$ of a permutation s is the sum of the lengths of its cycles, and the signature of s is given by

$$
\begin{equation*}
\epsilon(s)=(-1)^{l(s)} \tag{6.2}
\end{equation*}
$$

Multiplying s by a transposition t either splits a cycle of s into two, or joins two cycles into one:

$$
\begin{align*}
(1 j)(123 \ldots j \ldots m) & =(123 \ldots j-1)(j j+1 \ldots m), \tag{6.3}\\
(1 j)(123 \ldots j-1)(j j+1 \ldots m) & =(123 \ldots j \ldots, m)
\end{align*}
$$

with the sum of the cycle lengths either decreasing by 1 or increasing by 1 :

$$
\begin{equation*}
l(t s)=l(s) \pm 1 \quad \text { if } t \text { is a transposition and } s \in S_{n} \tag{6.4}
\end{equation*}
$$

Consequently, $\epsilon(t s)=-\epsilon(s)$ if t is a transposition. Since every cycle is a product of transpositions:

$$
(12 \ldots k)=(12)(23) \ldots(k-1 k)
$$

so is every permutation, and so

$$
\epsilon(s)=(-1)^{k}, \quad \text { if } s \text { is a product of } k \text { transpositions. }
$$

The permutation s is said to be even if $\epsilon(s)$ is 1 , and odd if $\epsilon(s)=-1$. We then have

$$
\epsilon(r s)=\epsilon(r) \epsilon(s) \quad \text { for all } r, s \in S_{n}
$$

Thus, for any field \mathbb{F}, the homomorphism $\epsilon: S_{n} \rightarrow\{1,-1\} \subset \mathbb{F}^{\times}$, provides a one dimensional, hence irreducible, representation of S_{n} on \mathbb{F}.

Returning to partitions, let B_{1}, \ldots, B_{m} be the string of blocks of a partition $\pi \in \mathbb{P}_{n}$, listed in order of decreasing size:

$$
\left|B_{1}\right| \geq\left|B_{2}\right| \geq \ldots \geq\left|B_{m}\right|
$$

Then

$$
\begin{equation*}
\lambda(\pi)=\left(\left|B_{1}\right|, \ldots,\left|B_{m}\right|\right) \tag{6.5}
\end{equation*}
$$

is called the shape of π. We dentote by $\overline{\mathbb{P}}_{n}$ the set of all shapes of all the elements in \mathbb{P}_{n}.

A shape, in general, is simply a finite non-decreasing sequence of positive integers. Shapes are displayed visually as Young diagrams in terms of rows of empty boxes. For example, the diagram

displays the shape $(4,3,3,2,1,1)$.

Consider shapes λ and λ^{\prime} in $\overline{\mathbb{P}}_{n}$. If $\lambda^{\prime} \neq \lambda$ then there is a smallest j for which $\lambda_{j}^{\prime} \neq \lambda_{j}$. If, for this $j, \lambda_{j}^{\prime}>\lambda_{j}$ then we say that $\lambda^{\prime}>\lambda$ in lexicographic order. This is an order relation on the partitions of n. The largest element is

$$
(n)
$$

and the smallest element is $(1,1, \ldots, 1)$. Here is an ordering of $\overline{\mathbb{P}}_{3}$ displayed in decreasing lexicographic order:

$$
\begin{equation*}
\square \square>\square>\square \tag{6.6}
\end{equation*}
$$

There is also a natural partial order on \mathbb{P}_{n}, with $\pi_{1} \leq \pi_{2}$ meaning that π_{1} refines the blocks of π_{2} :
$\pi_{1} \leq \pi_{2}$ if for any block $A \in \pi_{1}$ there is a block $B \in \pi_{2}$ with $A \subset B$,
or, equivalently, each block of π_{2} is the union of some of the blocks in π_{1}. Thus, $\pi_{1} \leq \pi_{2}$ if π_{1} is a 'finer' partition than π_{2}. For example,

$$
\{\{2,3\},\{5\},\{1\},\{4\},\{6\}\} \leq\{\{2,5,3\},\{1\},\{4,6\}\}
$$

in \mathbb{P}_{6}. The 'smallest' partition in this order is $\{\{1\}, \ldots,\{n\}\}$, and the 'largest' is $\{[n]\}$:

$$
\begin{equation*}
\underline{0}=\{\{1\}, \ldots,\{n\}\}, \quad \text { and } \quad \underline{1}=\{[n]\} . \tag{6.8}
\end{equation*}
$$

For $\pi_{1}, \pi_{2} \in \mathbb{P}_{n}$, define the interval $\left[\pi_{1}, \pi_{2}\right]$ to be

$$
\begin{equation*}
\left[\pi_{1}, \pi_{2}\right]=\left\{\pi \in \mathbb{P}_{n}: \pi_{1} \leq \pi \leq \pi_{2}\right\} \tag{6.9}
\end{equation*}
$$

If we coalesce two blocks of a partition π to obtain a partition π_{1} then we say that π_{1} covers π. Clearly, π_{1} covers π if and only if $\pi_{1} \neq \pi$ and $\left[\pi, \pi_{1}\right]=$ $\left\{\pi, \pi_{1}\right\}$. Climbing up the ladder of partial order one step at a time shows that for any $\pi_{L} \leq \pi_{U}$, distinct elements in \mathbb{P}_{n}, there is a sequence of partitions π_{1}, \ldots, π_{j} with

$$
\pi_{L}=\pi_{1} \leq \ldots \leq \pi_{j}=\pi_{U}
$$

where π_{i} covers π_{i-1} for each $i \in\{2, \ldots, j\}$. Notice that at each step up the number of blocks decreases by one.

If $\pi \in \mathbb{P}_{n}$ can be reached from $\underline{0}$ in l steps, each carrying it from one partition to a covering partition, then l is equal to

$$
\begin{equation*}
l(\pi)=\sum_{B \in \pi}(|B|-1)=n-|\pi| \tag{6.10}
\end{equation*}
$$

which is independent of the particular sequence of partitions used to go from $\underline{0}$ to π.

Proposition 6.1.1 For any positive integer n and distinct partitions $\pi_{1}, \pi_{2} \in$ \mathbb{P}_{n}, if $\pi_{1} \leq \pi_{2}$ then $\lambda\left(\pi_{1}\right)<\lambda\left(\pi_{2}\right)$. In particular, if S is a nonempty subset of \mathbb{P}_{n} and π is the element of largest shape in S then π is a maximal element in S relative to the partial order \leq.
$\underline{\text { Proof. Let } B_{1}, \ldots, B_{m} \text { be the blocks of a partition } \pi \in \mathbb{P}_{n} \text {, with }\left|B_{1}\right| \geq \ldots \geq}$ $\left|B_{m}\right|$, and let $\alpha_{i}=\left|B_{i}\right|$ for $i \in[m]$. Thus $\lambda(\pi)=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. Let π^{\prime} be the partition obtained from π by coalescing B_{j} and B_{k} for some $j>k$ in [m]. Then $\lambda\left(\pi^{\prime}\right)=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m-1}^{\prime}\right)$, where

$$
\alpha_{i}^{\prime}= \begin{cases}\alpha_{i} & \text { if } \alpha_{i}>\alpha_{j}+\alpha_{k} \tag{6.11}\\ \alpha_{j}+\alpha_{k} & \text { if } i \text { is the smallest integer for which } \alpha_{i} \leq \alpha_{j}+\alpha_{k} \\ \alpha_{i+1} & \text { for all other } i\end{cases}
$$

From the second line above, if r is the smallest integer for which $\alpha_{r} \leq \alpha_{j}+\alpha_{k}$ then

$$
\alpha_{r}^{\prime}=\alpha_{j}+\alpha_{k} \geq \alpha_{r}
$$

and, from the first line, $\alpha_{i}^{\prime}=\alpha_{i}$ for $i<r$. This means $\lambda\left(\pi^{\prime}\right)>\lambda(\pi)$.
For any distinct $\pi_{1}, \pi_{2} \in \mathbb{P}_{n}$ with $\pi_{1} \leq \pi_{2}$, there is a sequence of partitions $\tau_{1}, \ldots, \tau_{N} \in \mathbb{P}_{n}$ with τ_{i} obtained by coalescing two blocks of τ_{i-1}, for $i \in$ $\{2, \ldots, N\}$, and $\tau_{1}=\pi_{1}$ and $\tau_{N}=\pi_{2}$. Then $\lambda\left(\pi_{1}\right)=\lambda\left(\tau_{1}\right)<\ldots<\lambda\left(\tau_{N}\right)=$ $\lambda\left(\pi_{2}\right) . \mathrm{QED}$

6.2 Complements and Young Tableaux

The partial ordering \leq of partitions makes \mathbb{P}_{n} a lattice: partitions π_{1} and π_{2} have a greatest lower bound as well as a least upper bound, which we denote

$$
\begin{equation*}
\pi_{1} \wedge \pi_{2}=\inf \left\{\pi_{1}, \pi_{2}\right\}, \quad \text { and } \quad \pi_{1} \vee \pi_{2}=\sup \left\{\pi_{1}, \pi_{2}\right\} \tag{6.12}
\end{equation*}
$$

More descriptively, $\pi_{1} \wedge \pi_{2}$ consists of all the non-empty intersections $B \cap C$, with B a block of π_{1} and C a block of π_{2}. Two elements $i, j \in[n]$ lie in the same block of $\pi_{1} \vee \pi_{2}$ if and only if there is a sequence

$$
i=i_{0}, i_{1}, \ldots, i_{m}=j,
$$

where consecutive elements lie in a common block of either π_{1} or π_{2}. In other words, two elements lie in the same block of $\pi_{1} \vee \pi_{2}$ if one can travel from one element to the other by moving in steps, each of which stays inside either a block of π_{1} or a block of π_{2}.

As in the lattice of left ideals of a semisimple ring, in the partition lattice \mathbb{P}_{n} every element π has a complement π_{c}, satisfying

$$
\begin{equation*}
\pi \wedge \pi_{c}=\underline{0} \quad \text { and } \quad \pi \vee \pi_{c}=\underline{1} \tag{6.13}
\end{equation*}
$$

and, as with ideals, the complement is not generally unique.
A Young tableau is a wondefully compact device encoding a partition of $[n]$ along with a choice of complemenent. It is a matrix of the form

$$
\begin{array}{cccccc}
a_{11} & \ldots & \ldots & \ldots & \ldots & a_{1 \lambda_{1}} \\
a_{21} & \ldots & \ldots & a_{2 \lambda_{2}} & & \tag{6.14}\\
\vdots & \vdots & \vdots & & & \\
a_{m 1} & \ldots & a_{m \lambda_{m}} & & &
\end{array}
$$

We will take the entries $a_{i j}$ all distinct and drawn from $\{1, \ldots, n\}$. Thus, officially, a Young tableau, of size $n \in\{1,2,3, \ldots\}$ and shape $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \overline{\mathbb{P}}_{n}$, is an injective mapping

$$
\begin{equation*}
T:\left\{(i, j): i \in[m], j \in\left[\lambda_{i}\right]\right\} \rightarrow[n]:(i, j) \mapsto a_{i j} . \tag{6.15}
\end{equation*}
$$

Note that, technically, a Young tableau is a bit more than a partition of $[n]$, as it comes with a specific ordering of the elements in each block of such a partition. The shape of a Young tableau is, however, the same as the shape of the corresponding partition.

The plural of 'Young tableau' is 'Young tableaux.' In gratitude to Börchers and Gieseke's LaTeX package youngtab, we will sometimes use the terms Youngtab and the plural Youngtabs.

It is convenient to display Youngtabs using boxes; for example:

1	2	5
3	6	
7		

Let \mathbb{T}_{n} denote the set of all Youngtabs with n entries.
Each Youngtab specifies two partitions of $[n]$, one formed by the rows and the other by the columns:

$$
\begin{align*}
\operatorname{Rows}(T) & =\{\text { rows of } T\} \\
\operatorname{Cols}(T) & =\{\text { columns of } T\} \tag{6.16}
\end{align*}
$$

where, of course, each row and each column is viewed as a set. Here is a simple but essential observation about $\operatorname{Rows}(T)$ and $\operatorname{Cols}(T)$:
a block $R \in \operatorname{Rows}(T)$ intersects a block $C \in \operatorname{Cols}(T)$ in at most one element.

In fact, something stronger is true: if you pick any two entries in the Youngtab T then you can travel from one to the other by successively moving horizontally along rows and vertically along columns (in the Youngtab, simply move from one entry back to the first entry in that row, then move up or down the first column till you reach the row containing the other entry, and then move horizontally along the row.) Thus:

$$
\begin{equation*}
\operatorname{Rows}(T) \text { and } \operatorname{Cols}(T) \text { are complements of each other in } \mathbb{P}_{n} . \tag{6.17}
\end{equation*}
$$

A Young tableau thus provides an efficient package, keeping track of two complementary partitions of $[n]$. The complement provided by a Young tableau has special and useful features. Here is a summary of observations about complements in the lattice \mathbb{P}_{n} :

Theorem 6.2.1 Let $\pi \in \mathbb{P}_{n}$ be a partition of $[n]$, and let

$$
\begin{equation*}
\pi^{\perp}=\left\{\pi_{1} \in \mathbb{P}_{n}: \pi \wedge \pi_{1}=\underline{0}\right\} \tag{6.18}
\end{equation*}
$$

Any element of π^{\perp} with largest shape in lexicographic order is also a maximal element of π^{\perp} in the partial order on \mathbb{P}_{n}. Every maximal element π_{c} in π^{\perp} is a complement of π, in the sense that it satisfies:

$$
\begin{align*}
\pi \wedge \pi_{c} & =\underline{0} \\
\pi \vee \pi_{c} & =\underline{1} . \tag{6.19}
\end{align*}
$$

If T is any Young tableau for which $\operatorname{Rows}(T)=\pi$ then $\operatorname{Cols}(T)$ is an element of largest shape in π^{\perp}, and similarly, with rows and columns interchanged.

A Young complement of π is a complement of largest shape. As explained in the preceding theorem, such a complement can be obtained from a Youngtab whose rows (or columns) form the partition π.
Proof. Consider a maximal element π_{c} of the set π^{\perp} given in (6.18). Let i and j be any elements of $[n]$; we will show that i and j lie in the same block of $\pi \vee \pi_{c}$. This would mean that $\pi \vee \pi_{c}$ is $\underline{1}$. Let $i \in B_{1}$ and $j \in B_{2}$, where B_{1} and B_{2} are blocks of π_{c}; assume $B_{1} \neq B_{2}$, for otherwise i and j both lie in the block of $\pi \vee \pi_{c}$ that contains B_{1}. Maximality of π_{c} in π^{\perp} implies that two blocks of π_{c} cannot be coalesced while still retaining the first condition on π_{c} in 6.19); in particular, B_{1} and B_{2} each contains an element such that these two elements lie in the same block B of π. Thus, $B_{1} \cup B_{2} \cup B$ lies inside one block of $\pi \vee \pi_{c}$, and hence so do the elements i and j. This proves $\pi \vee \pi_{c}=\underline{1}$.

Let T be a Young tableau with $\operatorname{Rows}(T)=\pi$. We have already noted in (6.17) that $\pi_{y c}=\operatorname{Cols}(T)$ is a complementary partition to π in \mathbb{P}_{n}. Let R_{1}, \ldots, R_{m} be the blocks of π listed in decreasing order of size:

$$
\left|R_{1}\right| \geq \ldots \geq\left|R_{m}\right| .
$$

(Think of these as the rows of T from the top row to the bottom row.) Let C_{1}, \ldots, C_{q} be the blocks of $\pi_{y c}$, formed as follows: C_{1} contains exactly one element from each R_{j}, and, for every $i \in\{2, \ldots, q\}, C_{i}$ contains exactly one element from every nonempty $R_{j}-\cup_{k<i} C_{k}$.

Consider any $\pi_{0} \in \pi^{\perp}$, and let B_{1}, \ldots, B_{s} be the blocks of π_{0} listed in decreasing order. Our goal is to show that $\lambda\left(\pi_{0}\right) \leq \lambda\left(\pi_{y c}\right)$. Each block of π_{0} intersects each R_{j} in at most one element, and so the largest block B_{1} contains $\leq m$ elements. Thus, $\lambda_{1}\left(\pi_{0}\right) \leq m=\lambda_{1}\left(\pi_{y c}\right)$. If $\lambda_{1}\left(\pi_{0}\right)<\lambda_{1}\left(\pi_{y c}\right)$ then $\pi_{0} \leq \pi_{y c}$, and we are done. Suppose then that $\lambda_{1}\left(\pi_{0}\right)=\lambda_{1}\left(\pi_{y c}\right)$. Then B_{1} intersects each R_{j} in exactly one element, and so $R_{j}-B_{1}$ is empty if and only if $R_{j}-C_{1}$ is empty, for any $j \in[m]$. Let i be the largest positive integer in $[s]$ for which (i) $\lambda_{i}\left(\pi_{0}\right)=\lambda_{i}\left(\pi_{y c}\right)$, and (ii) $\mid\left\{j \in[m]: R_{j}-\cup_{k \leq i} B_{k}=\right.$ $\emptyset\}\left|=\left|\left\{j \in[m]: R_{j}-\cup_{k \leq i} C_{k}=\emptyset\right\}\right|\right.$. If $i=s$ then $\pi_{0} \leq \pi_{y c}$ and again we would be done. So suppose $i<s$. Now B_{i+1} contains at most one element from each nonempty $R_{j}-\cup_{k \leq i} B_{k}$ and C_{i+1} contains exactly one element from each nonempty $R_{j}-\cup_{k \leq i} C_{k}$. By (ii) it follows that $\left|B_{i+1}\right| \leq\left|C_{i+1}\right|$, and the definition of i then implies that $\left|B_{i+1}\right|<\left|C_{i+1}\right|$. Thus, in all cases, $\lambda\left(\pi_{0}\right) \leq \lambda\left(\pi_{y c}\right)$, proving that $\pi_{y c}$ is an element of largest shape in π^{\perp}. QED

6.3 Symmetries of Partitions

The action of S_{n} on $[n]$ induces an action on the set \mathbb{P}_{n} of all partitions of [n]: a permutation $s \in S_{n}$ carries the partition π to the partition $s(\pi)$ whose blocks are $s(B)$ with B running over the blocks of π. For example:

$$
(13)(245) \cdot\{\{2,5,3\},\{1\},\{4,6\}\}=\{\{4,2,1\},\{3\},\{5,6\}\} .
$$

Define the fixing subgroup Fix $_{\pi}$ of a partition $\pi \in \mathbb{P}_{n}$ to consist of all permutations that carry each block of π into itself:

$$
\begin{equation*}
\operatorname{Fix}_{\pi}=\left\{s \in S_{n}: s(B)=B \quad \text { for all } B \in \pi\right\} \tag{6.20}
\end{equation*}
$$

Theorem 6.3.1 The mapping

$$
\begin{equation*}
\text { Fix }: \mathbb{P}_{n} \rightarrow\left\{\text { subgroups of } S_{n}\right\}: \pi \mapsto \operatorname{Fix}_{\pi} \tag{6.21}
\end{equation*}
$$

is injective and order-preserving when the subgroups of S_{n} are ordered by inclusion. The mapping Fix from \mathbb{P}_{n} to its image inside the lattice of subgroups of S_{n} is an isomorphism:

$$
\text { Fix }_{\pi_{1}} \subset \mathrm{Fix}_{\pi_{2}} \text { if and only if } \pi_{1} \leq \pi_{2} .
$$

Furthermore, Fix also preserves the lattice operations:

$$
\begin{align*}
& \operatorname{Fix}_{\pi_{1} \wedge \pi_{2}}=\operatorname{Fix}_{\pi_{1}} \cap \operatorname{Fix}_{\pi_{2}} \\
& \operatorname{Fix}_{\pi_{1} \vee \pi_{2}}=\text { the subgroup generated by } \operatorname{Fix}_{\pi_{1}} \text { and } \text { Fix }_{\pi_{2}}, \tag{6.22}
\end{align*}
$$

for all $\pi_{1}, \pi_{2} \in \mathbb{P}_{n}$.
There is an isomorphism of groups

$$
\begin{equation*}
\operatorname{Fix}_{\pi} \rightarrow S_{\lambda_{1}(\pi)} \times \ldots \times S_{\lambda_{m}(\pi)} \tag{6.23}
\end{equation*}
$$

where $\left(\lambda_{1}(\pi), \ldots, \lambda_{m}(\pi)\right)$ is the shape of π. In particular, Fix_{π} is generated by the transpositions it contains.

Proof. A partition π is recovered from the fixing subgroup Fix_{π} as the set of orbits of Fix_{π} in $[n]$. Hence, $\pi \mapsto \mathrm{Fix}_{\pi}$ is injective.

Suppose $\pi_{1} \leq \pi_{2}$ in \mathbb{P}_{n}. Then any $B \in \pi_{2}$ is a union of blocks $B_{1}, \ldots, B_{k} \in$ π_{1} and so $s(B)$ is the union $s\left(B_{1}\right) \cup \ldots \cup s\left(B_{k}\right)$ for any $s \in S_{n}$; thus, $s(B)=B$ if $s \in \operatorname{Fix}_{\pi_{1}}$. Hence, $\operatorname{Fix}_{\pi_{1}} \subset \operatorname{Fix}_{\pi_{2}}$.

Conversely, suppose $\operatorname{Fix}_{\pi_{1}} \subset \operatorname{Fix}_{\pi_{2}}$, and B is any block of π_{2}; then every $s \in \mathrm{Fix}_{\pi_{1}}$ maps B into itself and so B is a union of blocks of π_{1}.

Let $s \in \operatorname{Fix}_{\pi_{1}} \cap \mathrm{Fix}_{\pi_{2}}$, and consider any block $B \in \pi_{1} \wedge \pi_{2}$. Then $B=$ $B_{1} \cap B_{2}$, for some $B_{1} \in \pi_{1}$ and $B_{2} \in \pi_{2}$, and so $s(B)=s\left(B_{1}\right) \cap s\left(B_{2}\right)=$ $B_{1} \cap B_{2}=B$. Hence, $\operatorname{Fix}_{\pi_{1}} \cap \operatorname{Fix}_{\pi_{2}} \subset \operatorname{Fix}_{\pi_{1} \wedge \pi_{2}}$. The reverse inclusion follows from the fact that Fix is order-preserving.

We turn next to (6.23). Let B_{1}, \ldots, B_{m} be the blocks of a partition π, and let $S_{B_{j}}$ be the group of permutations of the set B_{j}; then

$$
\mathrm{Fix}_{\pi} \rightarrow \prod_{j=1}^{m} S_{B_{j}}: s \mapsto\left(s\left|B_{1}, \ldots, s\right| B_{m}\right)
$$

is clearly an isomorphism. Since each $S_{B_{j}} \simeq S_{\left|B_{j}\right|}$ is generated by its transpositions, so is Fix_{π}.

Now consider a transposition $(a b) \in \operatorname{Fix}_{\pi_{1} \vee \pi_{2}}$. If $\{a, b\}$ is in a block of π_{1} or π_{2} then s is in $\mathrm{Fix}_{\pi_{1}}$ or $\mathrm{Fix}_{\pi_{2}}$. Suppose next that $a \in B_{1} \in \pi_{1}$ and $b \in B_{2} \in \pi_{2}$. Now two elements lie in the same block of $\pi_{1} \vee \pi_{2}$ if and only if there is a sequence of elements starting from one and ending with the other:

$$
a=i_{1}, i_{2}, \ldots, i_{r}=b
$$

with consecutive terms in the sequence always in the same block of either π_{1} or of π_{2}. Consequently,

$$
\left(i_{k} i_{k+1}\right) \in \operatorname{Fix}_{\pi_{1}} \cup \operatorname{Fix}_{\pi_{2}} \quad \text { for all } k \in\{1, \ldots, r-1\} .
$$

Let F be the subgroup of S_{n} generated by $\mathrm{Fix}_{\pi_{1}}$ and $\mathrm{Fix}_{\pi_{2}}$. Observe that

$$
\left(i_{1} i_{2}\right)\left(i_{2} i_{3}\right)\left(i_{1} i_{2}\right)=\left(i_{1} i_{3}\right) \in F
$$

and then

$$
\left(i_{1} i_{3}\right)\left(i_{3} i_{4}\right)\left(i_{1} i_{3}\right)=\left(i_{1} i_{4}\right) \in F
$$

and thus, inductively,

$$
(a b)=\left(i_{1} i_{r}\right) \in F .
$$

Hence, every transposition in $\mathrm{Fix}_{\pi_{1} \vee \pi_{2}}$ is in F. Since $\mathrm{Fix}_{\pi_{1} \vee \pi_{2}}$ is generated by its transpositions, it follows that $\mathrm{Fix}_{\pi_{1} \vee \pi_{2}}$ is a subset of F. The reverse inclusion holds simply because $\mathrm{Fix}_{\pi_{1}}$ and $\mathrm{Fix}_{\pi_{2}}$ are both subsets of $\mathrm{Fix}_{\pi_{1} \vee \pi_{2}}$. This completes the proof of the second part of 6.22 . QED

Recall from the proof of Theorem 6.2.1 how we can construct, for a partition $\pi \in \mathbb{P}_{n}$, a partition $\pi_{y c}$ of largest shape satisfying $\pi \wedge \pi_{y c}=\underline{0}$. If $\pi_{y c}^{\prime}$ is another such partition then a largest block C_{1} of $\pi_{y c}$ and a largest block C_{1}^{\prime} of $\pi_{y c}^{\prime}$ both contain exactly one element from each block of π; hence there is a permutation $s_{1} \in \mathrm{Fix}_{\pi}$, which is a product of one transposition each for each block of π, that maps C_{1}^{\prime} to C_{1}. Next, removing C_{1} and C_{1}^{\prime} from the picture, and arguing similarly for a next largest block C_{2} of $\pi_{y c}$ and a next largest block C_{2}^{\prime} of $\pi_{y c}^{\prime}$ we have a permutation, again a product transpositions preserving every block of π, that carries C_{2}^{\prime} to C_{2}. Proceeding in this way we produce a permutation $s \in S_{n}$ which fixes each block of π and carries $\pi_{y c}^{\prime}$ to $\pi_{y c}$, with C_{j} going over to $s\left(C_{j}\right)=C_{j}^{\prime}$. In summary:
Theorem 6.3.2 Let $\pi \in \mathbb{P}_{n}$, and suppose $\pi_{y c}, \pi_{y c}^{\prime} \in \mathbb{P}_{n}$ are Young complements of π :

$$
\begin{align*}
\pi \wedge \pi_{y c} & =\underline{0}=\pi \wedge \pi_{y c}^{\prime} \\
\lambda\left(\pi_{y c}\right) & =\lambda\left(\pi_{y c}^{\prime}\right)=\max \left\{\lambda\left(\pi_{1}\right): \pi \wedge \pi_{1}=\underline{0}\right\} . \tag{6.24}
\end{align*}
$$

Let C_{1}, \ldots, C_{m} be the distinct blocks of $\pi_{y c}$, ordered so that $\left|C_{1}\right| \geq \ldots \geq\left|C_{m}\right|$, and $C_{1}^{\prime}, \ldots, C_{m}^{\prime}$ the distinct blocks of $\pi_{y c}^{\prime}$ also listed in decreasing order of size. Then there exists an $s \in \mathrm{Fix}_{\pi}$ such that

$$
s\left(C_{j}\right)=C_{j}^{\prime} \quad \text { for all } j \in[m] .
$$

Conversely, if $s \in \mathrm{Fix}_{\pi}$ then $s\left(\pi_{y c}\right)$ is a Young complement of π.
Here is a useful consequence:
Theorem 6.3.3 Suppose $\pi_{y c}$ is a Young complement of $\pi \in \mathbb{P}_{n}$. Then, for any $s \in S_{n}$,

$$
\begin{align*}
& \operatorname{Fix}_{\pi} \cap s \operatorname{Fix}_{\pi_{y c}} s^{-1}=\{\iota\} \quad \text { if } s \in \operatorname{Fix}_{\pi} \operatorname{Fix}_{\pi_{y c}}, \text { and } \\
& \operatorname{Fix}_{\pi} \cap s \operatorname{Fix}_{\pi_{y c}} s^{-1} \neq\{\iota\} \quad \text { if } s \notin \operatorname{Fix}_{\pi} \operatorname{Fix}_{\pi_{y c}}, \tag{6.25}
\end{align*}
$$

where ι is the identity permutation. The group $\mathrm{Fix}_{\pi} \cap s \mathrm{Fix}_{\pi_{y c}} s^{-1}$, as with all fixing subgroups, is generated by the transpositions it contains.

Thus, if T is any Young tableau with n entries, and $s \in S_{n}$, then

$$
\begin{equation*}
C_{T} \cap s R_{T} s^{-1}=\{\iota\} \quad \text { if and only if } s \in C_{T} R_{T} \tag{6.26}
\end{equation*}
$$

where R_{T} is the fixing subgroup for $\operatorname{Rows}(T)$ and C_{T} is the fixing subgroup for $\operatorname{Cols}(T)$. The group $C_{T} \cap s R_{T} s^{-1}$, if non-trivial, contains a transposition.

Proof. Let C_{1}, \ldots, C_{q} be the blocks of $\pi_{y c}$ in decreasing order of size; then $s\left(C_{1}\right), \ldots, s\left(C_{q}\right)$ are the blocks of $s\left(\pi_{y c}\right)$, also in decreasing order of size. From

$$
\operatorname{Fix}_{\pi \wedge s\left(\pi_{y c}\right)}=\operatorname{Fix}_{\pi} \cap s \operatorname{Fix}_{\pi_{y c}} s^{-1}
$$

we see that this subgroup is trivial if and only if $\pi \wedge s\left(\pi_{y c}\right)$ is $\underline{0}$. Thus, this condition means $s\left(\pi_{y c}\right)$, which has the same shape as $\pi_{y c}$, is also a Young complement of π. By Theorem 6.3.2 this holds if and only if there is an element $s_{1} \in \mathrm{Fix}_{\pi}$ such that $s_{1} s\left(C_{j}\right)=C_{j}$ for each $j \in[q]$. The latter means $s_{1} s$ is in the fixing subgroup of $\pi_{y c}$, and so the condition $\mathrm{Fix}_{\pi} \cap s \mathrm{Fix}_{\pi_{y c}} s^{-1}=$ $\{\iota\}$ is equivalent to $s=s_{1}^{-1} s_{2}$ for some $s_{1} \in \operatorname{Fix}_{\pi}$ and $s_{2} \in \operatorname{Fix}_{\pi_{y c}}$. This establishes (6.25). The result (6.26) follows by specializing to $\pi=\operatorname{Rows}(T)$ and $\pi_{y c}=\operatorname{Cols}(T)$. QED

6.4 Conjugacy Classes to Young Tableaux

Any element in S_{n} can be expressed as a product of a unique set of disjoint cycles:

$$
\left(a_{11}, \ldots, a_{1 \lambda_{1}}\right) \ldots\left(a_{m 1}, \ldots, a_{m \lambda_{m}}\right)
$$

where the $a_{i j}$ are distinct and run over $\{1, \ldots, n\}$. This permutation thus specifies a partition

$$
\left(\lambda_{1}, \ldots, \lambda_{m}\right)
$$

of n into positive integers $\lambda_{1}, \ldots, \lambda_{m}$:

$$
\lambda_{1}+\cdots+\lambda_{m}=n .
$$

To make things definite, we require that

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m}
$$

The set of all such shapes $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is naturally identifiable as the quotient

$$
\begin{equation*}
\overline{\mathbb{P}}_{n} \simeq \mathbb{P}_{n} / S_{n} \tag{6.27}
\end{equation*}
$$

This delineates the distinction between partitions of n and partitions of $[n]$.
Two permutations are conjugate if and only if they have the same cycle structure. Thus, the conjugacy classes of S_{n} correspond one to one to partitions of n.

The group S_{n} acts on the set of Youngtabs corresponding to each partition of n; viewing a Young tableau as a mapping T as in (6.15) the action is defined by composition with permutations:

$$
S_{n} \times \mathbb{T}_{n} \rightarrow \mathbb{T}_{n}:(\sigma, T) \mapsto \sigma \circ T
$$

For example:

For a tableau T, Young introduced two subgroups of S_{n} :

$$
\begin{align*}
& R_{T}=\left\{\text { all } p \in S_{n} \text { that preserve each row of } T\right\} \\
& C_{T}=\left\{\text { all } q \in S_{n} \text { that preserve each column of } T\right\} . \tag{6.28}
\end{align*}
$$

If we think in terms of the natural action of S_{n} on the set \mathbb{P}_{n} of partitions of $[n], R_{T}$ is the fixing subgroup of the element $\operatorname{Rows}(T) \in \mathbb{P}_{n}$ and C_{T} is the fixing subgroup of $\operatorname{Cols}(T) \in \mathbb{P}_{n}$.

6.5 Young Tableaux to Young Symmetrizers

The Young symmetrizer for a Youngtab T is the element

$$
\begin{equation*}
y_{T} \stackrel{\text { def }}{=} c_{T} r_{T}=\sum_{q \in C_{T}, p \in R_{T}}(-1)^{q} q p \in \mathbb{Z}\left[S_{n}\right], \tag{6.29}
\end{equation*}
$$

where

$$
\begin{align*}
c_{T} & =\sum_{q \in C_{T}}(-1)^{q} q \\
r_{T} & =\sum_{p \in R_{T}} p \tag{6.30}
\end{align*}
$$

We have used, and will use, the notation

$$
(-1)^{q}=\epsilon(q) .
$$

Observe that R_{T} acts with the trivial representation on the one dimensional space $\mathbb{Q} r_{T}$, and C_{T} acts through the representation $\epsilon \mid C_{T}$ on the one dimensional space $\mathbb{Q} c_{T}$. Indeed, c_{T} and r_{T} are, up to scalar multiples, idempotents
in $\mathbb{Q}\left[S_{n}\right]$. Frobenius constructed y_{T} from c_{T} and r_{T} and showed that a certain scalar multiple of y_{T} is an indecomposable idempotent in $\mathbb{Q}\left[S_{n}\right]$.

Here is a formal statement of some of the basic obervations about r_{T}, c_{T}, and y_{T} :

Proposition 6.5.1 Let T be any Young tableau T with n entries. Then

$$
\begin{align*}
& q y_{T}=(-1)^{q} y_{T} \quad \text { if } q \in C_{T} \tag{6.31}\\
& y_{T} p=y_{T} \quad \text { if } p \in R_{T}
\end{align*}
$$

The row group R_{T} and column group C_{T} have trivial intersection:

$$
\begin{equation*}
R_{T} \cap C_{T}=\{\iota\}, \tag{6.32}
\end{equation*}
$$

where, as usual, ८ denotes the identity permutation. Consequently, each element in the set

$$
C_{T} R_{T}=\left\{q p: q \in C_{T}, p \in R_{T}\right\}
$$

can be expressed in the form qp for a unique pair $(q, p) \in C_{T} \times R_{T}$. For any $s \in S_{n}$, the row and column symmetry groups behave as:

$$
\begin{equation*}
R_{s T}=s R_{T} s^{-1}, \quad \text { and } \quad C_{s T}=s C_{T} s^{-1} \tag{6.33}
\end{equation*}
$$

and the Young symmetrizer transforms to a conjugate:

$$
\begin{equation*}
y_{s T}=s y_{T} s^{-1} \tag{6.34}
\end{equation*}
$$

We leave the proof as Exercise 6.1.

6.6 Youngtabs to Irreducible Representations

We denote by $\iota \in S_{n}$ the identity permutation. Let R be any ring; then there is the 'trace functional'

$$
\operatorname{Tr}_{0}: R\left[S_{n}\right] \rightarrow R: x=\sum_{s \in S_{n}} x_{s} s \mapsto x_{\iota}
$$

Theorem 6.6.1 Let T be a Young tableau for $n \in\{2,3, \ldots\}$. Then, for the Young symmetrizer $y_{T} \in \mathbb{Z}\left[S_{n}\right]$, the trace $\operatorname{Tr}_{0}\left(y_{T}^{2}\right)$ is a positive integer γ_{T}, dividing n !. The element $e_{T}=\frac{1}{\gamma_{T}} y_{T}$ is an indecomposable idempotent
in $\mathbb{Q}\left[S_{n}\right]$. The corresponding irreducible representation space $\mathbb{Q}\left[S_{n}\right] y_{T}$ has dimension d_{T} given by

$$
\begin{equation*}
d_{T}=\frac{n!}{\gamma_{T}} \tag{6.35}
\end{equation*}
$$

There are elements $v_{1}, \ldots, v_{d_{T}} \in \mathbb{Z}\left[S_{n}\right] y_{T}$ that form a \mathbb{Q}-basis of $\mathbb{Q}\left[S_{n}\right] y_{T}$.
Proof. The indecomposability criterion in Proposition 4.10.1 will be our key tool.

To simplify the notation in the proof, we drop all subscripts indicating the fixed tableau T; thus, we write y instead of y_{T}.

Fix $t \in S_{n}$, and let

$$
\begin{equation*}
z=y t y \tag{6.36}
\end{equation*}
$$

Our first objective is to prove that z is an integer multiple of y.
Observe that

$$
\begin{equation*}
q z p=(-1)^{q} z \quad \text { for all } p \in R_{T} \text { and } q \in C_{T} \tag{6.37}
\end{equation*}
$$

because $q y=(-1)^{q} y$ and $y p=y$. Writing z as

$$
z=\sum_{s \in S_{n}} z_{s} s
$$

where each z_{s} is an integer, we see that, for $q \in C_{T}$ and $p \in R_{T}$,

$$
z_{q p}=\text { coeff. of } \iota \text { in } q^{-1} z p^{-1}=(-1)^{q} z_{\iota}
$$

Using this, we can express z as

$$
\begin{equation*}
z=z_{\iota} y+\sum_{s \notin C_{T} R_{T}} z_{s} s \tag{6.38}
\end{equation*}
$$

Next we show that the second term on the right is 0 . For this we recall from Theorem 6.3.3 that if $s \notin C_{T} R_{T}$ then $C_{T} \cap s R_{T} s^{-1}$ is non-trivial, and hence contains some transposition τ; thus:

If $s \notin C_{T} R_{T}$ then there are transpositions $\sigma \in R_{T}$ and $\tau \in C_{T}$ such that

$$
\begin{equation*}
\tau^{-1} s \sigma^{-1}=s \tag{6.39}
\end{equation*}
$$

Consequently:

$$
(\tau z \sigma)_{s}=z_{s}
$$

But since $\tau \in C_{T}$ and $\sigma \in R_{T}$ we have

$$
\tau z \sigma=(-1)^{\tau} z=-z
$$

from which, specializing to the coefficient of s, we have

$$
(\tau z \sigma)_{s}=-z_{s} .
$$

Hence

$$
z_{s}=0 \quad \text { if } s \notin C_{T} R_{T} .
$$

Looking back at (6.38), we conclude that

$$
\begin{equation*}
z=z_{\iota} y . \tag{6.40}
\end{equation*}
$$

Recalling the definition of z in (6.36), we see then that $y t y$ is an integer multiple of y for every $t \in S_{n}$. Consequently,

$$
\begin{equation*}
y x y \text { is a } \mathbb{Q} \text {-multiple of } y \text { for every } x \in \mathbb{Q}\left[S_{n}\right] \text {. } \tag{6.41}
\end{equation*}
$$

Specializing to the case $t=\iota$, we have

$$
\begin{equation*}
y y=\gamma y, \tag{6.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\left(y^{2}\right)_{\iota} \tag{6.43}
\end{equation*}
$$

In particular, the multiplier γ is an integer. We will show shortly that γ is a positive integer dividing n !. Then

$$
\begin{equation*}
e \stackrel{\text { def }}{=} \gamma^{-1} y \tag{6.44}
\end{equation*}
$$

is well defined and is clearly an idempotent in $\mathbb{Q}\left[S_{n}\right]$. By (6.41), exe is a \mathbb{Q}-multiple of e for all $x \in \mathbb{Q}\left[S_{n}\right]$. Hence by the indecomposablity criterion in Proposition 4.10.1, e is an indecomposable idempotent.

It remains to prove that γ is a positive integer dividing n !. The \mathbb{Q}-linear map

$$
\begin{equation*}
T_{y}: \mathbb{Q}\left[S_{n}\right] \rightarrow \mathbb{Q}\left[S_{n}\right]: a \mapsto a y \tag{6.45}
\end{equation*}
$$

acts on the subspace $\mathbb{Q}\left[S_{n}\right] y$ by multiplication by the constant γ. Moreover, T_{y} maps any complementary subspace to $\mathbb{Q}\left[S_{n}\right] y$ (indeed, its entire domain) into $\mathbb{Q}\left[S_{n}\right] y$. Consequently,

$$
\begin{equation*}
\operatorname{Tr}\left(T_{y}\right)=\gamma \operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[S_{n}\right] y\right) \tag{6.46}
\end{equation*}
$$

On the other hand, in terms of the standard basis of $\mathbb{Q}\left[S_{n}\right]$ given by the elements of S_{n}, the trace of T_{y} is

$$
\begin{equation*}
\operatorname{Tr}\left(T_{y}\right)=n!y_{\iota}=n! \tag{6.47}
\end{equation*}
$$

since, from the definition of y it is clear that

$$
y_{\iota}=1
$$

Thus,

$$
\begin{equation*}
\gamma \operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q}\left[S_{n}\right] y\right)=n! \tag{6.48}
\end{equation*}
$$

Hence γ is a positive integer dividing $n!$.
To finish up, note that the elements $t y$, with t running over S_{n}, span $\mathbb{Z}\left[S_{n}\right] y$. Consequently, a subset of them form a \mathbb{Q}-basis of the vector space $\mathbb{Q}\left[S_{n}\right] y$. QED

We can upgrade to a general field. If \mathbb{F} is any field, there is the natural ring homomorphism

$$
\mathbb{Z} \rightarrow \mathbb{F}: m \mapsto m_{\mathbb{F}} \stackrel{\text { def }}{=} m 1_{\mathbb{F}},
$$

which is injective if \mathbb{F} has characteristic 0 , and which induces an injection of $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$ onto the image $\mathbb{Z}_{\mathbb{F}}$ of \mathbb{Z} in \mathbb{F} if the characteristic of \mathbb{F} is $p \neq 0$. To avoid too much notational distraction, we often sacrifice precision and denote $m 1_{\mathbb{F}}$ as simply m instead of $m_{\mathbb{F}}$, bearing in mind that this might be the 0 element in \mathbb{F}. This induces a homomorphism of the corresponding group rings:

$$
\mathbb{Z}\left[S_{n}\right] \rightarrow \mathbb{F}\left[S_{n}\right]: a \mapsto a_{\mathbb{F}},
$$

for every $n \in\{1,2, \ldots\}$. Again, we often simply write a instead of $a_{\mathbb{F}}$. For instance, the image of the Young symmetrizer $y_{T} \in \mathbb{Z}\left[S_{n}\right]$ in $\mathbb{F}\left[S_{n}\right]$ is denoted simply by y_{T} in the statement of the following result.

Theorem 6.6.2 Let $n \in\{2,3, \ldots\}$ and \mathbb{F} a field in which $n!\neq 0$. Let T be a Young tableau for n. Then $\gamma_{T}=\operatorname{Tr}_{0}\left(y_{T}^{2}\right)$ is not zero in \mathbb{F}, and the element $e_{T}=\frac{1}{\gamma_{T}} y_{T}$, viewed as an element in $\mathbb{F}\left[S_{n}\right]$, is an indecomposable idempotent. The corresponding representation space $\mathbb{F}\left[S_{n}\right] y_{T}$ has dimension $d_{\mathbb{F}, T}$ which satisfies

$$
\begin{equation*}
d_{\mathbb{F}, T} 1_{\mathbb{F}}=\frac{n!}{\gamma_{T}} 1_{\mathbb{F}} \tag{6.49}
\end{equation*}
$$

If \mathbb{F} has characteristic 0 then

$$
\begin{equation*}
d_{\mathbb{F}, T}=d_{T}=\frac{n!}{\gamma_{T}} \tag{6.50}
\end{equation*}
$$

does not depend on the field \mathbb{F}.
Proof. The argument is essentially a rerun of the proof of Theorem 6.6.1, mostly making sure we don't divide by 0 anywhere. In place of (6.41) we have now

$$
\begin{equation*}
y_{T} x y_{T} \text { is an } \mathbb{F} \text {-multiple of } y_{T} \text { for every } x \in \mathbb{F}\left[S_{n}\right] . \tag{6.51}
\end{equation*}
$$

This again implies that $e_{T}=\gamma_{T}^{-1} y_{T}$ is an indecomposable idempotent, provided we make sure $\gamma_{T}=\operatorname{Tr}_{0}\left(y_{T}^{2}\right)$ isn't 0 in \mathbb{F}. But γ_{T} is a divisor of n !, and hence is indeed $\neq 0$ in \mathbb{F}. Lastly, writing y for y_{T} and arguing as in (6.47), we work out the trace of

$$
\begin{equation*}
T_{y}: \mathbb{F}\left[S_{n}\right] \rightarrow \mathbb{F}\left[S_{n}\right]: a \mapsto a y \tag{6.52}
\end{equation*}
$$

to be

$$
\begin{equation*}
\operatorname{Tr}\left(T_{y}\right)=n!y_{\iota}=n! \tag{6.53}
\end{equation*}
$$

by one count, and equal to $\gamma_{T} \operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}\left[S_{n}\right] y\right)$ by another count; this shows that $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{F}\left[S_{n}\right] y\right)$ equals $n!/ \gamma_{T}$, both viewed as elements of \mathbb{F}. QED

6.7 Youngtab Apps

There is a whole jujitsu of Young tableau combinatorics which yield a powerful show of results. Here we go through just a few of these moves, extracting three 'apps' that are often used. The standard, intricate and efficient, pathway to the results is from Weyl [76] who appears to credit von Neumann for this approach. We include alternative insights by way of proofs based on the viewpoint of partitions.

Proposition 6.7.1 For Youngtabs T and T^{\prime}, each with n entries, if $\lambda\left(T^{\prime}\right)>$ $\lambda(T)$ in lexicographic order, then:
(i) there are two entries that both lie in one row of T^{\prime} and in one column of T as well.
(ii) there exists a transposition σ lying in $R_{T^{\prime}} \cap C_{T}$.

In the language of partitions, if $\lambda\left(T^{\prime}\right)>\lambda(T)$ then $\operatorname{Cols}(T) \wedge \operatorname{Rows}\left(T^{\prime}\right) \neq \underline{0}$, and the nontrivial group

$$
\begin{equation*}
R_{T^{\prime}} \cap C_{T}=\operatorname{Fix}_{\operatorname{Cols}(T) \wedge \operatorname{Rows}\left(T^{\prime}\right)} \tag{6.54}
\end{equation*}
$$

is generated by the transpositions it contains.
Proof. Recall from Theorem 6.2.1 that the Young complement Rows (T) of $\operatorname{Cols}(T)$ is the partition of largest shape among all $\pi_{1} \in \mathbb{P}_{n}$ for which $\operatorname{Cols}(T) \wedge \pi_{1}=\underline{0}$. Now $\lambda\left(T^{\prime}\right)>\lambda(T)$ means that the shape of $\operatorname{Rows}\left(T^{\prime}\right)$ is larger than the shape of $\operatorname{Rows}(T)$, and so

$$
\operatorname{Cols}(T) \wedge \operatorname{Rows}\left(T^{\prime}\right) \neq \underline{0}
$$

This just means that there is a column of T which intersects some row of T^{\prime} in more than one element. Let i and j be two such elements. Then the transposition $(i j)$ lies in both $R_{T^{\prime}}$ and C_{T}. Theorem 6.3.1 implies that the fixing subgroup (6.54) is generated by transpositions. QED

Here is the more traditional argument:
Traditional Proof. Write λ^{\prime} for $\lambda\left(T^{\prime}\right)$, and λ for $\lambda(T)$. Suppose λ^{\prime} wins over λ right out in row 1: $\lambda_{1}^{\prime}>\lambda_{1}$. Now $\lambda_{1}(S)$ is not just the number of entries in row 1 of a Young tableau S, it is also the number of columns of S. Therefore, there must exist two entries in the first row of T^{\prime} that lie in the same column of T. Next suppose $\lambda_{1}^{\prime}=\lambda_{1}$, and the elements of the first row of T^{\prime} are distributed over different columns of T. Then we move these elements 'vertically' in T all to the first row, obtaining a tableau T_{1} whose first row is a permutation of the first row of T^{\prime}. Having used only vertical moves, we have $T_{1}=q_{1} T$, for some $q_{1} \in C_{T}$. We can replay the game now, focusing on row 2 downwards. Compare row 2 of T^{\prime} with that of T_{1}. Again, if the rows are of equal length then there is a vertical move in T_{1} (which is therefore also a vertical move in T, because $C_{q_{1} T}=C_{T}$) which produces a tableau $T_{2}=q_{2} q_{1} T$, with $q_{2} \in C_{T}$, whose first row is the same as that of T_{1}, and whose second row is a permutation of the second row of T^{\prime}. Proceeding this way, we reach the first j for which the j-th row of T^{\prime} has more elements than the j-th row of T. Then each of the first $j-1$ rows of T^{\prime} is a permutation of the corresponding row of T_{j-1}; focusing on the Youngtabs made up of the remaining rows, recycling the argument we used for row 1, we see that there
are two elements in the j-th row of T^{\prime} that lie a single column in T_{j-1}. Since the columns of T_{j-1} are, as sets, identical to those of T, we are done with proving (i). Now, for (ii), suppose a and b are distinct entries lying in one row of T^{\prime} and in one column of T; then the transposition $(a b)$ lies in $R_{T^{\prime}} \cap C_{T}$. QED

The next result says what happens with Youngtabs for a common partition.

Proposition 6.7.2 Let T and T^{\prime} be Young tableaux associated to a common partition λ. Let s be the element of S_{n} for which $T^{\prime}=s T$. Then:
(i) $s \notin C_{T} R_{T}$ if and only if there are two elements that are in one row of T^{\prime} and also in one column of T;
(ii) $s \notin C_{T} R_{T}$ if and only if there is a transposition $\sigma \in R_{T}$ and a transposition $\tau \in C_{T}$, for which

$$
\begin{equation*}
\tau s \sigma=s \tag{6.55}
\end{equation*}
$$

Conclusion (i), stated in terms of the row and column partitions, says that Rows $(s T)$ and $\operatorname{Cols}(T)$ are Young complements of each other if and only if $s \in C_{T} R_{T}$.

Proof. The condition that there does not exist two elements that are in one row of $T^{\prime}=s T$ and also in one column of T means that

$$
\operatorname{Rows}\left(T^{\prime}\right) \wedge \operatorname{Cols}(T)=\underline{0}
$$

which, since T^{\prime} and T have the same shape, means that $\operatorname{Rows}\left(T^{\prime}\right)$ is a Young complement of $\operatorname{Cols}(T)$. From Theorem 6.3.2, $\operatorname{Rows}\left(T^{\prime}\right)$ is a Young complement for $\operatorname{Cols}(T)$ if and only if $s_{1} \operatorname{Rows}\left(T^{\prime}\right)=\operatorname{Rows}(T)$ for some $s_{1} \in \operatorname{Fix}_{\operatorname{Cols}(T)}$. Since $\operatorname{Rows}\left(T^{\prime}\right)=s \operatorname{Rows}(T)$, the condition is thus equivalent to:

$$
\text { there exists } s_{1} \in \operatorname{Fix}_{\operatorname{Cols}(T)} \text { for which } s_{1} s \in \operatorname{Fix}_{\operatorname{Rows}(T)} \text {. }
$$

Thus, the condition that $\operatorname{Cols}\left(T^{\prime}\right)$ is a Young complement to $\operatorname{Rows}(T)$ is equivalent to $s \in \operatorname{Fix}_{\operatorname{Cols}(T)} \operatorname{Fix}_{\operatorname{Rows}(T)}=C_{T} R_{T}$.

For (ii), recall that

$$
\begin{align*}
\operatorname{Fix}_{\operatorname{Cols}(T) \wedge \operatorname{Rows}(s T)} & =\operatorname{Fix}_{\operatorname{Cols}(T)} \cap \operatorname{Fix}_{\operatorname{Rows}(s T)} \\
& =\operatorname{Fix}_{\operatorname{Cols}(T)} \cap s \operatorname{Fix}_{\operatorname{Rows}(T)} s^{-1} \tag{6.56}\\
& =C_{T} \cap s R_{T} s^{-1}
\end{align*}
$$

and the fixing subgroups are generated by the transpositions they contain. Therefore, $\operatorname{Cols}(T)$ and $\operatorname{Rows}(s T)$ are not Young complements if and only if there exists a transposition $\tau \in C_{T}$ such that $\sigma=s^{-1} \tau s$ is in R_{T}; being conjugate to a transposition, σ is also a transposition. QED

Here is a proof which bypasses the structure we have built about partitions:
Traditional Proof. Suppose that $s=q p$, with $q \in C_{T}$ and $p \in R_{T}$. Consider two elements $s(i)$ and $s(j)$, with $i \neq j$, lying in the same row of T^{\prime} :

$$
T_{a b}^{\prime}=s(i), \quad T_{a c}^{\prime}=s(j)
$$

Thus, i and j lie in the same row of T :

$$
T_{a b}=i, \quad T_{a c}=j
$$

The images $p(i)$ and $p(j)$ are also from the same row of T (hence different columns) and then $q p(i)$ and $q p(j)$ would be in different columns of T. Thus the entries $s(i)$ and $s(j)$, lying in the same row in T^{\prime}, lie in different columns of T.

Conversely, suppose that if two elements lie in the same row of T^{\prime} then they lie in different columns of T. We will show that the permutation $s \in S_{n}$ for which $T^{\prime}=s T$ has to be in $C_{T} R_{T}$. Bear in mind that the sequence of row lengths for T^{\prime} is the same as for T. The elements of row 1 of T^{\prime} are distributed over distinct columns of T. Therefore, by moving these elements vertically we can bring them all to the first row. This means that there is an element $q_{1} \in C_{T}$ such that $T_{1}=q_{1} T$ and T^{\prime} have the same set of elements for their first rows. Next, the elements of the second row of T^{\prime} are distributed over distinct columns in T, and hence also in $T_{1}=q_{1} T$. Hence there is a vertical move

$$
q_{2} \in C_{q_{1} T}=C_{T},
$$

for which $T_{2}=q_{2} T_{1}$ and T^{\prime} have the same set of first row elements and also the same set of second row elements.

Proceeding in this way, we obtain a $q \in C_{T}$ such that each row of T^{\prime} is equal, as a set, to the corresponding row of $q T$:

$$
\left\{T_{a b}^{\prime}: 1 \leq b \leq \lambda_{a}\right\}=\left\{q\left(T_{a b}\right): 1 \leq b \leq \lambda_{a}\right\}, \quad \text { for each } a
$$

But then we can permute horizontally: for each fixed a, permute the numbers $T_{a b}$ so that the $q\left(T_{a b}\right)$ match the $T_{a b}^{\prime}$. Thus, there is a $p \in R_{T}$, such that

$$
T^{\prime}=q p(T)
$$

Thus,

$$
s=q p \in C_{T} R_{T}
$$

We turn to proving (ii). Suppose $s \notin C_{T} R_{T}$. Then, by (i), there is a row a, and two entries $i=T_{a b}$ and $j=T_{a c}$, whose images $s(i)$ and $s(j)$ lie in a common column of T. Let $\sigma=(i j)$ and $\tau=(s(i) s(j))$. Then $\sigma \in R_{T}$, $\tau \in C_{T}$, and

$$
\tau s \sigma=s
$$

which is readily checked on i and j.
Conversely, suppose $\tau s \sigma=s$, where $\sigma=(i j) \in R_{T}$. Then i and j are in the same row of T, and so $s(i)$ and $s(j)$ are in the same row in T^{\prime}. Now $s(i)=\tau(s(j))$ and $s(j)=\tau(s(i))$. Since $\tau \in C_{T}$ it follows that $s(i)$ and $s(j)$ are in the same column of T. QED

A Young tableau is standard if the entries in each row are in increasing order, left to right, and the numbers in each column are also in increasing order, top to bottom. For example:

\[

\]

Such a tableau must, of necessity, start with 1 at the top left box, and each new row begins with the smallest number not already listed in any of the preceding rows. Numbers lying directly 'south', directly 'east', and southeast of a given entry are larger than this entry, and those to the north, west, and northwest are lower.

In general, the boxes of a tableau are ordered in 'book order': read the boxes left to right along a row and then move down to the next row.

The Youngtabs, for a given partition, can be linearly ordered: if T and T^{\prime} are standard, we declare that

$$
T^{\prime}>T
$$

if the first entry $T_{a b}$ of T that is different from the corresponding entry $T_{a b}^{\prime}$ of T^{\prime} satisfies $T_{a b}<T_{a b}^{\prime}$. The tableaux for a given partition can then be written in increasing/decreasing order. Here is how it looks for some partitions of 3:

For the partition $(2,1)$ the Youngtabs descend as:

$$
\begin{array}{|l|l|}
\hline 3 & 2 \\
\hline 1 & \left.>\begin{array}{|l|l|}
\hline 3 & 1 \\
\hline 2 &
\end{array}>\begin{array}{|l|l}
\hline 2 & 3 \\
\hline 1 &
\end{array}>\begin{array}{|l|l|}
\hline 2 & 1 \\
\hline 3 &
\end{array} \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 &
\end{array} \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array} \right\rvert\, \\
\hline
\end{array}
$$

With this ordering we have the following result which states a condition for Young complementarity in terms of Youngtabs, not the partitions:

Proposition 6.7.3 If T and T^{\prime} are standard Young tableaux with a common partition, and $T^{\prime}>T$, then there are two entries in some row of T^{\prime} that lie in one column of T. Consequently, there exists a transposition σ lying in $R_{T} \cap C_{T^{\prime}}$.

Proof. Let $x=T_{a b}$ be the first entry of T that is less than the corresponding entry $y=T_{a b}^{\prime}$. The entry x appears somewhere in the tableau T^{\prime}. Because $a b$ is the first location where T differs from T^{\prime}, and $T_{a b}=x$, we see that x cannot appear prior to the location $T_{a b}^{\prime}$. But x being $<y=T_{a b}^{\prime}$, it can also not appear directly south, east, or southeast of $T_{a b}^{\prime}$. Thus, x must appear in T^{\prime} in a row below the a-th row and in a column $c<b$. Thus, the numbers $T_{a c}$ (which equals $T_{a c}^{\prime}$) and $T_{a b}=x$, appearing in the a-th row of T, appear in the c-th column of T^{\prime}. QED

6.8 Orthogonality

We have seen that Youngtabs correspond to irreducible representations of S_{n} via indecomposable idempotents. Which Youngtabs correspond to inequivalent representations? Here is the first step to answering this question:

Theorem 6.8.1 Suppose T and T^{\prime} are Young tableaux with n entries, where $n \in\{2,3, \ldots\}$; then

$$
\begin{equation*}
y_{T^{\prime}} y_{T}=0 \quad \text { if } \lambda\left(T^{\prime}\right)>\lambda(T) \text { in lexicographic order. } \tag{6.57}
\end{equation*}
$$

Proof. Suppose $\lambda\left(T^{\prime}\right)>\lambda(T)$. Then by Proposition 6.7.1, there is a transposition $\sigma \in R_{T^{\prime}} \cap C_{T}$. Then

$$
y_{T^{\prime}} y_{T}=y_{T^{\prime}} \sigma \sigma y_{T}=\left(y_{T^{\prime}}\right)\left(-y_{T}\right)=-y_{T^{\prime}} y_{T}
$$

Thus, $y_{T^{\prime}} y_{T}$ is 0 . QED
Here is the corresponding result for standard Youngtabs with common shape:

Theorem 6.8.2 If T and T^{\prime} are standard Young tableaux associated to a common partition of $n \in\{2,3, \ldots\}$, then

$$
\begin{equation*}
y_{T} y_{T^{\prime}}=0 \quad \text { if } T^{\prime}>T \tag{6.58}
\end{equation*}
$$

Proof. By Proposition 6.7.3, there is a transposition $\sigma \in R_{T} \cap C_{T^{\prime}}$. Then

$$
y_{T} y_{T^{\prime}}=y_{T} \sigma \sigma y_{T^{\prime}}=\left(y_{T}\right)\left(-y_{T^{\prime}}\right)=-y_{T} y_{T^{\prime}}
$$

and so $y_{T} y_{T^{\prime}}$ is 0 . QED

6.9 Deconstructing $\mathbb{F}\left[S_{n}\right]$

As a first consequence of orthogonality of the Young symmetrizers we are able to distinguish between inequivalent irreducible representations of S_{n} :

Theorem 6.9.1 Let T and T^{\prime} be Young tableaux with n entries. Let \mathbb{F} be a field in which $n!\neq 0$. Then the left ideals $\mathbb{F}\left[S_{n}\right] y_{T}$ and $\mathbb{F}\left[S_{n}\right] y_{T^{\prime}}$ in $\mathbb{F}\left[S_{n}\right]$ are isomorphic as $\mathbb{F}\left[S_{n}\right]$-modules if and only if T and T^{\prime} have the same shape.

Proof. Suppose first that $\lambda(T) \neq \lambda\left(T^{\prime}\right)$. Back in Proposition 4.10.1 we showed that, for any finite group G and field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$, idempotents y_{1} and y_{2} in $\mathbb{F}[G]$ generate non-isomorphic left ideals if $y_{1} \mathbb{F}[G] y_{2}=0$. Thus it will suffice to verify that $y_{T^{\prime}} s y_{T}$ is 0 for all $s \in S_{n}$. This is equivalent to checking that $y_{T^{\prime}} s y_{T} s^{-1}$ is 0 , which, by (6.34), is equivalent to $y_{T^{\prime}} y_{s T}$ being 0 . Since T^{\prime} and T have different shapes, we can assume that $\lambda\left(T^{\prime}\right)>\lambda(T)$. Then also $\lambda\left(T^{\prime}\right)>\lambda(s T)$, because $s T$ and T have, of course, the same shape. Then the orthogonality result (6.57) implies that $y_{T^{\prime}} y_{s T}$ is indeed 0 .

Now suppose T and T^{\prime} have the same shape. Then there is an $s \in S_{n}$ such that $T^{\prime}=s T$. Recall that $y_{s T}=s y_{T} s^{-1}$. So there is the mapping

$$
f: \mathbb{F}\left[S_{n}\right] y_{T} \rightarrow \mathbb{F}\left[S_{n}\right] y_{T^{\prime}}: v \mapsto v s^{-1}
$$

This is clearly $\mathbb{F}\left[S_{n}\right]$-linear as well as a bijection, and hence an isomorphism of $\mathbb{F}\left[S_{n}\right]$-modules. QED

Next, working with standard Youngtabs, we have the following consequence of orthogonality:

Theorem 6.9.2 If T_{1}, \ldots, T_{m} are all the standard Young tableaux associated to a common partition of n, then the sum $\sum_{j=1}^{m} \mathbb{F}\left[S_{n}\right] y_{T_{j}}$ is a direct sum, if the characteristic of \mathbb{F} does not divide n !.

Proof. Order the T_{j}, so that $T_{1}<T_{2}<\cdots<T_{m}$. Suppose $\sum_{j=1}^{m} \mathbb{F}\left[S_{n}\right] y_{T_{j}}$ is not a direct sum. Let r be the smallest element of $\{1, \ldots, n\}$ for which there exist $x_{j} \in \mathbb{F}\left[S_{n}\right] y_{T_{j}}$, for $j \in\{1, \ldots, r\}$, with $x_{r} \neq 0$, such that

$$
\sum_{j=1}^{r} x_{j}=0
$$

Multiplying on the right by $y_{T_{r}}$ produces

$$
\gamma_{T_{r}} x_{r}=0,
$$

because $y_{T_{r}}^{2}=\gamma_{T_{r}} y_{T_{r}}$, and $y_{T_{s}} y_{T_{r}}=0$ for $s<r$. Now $\gamma_{T_{r}}$ is a divisor of $n!$, and so $\gamma_{T_{r}}$ is not 0 in \mathbb{F}, and so

$$
x_{r}=0 .
$$

This contradiction proves that $\sum_{j=1}^{m} \mathbb{F}\left[S_{n}\right] y_{T_{j}}$ is a direct sum. QED
Finally, with all the experience and technology we have developed, we can take $\mathbb{F}\left[S_{n}\right]$ apart:

Theorem 6.9.3 Let $n \in\{2,3, \ldots\}$, and \mathbb{F} a field in which $n!1_{\mathbb{F}} \neq 0$. Denote by \mathbb{T}_{n} the set of all Young tableaux with n entries, and $\overline{\mathbb{P}}_{n}$ the set of all shapes of all partitions of n. Then for any $p \in \overline{\mathbb{P}}_{n}$, the sum

$$
\begin{equation*}
A(p)=\sum_{T \in \mathbb{T}_{n}, \lambda(T)=p} \mathbb{F}\left[S_{n}\right] y_{T} \tag{6.59}
\end{equation*}
$$

is a two sided ideal in $\mathbb{F}\left[S_{n}\right]$ that contains no other nonzero two sided ideal. The mapping

$$
\begin{equation*}
I: \prod_{p \in \overline{\mathbb{P}}_{n}} A(p) \rightarrow \mathbb{F}\left[S_{n}\right]:\left(a_{p}\right)_{p \in \overline{\mathbb{P}}_{n}} \mapsto \sum_{p \in \overline{\mathbb{P}}_{n}} a_{p} \tag{6.60}
\end{equation*}
$$

is an isomorphism of rings.

Take a look back to the remark made right after the statement of Theorem 5.2.1. From this remark and 6.59 it follows that there is a subset Sh_{p} of $T \in \mathbb{T}_{n}$, all with fixed shape p, for which the simple modules $\mathbb{F}\left[S_{n}\right] y_{T}$ form a direct sum decomposition of $A(p)$:

$$
\begin{equation*}
A(p)=\bigoplus_{T \in \mathrm{Sh}_{p}} \mathbb{F}\left[S_{n}\right] y_{T} \tag{6.61}
\end{equation*}
$$

Proof. It is clear that $A(p)$ is a left ideal. To see that it is a right ideal we simply observe that if $\lambda(T)=p$ then for any $s \in S_{n}$:

$$
\mathbb{F}\left[S_{n}\right] y_{T} s=\mathbb{F}\left[S_{n}\right] s s^{-1} y_{T} s=\mathbb{F}\left[S_{n}\right] y_{s^{-1} T} \subset A(p)
$$

where the last inclusion holds because $\lambda\left(s^{-1} T\right)=\lambda(T)=p$.
Now suppose p and p^{\prime} are different partitions of n. Then for any tableaux T and T^{\prime} with $\lambda(T)=p$ and $\lambda\left(T^{\prime}\right)=p^{\prime}$, Theorem 6.9.1 says that $\mathbb{F}\left[S_{n}\right] y_{T}$ is not isomorphic to $\mathbb{F}\left[S_{n}\right] y_{T^{\prime}}$, and so

$$
\mathbb{F}\left[S_{n}\right] y_{T} \mathbb{F}\left[S_{n}\right] y_{T^{\prime}}=0,
$$

because these two simple left ideals are not isomorphic (see Theorem 5.4.2, if you must). Consequently

$$
A(p) A\left(p^{\prime}\right)=0
$$

From this it follows that the mapping (6.60) preserves addition and multiplication.

For injectivity of I, let u_{p} be an idempotent generator of A_{p} for each $p \in \overline{\mathbb{P}}_{n}$. If

$$
\sum_{p \in \overline{\mathbb{P}}_{n}} a_{p}=0
$$

then multiplying on the right by u_{p} zeroes out all terms except the p-th, which remains unchanged at a_{p} and hence is 0 . Thus, I is injective.

On to surjectivity. It's time to recall (4.14); in the present context, it says that the number of non-isomorphic simple $\mathbb{F}\left[S_{n}\right]$-modules is at most the number of conjugacy classes in S_{n}, which is the same as $\left|P_{n}\right|$. So if L is any simple left ideal in $\mathbb{F}\left[S_{n}\right]$ then it must be isomorphic to any simple left ideal $\mathbb{F}\left[S_{n}\right] y_{T}$ lying inside $A(p)$, for exactly one $p \in \overline{\mathbb{P}}_{n}$, since such p are, of course, also $\left|\overline{\mathbb{P}}_{n}\right|$ in number. Then L is a right translate of this $\mathbb{F}\left[S_{n}\right] y_{T}$ and hence also lies inside $A(p)$. Therefore, the image of I is all of $\mathbb{F}\left[S_{n}\right]$.

Consequently, the image of I covers all of the group algebra $\mathbb{F}\left[S_{n}\right]$. QED
This is a major accomplishment. Yet there are tasks unfinished: what exactly is the value of the dimension of $\mathbb{F}\left[S_{n}\right] y_{T}$? And what is the character χ_{T} of the representation given by $\mathbb{F}\left[S_{n}\right] y_{T}$? We will revisit this place, enriched with more experience from a very different territory in Chapter 10, and gain an understanding of the character χ_{T}.

6.10 Integrality

Here is a dramatic consequence of our concrete picture of the representations of S_{n} through the modules $\mathbb{F}\left[S_{n}\right] y_{T}$:
Theorem 6.10.1 Suppose $\rho: S_{n} \rightarrow \operatorname{End}_{\mathbb{F}}(E)$ is any representation of S_{n} on a finite dimensional vector space E over a field \mathbb{F} of characteristic 0 , where $n \in\{2,3, \ldots\}$. Then there is a basis in E relative to which, for any $s \in S_{n}$, the matrix $\rho(s)$ has all entries integers. In particular, all characters of S_{n} are integers.

Proof. First, by decomposing into simple pieces, we may assume that E is an irreducible representation. Then, thanks to Theorem 6.9.3, we may further take $E=\mathbb{F}\left[S_{n}\right] y_{T}$, for some Youngtab T, and ρ the restriction ρ_{T} of the regular representation to this submodule of $\mathbb{F}\left[S_{n}\right]$.

The \mathbb{Z}-module $\mathbb{Z}\left[S_{n}\right] y_{T}$ is a submodule of the finitely generated free module $\mathbb{Z}\left[S_{n}\right]$, and hence is itself finitely generated and free (Theorem 12.5.1). Fix a \mathbb{Z}-basis $v_{1}, \ldots, v_{d_{T}}$ of $\mathbb{Z}\left[S_{n}\right] y_{T}$. Multiplication on the left by a fixed $s \in S_{n}$ is a \mathbb{Z}-linear map of $\mathbb{Z}\left[S_{n}\right] y_{T}$ into itself and so has matrix $M_{T}(s)$, relative to the basis $\left\{v_{i}\right\}$, having all entries in \mathbb{Z}. Now $1 \otimes v_{1}, \ldots, 1 \otimes v_{d_{T}}$ is an \mathbb{F}-basis for the vector space $\mathbb{F}\left[S_{n}\right] y_{T}=\mathbb{F} \otimes_{\mathbb{Z}} \mathbb{Z}\left[S_{n}\right] y_{T}$ (see Theorem 12.10.1). Hence the matrix for $\rho_{T}(s)$ is $M_{T}(s)$, which, as we noted, has all integer entries. QED

There is a more abstract reason, noted by Frobenius [28, §8], why characters of S_{n} have integer values: if $s \in S_{n}$ and k is prime to the order of s then s^{k} is conjugate to s. See Weintraub [75, Theorem 7.1] for more.

6.11 Rivals and Rebels

In contrast to our leisurely exploration, there are extremely efficient expositions of the theory of representations of S_{n}. Among these we mention the short and readable treament of Diaconis [21, Chapter 7] and the
characteristic-free development by James [49]. The long established order of Young tableaux has been turned on its side by the sudden appearance of a method propounded by Okounkov and Vershik [62]; the book of CeccheriniSilberstein, Scarabotti, and Tolli [11 is an extensive introduction to the Okounkov-Vershik theory, and a short self-contained exposition is available in the book of Hora and Obata [44, Chapter 9]. The study of Young tableaux is in itself an entire field which to the outsider has the feel of a secret society with a plethora of mysterious formulas, and rules and rituals with hyphenated parentage: the Murnaghan-Nakayama rule, the jeu de taquin of Schützenberger, the Littlewood-Richardson correspondence, the Robinson-Schensted-Knuth algorithm. An initiation may be gained from the book of Fulton [36] (and an internet search on Schensted is recommended). We have not covered the hook length formula that gives the dimension of irreducible representations of S_{n}; an unusual but simple proof of this formula is given by Glass and Ng [38].

6.12 Afterthoughts: Reflections

The symmetric group S_{n} is generated by transpositions, which are just the elements of order two in the group. There is a class of more geometric groups that are generated by elements of order two. These are groups generated by reflections in finite dimensional real vector spaces. In this section we will explore some aspects of such groups which resemble features we have studied for S_{n}.

Let E be a finite dimensional real vector space, equipped with an inner product $\langle\cdot, \cdot\rangle$. A hyperplane in E is a codimension one subspace of E; equivalently, it is a subspace perpendicular to some nonzero vector v :

$$
v^{\perp}=\{x \in E:\langle x, v\rangle=0\} .
$$

Reflection across this hyperplane is the linear map

$$
R_{v^{\perp}}: E \rightarrow E
$$

which fixes each point on v^{\perp} and maps v to $-v$:

$$
R_{v^{\perp}}(x)=x-2 \frac{\langle x, v\rangle}{\langle v, v\rangle} v \quad \text { for all } x \in E .
$$

A more elegant definition of reflection requires no inner product structure: a reflection across a codimension one subspace B in a general vector space V is a linear map $R: V \rightarrow V$ for which $R^{2}=I$, the identity map on V, and $\operatorname{ker}(I-R)=B$.

By a reflection group in E let us mean a finite group of endomorphisms of E generated by a set of reflections across hyperplanes in E. Not all elements of such a group need be reflections. Let \mathbb{H}_{W} be the set of all hyperplanes B such that the reflection R_{B} across B is in W. This is a finite set, of course. Let

$$
\begin{equation*}
\mathbb{P}_{W}=\left\{\pi: \pi \text { is the intersection of a set of hyperplanes in } \mathbb{H}_{W}\right\} . \tag{6.62}
\end{equation*}
$$

This is a hyperplane arrangement (for the theory of hyperplane arrangements see [61]). Observe that each $\pi \in \mathbb{P}_{W}$ is the intersection of all the hyperplanes of \mathbb{H}_{W} that contain π as subset:

$$
\begin{equation*}
\pi=\bigcap\left\{B \in \mathbb{H}_{W}: \pi \subset B\right\} \tag{6.63}
\end{equation*}
$$

The set \mathbb{P}_{W} is partially ordered by reverse inclusion:

$$
\pi_{1} \leq \pi_{2} \text { means } \pi_{2} \subset \pi_{1}
$$

The least element $\underline{0}$ and the largest element $\underline{1}$ are:

$$
\underline{0}=E, \quad \text { and } \quad \underline{1}=\cap_{B \in \mathbb{H}_{W}} B,
$$

where E is viewed as the intersection of the empty family of hyperplanes in E (though, in general, $\cap \emptyset$ is fallacious territory in set theory!). Moreover, if $\pi_{1}, \pi_{2} \in \mathbb{P}_{W}$ then

$$
\begin{align*}
& \pi_{1} \vee \pi_{2} \stackrel{\text { def }}{=} \sup \left\{\pi_{1}, \pi_{2}\right\}=\pi_{1} \cap \pi_{2} \\
& \pi_{1} \wedge \pi_{2} \stackrel{\text { def }}{=} \inf \left\{\pi_{1}, \pi_{2}\right\}=\cap\left\{\pi \in \mathbb{P}_{W}: \pi \supset \pi_{1}, \pi_{2}\right\} \tag{6.64}
\end{align*}
$$

Here, by definition, $\inf S$ is the largest element \leq to all elements of S, and it exists, being just the intersection of the subspaces in S. For example, if B_{1} and B_{2} are distinct hyperplanes, then $B_{1} \wedge B_{2}$ is E. Thus, \mathbb{P}_{W} is a lattice, the intersection lattice for W.

Let us compare the intersection lattice \mathbb{P}_{W} with the partition lattice \mathbb{P}_{n} we have used for S_{n}. In the lattice \mathbb{P}_{n}, an atom is a partition that contains
one two-element set and all others are one-element sets. The analog in the lattice \mathbb{P}_{W} are the hyperplanes of \mathbb{H}_{W}. The relation (6.63) means that each element $\pi \in \mathbb{P}_{W}$ is the supremum of the atoms that are below it:

$$
\begin{equation*}
\pi=\sup \left\{B \in \mathbb{H}_{W}: B \leq \pi\right\} \tag{6.65}
\end{equation*}
$$

The analog for \mathbb{P}_{n} also holds: any partition $\pi \in \mathbb{P}_{n}$ is the supremum of the atoms that lie below it.

For a subspace $\pi \in \mathbb{P}_{W}$, let π_{c} be the intersection of the hyperplanes in \mathbb{H}_{W} which do not contain π :

$$
\begin{equation*}
\pi_{c}=\bigcap\left\{B \in \mathbb{H}_{W}: \pi \not \subset B\right\} \tag{6.66}
\end{equation*}
$$

Using (6.63) we then have

$$
\begin{equation*}
\pi \vee \pi_{c}=\bigcap_{B \in \mathbb{H}_{W}} B=\underline{1} \tag{6.67}
\end{equation*}
$$

Moreover, since there is no hyperplane which contains both π and π_{c}, the infimum of $\left\{\pi, \pi_{c}\right\}$ is E :

$$
\begin{equation*}
\pi \wedge \pi_{c}=E=\underline{0} \tag{6.68}
\end{equation*}
$$

For this lattice complementation we also have:

$$
\begin{align*}
\pi_{1} & \leq \pi_{2} \Rightarrow\left(\pi_{2}\right)_{c} \leq\left(\pi_{1}\right)_{c} \\
& \left(\pi_{c}\right)_{c} \tag{6.69}
\end{align*}=\pi .
$$

Now consider symmetries of \mathbb{P}_{W} : for each $\pi \in \mathbb{P}_{W}$ we have the subgroup of all $s \in S$ which fix each point in π :

$$
\begin{equation*}
\mathrm{Fix}_{\pi}=\left\{s \in W: s \mid \pi=\mathrm{id}_{\pi}\right\} . \tag{6.70}
\end{equation*}
$$

The mapping

$$
\text { Fix }: \mathbb{P}_{W} \rightarrow\{\text { subgroups of } W\}
$$

is clearly order-preserving:

$$
\begin{equation*}
\text { if } \pi_{1} \leq \pi_{2} \text { then } \operatorname{Fix}_{\pi_{1}} \subset \operatorname{Fix}_{\pi_{2}} \tag{6.71}
\end{equation*}
$$

Remarkably, Fix_{π} is generated by the order two elements it contains, these being the reflections across the hyperplanes containing π (see Humphreys 45,
§1.5]). Consequently, π may be recovered from Fix_{π} as the intersection of the fixed point sets of all reflections $r \in \mathrm{Fix}_{\pi}$:

$$
\begin{equation*}
\pi=\cap_{r \in \mathrm{Fix}_{\pi}, r^{2}=I} \operatorname{ker}(I-r) . \tag{6.72}
\end{equation*}
$$

We can now summarize our observations into the following analog of Theorem 6.3.1.

Theorem 6.12.1 The mapping

$$
\text { Fix }: \mathbb{P}_{W} \rightarrow\{\text { subgroups of } W\}: \pi \mapsto \mathrm{Fix}_{\pi}
$$

is injective and order-preserving when the subgroups of W are ordered by inclusion. The mapping Fix from \mathbb{P}_{W} to its image inside the lattice of subgroups of W is an order-preserving isomorphism:

$$
\operatorname{Fix}_{\pi_{1}} \subset \operatorname{Fix}_{\pi_{2}} \text { if and only if } \pi_{1} \leq \pi_{2} .
$$

Furthermore, Fix also preserves the lattice operations:

$$
\begin{align*}
& \operatorname{Fix}_{\pi_{1} \wedge \pi_{2}}=\operatorname{Fix}_{\pi_{1}} \cap \operatorname{Fix}_{\pi_{2}} \tag{6.73}\\
& \operatorname{Fix}_{\pi_{1} \vee \pi_{2}}=\text { the subgroup generated by } \operatorname{Fix}_{\pi_{1}} \text { and } \operatorname{Fix}_{\pi_{2}},
\end{align*}
$$

for all $\pi_{1}, \pi_{2} \in \mathbb{P}_{W}$.
The group Fix_{π} is generated by the reflections it contains.
As in the case of S_{n}, we also have

$$
\begin{equation*}
\operatorname{Fix}_{s(\pi)}=s \operatorname{Fix}_{\pi} s^{-1} \tag{6.74}
\end{equation*}
$$

for all $\pi \in \mathbb{P}_{W}$ and $s \in W$.
We step off this train of thought at this point, having seen that the method of using partitions, and beyond that the Young tableaux, have reflections beyond the realm of the symmetric groups.

Exercises

1. Prove Proposition 6.5.1.
2. Work out the Young symmetrizers for all the Youngtabs for S_{3}. Decompose $\mathbb{F}\left[S_{3}\right]$ into a direct sum of simple left ideals. Work out the irreducible representations given by these ideals.
3. Let G be a finite group and \mathbb{F} the field of fractions of a principal ideal domain R. If $\rho: G \rightarrow \operatorname{End}_{\mathbb{F}}(V)$ is a representation of G on a finite dimensional vector space V over \mathbb{F}, show that there is a basis of V such that, for every $g \in G$, the matrix of $\rho(g)$ relative to this basis has entries all in R. (You can use Theorem 12.5.2.)
4. For H any subgroup of S_{n}, let Orb_{H} be the set of all orbits of H in $[n]$; in detail, $\operatorname{Orb}_{H}=\{\{h(j): h \in H\}: j \in[n]\}$. Then Orb : \{subgroups of $\left.S_{n}\right\} \rightarrow \mathbb{P}_{n}$ is an order-preserving map, where subgroups are ordered by inclusion, and the set \mathbb{P}_{n} of all partitions of $[n]$ is ordered so that $\pi_{1} \leq \pi_{2}$ if each block in π_{1} is contained inside some block of π_{2}. For any partition $\pi \in \mathbb{P}_{n}$ let Fix_{π} be the subgroup of S_{n} consisting of all $s \in S_{n}$ for which $s(B)=B$ for all blocks $B \in \pi$. Show that for $\pi \in \mathbb{P}_{n}$ and H any subgroup of S_{n} : (a) if $\mathrm{Fix}_{\pi} \subset H$ then $\pi \leq \mathrm{Orb}_{H}$; (b) if $H \subset \mathrm{Fix}_{\pi}$ then $\mathrm{Orb}_{H} \leq \pi$.
5. For any positive integer n, and any $k \in[n]=\{1, \ldots, n\}$, the JucysMurphy element X_{k} in $R\left[S_{n}\right]$ is defined to be

$$
\begin{equation*}
X_{k}=(1 k)+\cdots+(k-1 k), \tag{6.75}
\end{equation*}
$$

with $X_{1}=0$, and R is any commutative ring. Show that, for $k>1$, the element X_{k} commutes with every element of $R\left[S_{k-1}\right]$, where we view S_{k-1} as a subset of S_{n} in the natural way. Show that X_{1}, \ldots, X_{n} generate a commutative subalgebra of $R\left[S_{n}\right]$. For the standard Young tableau

$$
T=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & \\
\hline
\end{array}
$$

work out $X_{4} y_{T}$. The Jucys-Murphy elements play an important role in the Okounkov-Vershik theory [62].

Chapter 7

Characters

The character of a representation ρ of a finite group G on a finite dimensional \mathbb{F}-vector space E is the function χ_{ρ} on G given by

$$
\begin{equation*}
\chi_{\rho}: G \rightarrow \mathbb{F}: g \mapsto \operatorname{Tr}(\rho(g)) . \tag{7.1}
\end{equation*}
$$

Sometimes it is convenient to write χ_{E} instead of χ_{ρ}.
A character of G is the character of some finite dimensional representation of G. In the case of greatest use, the underlying field is \mathbb{C}; for this case, we will use the term complex character. An irreducible or simple character is the character of an irreducible representation.

A character is always a central function:

$$
\begin{equation*}
\chi_{\rho}\left(g h g^{-1}\right)=\chi_{\rho}(h) \quad \text { for all } g, h \in G \tag{7.2}
\end{equation*}
$$

A different face of conjugation invariance is expressed by the fact that

$$
\chi_{\rho_{1}}=\chi_{\rho_{2}}
$$

whenever ρ_{1} and ρ_{2} are equivalent representations. We have proved this in Proposition 1.10.1.

The character χ_{ρ} extends naturally to a linear function

$$
\chi_{\rho}: \mathbb{F}[G] \rightarrow \mathbb{F}
$$

which is central in the sense that

$$
\begin{equation*}
\chi_{\rho}(a b)=\chi_{\rho}(b a) \quad \text { for all } a, b \in \mathbb{F}[G] . \tag{7.3}
\end{equation*}
$$

There is generally no need to distinguish between χ viewed as a function on $\mathbb{F}[G]$ and as a function on G.

We have seen that

$$
\begin{align*}
& \chi_{E \oplus F}=\chi_{E}+\chi_{F} \tag{7.4}\\
& \chi_{E \otimes F}=\chi_{E} \chi_{F} \tag{7.5}
\end{align*}
$$

If E decomposes as

$$
E=\bigoplus_{i=1}^{m} n_{i} E_{i}
$$

where E_{i} are representations, then

$$
\begin{equation*}
\chi_{E}=\sum_{i=1}^{s} n_{i} \chi_{E_{i}} \tag{7.6}
\end{equation*}
$$

7.1 The Regular Character

We work with a finite group G and a field \mathbb{F}.
The regular representation ρ_{reg} of a finite group G is its representation through left multiplications on the group algebra $\mathbb{F}[G]$: to $g \in G$ is associated $\rho_{\text {reg }}(g): \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto g x$. We denote the character of this representation by $\chi_{\text {reg }}$:

$$
\begin{equation*}
\chi_{\mathrm{reg}} \stackrel{\text { def }}{=} \text { character of the regular representation. } \tag{7.7}
\end{equation*}
$$

As usual, we may view this as a function on $\mathbb{F}[G]$; this

$$
\begin{equation*}
\chi_{\mathrm{reg}}(x)=\text { Trace of the linear map } \mathbb{F}[G] \rightarrow \mathbb{F}[G]: y \mapsto x y \tag{7.8}
\end{equation*}
$$

for all $x \in \mathbb{F}[G]$.
Let us work out χ_{reg} on any element

$$
b=\sum_{h \in G} b_{h} h \in \mathbb{F}[G] .
$$

For any $g \in G$ we have

$$
b g=\sum_{h \in G} b_{h} h g=b_{e} g+\sum_{w \in G, w \neq g} b_{w g^{-1}} w,
$$

and so, in terms of the basis of $\mathbb{F}[G]$ given by the elements of G, left multiplication by b has a matrix with b_{e} running down the main diagonal. Hence

$$
\begin{equation*}
\chi_{\mathrm{reg}}(b)=|G| b_{e} \tag{7.9}
\end{equation*}
$$

We can rewrite (7.9) as

$$
\begin{equation*}
\frac{1}{|G|} \operatorname{Tr}\left(\rho_{\mathrm{reg}}(b)\right)=b_{e} \quad \text { if }|G| \neq 0 \text { in } \mathbb{F} \tag{7.10}
\end{equation*}
$$

The map

$$
\operatorname{Tr}_{e}: \mathbb{F}[G] \rightarrow \mathbb{F}: b \mapsto b_{e}
$$

is itself also called a trace, and is a central function on $\mathbb{F}[G]$. Unlike $\chi_{\text {reg }}$, the trace Tr_{e} is both meaningful and useful even if $|G| 1_{\mathbb{F}}$ is 0 in \mathbb{F}.

In Chapter 4 we saw that there is a maximal string of nonzero central idempotent elements u_{1}, \ldots, u_{s} in $\mathbb{F}[G]$ such that the map

$$
\begin{equation*}
I: \prod_{i=1}^{s} \mathbb{F}[G] u_{i} \rightarrow \mathbb{F}[G]:\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1}+\cdots+a_{s} \tag{7.11}
\end{equation*}
$$

is an isomorphism of algebras, where $\mathbb{F}[G] u_{i}$ is a two sided ideal in $\mathbb{F}[G]$ and is an algebra in itself, with u_{i} as multiplicative identity. The statement that I in (7.11) preserves multiplication encodes the observation that

$$
\mathbb{F}[G] u_{i} \mathbb{F}[G] u_{j}=0 \quad \text { if } i \neq j
$$

If $|G| 1_{\mathbb{F}} \neq 0$ then, on picking a simple left ideal L_{i} of $\mathbb{F}[G]$ lying inside $\mathbb{F}[G]_{i}$ for each i, every irreducible representation of G, viewed as an $\mathbb{F}[G]$-module, is isomorphic to some L_{i}, and

$$
\mathbb{F}[G] u_{i}=\underbrace{L_{i} \oplus \cdots \oplus L_{i}}_{d_{i} \text { copies }},
$$

for some positive integer d_{i} every $i \in\{1, \ldots, s\}$. Let χ_{i} be the character of the restriction of the regular representation to the subspace L_{i} :

$$
\begin{equation*}
\chi_{i}(g)=\operatorname{Tr}\left(\rho_{\mathrm{reg}}(g) \mid L_{i}\right) \tag{7.12}
\end{equation*}
$$

If $|G| 1_{\mathbb{F}} \neq 0$ then every finite dimensional representation of G is isomorphic to a direct sum of copies of the L_{i}, and so in this case every character χ of G is a linear combination of the form

$$
\begin{equation*}
\chi=\sum_{i=1}^{s} n_{i} \chi_{i} \tag{7.13}
\end{equation*}
$$

where n_{i} is the number of copies of L_{i} in a direct sum decomposition of the representation for χ into irreducible components.

In the remainder of this section, whenever we work with χ_{i} we will assume that the algebra is semisimple, or, equivalently, that $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F}.

In particular, with $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F}, we have

$$
\begin{equation*}
\chi_{\mathrm{reg}}=\sum_{i=1}^{s} d_{i} \chi_{i} \tag{7.14}
\end{equation*}
$$

is the number of copies of L_{i} in a direct sum decomposition of $\mathbb{F}[G]$ into simple left ideals. We know that

$$
d_{i}=\operatorname{dim}_{D_{i}} L_{i}
$$

where D_{i} is the division ring

$$
D_{i}=\operatorname{End}_{\mathbb{F}[G] u_{i}} L_{i} .
$$

When \mathbb{F} is also algebraically closed, d_{i} equals $\operatorname{dim}_{\mathbb{F}} L_{i}$.
Recalling (7.8), and noting that

$$
a_{j} \mathbb{F}[G] u_{i}=0 \quad \text { if } a_{j} \in \mathbb{F}[G] u_{j} \text { and } j \neq i
$$

we have

$$
\begin{equation*}
\chi_{i}\left(a_{j}\right)=0 \quad \text { if } a_{j} \in \mathbb{F}[G] u_{j} \text { and } j \neq i \tag{7.15}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\chi_{i} \mid \mathbb{F}[G] u_{j}=0 \quad \text { if } j \neq i \tag{7.16}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\chi_{i}\left(u_{j}\right)=0 \quad \text { if } j \neq i \tag{7.17}
\end{equation*}
$$

where, as usual, u_{j} is the generating idempotent for $\mathbb{F}[G] u_{j}$. On the other hand,

$$
\begin{equation*}
\chi_{i}\left(u_{i}\right)=\operatorname{dim}_{\mathbb{F}} L_{i} \tag{7.18}
\end{equation*}
$$

because the central element u_{i} acts as the identity on $L_{i} \subset \mathbb{F}[G] u_{i}$. In fact, we have

$$
\begin{equation*}
\chi_{\mathrm{reg}}\left(y u_{i}\right)=d_{i} \chi_{i}(y) \quad \text { for all } y \in G \tag{7.19}
\end{equation*}
$$

Lemma 7.1.1 If L is an irreducible representation of a finite group G over an algebraically closed field \mathbb{F} whose characteristic does not divide $|G|$, then $\operatorname{dim}_{\mathbb{F}} L$ is also not divisible by the characteristic of \mathbb{F}.

There will be a remarkably sharpened version of this result later in Theorem 7.5.1.

Proof. Let $P: L \rightarrow L$ be a linear projection map with one-dimensional range. Then by Schur's Lemma, the $\mathbb{F}[G]$-linear map $P_{1}=\sum_{g \in G} g P g^{-1}: L \rightarrow L$ is a scalar multiple $c I$ of the identity, and so, taking the trace, we have $|G| \cdot 1_{\mathbb{F}}$ (which, by assumption, is not 0) equals $c \operatorname{dim}_{\mathbb{F}} L$. Hence, $\operatorname{dim}_{\mathbb{F}} L$ is not 0 in F. QED

One aspect of the importance and utility of characters is codified in the following fundamental observation:

Theorem 7.1.1 Suppose G is a finite group and \mathbb{F} a field; assume that either (i) \mathbb{F} has characteristic 0 or (ii) $|G| 1_{\mathbb{F}} \neq 0$ and \mathbb{F} is algebraically closed. Then the irreducible characters of G over the field \mathbb{F} are linearly independent.

Proof. Let $\chi_{1}, \ldots, \chi_{s}$ be the distinct irreducible characters of G for representations on vector spaces over the field \mathbb{F}. From $(7.17$) and (7.18) it follows that if

$$
\sum_{i=1}^{s} c_{i} \chi_{i}=0
$$

where $c_{1}, \ldots, c_{s} \in \mathbb{F}$, then, on applying this to a_{j},

$$
c_{j} \operatorname{dim}_{\mathbb{F}} L_{j}=0
$$

Thus, since either of the hypotheses (i) and (ii) imply that each $\operatorname{dim}_{\mathbb{F}} L_{i}$ is not 0 in \mathbb{F}, it follows that each c_{j} is 0 . QED

Linear independence encodes the following important fact about characters:

Theorem 7.1.2 Suppose G is a finite group and \mathbb{F} is an algebraically closed field of characteristic 0 . Two finite dimensional representations of G, over \mathbb{F}, have the same character if and only if they are equivalent.

Proof. Let L_{1}, \ldots, L_{s} be a maximal collection of inequivalent irreducible representations of G. If E is a representation of G then E is isomorphic to a direct sum

$$
\begin{equation*}
E \simeq \bigoplus_{i=1}^{s} n_{i} L_{i} \tag{7.20}
\end{equation*}
$$

where $n_{i} L_{i}$ is a direct sum of n_{i} copies of L_{i}. Then

$$
\chi_{E}=\sum_{i=1}^{s} n_{i} \chi_{i}
$$

The coefficients n_{i} are uniquely determined by χ_{E}, and hence so is the decomposition 7.20 up to isomorphism. QED

7.2 Character Orthogonality

The character, being a trace, has interesting and useful features inherited from the nature of the trace functional. We will explore some of these properties in this section. A note of warning: we will use the bra-ket formalism introduced at the end of section 1.6. When working with a vector space V, and its dual V^{\prime}, we will often denote a typical element of V by $|v\rangle$ and a typical element of V^{\prime} by $\langle f|$, with the evaluation of $\langle f|$ on $|v\rangle$ denoted by

$$
\langle f \mid v\rangle .
$$

Assume that G is a finite group and \mathbb{F} a field. Let

$$
T: E \rightarrow F
$$

be an \mathbb{F}-linear map between simple $\mathbb{F}[G]$-modules. Then the G-symmetrized version

$$
T_{1}=\sum_{g \in G} g T g^{-1}
$$

satisfies

$$
h T_{1}=T_{1} h \quad \text { for all } h \in G
$$

and so is $\mathbb{F}[G]$-linear. Hence by Schur's Lemma it is either 0 or an isomorphism. A general linear map $T: E \rightarrow F$, viewed as matrix relative to bases in E and F, is a linear combination of matrices that have all entries zero except for one which is 1 ; we specialize T to such a matrix. We choose now a special form for the map T; picking a basis $\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle$ of the vector space E, and a basis $\left|f_{1}\right\rangle, \ldots\left|f_{n}\right\rangle$ of F, and let T be given by

$$
T=\left|f_{j}\right\rangle\left\langle e_{k}\right|:|v\rangle \mapsto\left\langle e_{k} \mid v\right\rangle\left|f_{j}\right\rangle=v_{k}\left|f_{j}\right\rangle
$$

where v_{k} is the k-th component of $|v\rangle$ written out in the basis $\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle$. Then

$$
\begin{equation*}
T_{1}=\sum_{g \in G} \rho_{F}(g)\left|f_{j}\right\rangle\left\langle e_{k}\right| \rho_{E}(g)^{-1} \tag{7.21}
\end{equation*}
$$

If ρ_{E} and ρ_{F} are inequivalent representations of G, then T_{1} is 0 , and so

$$
\left\langle f_{j}\right| T_{1}\left|e_{k}\right\rangle=0
$$

which says

$$
\begin{equation*}
\sum_{g \in G} \rho_{F}(g)_{j j} \rho_{E}\left(g^{-1}\right)_{k k}=0 . \tag{7.22}
\end{equation*}
$$

Summing over j as well as k produces:

$$
\begin{equation*}
\sum_{g \in G} \chi_{F}(g) \chi_{E}\left(g^{-1}\right)=0 \tag{7.23}
\end{equation*}
$$

This is one of several orthogonality relations discovered by Frobenius. Here is an official summary:

Theorem 7.2.1 If ρ_{1} and ρ_{2} are inequivalent irreducible representations of a finite group on vector spaces then

$$
\begin{equation*}
\sum_{g \in G} \chi_{\rho_{1}}(g) \chi_{\rho_{2}}\left(g^{-1}\right)=0 \tag{7.24}
\end{equation*}
$$

Why the term 'orthogonality'? The answer is seen by noticing that, working with complex representations, the relation (7.24) can be viewed as saying that the vectors

$$
\left(\chi_{E}(g)\right)_{g \in G} \in \mathbb{C}^{G}
$$

are orthogonal to each other for inequivalent choices of the irreducible representation E.

Next we use Schur's Lemma in the case the representations are the same. Thus, consider an \mathbb{F}-linear map

$$
T: E \rightarrow E
$$

where E is a simple $\mathbb{F}[G]$-module. Forming the symmetrized version just as above we have, again by Schur's Lemma,

$$
\begin{equation*}
\sum_{g \in G} g T g^{-1}=c I \tag{7.25}
\end{equation*}
$$

for some scalar $c \in \mathbb{F}$, provided, of course, we assume now that \mathbb{F} is algebraically closed (or at least that \mathbb{F} is a splitting field for G). The value of c is obtained by taking the trace of both sides in (7.25):

$$
\begin{equation*}
|G| \operatorname{Tr}(T)=c \operatorname{dim}_{\mathbb{F}} E \tag{7.26}
\end{equation*}
$$

Picking a T whose trace is 1 shows that $\operatorname{dim}_{\mathbb{F}} E \neq 0$ in the field \mathbb{F}, provided $|G| 1_{\mathbb{F}} \neq 0$; with this assumption we have then

$$
\begin{equation*}
\sum_{g \in G} g T g^{-1}=\frac{|G| \operatorname{Tr}(T)}{\operatorname{dim}_{\mathbb{F}} E} I \tag{7.27}
\end{equation*}
$$

Using a basis $\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle$ of E we take T to be

$$
T_{j k}=\left|e_{j}\right\rangle\left\langle e_{k}\right|,
$$

and this gives

$$
\begin{equation*}
\sum_{g \in G} \rho_{E}(g)\left|e_{j}\right\rangle\left\langle e_{k}\right| \rho_{E}(g)^{-1}=c_{j k} I \tag{7.28}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{j k} \operatorname{dim}_{\mathbb{F}} E=|G| \operatorname{Tr}\left(T_{j k}\right)=\delta_{j k}|G| \tag{7.29}
\end{equation*}
$$

(Notice that from this it follows again that if $|G| 1_{\mathbb{F}} \neq 0$ in \mathbb{F} then $\operatorname{dim}_{\mathbb{F}} E$ is also nonzero as an element of \mathbb{F}. Bracketing (7.28) between $\left\langle e_{j}\right| \cdots\left|e_{k}\right\rangle$ we have:

$$
\sum_{g \in G}\left\langle e_{j}\right| \rho_{E}(g)\left|e_{j}\right\rangle\left\langle e_{k}\right| \rho_{E}(g)^{-1}\left|e_{k}\right\rangle=c_{j k} \delta_{j k}
$$

Summing over j and k produces, on dividing by $|G| 1_{\mathbb{F}}$,

$$
\sum_{g \in G} \chi_{E}(g) \chi_{E}\left(g^{-1}\right)=|G|
$$

Here is a clean summary of our conclusions:
Theorem 7.2.2 If ρ is an irreducible representation of a finite group on a vector space over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$, then

$$
\begin{equation*}
\sum_{g \in G} \chi_{\rho}(g) \chi_{\rho}\left(g^{-1}\right)=|G| \tag{7.30}
\end{equation*}
$$

As is often the case, the condition that \mathbb{F} is algebraically closed can be replaced by the requirement that \mathbb{F} be a splitting field for G.

The two results we have proven here so far can be combined into one: if ρ_{1} and ρ_{2} are irreducible representations then

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{1}}(g) \chi_{\rho_{2}}\left(g^{-1}\right)= \begin{cases}1 & \text { if } \rho_{1} \text { is equivalent to } \rho_{2} \tag{7.31}\\ 0 & \text { if } \rho_{1} \text { is not equivalent to } \rho_{2}\end{cases}
$$

provided that the underlying field \mathbb{F} is algebraically closed and $|G| 1_{\mathbb{F}} \neq 0$. Here is another perspective on this:

Theorem 7.2.3 Suppose ρ_{1} and ρ_{2} are representations of a finite group G on finite dimensional vector spaces E_{1} and E_{2}, respectively, over a field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. Then

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{1}}(g) \chi_{\rho_{2}}\left(g^{-1}\right)=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right) \tag{7.32}
\end{equation*}
$$

where $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$ is the vector space of all $\mathbb{F}[G]$-linear maps $E_{1} \rightarrow E_{2}$.
Before heading into the proof observe that if ρ_{1} and ρ_{2} are inequivalent irreducible representations then, by Schur's Lemma, $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$ is 0, whereas if ρ_{1} and ρ_{2} are equivalent irreducible representations then, again by Schur's Lemma, $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$ is 1-dimensional if \mathbb{F} is algebraically closed. The version we now have works even if ρ_{1} and ρ_{2} are not irreducible and shows that in fact the averaged character product on the left in (7.31) takes into account the multiplicities of irreducible constituents of E_{1} and E_{2}.
Proof. The key point is that the G-symmetrization or averaging $T \rightarrow T_{0}$ in (7.33) below is a projection map onto $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$ and the trace of this projection gives the dimension of $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$. In more detail, consider the map

$$
\begin{equation*}
\Pi_{0}: \operatorname{Hom}_{\mathbb{F}}\left(E_{1}, E_{2}\right) \rightarrow \operatorname{Hom}_{\mathbb{F}}\left(E_{1}, E_{2}\right): T \mapsto T_{0}=\frac{1}{|G|} \sum_{g \in G} \rho_{E_{2}}(g)^{-1} T \rho_{E_{1}}(g) \tag{7.33}
\end{equation*}
$$

Clearly, T_{0} lies in the subspace $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$. Moreover, if T is already in this subspace then $T_{0}=T$. Thus, $\Pi_{0}^{2}=\Pi_{0}$ and is a projection map with
image $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$. Every element $T \in \operatorname{Hom}_{\mathbb{F}}\left(E_{1}, E_{2}\right)$ splits uniquely as a sum

$$
T=\underbrace{\Pi_{0}(T)}_{\in \operatorname{Im}\left(\Pi_{0}\right)}+\underbrace{\left(1-\Pi_{0}\right)(T)}_{\in \operatorname{ker}\left(\Pi_{0}\right)} .
$$

Thus:

$$
\operatorname{Hom}_{\mathbb{F}}\left(E_{1}, E_{2}\right)=\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right) \oplus \operatorname{ker} \Pi_{0}
$$

Form a basis of $\operatorname{Hom}_{\mathbb{F}}\left(E_{1}, E_{2}\right)$ by pooling together a basis of $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$ with a basis of $\operatorname{ker} \Pi_{0}$; relative to this basis, the matrix of P_{0} is diagonal, with an entry of 1 for each basis vector of $\operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right)$ and 0 in all other entries. Hence,

$$
\begin{equation*}
\operatorname{Tr}\left(\Pi_{0}\right)=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}[G]}\left(E_{1}, E_{2}\right) \tag{7.34}
\end{equation*}
$$

Now let us calculate the trace on the left more concretely. If E_{1} or E_{2} is $\{0\}$ then the result is trivial, so we assume that neither space is 0 . Choose a basis $\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle$ in E_{1}, and a basis $\left|f_{1}\right\rangle, \ldots,\left|f_{n}\right\rangle$ in E_{2}. The elements

$$
T_{j k}=\left|f_{j}\right\rangle\left\langle e_{k}\right|: E_{1} \rightarrow E_{2}:|v\rangle \mapsto\left\langle e_{k} \mid v\right\rangle\left\langle f_{j}\right|
$$

where $\left\langle e_{k} \mid v\right\rangle$ is the k-th component of $|v\rangle$ in the basis $\left\{\left|e_{i}\right\rangle\right\}$, form a basis of $\operatorname{Hom}_{\mathbb{F}}\left(E_{1}, E_{2}\right)$. The image of $T_{j k}$ under the projection Π_{0} is

$$
\begin{align*}
\Pi_{0}\left(T_{j k}\right) & =\frac{1}{|G|} \sum_{g \in G} \rho_{E_{2}}(g)^{-1}\left|f_{j}\right\rangle\left\langle e_{k}\right| \rho_{E_{1}}(g) \\
& =\sum_{1 \leq i \leq m, 1 \leq l \leq n} \frac{1}{|G|} \sum_{g \in G}\left\langle f_{l}\right| \rho_{E_{2}}(g)^{-1}\left|f_{j}\right\rangle\left\langle e_{k}\right| \rho_{E_{1}}(g)\left|e_{i}\right\rangle\left|f_{l}\right\rangle\left\langle e_{i}\right| . \tag{7.35}
\end{align*}
$$

Thus, the $T_{j k}$-component of $\Pi_{0}\left(T_{j k}\right)$ is

$$
\frac{1}{|G|} \sum_{g \in G}\left\langle f_{k}\right| \rho_{E_{2}}(g)^{-1}\left|f_{j}\right\rangle\left\langle e_{k}\right| \rho_{E_{1}}(g)\left|e_{j}\right\rangle
$$

and so the trace of Π_{0} is found by summing over j and k :

$$
\begin{equation*}
\operatorname{Tr}\left(\Pi_{0}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{2}}\left(g^{-1}\right) \chi_{\rho_{1}}(g) \tag{7.36}
\end{equation*}
$$

Combining this with 7.34 brings us to our goal 7.32 . QED
The roles of characters and conjugacy classes can be interchanged to reveal another orthogonality identity:

Theorem 7.2.4 Let \mathcal{R} be a maximal set of inequivalent irreducible representations of a finite group G over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. then

$$
\begin{equation*}
\sum_{\rho \in \mathcal{R}} \chi_{\rho}\left(C^{\prime}\right) \chi_{\rho}\left(C^{-1}\right)=\frac{|G|}{|C|} \delta_{C, C^{\prime}} \tag{7.37}
\end{equation*}
$$

for any conjugacy classes C and C^{\prime} in G.
Proof. Let $\chi_{1}, \ldots, \chi_{r}$ be all the distinct irreducible characters of G, over \mathbb{F}, and let C_{1}, \ldots, C_{r} be all the distinct conjugacy classes in G. Then by Theorems 7.2 .2 and 7.2.1. writing each sum \sum_{g} as a sum over conjugacy classes, we have

$$
\begin{equation*}
\sum_{j=1}^{r} \frac{\left|C_{j}\right|}{|G|} \chi_{i}\left(C_{j}\right) \chi_{k}\left(C_{j}^{-1}\right)=\delta_{i k} \tag{7.38}
\end{equation*}
$$

Let us read this as a matrix equation: let A and B be $r \times r$ matrices specified by

$$
A_{i j}=\frac{\left|C_{j}\right|}{|G|} \chi_{i}\left(C_{j}\right), \quad \text { and } \quad B_{j k}=\chi_{k}\left(C_{j}^{-1}\right)
$$

for all $i, j, k \in[r]$. Then the relation (7.38) means $A B$ is the identity matrix I, and hence $B A$ is also I. Thus

$$
\sum_{j=1}^{r} B_{i j} A_{j k}=\delta_{i k}
$$

which spells out as

$$
\sum_{j=1}^{r} \chi_{j}\left(C_{i}^{-1}\right) \frac{\left|C_{k}\right|}{|G|} \chi_{j}\left(C_{k}\right)=\delta_{i k}
$$

for all $i, k \in[r]$. Writing C^{\prime} for C_{i} and C for C_{k}, and a small bit of rearrangement, brings us to our destination 7.37. QED

The argument given above is a slight reformulation of Frobenius' proof. You can explore a longer but more insightful alternative route in Exercise 7.2.

Here is a nice consequence, which can be seen by other means as well:
Theorem 7.2.5 Let G be a finite group, \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$. If $g_{1}, g_{2} \in G$ are such that $\chi(g)=\chi(h)$ for every irreducible character χ of G over \mathbb{F}, then g_{1} and g_{2} belong to the same conjugacy class.

Proof. Let C be the conjugacy class of g_{1} and C^{\prime} that of g_{2}. Then $\chi\left(C^{\prime}\right)=$ $\chi(C)$ for all irreducible characters. Let $\chi_{1}, \ldots, \chi_{r}$ be all the distinct irreducible characters of G over \mathbb{F}. Then using (7.37) we have

$$
\frac{|G|}{|C|}=\sum_{i=1}^{r} \chi_{i}(C) \chi_{i}\left(C^{-1}\right)=\sum_{i=1}^{r} \chi_{i}\left(C^{\prime}\right) \chi_{i}\left(C^{-1}\right)=\frac{|G|}{|C|} \delta_{C, C^{\prime}},
$$

which implies that C coincides with C^{\prime}. QED
Before looking at yet another consequence of Schur's Lemma for characters, it will be convenient to introduce a certain product of functions on G called convolution. Let G be a finite group and \mathbb{F} any field. Recall that an element $\sum_{g \in G} x_{g} g$ of the group algebra $\mathbb{F}[G]$ is just a different expression for the function $G \rightarrow \mathbb{F}: g \mapsto x_{g}$. It is, however, also useful to relate functions $G \rightarrow \mathbb{F}$ to elements of $\mathbb{F}[G]$ in a less obvious way. Assume $|G| 1_{\mathbb{F}} \neq 0$ and associate to a function $f: G \rightarrow \mathbb{F}$ the element

$$
\begin{equation*}
\underline{f}=\frac{1}{|G|} \sum_{g \in G} f(g) g^{-1} \tag{7.39}
\end{equation*}
$$

The association

$$
\mathbb{F}^{G} \rightarrow \mathbb{F}[G]: f \mapsto \underline{f}
$$

is clearly an isomorphism of \mathbb{F}-vector-spaces. Let us see what in \mathbb{F}^{G} corresponds to the product structure on $\mathbb{F}[G]$. If $f_{1}, f_{2}: G \rightarrow \mathbb{F}$ then a simple calculation produces

$$
\begin{equation*}
\underline{f_{1}} \underline{f_{2}}=\underline{f_{1} * f_{2}} \tag{7.40}
\end{equation*}
$$

where $f_{1} * f_{2}$ is the convolution of the functions f_{1} and f_{2}, specified by

$$
\begin{equation*}
f_{1} * f_{2}(h)=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) f_{2}\left(h g^{-1}\right) \tag{7.41}
\end{equation*}
$$

for all $h \in G$. Of course, all this makes sense only when $|G| 1_{\mathbb{F}} \neq 0$. (If $|G|$ were divisible by the character of the field \mathbb{F} then one could still define a convolution by dropping the dividing factor $|G|$. One other caveat: we put a twist in (7.39) with the g^{-1} on the right which has resulted in what maybe a somewhat uncomfortable twist in the definition (7.41) of the convolution.)

Here is a stronger form of the character orthogonality relations, expressed in terms of the convolution of characters:

Theorem 7.2.6 Let E and F be irreducible representations of a finite group G over an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$. Then

$$
\chi_{E} * \chi_{F}= \begin{cases}\frac{1}{\operatorname{dim}_{F} E} \chi_{E} & \text { if } E \text { and } F \text { are equivalent; } \tag{7.42}\\ 0 & \text { if } E \text { and } F \text { are not equivalent } .\end{cases}
$$

Explicitly,

$$
\frac{1}{|G|} \sum_{h \in G} \chi_{E}\left(g h^{-1}\right) \chi_{F}(h)= \begin{cases}\frac{1}{\operatorname{dim}_{F} E} \chi_{E}(g) & \text { if } E \text { and } F \text { are equivalent; } \tag{7.43}\\ 0 & \text { if } E \text { and } F \text { are not equivalent. }\end{cases}
$$

More generally, if $\chi_{1}, \ldots, \chi_{k}$ are characters of irreducible representations of G, over the field \mathbb{F}, then

$$
\sum_{\left\{\left(a_{1}, \ldots, a_{k}\right) \in G^{k}: a_{1} \ldots a_{k}=c\right\}} \chi_{1}\left(a_{1}\right) \ldots \chi_{k}\left(a_{k}\right)= \begin{cases}\left(\frac{|G|}{d_{1}}\right)^{k-1} \chi_{1}(c) & \text { if all } \chi_{j} \text { are equal to } \chi_{1} \tag{7.44}\\ 0 & \text { otherwise }\end{cases}
$$

for any $c \in G$, with $d_{1}=\chi_{1}(e)$ being the dimension of the representation space of the character χ_{1}.

As in the first character orthogonality result, Proposition 7.2.1, the second case in 7.42 holds without any conditions on the field \mathbb{F}.
Proof. Suppose first E and F are inequivalent representations. In this case the argument is a rerun, with a simple modification, of the proof of the first character orthogonality relation Proposition 7.2.1. Fix bases $\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle$ in E, and $\left|f_{1}\right\rangle, \ldots,\left|f_{n}\right\rangle$ in F, and let

$$
T_{j k}=\left|f_{j}\right\rangle\left\langle e_{k}\right|
$$

Then

$$
\sum_{g \in G} \rho_{F}\left(g^{-1}\right) T_{j k} \rho_{E}(h) \rho_{E}(g)
$$

is an $\mathbb{F}[G]$-linear map $E \rightarrow F$ and hence, by Schur's Lemma, is 0 ; bracketing between $\left\langle f_{j}\right|$ and $\left|e_{k}\right\rangle$ gives:

$$
\sum_{g \in G}\left\langle f_{j}\right| \rho_{F}\left(g^{-1}\right)\left|f_{j}\right\rangle\left\langle e_{k}\right| \rho_{E}(h) \rho_{E}(g)\left|e_{j}\right\rangle=0 .
$$

Summing over j and k produces

$$
\sum_{g \in G} \chi_{F}\left(g^{-1}\right) \chi_{E}(h g)=0
$$

which is the second case in (7.42). Now suppose E and F are equivalent, and so we simply set $F=E$. Recall from (7.27) the identity

$$
\begin{equation*}
\sum_{g \in G} \rho_{E}\left(g^{-1}\right) T \rho_{E}(g)=\frac{|G| \operatorname{Tr}(T)}{\operatorname{dim}_{\mathbb{F}} E} I \tag{7.45}
\end{equation*}
$$

valid for all $T \in \operatorname{End}_{\mathbb{F}}(E)$. Apply this to $\left|e_{j}\right\rangle\left\langle e_{k}\right| \rho_{E}(h)$ for T to obtain:

$$
\sum_{g \in G} \rho_{E}\left(g^{-1}\right)\left|e_{j}\right\rangle\left\langle e_{k}\right| \rho_{E}(h g)=\frac{|G|\left\langle e_{k}\right| \rho_{E}(h)\left|e_{j}\right\rangle}{\operatorname{dim}_{\mathbb{F}} E} I
$$

Bracketing this between $\left\langle e_{j}\right|$ and $\left|e_{k}\right\rangle$ gives

$$
\sum_{g \in G} \rho_{E}\left(g^{-1}\right)_{j j} \rho_{E}(h g)_{k k}=\frac{|G|}{\operatorname{dim}_{\mathbb{F}} E} \rho_{E}(h)_{k j} \delta_{j k}
$$

Summing over j and k produces

$$
\sum_{g \in G} \chi_{E}\left(g^{-1}\right) \chi_{E}(h g)=\frac{|G|}{\operatorname{dim}_{\mathbb{F}} E} \chi_{E}(h) .
$$

Iterating this we obtain the general formula 7.44. QED

7.3 Character Expansions

From the results of the preceding sections we know that the irreducible characters of a finite group are linearly independent.

Theorem 7.3.1 Let G be a finite group and \mathbb{F} a field; assume that $|G| 1_{\mathbb{F}} \neq 0$ and \mathbb{F} is algebraically closed. Then the distinct irreducible characters form a basis of the vector space of all central functions on G with values in \mathbb{F}.

As usual, this would work with algebraic closedness replaced by the requirement that \mathbb{F} is a splitting field for G. This result also implies Theorem 7.2.5 which we proved earlier directly from the orthogonality relations.
Proof. Viewing a function on G as an element of $\mathbb{F}[G]$, we see that the subspace of central functions corresponds precisely to the center Z of $\mathbb{F}[G]$. As we have seen in Theorem 4.8.1 and the discussion preceding it, under the given hypotheses, $\operatorname{dim}_{\mathbb{F}} Z$ is exactly the number of distinct irreducible characters of G. Since these characters are linearly independent, we conclude that they form a basis of the vector space of central functions $G \rightarrow \mathbb{F}$. QED

When the underlying field \mathbb{F} is a subfield of the complex field \mathbb{C}, we denote by $L^{2}(G)$ the vector space of all functions $G \rightarrow \mathbb{F}$, equipped with the hermitian inner product specified by

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle_{L^{2}}=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)} \tag{7.46}
\end{equation*}
$$

for $f_{1}, f_{2}: G \rightarrow \mathbb{F} \subset \mathbb{C}$. (For a general field we can consider the bilinear form given by $\sum_{g \in G} f_{1}(g) f_{2}\left(g^{-1}\right)$.)

From character orthogonality (7.31) we know that the irreducible complex characters are orthonormal:

$$
\left\langle\chi_{j}, \chi_{k}\right\rangle_{L^{2}}=\delta_{j k},
$$

whereas from Theorem 7.3.1 above we know that they form a basis of the space of central functions. Thus, we have:

Theorem 7.3.2 For a finite group G, the irreducible complex characters form an orthonormal basis of the vector space all central functions $G \rightarrow \mathbb{C}$ with respect to the inner product $\langle\cdot, \cdot\rangle_{L^{2}}$ in (7.46).

Let us note the following result which can be a quick way of checking irreducibility:

Proposition 7.3.1 A complex character χ is irreducible if and only if $\|\chi\|_{L^{2}}=$ 1.

Proof. Suppose χ decomposes as

$$
\chi=\sum_{i=1}^{s} n_{i} \chi_{i}
$$

where $\chi_{1}, \ldots, \chi_{s}$ are the irreducible complex characters. Then

$$
\|\chi\|_{L^{2}}^{2}=\sum_{i=1}^{s} n_{i}^{2},
$$

and so the norm of χ is 1 if and only if all n_{i} are zero except for one which equals 1. QED

Here is an immediate application:
Proposition 7.3.2 Let E_{1}, \ldots, E_{s} be a maximal collection of inequivalent irreducible complex representations of a finite group. Then, for any positive integer n and for each $i=\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, s\}^{n}$, the representation $\rho_{i}=\rho_{i_{1}} \otimes \cdots \otimes \rho_{i_{n}}$ of G^{n} on $E_{i}=E_{i_{1}} \otimes \cdots \otimes E_{i_{n}}$ is irreducible and the ρ_{i} with i running over $\{1, \ldots, s\}^{n}$ form a maximal collection of inequivalent complex representations of G^{n}.
 $\{1, \ldots, s\}^{n}$,

$$
\chi_{i}=\chi_{i_{1}} \otimes \cdots \otimes \chi_{i_{n}}: G^{n} \rightarrow \mathbb{C}:\left(g_{1}, \ldots, g_{n}\right) \mapsto \chi_{i_{1}}\left(g_{1}\right) \ldots \chi_{i_{n}}\left(g_{n}\right)
$$

is the character of the tensor product representation of G^{n} on $E_{i_{1}} \otimes \cdots \otimes E_{i_{n}}$. The functions χ_{i} are orthonormal in $L^{2}\left(G^{n}\right)$, and s^{n} in number. Now s^{n} is the number of conjugacy classes in G^{n}. Hence $E_{i_{1}} \otimes \cdots \otimes E_{i_{n}}$ runs over all the irreducible representations of G^{n} as $\left(i_{1}, \ldots, i_{n}\right)$ runs over $\{1, \ldots, s\}^{n}$.

The appearance of the hermitian inner product $\langle\cdot, \cdot\rangle_{L^{2}}$ maybe a bit usettling: where did it come from? Is it somehow 'natural'? The key feature that makes this pairing of functions on G so useful is its invariance:

Proposition 7.3.3 For any finite group G, identify $L^{2}(G)$ with the group algebra $\mathbb{C}[G]$ by the linear isomorphism

$$
I: L^{2}(G) \rightarrow \mathbb{C}[G]: f \mapsto I(f)=\underline{f}
$$

where

$$
\underline{f}=\frac{1}{|G|} \sum_{h \in G} f\left(h^{-1}\right) h .
$$

Then the regular representation ρ_{reg} of G corresponds to the representation $R_{\mathrm{reg}}=I^{-1} \rho_{\mathrm{reg}} I$ on $L^{2}(G)$ given explicitly by

$$
\begin{equation*}
\left(R_{\mathrm{reg}}(g) f\right)(h)=f(h g) \tag{7.47}
\end{equation*}
$$

for all $g, h \in G$, and $f \in L^{2}(G)$. Moreover, R_{reg} is a unitary representation of G on $L^{2}(G)$:

$$
\begin{equation*}
\left\langle R_{\mathrm{reg}}(g) f_{1}, R_{\mathrm{reg}}(g) f_{2}\right\rangle_{L^{2}}=\left\langle f_{1}, f_{2}\right\rangle_{L^{2}} \tag{7.48}
\end{equation*}
$$

for all $g \in G$, and all $f_{1}, f_{2} \in L^{2}(G)$.

The proof is straightforward verification, which we leave as an exercise.
There is still one curiosity not satisfied: does the G-invariance of the inner product pin it down uniquely up to multiples? Briefly, the answer is 'nearly'; explore this in Exercise 7.9 (and look back to Exercise 1, 18 for some related ideas.)

7.4 Comparing Z-Bases

We work with a finite group G and an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$.

We have seen two natural bases for the center Z of $\mathbb{F}[G]$. One consists of all the conjugacy class sums

$$
\begin{equation*}
z_{C}=\sum_{g \in C} g \tag{7.49}
\end{equation*}
$$

with C running over \mathcal{C}, the set of all conjugacy classes in G (take a quick look back at Theorem 3.3.1). The other consists of u_{1}, \ldots, u_{s}, which form the maximal set of non-zero orthogonal central idempotents in $\mathbb{F}[G]$ adding up to 1 (for this see Proposition 4.8.1). Our goal in this section is to express these two bases in terms of each other by using the simple characters of G.

Pick a simple left ideal L_{i} in the two sided ideal $\mathbb{F}[G] u_{i}$, for each $i \in$ $\{1, \ldots, s\}$, and let χ_{i} be the character of ρ_{i}, the restriction of the regular representation to the submodule $L_{i} \subset \mathbb{F}[G]$. Then $\chi_{1}, \ldots, \chi_{s}$ are all the distinct irreducible characters of G. Multiplication by u_{i} acts as the identity on the block $\mathbb{F}[G] u_{i}$ and is zero on all other blocks $\mathbb{F}[G] u_{j}$ for $j \neq i$. Moreover,

$$
\mathbb{F}[G] u_{i} \simeq L_{i}^{d_{i}},
$$

where

$$
d_{i}=\operatorname{dim}_{\mathbb{F}} L_{i} .
$$

From this we see that $\chi_{\mathrm{reg}}\left(g u_{j}\right)$ is the trace of a block diagonal matrix, with one $d_{j} \times d_{j}$ block given by $\rho_{j}(g)$ and all other blocks zero; hence:

$$
\begin{equation*}
\chi_{\mathrm{reg}}\left(g u_{j}\right)=\chi_{j}(g) d_{j}, \tag{7.50}
\end{equation*}
$$

for all $g \in G$ and $j \in\{1, \ldots, s\}$, with $\chi_{\text {reg }}$ being the character of the regular representation, given explicitly by

$$
\chi_{\mathrm{reg}}(g)= \begin{cases}|G| & \text { if } g=e \tag{7.51}\\ 0 & \text { if } g \neq e\end{cases}
$$

We are ready to prove the basis conversion result:
Theorem 7.4.1 Let $\chi_{1}, \ldots, \chi_{s}$ be all the distinct irreducible characters of a finite group G over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$, and let $d_{j}=\chi_{j}(e)$ be the dimension of the representation space for χ_{j}. Then the elements

$$
\begin{equation*}
u_{i}=\sum_{g \in G} \frac{d_{i}}{|G|} \chi_{i}\left(g^{-1}\right) g=\sum_{C \in \mathcal{C}} \frac{d_{i}}{|G|} \chi_{i}\left(C^{-1}\right) z_{C}, \tag{7.52}
\end{equation*}
$$

for $i \in\{1, \ldots, s\}$, form the maximal set of non-zero orthogonal central idempotents adding up to 1 in $\mathbb{F}[G]$, where \mathcal{C} is the set of all conjugacy classes in G and $\chi_{i}\left(C^{-1}\right)$ denotes the value of χ_{i} on any element in the conjugacy class $C^{-1}=\left\{c^{-1}: c \in C\right\}$. In the other direction,

$$
\begin{equation*}
z_{C}=\sum_{j=1}^{s} \frac{|C|}{d_{j}} \chi_{j}(C) u_{j} \tag{7.53}
\end{equation*}
$$

for every $C \in \mathcal{C}$.
Proof. Writing u_{i} as

$$
u_{i}=\sum_{g \in G} u_{i}(g) g
$$

and applying $\chi_{\text {reg }}$ to $g^{-1} u_{i}$ we have

$$
\begin{equation*}
u_{i}(g)|G|=\chi_{\mathrm{reg}}\left(g^{-1} u_{i}\right)=\chi_{i}\left(g^{-1}\right) d_{i} . \tag{7.54}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
u_{i}=\sum_{g \in G} \frac{d_{i}}{|G|} \chi_{i}\left(g^{-1}\right) g \tag{7.55}
\end{equation*}
$$

and the sum can be condensed into a sum over conjugacy classes since $\frac{d_{i}}{|G|} \chi_{i}\left(g^{-1}\right)$ is constant when g runs over a conjugacy class.

To prove (7.53), note first that since u_{1}, \ldots, u_{s} is a basis of Z, we can write

$$
\begin{equation*}
z_{C}=\sum_{j=1}^{s} \lambda_{j} u_{j} \tag{7.56}
\end{equation*}
$$

for some $\lambda_{1}, \ldots, \lambda_{s} \in \mathbb{F}$. To find the value of λ_{j}, apply the character χ_{j} to z_{C} :

$$
\begin{equation*}
\chi_{j}\left(z_{C}\right)=\sum_{g \in C} \chi_{j}(g)=|C| \chi_{j}(C) \tag{7.57}
\end{equation*}
$$

Because $\chi_{j}\left(u_{i}\right)=\delta_{i j} d_{j}$, from (7.56) it is also $\lambda_{j} d_{j}$. Hence we have 7.53). QED

More insight into 7.53 will be revealed in 7.77 below.
We will put the basis change formulas to use in the next two sections to explore two very different paths.

7.5 Character Arithmetic

In this section we venture out very briefly in a direction quite different from what we have been exploring in this chapter. Our main objective is to prove the following remarkable result:

Theorem 7.5.1 The dimension of any irreducible representation of a finite group G is a divisor of $|G|$, if the underlying field \mathbb{F} for the representation is algebraically closed and has characteristic 0 .

We work with a finite group G, of order $n=|G|$, and a field \mathbb{F} which is algebraically closed and has characteristic 0 (think of \mathbb{F} as being either \mathbb{C} or the algebraic closure $\overline{\mathbb{Q}}$ of the rationals). Being a field of characteristic $0, \mathbb{F}$ contains a copy of \mathbb{Z} and hence also a copy of the rationals \mathbb{Q}. Being algebraically closed, such a field also contains n distinct n-th roots of unity. Moreover, these roots form a multiplicative group which has generators called primitive n-th roots of unity (these are $e^{2 \pi k i / n}$ with $k \in\{1, \ldots, n\}$ coprime to $n)$.

A key fact to be used is the arithmetic feature of characters we had noted back in Theorem 1.11.1. the value of any character of G is a sum of n-th roots of unity. We will first reformulate this slightly using some new terminology.

A polynomial $p(X)$ is said to be monic if it is of the form $\sum_{k=0}^{m} p_{k} X^{k}$ with $p_{m}=1$ and $m \geq 1$. An element $\alpha \in \mathbb{F}$ is an algebraic integer if $p(\alpha)=0$ for some monic polynomial $p(X) \in \mathbb{Z}[X]$. Here are two useful basic facts:
(i) the sum or product of two algebraic integers is an algebraic integer, and so the set of all algebraic integers is a ring;
(ii) if $x \in \mathbb{Q}$ is an algebraic integer then $x \in \mathbb{Z}$.

Proofs are in section 12.7 .
With this language and technology at hand, here is a restatement of Theorem 1.11.1:

Theorem 7.5.2 Suppose G is a group containing n elements and \mathbb{F} a field of characteristic 0 containing n distinct n-th roots of unity. Then for any representation ρ of G on a finite dimensional vector space over \mathbb{F} and for any $g \in G$ the value $\chi_{\rho}(g)$ is a linear combination of $1, \eta, \ldots, \eta^{n-1}$ with integer coefficients, where η is a primitive n-th root of unity; thus, $\chi_{\rho}(g) \in \mathbb{Z}[\eta]$ viewed as a subring of \mathbb{F}. In particular, $\chi_{\rho}(g)$ is an algebraic integer.

We can turn now to proving Theorem 7.5.1.
Proof of Theorem 7.5.1. Let u_{1}, \ldots, u_{s} be the maximal set of non-zero orthogonal central idempotents adding up to 1 in $\mathbb{F}[G]$; we will work with any particular u_{i}. From the formula (7.52) we have

$$
\begin{equation*}
\frac{n}{d_{i}} u_{i}=\sum_{g \in G} \chi_{i}\left(g^{-1}\right) g . \tag{7.58}
\end{equation*}
$$

On the right we have an element of $\mathbb{F}[G]$ in which all coefficients are in the ring $\mathbb{Z}[\eta]$. The interesting observation here is that multiplication by n / d_{i} carries $u_{i} h$ into a linear combination of the elements $u_{i} g$ with coefficients in $\mathbb{Z}[\eta]$:

$$
\frac{n}{d_{i}} u_{i} h=u_{i} \frac{n}{d_{i}} u_{i} h=\sum_{g \in G} \chi_{i}\left(g^{-1}\right) u_{i} g h .
$$

Thus, on the \mathbb{Z}-module F consisting of all linear combinations of the elements $u_{i} g$ with coefficients in $\mathbb{Z}[\eta]$, multiplication by n / d_{i} acts as a \mathbb{Z}-linear map $F \rightarrow F$. Then (do Exercise $7 \sqrt[3]{3}$ and find that) there is a monic polynomial $p(X)$ such that $p\left(n / d_{i}\right)=0$. Thus n / d_{i} is an algebraic integer. But then, by (ii) in the list above, it must be an integer in \mathbb{Z}, which means that d_{i} divides n. QED

Just a little extra work produces the following much sharper result:

Theorem 7.5.3 Suppose G is a finite group, and \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$. Let χ be the character of an irreducible representation of G on a vector space of dimension d over the field \mathbb{F}. Then

$$
\frac{|C|}{d} \chi(C)
$$

is an algebraic integer, for any conjugacy class C in G.
Proof. Let u_{1}, \ldots, u_{s} be the maximal set of non-zero orthogonal central idempotents adding up to 1 in $\mathbb{F}[G]$, and let C_{1}, \ldots, C_{s} be all the distinct conjugacy classes in G. Let

$$
z_{i}=z_{C_{i}}=\sum_{g \in C_{i}} g
$$

Recall from (7.53) that

$$
z_{i}=\sum_{j=1}^{s} \frac{\left|C_{i}\right|}{d_{j}} \chi_{j}\left(C_{i}\right) u_{j}
$$

from which we have

$$
z_{i} u_{k}=\frac{\left|C_{i}\right|}{d_{k}} \chi_{k}\left(C_{i}\right) u_{k}
$$

Then

$$
\begin{align*}
\frac{\left|C_{i}\right|}{d_{k}} \chi_{k}\left(C_{i}\right) z_{j} u_{k} & =z_{j} z_{i} u_{k} \\
& =\sum_{k=1}^{s} \kappa_{i, m j} z_{m} u_{k}, \tag{7.59}
\end{align*}
$$

where the structure constants $\kappa_{i, m j}$ are integers specified by

$$
\begin{equation*}
z_{i} z_{j}=\sum_{m=1}^{s} \kappa_{i, m j} z_{m} \tag{7.60}
\end{equation*}
$$

and given more specifically by

$$
\begin{equation*}
\kappa_{i, m j}=\left|\left\{(a, b) \in C_{i} \times C_{j}: a b=h\right\}\right| \quad \text { for any fixed } h \in C_{m} \tag{7.61}
\end{equation*}
$$

(We have encountered these back in (3.7) and will work with them again shortly.) The equality of the first term and the last term in (7.59) implies
that, for each fixed $i, k \in[s]$, multiplication by $\frac{\left|C_{i}\right|}{d_{k}} \chi_{k}\left(C_{i}\right)$ is a \mathbb{Z}-linear map of the \mathbb{Z}-module spanned by the elements $z_{m} u_{k}$ with m running over $[s]$:

$$
\begin{equation*}
\sum_{m=1}^{s} \mathbb{Z} z_{m} u_{k} \rightarrow \sum_{m=1}^{s} \mathbb{Z} z_{m} u_{k}: x \mapsto \frac{\left|C_{i}\right|}{d_{k}} \chi_{k}\left(C_{i}\right) x \tag{7.62}
\end{equation*}
$$

Then, just as in the proof of Theorem 7.5.1. Exercise 7.3.3implies that $\frac{\left|C_{i}\right|}{d_{k}} \chi_{k}\left(C_{i}\right)$ is an algebraic integer. QED

We will return to a simpler proof in the next section which will give an explicit monic polynomial (7.73), with integer coeffients, of which the quantities $\frac{|C|}{d} \chi(C)$ are solutions.

7.6 Computing Characters

In his classic work [9, Section 223] (2nd Edition) Burnside describes an impressive method of working out all irreducible complex characters of a finite group directly from the multiplication table for the group, without ever having to work out any irreducible representations! This is an amazing achievement, viewed from the logical pathway we have followed. However, from the viewpoint of the historical pathway, this is only natural, for Frobenius [28, eqn. (8)] effectively defined characters by this method using just the group multiplication table.

We work with a finite group G and an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$.

Under our hypotheses on \mathbb{F}, the number of conjugacy classes in G is s, the number of distinct irreducible representations of G. Let C_{1}, \ldots, C_{s} be the distinct elements of \mathcal{C}. Let $\rho_{1}, \ldots, \rho_{s}$ be a maximal collection of inequivalent irreducible representations of G, and let χ_{j} be the character of ρ_{j} and d_{j} the dimension of ρ_{j}. Let z_{i} be the sum of the elements in the conjugacy class C_{i} :

$$
z_{i}=\sum_{g \in C_{i}} g \quad \text { for } i \in\{1, \ldots, s\}
$$

Recall the basis change formula (7.63):

$$
\begin{equation*}
z_{j}=\sum_{i=1}^{s} \frac{\left|C_{j}\right|}{d_{i}} \chi_{i}\left(C_{j}\right) u_{i} \tag{7.63}
\end{equation*}
$$

for every $j \in\{1, \ldots, s\}$. For any $z \in Z$, the center of $\mathbb{F}[G]$, let $M(z)$ be the linear map

$$
\begin{equation*}
M(z): Z \rightarrow Z: w \mapsto z w \tag{7.64}
\end{equation*}
$$

This is the just the restriction of the regular representation to Z. The idea is to extract information by looking at the matrix of $M(z)$ first for the basis z_{1}, \ldots, z_{s}, and then for the basis u_{1}, \ldots, u_{s}.

Now take a quick look back to Proposition 3.3.1: the structure constants $\kappa_{j, i k} \in \mathbb{F}$ are specified by the requirement that

$$
\begin{equation*}
z_{k} z_{j}=\sum_{l=1}^{s} \kappa_{k, i j} z_{i} \quad \text { for all } j, k \in[s] . \tag{7.65}
\end{equation*}
$$

Another way to view the structure constants $\kappa_{j, i k}$ is given by

$$
\begin{equation*}
\kappa_{k, i j}=\left|\left\{(a, b) \in C_{k} \times C_{j}: a b=c\right\}\right|, \tag{7.66}
\end{equation*}
$$

for any fixed choice of c in C_{i}. Clearly, at least in principle, the structure constants can worked out from the multiplication table for the group G. Then, relative to the basis z_{1}, \ldots, z_{s}, the matrix M_{k} of $M\left(z_{k}\right)$ has (i, j)-th entry given by $\kappa_{k, i j}$:

$$
M(k)=\left[\begin{array}{cccc}
\kappa_{k, 11} & \kappa_{k, 12} & \ldots & \kappa_{k, 1 s} \tag{7.67}\\
\kappa_{k, 21} & \kappa_{k, 22} & \ldots & \kappa_{k, 2 s} \\
\vdots & \vdots & \ldots & \vdots \\
\kappa_{k, s 1} & \kappa_{k, s 2} & \ldots & \kappa_{k, s s}
\end{array}\right]
$$

Now consider the action of $M\left(z_{k}\right)$ on u_{j} :

$$
\begin{equation*}
M\left(z_{k}\right) u_{j}=z_{k} u_{j}=\frac{\left|C_{k}\right|}{d_{j}} \chi_{j}\left(C_{k}\right) u_{j} . \tag{7.68}
\end{equation*}
$$

by using (7.63). Thus, the elements u_{1}, \ldots, u_{s}, are eigenvectors for $M\left(z_{k}\right)$, with u_{j} having eigenvalue $\frac{\left|C_{k}\right|}{d_{j}} \chi_{j}\left(C_{k}\right)$.

Recalling formula (7.52):

$$
u_{j}=\sum_{k=1}^{s} \frac{d_{j}}{|G|} \chi_{j}\left(C_{k}^{-1}\right) z_{k}
$$

we can display u_{j} as a column vector, with respect to the basis z_{1}, \ldots, z_{s}, as

$$
\overrightarrow{u_{j}}=\left[\begin{array}{c}
\frac{d_{j}}{|G|} \chi_{j}\left(C_{1}^{-1}\right) \tag{7.69}\\
\vdots \\
\frac{d_{j}}{|G|} \chi_{j}\left(C_{s}^{-1}\right)
\end{array}\right]
$$

Then, in matrix form,

$$
\begin{equation*}
M(k) \overrightarrow{u_{j}}=\frac{\left|C_{k}\right|}{d_{j}} \chi_{j}\left(C_{k}\right) \overrightarrow{u_{j}} . \tag{7.70}
\end{equation*}
$$

Thus, for each fixed $j \in[s]$, the vector $\overrightarrow{u_{j}}$ is a simultaneous eigenvector of the s matrices $M(1), \ldots, M(s)$.

A program that computes eigenvectors and eigenvalues can then be used to work out the values $\frac{\left|C_{j}\right|}{d_{i}} \chi_{i}\left(C_{j}\right)$. Next recall the character orthogonality relation (7.24) which we can write as:

$$
\begin{equation*}
\sum_{k=1}^{s}\left|C_{k}\right| \chi_{i}\left(C_{k}\right) \chi_{i}\left(C_{k}^{-1}\right)=|G| \tag{7.71}
\end{equation*}
$$

and then as

$$
\begin{equation*}
\sum_{k=1}^{s} \frac{1}{\left|C_{k}\right|} \frac{\left|C_{k}\right|}{d_{i}} \chi_{i}\left(C_{k}\right) \frac{\left|C_{k}^{-1}\right|}{d_{i}} \chi_{i}\left(C_{k}^{-1}\right)=\frac{|G|}{d_{i}^{2}} \tag{7.72}
\end{equation*}
$$

Thus, once we have computed the eigenvalue $\frac{|C|}{d_{i}} \chi_{i}(C)$ for each conjugacy class C and each $i \in[s]$, we can determine $|G| / d_{i}^{2}$ and hence the values d_{1}, \ldots, d_{s}. Finally, we can compute the values $\chi_{i}(C)$ of the characters χ_{i} on all the conjugacy classes C as:

$$
\chi_{i}(C)=\frac{1}{|C|} d_{i} \frac{|C|}{d_{i}} \chi_{i}(C) .
$$

An unpleasant feature of this otherwise wonderful procedure is that the eigenvalues will, in general, be complex numbers, which are therefore determined by a typical matrix algebra software only approximately. Dixon [23] showed how character values can be computed exactly once they are known up to close enough approximation (this was explored in Exercise 1.21). Dixon also provides a methof of computing the characters exactly by using reduction $\bmod p$, for large enough prime p. These ideas have been coded up in programs such as GAP that compute group characters.

There is one pleasant theoretical consequence of the exploration of the matrices M_{k}; this is Frobenius' simple proof of Theorem 7.5.3:
Simple proof of Theorem 7.5.3. As usual, let G be a finite group, \mathbb{F} an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0, C_{1}, \ldots, C_{s}$ all the distinct conjugacy classes in G, and $\chi_{1}, \ldots, \chi_{s}$ the distinct irreducible characters of G, over the field \mathbb{F}, and d_{j} the dimension of the representation for the character χ_{j}. Then, as we have seen above, the matrices $M(k)$, with integer entries as given in (7.67), have the eigenvalues $\frac{\left|C_{k}\right|}{d_{j}} \chi_{j}\left(C_{k}\right)$. Thus, these eigenvalues are solutions for $\lambda \in \mathbb{F}$ of the characteristic equation

$$
\begin{equation*}
\operatorname{det}(\lambda I-M(k))=0, \tag{7.73}
\end{equation*}
$$

which is clearly a monic polynomial. All entries of the matrix $M(k)$ being integers, all coefficients in the polynomial in λ on the left side of (7.73) are also integers. Hence, each $\frac{\left|C_{k}\right|}{d_{j}} \chi_{j}\left(C_{k}\right)$ is an algebraic integer. QED

Here is a simple example, going back to Burnside [9, paragraph 222] and Frobenius and Schur [35], of the interplay between properties of a group and of its characters.

Theorem 7.6.1 If G is a finite group such that every complex character is real valued then $|G|$ is even.

Proof. Suppose $|G|$ is odd. Then, since the order of every element of G is a divisor of $|G|$, there is no element of order 2 in G, and so $g \neq g^{-1}$ for all $g \neq e$. If χ is a nontrivial irreducible character of G, over \mathbb{C}, then

$$
\sum_{g \in G} \chi(g)=0
$$

by orthogonality with the trivial character. Since χ is, by hypothesis, real valued, we have

$$
\chi(g)=\chi\left(g^{-1}\right) \text { for all } g \in G,
$$

and then

$$
0=\sum_{g} \chi(g)=\chi(e)+\sum_{g \in S}\left(\chi(g)+\chi\left(g^{-1}\right)\right)=d+2 \sum_{g \in S} \chi(g),
$$

where d is the dimension of the representation for χ, and S is a set containing half the elements of $G-\{e\}$. But then $d / 2$ is both a rational and an algebraic integer and hence (see Proposition 12.7.1) it is actually an integer in \mathbb{Z}. Thus d is even. QED

For a restatement, with an elementary proof, do Exercise 7.10.

7.7 Return of the Group Determinant

Let G be a finite group with n elements, and \mathbb{F} a field. Dedekind's group determinant, described in his letters [19] to Frobenius, is the determinant of the $|G| \times|G|$ matrix

$$
\left[X_{a b^{-1}}\right]_{a, b \in G}
$$

where X_{g} is a variable associated with each $g \in G$. Let F_{G} be the matrix formed in the case where the variables are chosen so that $X_{a}=X_{b}$ when a and b are in the same conjugacy class. The matrix F_{G} was introduced by Frobenius [34, eq. (11)]. For more history, aside from the original works of Frobenius [28, 29, 30, 31, 32, 33, 34, 35] and Dedekind [19], see the books of Hawkins [41, Chapter 10], and Curtis [15] and the article of Lam [51]; Hawkins [42] also presents an enjoyable and enlightening analysis of letters from Frobenius to Dedekind.

Let \mathbb{F} be a field, and R the regular representation of G; thus, for $g \in G$,

$$
R(g): \mathbb{F}[G] \rightarrow \mathbb{F}[G]: y \mapsto g y
$$

Then, in the basis of $\mathbb{F}[G]$ given by the elements of G, the (a, b)-th entry of

$$
R(g)_{a b}= \begin{cases}1 & \text { if } g b=a \\ 0 & \text { if } g b \neq a\end{cases}
$$

which means $R(g)_{a b}=1$ if $g=a b^{-1}$, and 0 otherwise. Then the matrix for $\sum_{g \in G} R(g) X_{g}$ has (a, b)-th entry $X_{a b^{-1}}$. Thus,

$$
\begin{equation*}
F_{G}=\sum_{g \in G} R(g) X_{g} . \tag{7.74}
\end{equation*}
$$

Since X_{g} has a common value, call it X_{C}, for all g in a conjugacy class C, we can rewrite F_{G} as

$$
\begin{equation*}
F_{G}=\sum_{C \in \mathcal{C}} R\left(z_{C}\right) X_{C} \tag{7.75}
\end{equation*}
$$

where \mathcal{C} is the set of conjugacy classes in G, and z_{C} is the conjugacy class sum

$$
\begin{equation*}
z_{C}=\sum_{g \in C} g . \tag{7.76}
\end{equation*}
$$

Now suppose the field \mathbb{F} is such that $|G| 1_{\mathbb{F}} \neq 0$. Then there are simple left ideals L_{1}, \ldots, L_{s} in $\mathbb{F}[G]$, such that every simple left ideal in $\mathbb{F}[G]$ is isomorphic,
as a left $\mathbb{F}[G]$-module, to L_{i} for exactly one $i \in[s]$, and the \mathbb{F}-algebra $\mathbb{F}[G]$ is isomorphic to the product of subalgebras A_{1}, \ldots, A_{s}, where A_{i} is the sum of all left ideals isomorphic to L_{i}. Assume, moreover, that \mathbb{F} is a splitting field for G in that $\operatorname{End}_{\mathbb{F}[G]}\left(L_{i}\right)$ consists of just the constant maps $x \mapsto c x$ for $c \in \mathbb{F}$. For instance, \mathbb{F} could be algebraically closed. Then A_{i} is the direct sum of d_{i} simple left ideals, where $d_{i}=\operatorname{dim}_{\mathbb{F}} L_{i}$. For any element z in the center Z of $\mathbb{F}[G]$, the endomorphism $R(z)$ acts as multiplication by a scalar $c_{z} \in \mathbb{F}$ on each L_{i}. Denoting by χ_{i} the character of the regular representation restricted to L_{i}, we have

$$
\chi_{i}(z) \stackrel{\text { def }}{=} \operatorname{Tr}\left(R(z) \mid L_{i}\right)=\operatorname{Tr}\left(c_{z} I_{L_{i}}\right)=c_{z} d_{i}
$$

where $I_{L_{i}}$ is the identity mapping on L_{i}. Hence,

$$
c_{z}=\frac{1}{d_{i}} \chi_{i}(z) .
$$

Taking z_{C} for z shows that

$$
\begin{equation*}
R\left(z_{C}\right) \left\lvert\, L_{i}=\frac{|C|}{d_{i}} \chi_{i}(C) I_{i}\right., \tag{7.77}
\end{equation*}
$$

where $\chi_{i}(C)$ is the value of the character χ_{i} on any element in C (and not to be confused with $\chi_{i}\left(z_{C}\right)$ itself). Consequently,

$$
\begin{equation*}
F_{G} \left\lvert\, L_{i}=\sum_{C \in \mathcal{C}} \frac{|C|}{d_{i}} \chi_{i}(C) X_{C} I_{i}\right. \tag{7.78}
\end{equation*}
$$

Thus, F_{G} can be displayed as a giant block diagonal matrix, with each $i \in[s]$ contributing d_{i} blocks, each such block being the scalar matrix in (7.78). Taking the determinant, we have

$$
\begin{equation*}
\operatorname{det} F_{G}=\prod_{i=1}^{s}\left(\sum_{C \in \mathcal{C}} \frac{|C|}{d_{i}} \chi_{i}(C) X_{C}\right)^{d_{i}^{2}} \tag{7.79}
\end{equation*}
$$

The entire universe of representation theory grew as a flower from Frobenius' meditation on Dedekind's determinant. The formula (7.79) (Frobenius [28, eq.(22)] and [29]) shows how all the characters of G are encoded in the determinant.

For S_{3}, with conjugacy classes labeled by variables Y_{1} (identity element), Y_{2} (transpositions), Y_{3} (three-cycles), equation (7.79) reads

$$
\begin{align*}
& \left\lvert\, \begin{array}{llllll}
Y_{1} & Y_{3} & Y_{3} & Y_{2} & Y_{2} & Y_{2} \\
Y_{3} & Y_{1} & Y_{3} & Y_{2} & Y_{2} & Y_{2}
\end{array}\right. \\
& \begin{array}{llllll}
Y_{3} & Y_{1} & Y_{3} & Y_{2} & Y_{2} & Y_{2} \\
Y_{3} & Y_{3} & Y_{1} & Y_{2} & Y_{2} & Y_{2}
\end{array} \\
& \begin{array}{llllll}
Y_{3} & Y_{3} & Y_{1} & Y_{2} & Y_{2} & Y_{2}
\end{array} \\
& \begin{array}{llllll}
Y_{2} & Y_{2} & Y_{2} & Y_{1} & Y_{3} & Y_{3}
\end{array} \tag{7.80}\\
& \begin{array}{llllll}
Y_{2} & Y_{2} & Y_{2} & Y_{3} & Y_{1} & Y_{3}
\end{array} \\
& \left|\begin{array}{llllll}
Y_{2} & Y_{2} & Y_{2} & Y_{3} & Y_{3} & Y_{1}
\end{array}\right| \\
& =\left(Y_{1}-Y_{3}\right)^{4}\left(Y_{1}+3 Y_{2}+2 Y_{3}\right)\left(Y_{1}-3 Y_{2}+2 Y_{3}\right),
\end{align*}
$$

which you can verify directly at your leisure/pleasure.

7.8 Orthogonality for Matrix Elements

In this section we will again use the bra-ket formalism from the end of section 1.6. By a matrix element for a group G we mean a function on G of the form

$$
G \rightarrow \mathbb{F}: g \mapsto\left\langle e^{\prime}\right| \rho(g)|e\rangle
$$

where ρ is a representation of G on a vector space E over a field \mathbb{F}, and $|e\rangle \in E$ and $\left\langle e^{\prime}\right|$ is a vector in the dual space E^{\prime}. (Note that 'matrix element' does not mean the entry in some matrix.)

In this section we explore some straightforward extensions of the orthogonality relations from characters to matrix elements.

Theorem 7.8.1 If ρ_{E} and ρ_{F} are inequivalent irreducible representations of a finite group G on vector spaces E and F, respectively, then the matrix elements of ρ and ρ^{\prime} are orthogonal in the sense that

$$
\begin{equation*}
\sum_{g \in G}\left\langle f^{\prime}\right| \rho_{F}(g)|f\rangle\left\langle e^{\prime}\right| \rho_{E}\left(g^{-1}\right)|e\rangle=0 \tag{7.81}
\end{equation*}
$$

for all $\left\langle f^{\prime}\right| \in F^{*},\left\langle e^{\prime}\right| \in E^{*}$ and all $|e\rangle \in E,|f\rangle \in F$.
Proof. The linear map

$$
T_{1}=\sum_{g \in G} \rho_{F}(g)|f\rangle\left\langle e^{\prime}\right| \rho_{E}\left(g^{-1}\right): E \rightarrow F
$$

is $\mathbb{F}[G]$-linear and hence is 0 by Schur's Lemma. QED
Now assume that \mathbb{F} is algebraically closed and has characteristic 0 . Let E be a fixed irreducible representation of G. Then Schur's Lemma implies that for any $T \in \operatorname{End}_{\mathbb{F}}(E)$ the symmetrized operator T_{0} on the left in (7.82) below is a multiple of the identity. The value of this multiplier is easily obtained by comparing traces:

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} g T g^{-1}=T_{0}=\frac{1}{\operatorname{dim}_{\mathbb{F}} E} \operatorname{Tr}(T) I, \tag{7.82}
\end{equation*}
$$

noting that both sides have trace equal to $\operatorname{Tr}(T)$.
Working with a basis $\left\{e_{i}\right\}_{i \in I}$ of E, with dual basis $\left\{\left\langle e^{j}\right|\right\}_{j \in I}$ satisfying

$$
\left\langle e^{j} \mid e_{i}\right\rangle=\delta_{i}^{j}
$$

we then have

$$
\begin{equation*}
\left\langle e^{j}\right| T_{0}\left|e_{i}\right\rangle=\frac{1}{\operatorname{dim}_{\mathbb{F}} E} \operatorname{Tr}(T) \delta_{i}^{j} \quad \text { for all } i, j \in I \tag{7.83}
\end{equation*}
$$

Taking for T the particular operator

$$
T=\rho_{E}(h)\left|e_{k}\right\rangle\left\langle e^{l}\right|,
$$

shows that

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G}\left\langle e^{j}\right| \rho_{E}(g h)\left|e_{k}\right\rangle\left\langle e^{l}\right| \rho_{E}\left(g^{-1}\right)\left|e_{i}\right\rangle=\frac{1}{\operatorname{dim}_{\mathbb{F}} E} \rho_{E}(h)_{k}^{l} \delta_{i}^{j} \quad \text { for all } i, j \in I \tag{7.84}
\end{equation*}
$$

A look back at (7.41) provides an interpretation of this in terms of convolution.

We can summarize our observations in:
Theorem 7.8.2 Let E_{1}, \ldots, E_{s} be a collection of irreducible representations of a finite group G, over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq$ 0 , such that every irreducible \mathbb{F}-representation of G is equivalent to E_{r} for exactly one $r \in\{1, \ldots, s\}$. For each $r \in\{1, \ldots, s\}$, choose a basis $\left\{\left|e(r)_{i}\right\rangle\right.$: $\left.1 \leq i \leq d_{r}\right\}$, where $d_{r}=\operatorname{dim}_{\mathbb{F}} E_{r}$, and let $\left\{\left\langle e(r)^{i}\right|: i \in\left\{1, \ldots, d_{r}\right\}\right\}$ be the corresponding dual basis in E_{r}^{\prime}. Let $\rho_{r, i j}$ be the matrix element:

$$
\rho_{r, i j}: G \rightarrow \mathbb{C}: g \mapsto\left\langle e(r)^{i}\right| \rho_{E_{r}}(g)\left|e(r)_{j}\right\rangle .
$$

Then the scaled matrix elements

$$
\begin{equation*}
d_{r}^{1 / 2} \rho_{r, i j}, \tag{7.85}
\end{equation*}
$$

with $i, j \in\left\{1, \ldots, d_{r}\right\}$, and r running over $\{1, \ldots, s\}$, form an orthonormal basis of $L^{2}(G)$. Moreover, the convolution of matrix elements of an irreducible representation E is a multiple of a matrix element for the same representation, the multiplier being 0 or $1 / \operatorname{dim}_{\mathbb{F}} E$.

Proof. From the orthogonality relation (7.81) and the identity (7.82), it follows that the functions in 7.85 are orthonormal in $L^{2}(G)$. The total number of these functions is

$$
\sum_{r=1}^{s} d_{r}^{2}
$$

But this is precisely the number of elements in G, which is also the same as $\operatorname{dim} L^{2}(G)$. Thus, the functions (7.85) form a basis of $L^{2}(G)$. The convolution result follows from 7.84) on replacing g by $g h^{-1}$. QED

7.9 Solving Equations in Groups

We close our exploration of characters with an application with which Frobenius [28] began his development of the notion of characters. This is the task of counting the number of solutions of equations in a group.

Theorem 7.9.1 Let C_{1}, \ldots, C_{m} be distinct conjugacy classes in a finite group G. Then

$$
\begin{align*}
\mid\left\{\left(c_{1}, \ldots, c_{m}\right) \in C_{1} \times \ldots\right. & \left.\times C_{m} \mid c_{1} \ldots c_{m}=e\right\} \mid \\
& =\frac{\left|C_{1}\right| \ldots\left|C_{m}\right|}{|G|} \sum_{i=1}^{s} \frac{1}{d_{i}^{m-2}} \chi_{i}\left(C_{1}\right) \ldots \chi_{i}\left(C_{m}\right) . \tag{7.86}
\end{align*}
$$

where $\chi_{1}, \ldots, \chi_{s}$ are all the distinct irreducible characters of G, over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0, d_{i}$ is the dimension of the representation for the character χ_{i}, and $\chi_{i}(C)$ is the constant value of χ_{i} on C. Moreover,

$$
\begin{align*}
\mid\left\{\left(c_{1}, \ldots, c_{m}\right) \in C_{1} \times \ldots\right. & \left.\times C_{m} \mid c_{1} \ldots c_{m}=c\right\} \mid \\
& =\frac{\left|C_{1}\right| \ldots\left|C_{m}\right|}{|G|} \sum_{i=1}^{s} \frac{1}{d_{i}^{m-1}} \chi_{i}\left(C_{1}\right) \ldots \chi_{i}\left(C_{m}\right) \chi_{i}\left(c^{-1}\right) \tag{7.87}
\end{align*}
$$

for any $c \in G$. The left sides of (7.86) and (7.87), integers as they stand, are being viewed as elements of \mathbb{F}, by multiplication with $1_{\mathbb{F}}$.

As always, the algebraic closedness for \mathbb{F} may be weakened to the requirement that it is a splitting field for G.
 to the conjugacy class C_{i}. Recall the trace functional Tr_{e} on $\mathbb{F}[G]$ given by $\operatorname{Tr}_{e}(x)=x_{e}$, the coefficient of e in $x=\sum_{g} x_{g} g \in \mathbb{F}[G]$. Clearly,

$$
\begin{equation*}
\operatorname{Tr}_{e}\left(z_{1} \ldots z_{m}\right)=\left|\left\{\left(c_{1}, \ldots, c_{m}\right) \in C_{1} \times \ldots \times C_{m} \mid c_{1} \ldots c_{m}=e\right\}\right| \tag{7.88}
\end{equation*}
$$

where the right side is being taken as an element in \mathbb{F}. This is the key observation; the rest of the argument is a matter of working out the trace on the left from the trace of the regular representaion, decomposed into simple submodules. Using the regular representation R, given by

$$
R(x): \mathbb{F}[G] \rightarrow \mathbb{F}[G]: y \mapsto x y \quad \text { for all } x \in \mathbb{F}[G]
$$

we have

$$
\operatorname{Tr} R(x)=|G| \operatorname{Tr}_{e}(x) \quad \text { for all } x \in \mathbb{F}[G] .
$$

So

$$
\begin{equation*}
\operatorname{Tr}_{e}\left(z_{1} \ldots z_{m}\right)=\frac{1}{|G|} \operatorname{Tr} R\left(z_{1} \ldots z_{m}\right) \tag{7.89}
\end{equation*}
$$

Now recall the relation 7.77

$$
\begin{equation*}
R\left(z_{j}\right) \left\lvert\, L_{i}=\frac{\left|C_{j}\right|}{d_{i}} \chi_{i}\left(C_{j}\right) I_{i}\right. \tag{7.90}
\end{equation*}
$$

where I_{i} is the identity map on L_{i}, and L_{1}, \ldots, L_{s} are distinct simple left ideals in $\mathbb{F}[G]$ such that every simple left ideal in $\mathbb{F}[G]$ is isomorphic to exactly one L_{i}. As we know from the structure of $\mathbb{F}[G]$, this algebra is the direct sum

$$
\mathbb{F}[G]=\bigoplus_{i=1}^{s}\left(L_{i 1} \oplus \ldots \oplus L_{i d_{i}}\right)
$$

where each $L_{i k}$ is isomorphic, as a left $\mathbb{F}[G]$-module, to L_{i}. On each of the d_{i} subspaces $L_{i k}$, each of dimension d_{i}, the endomorphism $R\left(z_{j}\right)$ acts by multiplication by the scalar $\frac{\left|C_{j}\right|}{d_{i}} \chi_{i}\left(C_{j}\right)$. Consequently,

$$
\begin{equation*}
\operatorname{Tr} R\left(z_{1} \ldots z_{m}\right)=\sum_{i=1}^{s} d_{i}\left(\prod_{j=1}^{m} \frac{\left|C_{j}\right| \chi_{i}\left(C_{j}\right)}{d_{i}}\right) d_{i} . \tag{7.91}
\end{equation*}
$$

Combining this with the relationship between Tr_{e} and Tr given in 7.89, along with the counting formula (7.88) yields the number of $\left(c_{1}, \ldots, c_{m}\right) \in$ $C_{1} \times \ldots \times C_{m}$ with $c_{1} \ldots c_{m}=e$.

Now for any $c \in G$, let

$$
P(c)=\left\{\left(c_{1}, \ldots, c_{m}\right) \in C_{1} \times \ldots \times C_{m}: c_{1} \ldots c_{m}=c\right\} .
$$

Then for any $h \in G$ the map

$$
\left(g_{1}, \ldots, g_{m}\right) \mapsto\left(h g_{1} h^{-1}, \ldots, h g_{m} h^{-1}\right)
$$

gives a bijection between $P(c)$ and $P\left(h c h^{-1}\right)$. Moreover, the union of the sets $P\left(c^{\prime}\right)$ with c^{\prime} running over the conjugacy class C_{c} is in bijection with the set

$$
\left\{\left(c_{1}, \ldots, c_{m}, d\right) \in C_{1} \times \ldots \times C_{m} \times C_{c^{-1}}: c_{1} \ldots c_{m} d=e\right\}
$$

Comparing the cardinalities, we have

$$
\left|C_{c}\right||P(c)|=\frac{\left|C_{1}\right| \ldots\left|C_{m}\right|\left|C_{c^{-1}}\right|}{|G|} \sum_{i=1}^{s} \frac{1}{d_{i}^{m-1}} \chi_{i}\left(C_{1}\right) \ldots \chi_{i}\left(C_{m}\right) \chi_{i}\left(c^{-1}\right)
$$

Since $\left|C_{c}\right|$ equals $\left|C_{c^{-1}}\right|$, this establishes the formula 7.87) for $|P(c)| \cdot$ QED
Frobenius [28] also determined the number of solutions to commutator equations in terms of characters:

Theorem 7.9.2 Let G be a finite group, and χ the character of an irreducible representation of G on a vector space, of dimension d, over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. Then

$$
\begin{equation*}
\sum_{b \in G} \chi\left(a b^{-1} h b\right)=\frac{|G|}{d} \chi(a) \chi(h) \tag{7.92}
\end{equation*}
$$

for all $a, h \in G$, and

$$
\begin{equation*}
\sum_{a, b \in G} \chi\left(a b a^{-1} b^{-1} c\right)=\left(\frac{|G|}{d}\right)^{2} \chi(c) \tag{7.93}
\end{equation*}
$$

for all $c \in G$. Moreover,

$$
\begin{equation*}
\left|\left\{(a, b) \in G^{2}: a b a^{-1} b^{-1}=c\right\}\right|=\sum_{i=1}^{s} \frac{|G|}{d_{i}} \chi_{i}(c) \tag{7.94}
\end{equation*}
$$

for all $c \in G$, where $\chi_{1}, \ldots, \chi_{s}$ are all the distinct irreducible characters of G over the field \mathbb{F}, and the left side of (7.94) is being taken as an element of \mathbb{F} by multiplication with $1_{\mathbb{F}}$.
$\underline{\text { Proof. For any } a \in G \text {, let }}$

$$
z_{a}=\sum_{c \in C_{a}} c
$$

where C_{a} is the conjugacy class of a. Compare with the sum

$$
\sum_{g \in G} g a g^{-1}
$$

Each term in this sum is repeated $\left|\operatorname{Stab}_{a}\right|$ times, where Stab_{a} is the set $\left\{g \in G: g a g^{-1}=a\right\}$, and

$$
\left|\operatorname{Stab}_{a}\right|=\frac{|G|}{\left|C_{a}\right|}
$$

Hence,

$$
\begin{equation*}
z_{a}=\frac{\left|C_{a}\right|}{|G|} \sum_{g \in G} g a g^{-1} \tag{7.95}
\end{equation*}
$$

Let R_{χ} denote an irreducible representation whose character is χ. Then, for any central element z in $\mathbb{F}[G]$, the endomorphism $R(z)$ is multiplication by the constant $\chi(z) / d$; moreover, if z_{C} is the sum $\sum_{g \in C} g$ for a conjugacy class C, then $\chi\left(z_{C}\right)=|C| \chi(C)$, where χ is the constant value of χ on C. Then

$$
\begin{align*}
\chi\left(z_{a} z_{h}\right) & =\operatorname{Tr} R_{\chi}\left(z_{a}\right) R_{\chi}\left(z_{h}\right) \\
& =\operatorname{Tr}\left(\frac{\left|C_{a}\right|}{d} \chi(a) \frac{\left|C_{h}\right|}{d} \chi(h) I\right) \tag{7.96}\\
& =\frac{\left|C_{a}\right|\left|C_{h}\right|}{d^{2}} \chi(a) \chi(h) d .
\end{align*}
$$

Now observe that

$$
\begin{align*}
\chi\left(z_{a} z_{h}\right) & =\chi\left(\frac{\left|C_{a}\right|}{|G|} \frac{\left|C_{b}\right|}{|G|} \sum_{g, b \in G} g a g^{-1} b h b^{-1}\right) \\
& =\frac{\left|C_{a}\right|}{|G|} \frac{\left|C_{b}\right|}{|G|} \chi\left(\sum_{g \in G} \sum_{b \in G} g a b h b^{-1} g^{-1}\right) \quad \text { (on replacing } b \text { by } g b . \text {.) } \\
& =\frac{\left|C_{a}\right|}{|G|} \frac{\left|C_{b}\right|}{|G|}|G| \sum_{b \in G} \chi\left(a b h b^{-1}\right) . \tag{7.97}
\end{align*}
$$

Combining this with (7.96) we have

$$
\begin{equation*}
\sum_{b \in G} \chi\left(a b h b^{-1}\right)=\frac{|G|}{d} \chi(a) \chi(h) \tag{7.98}
\end{equation*}
$$

Taking $c a$ for a, and $h=a^{-1}$, and adding up over a as well we have

$$
\sum_{a, b \in G} \chi\left(a b a^{-1} b^{-1} c\right)=\frac{|G|}{d} \sum_{a} \chi(c a) \chi\left(a^{-1}\right)=\left(\frac{|G|}{d}\right)^{2} \chi(c)
$$

upon using the character convolution formula in Theorem 7.2.6. Next, for the count,

$$
\begin{aligned}
\left|\left\{(a, b): a b a^{-1} b^{-1}=c\right\}\right| & =\sum_{a, b \in G} \operatorname{Tr}_{e}\left(a b a^{-1} b^{-1} c^{-1}\right) \\
& =\frac{1}{|G|} \sum_{a, b} \sum_{i=1}^{s} d_{i} \chi_{i}\left(a b a^{-1} b^{-1} c^{-1}\right) \\
& =\frac{1}{|G|} \sum_{i=1}^{s} d_{i} \frac{|G|^{2}}{d_{i}^{2}} \chi_{i}\left(c^{-1}\right) \\
& =\sum_{i=1}^{s} \frac{|G|}{d_{i}} \chi_{i}\left(c^{-1}\right)
\end{aligned}
$$

To finish off, note that the replacement $(a, b) \mapsto(b, a)$ changes c to c^{-1}. QED

The previous results on commutator equations and product equations lead to a count of solutions of equations that have topological significance, as we will discuss shortly.

Theorem 7.9.3 Let G be a finite group, and $\chi_{1}, \ldots, \chi_{s}$ all the distinct irreducible characters of G over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. For positive integers n and k, and any conjugacy classes C_{1}, \ldots, C_{k} in G, let

$$
\begin{gather*}
M\left(C_{1}, \ldots, C_{k}\right) \\
=\left\{\left(\alpha, c_{1}, \ldots, c_{k}\right) \in G^{2 n} \times C_{1} \times \ldots \times C_{k}: K_{n}(\alpha) c_{1} \ldots c_{k}=e\right\} \tag{7.100}
\end{gather*}
$$

where

$$
K_{n}\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}
$$

Then

$$
\begin{equation*}
\left|M\left(C_{1}, \ldots, C_{k}\right)\right|=|G| \sum_{i=1}^{s}\left(|G| / d_{i}\right)^{2 n-2}\left(\frac{\left|C_{1}\right| \chi_{i}\left(C_{1}\right)}{d_{i}} \ldots \frac{\left|C_{k}\right| \chi_{i}\left(C_{k}\right)}{d_{i}}\right) \tag{7.101}
\end{equation*}
$$

where the left side is taken as an element of \mathbb{F} by multiplication with $1_{\mathbb{F}}$.
The group G acts by conjugation on $M\left(C_{1}, \ldots, C_{k}\right)$, and so it seems natural to factor out one term $|G|$ on the right in (7.101); the terms in the sum are algebraic integers. A special case of interest is when $k=1$ and $C_{1}=\{e\}$; then

$$
\begin{equation*}
\left|K_{n}^{-1}(e)\right|=|G| \sum_{i=1}^{s}\left(\frac{|G|}{d_{i}}\right)^{2 n-2} \tag{7.102}
\end{equation*}
$$

Proof. The key observation is that we can disintegrate $M\left(C_{1}, \ldots, C_{k}\right)$ by means of the projection maps

$$
p_{j}:\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}, c_{1}, \ldots, c_{k}\right) \mapsto\left(a_{j}, b_{j}\right) \mapsto a_{j} b_{j} a_{j}^{-1} b_{j}^{-1} .
$$

Take any point $h=\left(h_{1}, \ldots, h_{n}\right) \in G^{n}$ and consider the preimage in $G^{2 n}$ of h under the map

$$
p: G^{2 n} \rightarrow G^{n}:\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \mapsto\left(K_{1}\left(a_{1}, b_{1}\right), \ldots, K_{1}\left(a_{n}, b_{n}\right)\right)
$$

Then $M\left(C_{1}, \ldots, C_{k}\right)$ is the union of the 'fibers' $p_{n}^{-1}(h) \times\left\{\left(c_{1}, \ldots, c_{k}\right)\right\}$, with $\left(c_{1}, \ldots, c_{k}\right)$ running over all solutions in $C_{1} \times \ldots \times C_{k}$ of

$$
c_{1} \ldots c_{k}=h_{1} \ldots h_{n} .
$$

The idea of the calculation below is best understood by visualizing the set $M\left(C_{1}, \ldots, C_{k}\right)$ as a union of 'fibers' over the points $\left(h, c_{1}, \ldots c_{k}\right)$ and then by viewing each fiber as essentially a product of sets of the form $K_{1}^{-1}\left(c_{j}\right)$.

From (7.94) we have

$$
\left|p_{n}^{-1}\left(h_{1}, \ldots, h_{n}\right)\right|=\prod_{j=1}^{n}\left(\sum_{i=1}^{s} \frac{|G|}{d_{i}} \chi_{i}\left(h_{j}\right)\right)=\sum_{i_{1}, \ldots, i_{n} \in[s]} \frac{|G|^{n}}{d_{i_{1}} \ldots d_{i_{n}}} \chi_{i_{1}}\left(h_{1}\right) \ldots \chi_{i_{n}}\left(h_{n}\right)
$$

and then, on using the general character convolution formula (7.44), we have

$$
\begin{equation*}
\sum_{h_{1} \ldots h_{n}=c}\left|p_{n}^{-1}\left(h_{1}, \ldots h_{n}\right)\right|=\sum_{i=1}^{s} \frac{|G|^{n}}{d_{i}^{n}} \frac{|G|^{n-1}}{d_{i}^{n-1}} \chi_{i}(c) \tag{7.103}
\end{equation*}
$$

Now we need to sum this up over all solutions of $c_{1} \ldots c_{k}=c$ with $\left(c_{1}, \ldots, c_{k}\right)$ running over $C_{1} \times \ldots \times C_{k}$. Using the count formula (7.87), this brings us to

$$
\begin{equation*}
\frac{\left|C_{1}\right| \ldots\left|C_{k}\right|}{|G|} \sum_{j=1}^{s} \frac{\chi_{j}\left(C_{1}\right) \ldots \chi_{j}\left(C_{k}\right)}{d_{j}^{k-1}} \chi_{j}\left(c^{-1}\right) \sum_{i=1}^{s} \frac{|G|^{n}}{d_{i}^{n}} \frac{|G|^{n-1}}{d_{i}^{n-1}} \chi_{i}(c) . \tag{7.104}
\end{equation*}
$$

Lastly, this needs to be summed over $c \in G$. Using the convolution formula

$$
\sum_{c} \chi_{j}\left(c^{-1}\right) \chi_{i}(c)=|G| \delta_{i j}
$$

we arrive at

$$
\begin{equation*}
\left|M\left(C_{1}, \ldots C_{k}\right)\right|=|G|^{2 n-1}\left|C_{1}\right| \ldots\left|C_{k}\right| \sum_{i=1}^{s} \frac{\chi_{i}\left(C_{1}\right) \ldots \chi_{i}\left(C_{k}\right)}{d_{i}^{2 n+k-2}} \tag{7.105}
\end{equation*}
$$

QED

Next, we have what is perhaps an even more remarkable count, courtesy of Frobenius and Schur [35, section §4]:

Theorem 7.9.4 Let G be a finite group, and χ_{ρ} the character of an irreducible representation of G on a vector space of dimension d_{ρ}, over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. Let c_{ρ} be the Frobenius-Schur indicator of ρ, having value 0 if ρ is not isomorphic to the dual ρ^{\prime}, having value 1 if there is a nonzero G-invariant symmetric bilinear form on V, and -1 if there is a nonzero G-invariant skew-symmetric bilinear form on V. Then

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \rho\left(g^{2}\right)=\frac{c_{\rho}}{d_{\rho}} I, \tag{7.106}
\end{equation*}
$$

where I is the identity map on V, and so

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}\left(g^{2} b\right)=\frac{c_{\rho}}{d_{\rho}} \chi(b) \tag{7.107}
\end{equation*}
$$

for all $b \in G$. Moreover, if $\rho_{1}, \ldots, \rho_{s}$ are a maximal set of inequivalent irreducible representations of G over the field \mathbb{F}, then

$$
\begin{equation*}
\left|\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n}: g_{1}^{2} \ldots g_{n}^{2}=e\right\}\right|=|G| \sum_{i=1}^{s}\left(c_{i} \frac{|G|}{d_{i}}\right)^{n-2} \tag{7.108}
\end{equation*}
$$

where $c_{i}=c_{\rho_{i}}$ and $d_{i}=d_{\rho_{i}}$, and the equality in (7.108) is with both sides taken as elements of \mathbb{F}.

We have discussed the Frobenius-Schur indicator c_{ρ} back in Theorem 1.9.1. Now we have a formula for it:

$$
\begin{equation*}
c_{\rho}=\frac{1}{|G|} \sum_{g \in G \mid} \chi_{\rho}\left(g^{2}\right) \tag{7.109}
\end{equation*}
$$

where, recall, $c_{\rho} \in\{0,1,-1\}$. For the division by d_{ρ} in (7.106), and elsewhere, recall from Lemma 7.1.1 that $d_{\rho} \neq 0$ in \mathbb{F}.
Proof. Fix a basis u_{1}, \ldots, u_{d} of V. For any particular $a, b \in[d]$, let B be the bilinear form on V for which $B\left(u_{i}, u_{j}\right)$ is 0 except for $(i, j)=(a, b)$, in which case $B\left(u_{a}, u_{b}\right)=1$. Now let S be the corresponding G-invariant bilinear form specified by

$$
S(v, w)=\sum_{g \in G} B(\rho(g) v, \rho(g) w) .
$$

By Theorem 1.9.1,

$$
S(v, w)=c_{\rho} S(w, v)
$$

for all $v, w \in V$. Taking $v=u_{i}$ and $w=u_{j}$ this spells out

$$
\begin{equation*}
\sum_{g \in G} \rho(g)_{a i} \rho(g)_{b j}=c_{\rho} \sum_{g \in G} \rho(g)_{a j} \rho(g)_{b i} \tag{7.110}
\end{equation*}
$$

This holds for all $i, j, a, b \in[d]$. Taking $i=b$ and summing over i brings us to

$$
\sum_{g \in G}\left[\rho(g)^{2}\right]_{a j}=c_{\rho} \sum_{g \in G} \chi_{\rho}(g) \rho(g)_{a j}
$$

which means

$$
\begin{equation*}
\sum_{g \in G} \rho\left(g^{2}\right)=c_{\rho} \sum_{g \in G} \chi_{\rho}(g) \rho(g) \tag{7.111}
\end{equation*}
$$

Taking the trace of this produces

$$
\begin{equation*}
\sum_{g \in G} \chi\left(g^{2}\right)=c_{\rho} \sum_{g \in G} \chi_{\rho}(g)^{2} . \tag{7.112}
\end{equation*}
$$

If ρ is isomorphic to ρ^{\prime} then

$$
\chi(g)=\chi_{\rho}(g)=\chi_{\rho^{\prime}}(g)=\chi_{\rho}\left(g^{-1}\right)=\chi\left(g^{-1}\right)
$$

for all $g \in G$, and so the sum $\sum_{g} \chi(g)^{2}$ is the same as $\sum_{g} \chi\left(g^{-1}\right) \chi(g)$ which, in turn, is just $|G|$. Then (7.112) implies

$$
\begin{equation*}
c_{\rho}=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right) \tag{7.113}
\end{equation*}
$$

If ρ is not isomorphic to its dual ρ^{\prime} then, by definition $c_{\rho}=0$, and so from (7.112) we see that (7.113) still holds.

Since $\sum_{g \in G} g^{2}$ is in the center of $\mathbb{F}[G]$, and ρ is irreducible, Schur's Lemma implies that $\sum_{g \in G} \rho\left(g^{2}\right)$ is a scalar multiple $k I$ of the identity I, and the scalar k is obtained by comparing traces:

$$
\begin{equation*}
\sum_{g \in G} \rho\left(g^{2}\right)=k I \tag{7.114}
\end{equation*}
$$

where

$$
k=\frac{1}{d} \operatorname{Tr} \sum_{g \in G} \rho\left(g^{2}\right)=\frac{1}{d} \sum_{g \in G} \chi\left(g^{2}\right)=\frac{|G| c_{\rho}}{d},
$$

where we used the formula 7.113 for the Frobenius-Schur indicator c_{ρ}. Recall from Theorem 7.5.1 that d is a divisor of $|G|$, and, in particular, is not 0 in \mathbb{F}. This proves (7.106):

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \rho\left(g^{2}\right)=\frac{c_{\rho}}{d} I \tag{7.115}
\end{equation*}
$$

Multiplying by $\rho(h)$ and taking the trace produces (7.107):

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}\left(g^{2} b\right)=\frac{c_{\rho}}{d} \chi(h) \tag{7.116}
\end{equation*}
$$

for all $h \in G$.
Now we can count, using the now familiar 'delta function'

$$
\operatorname{Tr}_{e}=\frac{1}{|G|} \chi_{\mathrm{reg}}=\frac{1}{\mid G} \sum_{i=1}^{s} d_{i} \chi_{i}
$$

where $\chi_{\text {reg }}$ is the character of the regular representation of G on $\mathbb{F}[G]$. Working in \mathbb{F}, we have:

$$
\begin{align*}
\left|\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n}: g_{1}^{2} \ldots g_{n}^{2}=e\right\}\right| & =\sum_{g_{1}, \ldots, g_{n} \in G} \operatorname{Tr}_{e}\left(g_{1}^{2} \ldots g_{n}^{2}\right) \\
& =\frac{1}{|G|} \sum_{i=1}^{s} \sum_{g_{1}, \ldots, g_{n}} d_{i} \chi_{i}\left(g_{1}^{2} \ldots g_{n}^{2}\right) \\
& =\frac{1}{|G|}|G|^{n} \sum_{i=1}^{s} d_{i}\left(\frac{c_{i}}{d_{i}}\right)^{n} d_{i} \tag{7.117}\\
& =|G|^{n-1} \sum_{i=1}^{s} \frac{c_{i}^{n}}{d_{i}^{n-2}}
\end{align*}
$$

which implies 7.108). QED

7.10 Character References

Among many sights and sounds we have passed by in our exploration of character theory are: (i) Burnside's $p^{a} q^{b}$ theorem [9, Corollary 29, Chapter XVI], a celebrated application of character theory to the structure of groups; (ii) zero sets of characters; (iii) Galois-theoretic results for characters. Burnside's enormous work [9], especially Chapter XVI, contains a vast array of results, from the curious to the deep, in character theory. The book of Isaacs [47] is an excellent reference for a large body of results in character theory, covering (i)-(iii) and much more. The book of Hill [43] explains several pleasant applications of character theory to the structure of groups. An encyclopedic account of character theory is presented by Berkovic and Zhmud' [3].

7.11 Afterthoughts: Connections

The fundamental group $\pi_{1}(\Sigma, o)$ of a topological space Σ, with a chosen base point o, is the set of homotopy classes of loops based at o, taken as a group
under composition/concatenation of paths. If Σ is an orientable surface of genus n with k disks cut out as holes on the surface, then $\pi_{1}(\Sigma, o)$ is generated by elements $A_{1}, B_{1}, \ldots, A_{n}, B_{n}, S_{1}, \ldots, S_{k}$, subject to the following relation:

$$
\begin{equation*}
A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \ldots A_{n} B_{n} A_{n}^{-1} B_{n}^{-1} S_{1} \ldots S_{k}=I \tag{7.118}
\end{equation*}
$$

where I is the identity element. Here the loops S_{i} go around the boundaries of the deleted disks. If G is any group then a homomorphism

$$
\phi: \pi_{1}(\Sigma, o) \rightarrow G
$$

is completely specified by the values of ϕ on the A_{i}, B_{i}, S_{j} :

$$
\left(\phi\left(A_{1}\right), \phi\left(B_{1}\right), \ldots, \phi\left(A_{n}\right), \phi_{n}\left(B_{n}\right), \phi\left(S_{1}\right), \ldots, \phi_{n}\left(S_{n}\right)\right)
$$

which is a point in $M\left(C_{1}, \ldots, C_{k}\right)$ if the boundary 'holonomies' $\phi\left(S_{j}\right)$ are restricted to lie in the conjugacy classes C_{j}. Thus, $M\left(C_{1}, \ldots, C_{k}\right)$ has a topological meaning. The group G acts on $M\left(C_{1}, \ldots, C_{k}\right)$ by conjugation and the quotient space $M\left(C_{1}, \ldots, C_{k}\right) / G$ appears in many different incarnations, including as the moduli space of flat connections on a surface and as the phase space of a three dimensional gauge field theory called Chern-Simons theory. In these contexts G is a compact Lie group. The space $M\left(C_{1}, \ldots, C_{k}\right) / G$ is not generally a smooth manifold but is made up of strata, which are smooth spaces. The physical context of a phase space provides a natural measure of volume on $M\left(C_{1}, \ldots, C_{k}\right) / G$. The volume of this space was computed by Witten [77] (see also [69]). The volume formula is, remarkably or not, very similar to Frobenius' formula for $\left|M\left(C_{1}, \ldots, C_{k}\right)\right|$. Witten also computed a natural volume measure for the case where the surface is not orientable, and this produces the analog of the Frobenius-Schur count formula (7.108). For other related results and exploration see the paper of Mulase and Penkava [59]). Zagier's Appendix to the beautiful book of Lando and Zvonkin [52] also contains many interesting results in this connection.

Exercises

1. Let $u=\sum_{h \in G} u(h) h$ be an idempotent in $A=\mathbb{F}[G]$, and let χ_{u} be the character of the regular representation of G restricted to $A u$:

$$
\chi_{u}(x)=\text { Trace of } A u \rightarrow A u: y \mapsto x y .
$$

(i) Show that, for any $x \in G$,

$$
\chi_{u}(x)=\text { Trace of } A \rightarrow A: y \mapsto x y u
$$

(ii) Check that for $x, g \in G$,

$$
x g u=\sum_{h \in G} u\left(g^{-1} x^{-1} h\right) h
$$

(iii) Conclude that:

$$
\begin{equation*}
\chi_{u}(x)=\sum_{g \in G} u\left(g^{-1} x^{-1} g\right), \quad \text { for all } x \in G \tag{7.119}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\sum_{x \in G} \chi_{u}\left(x^{-1}\right) x=\sum_{g \in G} g u g^{-1} \tag{7.120}
\end{equation*}
$$

(iv) Show that the dimension of the representation on $A u$ is

$$
d_{u}=|G| u\left(1_{G}\right)
$$

where 1_{G} is the unit element in G.
2. (This exercise follows an argument in the Appendix in 52 by D. Zagier.) Let G be a finite group and \mathbb{F} a field in which $|G| 1_{\mathbb{F}} \neq 0$. For $(g, h) \in G \times G$ let $T_{(g, h)}: \mathbb{F}[G] \rightarrow \mathbb{F}[G]$ be specified by

$$
\begin{equation*}
T_{(g, h)}(a)=g a h^{-1} \quad \text { for } a \in \mathbb{F}[G] \text { and } g, h \in G . \tag{7.121}
\end{equation*}
$$

Compute the trace of $T_{(g, h)}$ using the basis of of $\mathbb{F}[G]$ given by the elements of G to show that
$\operatorname{Tr} T_{(g, h)}= \begin{cases}0 & \text { if } g \text { and } h \text { are not in the same conjugacy class; } \\ \frac{|G|}{|C|} & \text { if } g \text { and } h \text { both belong to the same conjugacy class } C .\end{cases}$
Next recall that $\mathbb{F}[G]$ is the direct sum of maximal two sided ideals $\mathbb{F}[G]_{j}$, with j running over an index set \mathcal{R}; then:

$$
\begin{equation*}
\operatorname{Tr} T_{(g, h)}=\sum_{j \in \mathcal{R}} \operatorname{Tr}\left(T_{(g, h)} \mid \mathbb{F}[G]_{j}\right) \tag{7.123}
\end{equation*}
$$

Now assume that \mathbb{F} is also algebraically closed; then we know that, picking a simple left ideal $L_{j} \subset \mathbb{F}[G]_{j}$, there is an isomorphism

$$
\rho_{j}: \mathbb{F}[G]_{j} \rightarrow \operatorname{End}_{\mathbb{F}}\left(L_{j}\right)
$$

where $\rho_{j}(x) y=x y$ for all $x \in \mathbb{F}[G]_{j}$ and $y \in L_{j}$, and so

$$
\operatorname{Tr}\left(T_{(g, h)} \mid \mathbb{F}[G]_{j}\right)=\operatorname{Tr}\left(\rho_{j} \circ T_{(g, h)} \mid \mathbb{F}[G]_{r} \circ\left(\rho_{j}\right)^{-1}\right)
$$

Now use the identification

$$
\operatorname{End}_{\mathbb{F}}\left(L_{j}\right) \simeq L_{j} \otimes L_{j}^{\prime},
$$

where L_{j}^{\prime} is the vector-space dual to L_{j}, to show that

$$
\begin{align*}
\operatorname{Tr}\left(T_{(g, h)} \mid \mathbb{F}[G]_{j}\right) & =\operatorname{Tr}\left(\rho_{j}(g)\right) \operatorname{Tr}\left(\rho_{j}\left(h^{-1}\right)\right) \tag{7.124}\\
& =\chi_{j}(g) \chi_{j}\left(h^{-1}\right)
\end{align*}
$$

Combine this with 7.123 and 7.122 to obtain the orthogonality relation (7.37).
3. Let M be finitely generated \mathbb{Z} module, and $A: M \rightarrow M$ a \mathbb{Z}-linear map. Show that there is a monic polynomial $p(X)$ such that $p(A)=0$.
4. Let $\chi_{1}, \ldots, \chi_{s}$ be all the distinct irreducible characters of a finite group G over an algebraically closed field of characteristic 0 , and let $\left\{C_{1}, \ldots, C_{s}\right\}$ be the conjugacy classes in G. Then show that

$$
\begin{equation*}
\chi_{i}\left(C_{l}^{-1}\right)=\frac{1}{|G|} \sum_{1 \leq j, k \leq s} \chi_{i}\left(C_{j}^{-1}\right) \chi_{i}\left(C_{k}^{-1}\right) \kappa_{j k, l} \tag{7.125}
\end{equation*}
$$

for all $i \in\{1, \ldots, s\}$, where $\kappa_{j k, l}$ are the structure constants of G.
5. Prove the Schur character orthogonality relations from the orthogonality of matrix elements.
6. The character table of a finite group G that has s conjugacy classes is the $s \times s$ matrix $\left[\chi_{i}\left(C_{j}\right)\right]_{1 \leq i, j \leq s}$, where C_{1}, \ldots, C_{s} are the conjugacy classes in G and $\chi_{1}, \ldots, \chi_{s}$ are the distinct irreducible complex characters of G. Show that the determinant of this matrix is nonzero.
7. Verify Dedekind's factorization of the group determinant for S_{3} :

$$
\left|\begin{array}{llllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \tag{7.126}\\
X_{3} & X_{1} & X_{2} & X_{5} & X_{6} & X_{4} \\
X_{2} & X_{3} & X_{1} & X_{6} & X_{4} & X_{5} \\
X_{4} & X_{5} & X_{6} & X_{1} & X_{2} & X_{3} \\
X_{5} & X_{6} & X_{4} & X_{3} & X_{1} & X_{2} \\
X_{6} & X_{4} & X_{5} & X_{2} & X_{3} & X_{1}
\end{array}\right|
$$

where

$$
\begin{array}{ll}
u=X_{1}+X_{2}+X_{3}, & u_{1}=X_{1}+\omega X_{2}+\omega^{2} X_{3}, u_{2}=X_{1}+\omega^{2} X_{2}+\omega X_{3} \\
v=X_{4}+X_{5}+X_{6}, & u_{1}=X_{4}+\omega X_{5}+\omega^{2} X_{6}, v_{2}=X_{4}+\omega^{2} X_{5}+\omega X_{6}
\end{array}
$$

where ω is a primitive cube root of unity.
8. Let G be a finite group, and $\chi_{1}, \ldots, \chi_{s}$ all the distinct irreducible characters of G over an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. Prove the following identity of Frobenius [28, sec. 5, eq. (6)]:

$$
\begin{equation*}
\sum_{\left\{\left(t_{1}, \ldots, t_{m}\right) \in G^{m}: t_{1} \ldots t_{m}=e\right\}} \chi\left(a_{1} t_{1} \ldots a_{m} t_{m}\right)=\left(\frac{|G|}{d}\right)^{m-1} \chi\left(a_{1}\right) \ldots \chi\left(a_{m}\right) \tag{7.127}
\end{equation*}
$$

for all $a_{1}, \ldots, a_{m} \in G$. Use this to prove the counting formula:

$$
\begin{align*}
\mid\left\{\left(t_{1}, \ldots, t_{m}\right) \in G^{m}: t_{1} \ldots t_{m}=e\right. & \left., \quad a_{1} t_{1} \ldots a_{m} t_{m}=e\right\} \mid \\
& =\sum_{i=1}^{s}\left(\frac{|G|}{d_{i}}\right)^{m-2} \chi_{i}\left(a_{1}\right) \ldots \chi_{i}\left(a_{m}\right) \tag{7.128}
\end{align*}
$$

for all $a_{1}, \ldots, a_{m} \in G$.
9. Suppose a group G is represented irreducibly on a finite-dimensional vector space V over an algebraically closed field \mathbb{F}. Let $B: V \times V \rightarrow \mathbb{F}$ be a non-zero bilinear function which is G-invariant in the sense that $B(g v, g w)=B(v, w)$ for all vectors $v, w \in V$ and $g \in G$. Show that
(i) B is non-degenerate. [Hint: View B as a linear map $V \rightarrow V^{\prime}$ and use Schur's lemma.]
(ii) if B_{1} is also a G-invariant bilinear form on V then $B_{1}=c B$ for some $c \in \mathbb{F}$.
(iii) If G is a finite group, and $\mathbb{F}=\mathbb{C}$, then either B or $-B$ is positivedefinite, i.e. $B(v, v)>0$ for all non-zero $v \in V$.
10. Let $\rho_{1}, \ldots, \rho_{s}$ be a maximal set of inequivalent irreducible representations of a finite group G over an an algebraically closed field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. Let \mathcal{C} be the set of all conjugacy classes in G. Let ρ^{\prime} denote the representation dual to ρ, so that for the characters we have $\chi_{\rho^{\prime}}(g)=\chi_{\rho}\left(g^{-1}\right)$, for all $g \in G$. By computing both sides of the identity

$$
\sum_{i=1}^{s} \sum_{C \in \mathcal{C}} \frac{|C|}{|G|} \chi_{\rho_{i}}(C) \chi_{\rho_{i}^{\prime}}\left(C^{-1}\right)=\sum_{c \in \mathcal{C}} \sum_{i=1}^{s} \frac{|C|}{|G|} \chi_{\rho_{i}}(C) \chi_{\rho_{i}}\left(\left(C^{-1}\right)^{-1}\right)
$$

show that the number of irreducible representations that are isomorphic to their duals is equal to the number of conjugacy classes C for which $C^{-1}=C$:

$$
\begin{equation*}
\left|\left\{i \in[s]: \rho_{i} \simeq \rho_{i}^{\prime}\right\}\right|=\left|\left\{C \in \mathcal{C}: C=C^{-1}\right\}\right| . \tag{7.129}
\end{equation*}
$$

(For a different, combinatorial proof of this, see the book of Hill [43].) Now suppose $n=|G|$ is odd. If $C=C^{-1}$ is a conugacy class containing an element a, then $g a g^{-1}=a^{-1}$ for some $g \in G$, and $g^{n} a g^{-n}=a^{-1}$, since n is odd, and so $a=a^{-1}$, which can only hold if $a=e$. Thus, when $|G|$ is odd, there is exactly one conjugacy class that is equal to its own inverse, and hence there is exactly one irreducible representation, over \mathbb{F}, that is equivalent to its dual.
11. Let G be a finite group, \mathbb{F} a field, and T the representation of G on $\mathbb{F}[G]$ given by

$$
T(g) x=g x g^{-1} \quad \text { for all } x \in \mathbb{F}[G] \text { and } g \in G
$$

Compute the character χ_{T} of T. Next, for the character χ of a representation of G over \mathbb{F}, find a meaning for the sum $\sum_{C \in \mathcal{C}} \chi(C)$, where \mathcal{C} being the set of all conjugacy classes in G.

Chapter 8

Induced Representations

A representation of a group G restricts to produce a representation of a subgroup H. Remarkably, there is a procedure that runs in the opposite direction, producing a representation of G from a representation of H. This method, introduced by Frobenius [32], is called induction, and is a powerful technique for constructing and analyzing the structure of representations.

8.1 Constructions

Consider a finite group G, a subgroup H, and a representation ρ of H on a finite dimensional vector space E over a field \mathbb{F}. Among all functions on G with values in E we single out those which transform in a nice way in relation to H; specifically, let E_{1} be the set of all maps $\psi: G \rightarrow E$ for which

$$
\begin{equation*}
\psi(a h)=\rho\left(h^{-1}\right) \psi(a) \quad \text { for all } a \in G \text { and } h \in H \tag{8.1}
\end{equation*}
$$

We say that such an ψ is equivariant with respect to ρ and the action of H on G by right multiplication: $G \times H \rightarrow G:(g, h) \mapsto g h$.

It is clear that E_{1} is a subspace of the finite dimensional vector space $\operatorname{Map}(G, E)$ of all maps $G \rightarrow E$. Now the space $\operatorname{Map}(G, E)$ carries a natural representation of G :

$$
G \times \operatorname{Map}(G, E) \rightarrow \operatorname{Map}(G, E):(a, \psi) \mapsto L_{a} \psi
$$

where

$$
\begin{equation*}
L_{a} \psi(b)=\psi\left(a^{-1} b\right) \quad \text { for all } a, b \in G, \tag{8.2}
\end{equation*}
$$

and this representation preserves the subspace E_{1}. This representation of G on E_{1} is the induced representation of ρ on G. We will denote it by $i_{H}^{G} \rho$.

Good notation for the induced representation is a challenge, and it is best to be flexible. If E is the original representation space of H, then sometimes it is more convenient to denote the induced representation by E^{G} (which is why we are denoting the set of all functions $G \rightarrow E$ by $\operatorname{Map}(G, E))$.

A function $\psi: G \rightarrow E$ is, at bottom, a set of ordered pairs $(a, v) \in G \rightarrow$ E, with a unique v paired with any given a. The condition (8.1) on ψ requires that if $(a, v) \in \psi$ then $\left(a h, \rho\left(h^{-1}\right) v\right)$ is also in ψ. In physics there is a useful notion of 'a quantity which transforms' according to a specified rule; here we can think of ψ as such a quantity which, when 'realized' by means of a is 'measured' as the vector v, but when the 'frame of reference' a is changed to $a h$ the measured vector is $\rho\left(h^{-1}\right) v$.

It will often be convenient to work with a set of elements $g_{1}, \ldots, g_{m} \in G$, where $g_{1} H, \ldots, g_{m} H$ are all the distinct left cosets of H in G. Such a set $\left\{g_{1}, \ldots, g_{m}\right\}$ is called a complete set of left coset representatives of H in G.

It is useful to note that an element $\psi \in E_{1}$ is completely determined by listing its values at elements $g_{1}, \ldots, g_{m} \in G$, which form a complete set of left coset representatives. Moreover, we can arbitrarily assign the values of ψ at the points g_{1}, \ldots, g_{m}. In other words, the mapping

$$
\begin{equation*}
E_{1} \rightarrow E^{m}: \psi \mapsto\left(\psi\left(g_{1}\right), \ldots, \psi\left(g_{m}\right)\right) \tag{8.3}
\end{equation*}
$$

is an isomorphism of vector spaces (Exercise 8,1).
The isomorphism (8.3) makes it clear that the dimension of the induced representation is given by

$$
\begin{equation*}
\operatorname{dim} i_{H}^{G} \rho=|G / H|(\operatorname{dim} \rho) . \tag{8.4}
\end{equation*}
$$

Think of a function $\psi: G \rightarrow E$ as a formal sum

$$
\psi=\sum_{g \in G} \psi(g) g
$$

More officially, we can identify the vector space $\operatorname{Map}(G, E)$ with the tensor product $E \otimes \mathbb{F}[G]$:

$$
\operatorname{Map}(G, E) \rightarrow E \otimes \mathbb{F}[G]: \psi \mapsto \sum_{g \in G} \psi(g) \otimes g
$$

The subspace E_{1} corresponds to the those elements $\sum_{g} v_{g} \otimes g$ that satisfy

$$
\begin{equation*}
\sum_{g} v_{g} \otimes g=\sum_{g} \rho\left(h^{-1}\right) v_{g} \otimes g h, \quad \text { for all } h \in H \tag{8.5}
\end{equation*}
$$

The representation i_{H}^{G} is then specified quite simply:

$$
\begin{equation*}
i_{H}^{G}(g)\left(v_{a} \otimes a\right)=v_{a} \otimes g a \tag{8.6}
\end{equation*}
$$

The induced representation is meaningful even if the field \mathbb{F} is replaced by a commutative ring R. Let E be an $R[H]$-module. View $R[G]$ as a right $R[H]$-module. Let

$$
\begin{equation*}
E^{G}=R[G] \otimes_{R[H]} E \tag{8.7}
\end{equation*}
$$

be the tensor product $R[G] \otimes E$ quotiented by the submodule spanned by elements of the form $(x b) \otimes v-x \otimes(b v)$ with $x, b \in R[H], v \in V$. Now view this balanced tensor product as a left $R[G]$-module by specifying the action of $R[G]$ through

$$
\begin{equation*}
a(x \otimes v)=(a x) \otimes v \quad \text { for all } x, a \in R[G], v \in E . \tag{8.8}
\end{equation*}
$$

For more, consult the discussion following the definition 12.50. Notice the mapping

$$
\begin{equation*}
j: E \rightarrow E^{G}: v \mapsto e \otimes v \tag{8.9}
\end{equation*}
$$

where e, the identity in G, is viewed as $1 e \in R[G]$. Then by the balanced tensor product property, we have

$$
\begin{equation*}
j(h v)=h \otimes v=h(e \otimes v)=h j(v) \tag{8.10}
\end{equation*}
$$

for all $h \in H, v \in E$, and so j is $R[H]$-linear (with E^{G} viewed, by restriction, as a left $R[H]$-module for the moment).

Pick, as before, $g_{1}, \ldots, g_{m} \in G$ forming a complete set of left coset representatives of H in G. Then you can check quickly that $\left\{g_{1}, \ldots, g_{m}\right\}$ is a basis for $R[G]$, viewed as a right $R[H]$-module (Exercise 8.3). A consequence (details being outsourced to Theorem 12.9.1) is that

$$
\begin{equation*}
E^{G}=g_{1} R[G] \otimes_{R[H]} E \oplus \cdots g_{m} R[G] \otimes_{R[H]} E \tag{8.11}
\end{equation*}
$$

In fact, every element of E^{G} can then be expressed as $\sum_{i} g_{i} \otimes v_{i}$ with $v_{i} \in E$ uniquely determined. This shows the equivalence with the approach used above in 8.5), with E_{1} being isomorhic to E^{G} as $R[G]$-modules.

We have now several distinct definitions of E^{G}, all of which are identifiable with each other. This is an expression of the essential universality of the induction process that we explore later in section 8.4.

8.2 The Induced Character

We work with G, H, and E as in the preceding section: H is a subgroup of the finite group G, and E is an $\mathbb{F}[H]$-module. As before,

$$
E^{G}=\mathbb{F}[G] \otimes_{\mathbb{F}[H]} E,
$$

is an $\mathbb{F}[G]$-module, and there is the $\mathbb{F}[H]$-linear map

$$
j: E \rightarrow E^{G}: v \mapsto 1 e \otimes v
$$

Set

$$
E_{0}=j(E)
$$

which is a sub- $\mathbb{F}[H]$-module of E^{G}. Pick $g_{1}, \ldots, g_{m} \in G$ forming a complete set of left coset representatives of H in G. Then

$$
E^{G}=g_{1} E_{0} \oplus \ldots \oplus g_{m} E_{0},
$$

where $g_{i} E_{0}$ is $i_{H}^{G} \rho\left(g_{i}\right) E_{0}$. The map

$$
L_{g}: E^{G} \rightarrow E^{G}: v \mapsto i_{H}^{G} \rho(g) v
$$

carries the subspace $g_{i} E_{0}$ bijectively onto $g g_{i} E_{0}$. Thus, $g g_{i} E_{0}$ equals $g_{i} E_{0}$ if and only if $g_{i}^{-1} g g_{i}$ is in H. Consequently, the map L_{g} has zero trace if g is not conjugate to any element in H. If g is conjugate to an element h of H then

$$
\begin{equation*}
\operatorname{Tr}\left(L_{g}\right)=n_{g} \operatorname{Tr}\left(L_{h} \mid E_{0}\right)=n_{g} \chi_{\rho}(h), \tag{8.12}
\end{equation*}
$$

where n_{g} is the number of i for which $g_{i}^{-1} g g_{i}$ is in H.
We can summarize these observations in:
Theorem 8.2.1 Let H be a subgroup of a finite group G, and $i_{H}^{G} \rho$ the induced representation of G from a representation ρ of H on a finite dimensional vector space E over a field \mathbb{F}. Let $g_{1}, \ldots, g_{m} \in G$ be such that $g_{1} H, \ldots, g_{m} H$ are all the distinct left cosets of H in G. Then the character of $i_{H}^{G} \rho$ is given by

$$
\begin{equation*}
\left(i_{H}^{G} \chi_{\rho}\right)(g)=\sum_{j=1}^{m} \chi_{\rho}^{0}\left(g_{j}^{-1} g g_{j}\right) \quad \text { for all } g \in G \tag{8.13}
\end{equation*}
$$

where χ_{ρ}^{0} is equal to the character χ_{ρ} of ρ on $H \subset G$ and is 0 outside H. If $|H|$ is not divisible by the characteristic of the field \mathbb{F} then

$$
\begin{equation*}
\left(i_{H}^{G} \chi_{\rho}\right)(g)=\frac{1}{|H|} \sum_{a \in G} \chi_{\rho}^{0}\left(a^{-1} g a\right) \quad \text { for all } g \in G \tag{8.14}
\end{equation*}
$$

The division by $|H|$ in 8.14 is needed because each g_{i} for which $g_{i}^{-1} g g_{i}$ is in H is counted $\left|g_{i} H\right|(=|H|)$ times in the sum on the right 8.14):

$$
\chi_{\rho}^{0}\left(\left(g_{i} h\right)^{-1} g\left(g_{i} h\right)\right)=\chi_{\rho}^{0}\left(g_{i}^{-1} g g_{i}\right)
$$

In the special case when H is a normal subgroup of G, the element $g_{j}^{-1} g g_{j}$ lies in H if and only if g is in H. Hence:

Proposition 8.2.1 For a normal subgroup H of a finite group G, and a

 finite dimensional representation ρ of G, the character of the induced representation $i_{H}^{G} \rho$ is 0 outside the normal subgroup H.
8.3 Induction Workout

As usual, we work with a subgroup H of a finite group G, and a representation ρ of H on a finite dimensional vector space E over a field \mathbb{F}. Fix $g_{1}, \ldots, g_{m} \in G$ forming a complete set of left coset representatives of H in G. For this section we use the induced representation space E_{1}, which, recall, is the space of all maps $\psi: G \rightarrow E$ for which

$$
\psi(a h)=\rho\left(h^{-1}\right) \psi(a) \quad \text { for all } a \in G \text { and } h \in H
$$

Then the induction process produces the representation ρ_{1} of G on E_{1} given by

$$
\rho_{1}(a) \psi: b \mapsto \psi\left(a^{-1} b\right)
$$

and E_{1} is isomorphic to E^{m} via the map

$$
E_{1} \rightarrow E^{m}: \psi \mapsto\left(\psi\left(g_{1}\right), \ldots, \psi\left(g_{m}\right)\right)
$$

Let us work out the representation ρ_{1} as it appears in E^{m}; we will denote the representation on E_{1} again by ρ_{1}. For any $g \in G$ we have

$$
\begin{equation*}
\left(\rho_{1}(g) \psi\left(g_{1}\right), \ldots, \rho_{1}(g) \psi\left(g_{m}\right)\right)=\left(\psi\left(g^{-1} g_{1}\right), \ldots, \psi\left(g^{-1} g_{m}\right)\right) \tag{8.15}
\end{equation*}
$$

Now for each i the element $g^{-1} g_{i}$ falls into a unique coset $g_{j} H$; that is, there is a unique j for which $g_{j}^{-1} g^{-1} g_{i}=h \in H$. Note that

$$
h^{-1}=g_{i}^{-1} g g_{j} .
$$

Then, for such i and j, we have

$$
\psi\left(g^{-1} g_{i}\right)=\psi\left(g_{j} h\right)=\rho\left(h^{-1}\right) \psi\left(g_{j}\right)
$$

Thus the action of $\rho_{1}(g)$ is

$$
\rho_{1}(g):\left[\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{m}
\end{array}\right] \mapsto\left[\begin{array}{c}
\sum_{j} \rho^{0}\left(g_{1}^{-1} g g_{j}\right) \psi_{j} \\
\vdots \\
\sum_{j} \rho^{0}\left(g_{m}^{-1} g g_{j}\right) \psi_{j}
\end{array}\right]
$$

where ρ^{0} is ρ on H and is 0 outside H. Note that in each of the sums \sum_{j}, all except possibly one term is 0 . The matrix of $\rho_{1}(g)$ is

$$
\rho_{1}(g)=\left[\begin{array}{cccc}
\rho^{0}\left(g_{1}^{-1} g g_{1}\right) & \rho^{0}\left(g_{1}^{-1} g g_{2}\right) & \cdots & \rho^{0}\left(g_{1}^{-1} g g_{m}\right) \tag{8.16}\\
\vdots & \vdots & \cdots & \vdots \\
\rho^{0}\left(g_{m}^{-1} g g_{1}\right) & \rho^{0}\left(g_{m}^{-1} g g_{2}\right) & \cdots & \rho^{0}\left(g_{m}^{-1} g g_{m}\right)
\end{array}\right] .
$$

Note again in this big matrix, each row and each column has exactly one nonzero entry. Moreover, if H is a normal subgroup and $h \in H$, then the matrix in 8.16) for $\rho_{1}(h)$ is a block diagonal matrix, with each diagonal block being ρ evaluated on one of the G-conjugates of h lying inside H.

Let us see how this works out for S_{3} (which is the same as the dihedral group D_{3}). The elements of S_{3} are:

$$
\iota, \quad c=(123), \quad c^{2}=(132), \quad r=(12), \quad r c=(23), \quad r c^{2}=(13)
$$

where ι is the identity element. Thus, r and c generate S_{3} subject to the relations

$$
r^{2}=c^{3}=\iota, \quad r c r^{-1}=c^{2}
$$

The subgroup $C=\left\{\iota, c, c^{2}\right\}$ is normal. The group S_{3} decomposes into cosets

$$
S_{3}=C \cup r C .
$$

Consider the one dimensional representation ρ of C on $\mathbb{Q}[\omega]$, where ω is a primitive cube root of 1 , specified by

$$
\rho(c)=\omega .
$$

Let ρ_{1} be the induced representation; by (8.4) its dimension is

$$
\operatorname{dim} \rho_{1}=\left|S_{3} / C\right|(\operatorname{dim} \rho)=2
$$

We can write out the matrices for $\rho_{1}(c)$ and $\rho_{1}(r)$:

$$
\begin{align*}
& \rho_{1}(c)=\left[\begin{array}{ll}
\rho^{0}\left(\iota^{-1} c \iota\right) & \rho^{0}\left(\iota^{-1} c r\right) \\
\rho^{0}\left(r^{-1} c \iota\right) & \rho^{0}\left(r^{-1} c r\right)
\end{array}\right]=\left[\begin{array}{cc}
\omega & 0 \\
0 & \omega^{2}
\end{array}\right] \\
& \rho_{1}(r)=\left[\begin{array}{ll}
\rho^{0}\left(\iota^{-1} r \iota\right) & \rho^{0}\left(r^{-1} r \iota\right) \\
\rho^{0}\left(r^{-1} r \iota\right) & \rho^{0}\left(r^{-1} r r\right)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \tag{8.17}
\end{align*}
$$

Looking all the way back to (2.7) we recognize this as an irreducible representation of D_{3} given geometrically as follows: $\rho_{1}(c)$ arises from conjugation of a rotation by 120° and r by reflection across a line. Note that restricting ρ_{1} to C doesn't simply give back ρ; in fact, $\rho_{1} \mid C$ decomposes as a direct sum of two distinct irreducible representations of C. Lastly, let us note the character of ρ_{1} :

$$
\begin{equation*}
\chi_{1}(\iota)=2, \quad \chi_{1}(c)=\chi_{1}\left(c^{2}\right)=-1, \quad \chi_{1}(r)=\chi_{2}(r c)=\chi_{1}\left(r c^{2}\right)=0 \tag{8.18}
\end{equation*}
$$

which agrees nicely with the last row in Table 2.2.
Now let us run through S_{3} again, but this time using the subgroup $H=$ $\{\iota, r\}$ and the one-dimensional representation τ specified by $\tau(r)=-1$. The underlying field \mathbb{F} is now arbitrary. The coset decomposition is

$$
S_{3}=H \cup c H \cup c^{2} H
$$

Then the induced representation τ_{1} has dimension

$$
\operatorname{dim} \tau_{1}=\left|S_{3} / H\right| \operatorname{dim} \tau=3
$$

For $\tau_{1}(c)$ we have

$$
\begin{align*}
\tau_{1}(c) & =\left[\begin{array}{lll}
\tau^{0}\left(\iota^{-1} c \iota\right) & \tau^{0}\left(\iota^{-1} c c\right) & \tau^{0}\left(\iota^{-1} c c^{2}\right) \\
\tau^{0}\left(c^{-1} c \iota\right) & \tau^{0}\left(c^{-1} c c\right) & \tau^{0}\left(c^{-1} c c^{2}\right) \\
\tau^{0}\left(c^{-2} c \iota\right) & \tau^{0}\left(c^{-2} c c\right) & \tau^{0}\left(c^{-2} c c^{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \tag{8.19}
\end{align*}
$$

and for $\tau_{1}(r)$ we have

$$
\begin{align*}
\tau_{1}(r) & =\left[\begin{array}{ccc}
\tau^{0}\left(\iota^{-1} r \iota\right) & \tau^{0}\left(\iota^{-1} r c\right) & \tau^{0}\left(\iota^{-1} r c^{2}\right) \\
\tau^{0}\left(c^{-1} r \iota\right) & \tau^{0}\left(c^{-1} r c\right) & \tau^{0}\left(c^{-1} r c^{2}\right) \\
\tau^{0}\left(c^{-2} r \iota\right) & \tau^{0}\left(c^{-2} r c\right) & \tau^{0}\left(c^{-2} r c^{2}\right)
\end{array}\right] \tag{8.20}\\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]
\end{align*}
$$

The character of τ_{1} is given by

$$
\begin{equation*}
\chi_{\tau_{1}}(\iota)=3, \quad \chi_{\tau_{1}}(c)=\chi_{\tau_{1}}\left(c^{2}\right)=0, \quad \chi_{\tau_{1}}(r)=\chi_{\tau_{1}}(c r)=\chi_{\tau_{1}}\left(c^{2} r\right)=-1 \tag{8.21}
\end{equation*}
$$

Referring back again to the character table for S_{3} in Table 2.2, we see that

$$
\begin{equation*}
\chi_{\tau_{1}}=\chi_{1}+\theta_{+,-} . \tag{8.22}
\end{equation*}
$$

The induced representation τ_{1} is the direct sum of two irreducible representations, at least when $3 \neq 0$ in \mathbb{F} (in which case χ_{1} comes from an irreducible representation; see the solution of Exercise 2.4. In fact,

$$
\mathbb{F}^{3}=\mathbb{F}(1,1,1) \oplus\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}^{3}: x_{1}+x_{2}+x_{3}=0\right\}
$$

decomposes \mathbb{F}^{3} into a direct sum of irreducible subspaces, provided $3 \neq 0$ in F.

8.4 Universality

At first it might seem that the induced representation is just another clever construction that happened to work out. But there is a certain natural quality to the induced representation, which can be expressed through a 'universal property.' One way of viewing this universal property is that the induced representation is the 'minimal' natural extension of an H-representation to a G-representation.

Theorem 8.4.1 Let G be a finite group, H a subgroup, R a commutative ring, and E a left $R[H]$-module. Let $E^{G}=R[G] \otimes_{R[H]} E$, viewed as a left $R[G]$-module, and $j_{E}: E \rightarrow E^{G}$ the map $v \mapsto e \otimes v$, which is linear over
$R[H]$. Now suppose F is a left $R[G]$-module and $f: E \rightarrow F$ a map linear over $R[H]$. Then there is a unique $R[G]$-linear map

$$
T_{f}: E^{G} \rightarrow F
$$

such that $f=T_{f} \circ j_{E}$.
Proof. Pick $g_{1}, \ldots, g_{m} \in G$ such that $g_{1} H, \ldots, g_{m} H$ are all the distinct left cosets of H in G. Every $x \in E^{G}$ has a unique expression as a sum $\sum_{i} g_{i} \otimes v_{i}$ with $v_{i} \in E$; then define $T_{f}: E^{G} \rightarrow F$ by setting

$$
T_{f}(x)=g_{1} f\left(v_{1}\right)+\cdots+g_{m} f\left(v_{m}\right)
$$

Now consider an element $g \in G$; then $g g_{i}=g_{i^{\prime}} h_{i}$ for a unique $i^{\prime} \in\{1, \ldots, m\}$ and $h_{i} \in H$, and so for x as above, we have

$$
\begin{align*}
T_{f}(g x)=\sum_{i} T_{f}\left(g_{i^{\prime}} \otimes h_{i} v_{i}\right) & =\sum_{i} g_{i^{\prime}} f\left(h_{i} v_{i}\right) \\
& =\sum_{i} g_{i^{\prime}} h_{i} f\left(v_{i}\right) \tag{8.23}\\
& =g \sum_{i} g_{i} f\left(v_{i}\right)=g T_{f}(x) .
\end{align*}
$$

So T_{f}, which is clearly additive as well, is $R[G]$-linear. The relation $f=T_{f} \circ j_{E}$ follows immediately from the definition of T_{f}. Uniqueness of T_{f} then follows from the fact that the elements $j_{E}(v)=1 \otimes v$, with v running over E, span the left $R[G]$-module E^{G}. QED

8.5 Universal Consequences

Universality is a powerful idea and produces some results with routine automatic proofs. It is often best to think not of E^{G} by itself, but rather the $R[H]$-linear map

$$
j_{E}: E \rightarrow E^{G}
$$

as a package, as the induced module
Let H be a subgroup of a finite group G, and E and F left $R[H]$-modules, where R is a commutative ring. For any left R-module L, denote by L^{G} the
left $R[G]$-module $R[G] \otimes_{R[H]} L$, and by j_{L} the map $L \rightarrow L^{G}: v \mapsto e \otimes v$, where e is the identity in G. Then the map

$$
E \oplus F \rightarrow E^{G} \oplus F^{G}:(v, w) \mapsto\left(j_{E}(v), j_{F}(w)\right)
$$

is $R[H]$-linear and so there is a unique $R[G]$-linear map $T:(E \oplus F)^{G} \rightarrow$ $E^{G} \oplus F^{G}$ for which

$$
T j(v, w)=\left(j_{E}(v), j_{F}(w)\right)
$$

for all $v \in E, w \in F$, where $j=j_{E \oplus F}$. In the reverse direction, the $R[H]$ linear mapping

$$
E \rightarrow(E \oplus F)^{G}: v \mapsto j(v, 0)
$$

gives rise to an $R[G]$-linear map $E^{G} \rightarrow(E \oplus F)^{G}$, and similarly for F; adding, we obtain an $R[G]$-linear map

$$
S: E^{G} \oplus F^{G} \rightarrow(E \oplus F)^{G}:\left(j_{E} v, j_{F} w\right) \mapsto j(v, 0)+j(0, w)=j(v, w)
$$

Then $T S\left(j_{E}, j_{F}\right)=\left(j_{E}, j_{F}\right)$ and $S T j=j$, which, by the uniqueness in universality, implies that $S T$ and $T S$ are both the identity. To summarize:

Theorem 8.5.1 Suppose H is a subgroup of a finite group G, and E and F are left $R[H]$-modules, where R is a commutative ring. Then there is a unique $R[G]$-linear isomorphism

$$
T:(E \oplus F)^{G} \rightarrow E^{G} \oplus F^{G}
$$

satisfying $T j_{E \oplus F}=j_{E} \oplus j_{F}$, were $j_{S}: S \rightarrow S^{G}$ denotes the canonical map for the induced representation for any $\mathbb{F}[H]$-module S.

Proof. By Theorem 8.4.1 there is a unique $R[G]$-linear map $T_{f}: E^{G} \rightarrow F$ for which

$$
T_{f} j_{E}=f
$$

Let

$$
f^{G}=j_{F} T_{f} .
$$

Then

$$
f^{G} j_{E}=j_{F} T_{d} j_{E}=j_{F} f
$$

QED

The next such result is functoriality of the induced representation; it is an immediate consequence of the universal property of induced modules.

Theorem 8.5.2 Suppose H is a subgroup of a finite group G, E and F left $R[H]$-modules, where R is a commutative ring, and $f: E \rightarrow F$ an $R[H]$ linear map. Let $j_{E}: E \rightarrow E^{G}$ and $j_{F}: F \rightarrow F^{G}$ be the induced modules. Then there is a unique $R[G]$-linear map $f^{G}: E^{G} \rightarrow F^{G}$ such that $f^{G} j_{E}=j_{F} f$.

8.6 Reciprocity

The most remarkable consequence of universality is a fundamental 'reciprocity' result of Frobenius [32]. As usual, let H be a subgroup of a finite group G, E a left $R[H]$-module, and F an $R[G]$-module, where R is a commutative ring.

Recall that, with usual notation, if $f: E \rightarrow F$ is $R[H]$-linear then there is a unique $R[G]$-linear map $T_{f}: E^{G} \rightarrow F$ for which $T_{f} j_{E}=f$. Thus, we have a map

$$
\operatorname{Hom}_{R[H]}\left(E, F_{H}\right) \rightarrow \operatorname{Hom}_{R[G]}\left(E^{G}, F\right): f \mapsto T_{f}
$$

The domain and codomain here are left R-modules in the obvious way, keeping in mind that R is commutative by assumption. With this bit of preparation, we have a formulation of Frobenius reciprocity:

Theorem 8.6.1 Let H be a subgroup of a finite group G, E a left $R[H]$ module, where R is a commutative ring, and F a left $R[G]$-module. Let F_{H} denote F viewed as a left $R[H]$-module. Then

$$
\begin{equation*}
\operatorname{Hom}_{R[H]}\left(E, F_{H}\right) \rightarrow \operatorname{Hom}_{R[G]}\left(E^{G}, F\right): f \mapsto T_{f} \tag{8.24}
\end{equation*}
$$

is an isomorphism of R-modules, where T_{f} is specified by the requirement $T_{f} j_{E}=f$.

Proof. If $f \in \operatorname{Hom}_{R[H]}\left(E, F_{H}\right)$ then, by universality, there is a unique $T_{f} \in \operatorname{Hom}_{R[G]}\left(E^{G}, F\right)$ such that $T_{f} \circ j_{E}=f$. Clearly, $f \mapsto T_{f}$ is injective. Uniqueness of T_{f} implies that $T_{f_{1}+f_{2}}$ equals $T_{f_{1}}+T_{f_{2}}$, because both compose with j_{E} to produce $f_{1}+f_{2}$, for any $f_{1}, f_{2} \in \operatorname{Hom}_{R[H]}\left(E, F_{H}\right)$. Next, for any $r \in R$, and $f \in \operatorname{Hom}_{R[H]}\left(E, F_{H}\right)$, the map $r T_{f}$ is in $\operatorname{Hom}_{R[G]}\left(E^{G}, F\right)$ and satisfies $\left(r T_{f}\right) j_{E}=r f$, which, again by uniqueness, implies that $r T_{f}$ is $T_{r f}$. Now consider any $A \in \operatorname{Hom}_{R[G]}\left(E^{G}, F\right)$, and let $f=A j_{E}$, which is an element of $\operatorname{Hom}_{R[H]}\left(E, F_{H}\right)$. Then uniqueness of T_{f} implies that $T_{f}=A$; thus $f \mapsto T_{f}$ is surjective. QED

A semisimple module N over a ring A decomposes as a direct sum

$$
N=\bigoplus_{i \in I} N_{i}
$$

where each N_{i} is a simple A-module. For a simple A-module E, the number of $i \in I$ for which N_{i} is isomorphic to E, as A-modules, is called the multiplicity of E in N. If A is the group algebra $\mathbb{F}[G]$, for a field \mathbb{F} and a finite group G, then the multiplicity is equal to

$$
\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}[G]}(E, N),
$$

if \mathbb{F} is algebraically closed (by Schur's Lemma).
We bring the reciprocity result Theorem 8.6.1 down to ground now, by specializing to the case where R is a field \mathbb{F}. Then we have the following concrete consequence:

Theorem 8.6.2 Let H be a subgroup of a finite group G, E a simple $\mathbb{F}[H]$ module, where \mathbb{F} is an algebraically closed field in which $|G| 1_{\mathbb{F}} \neq 0$, and F a simple $\mathbb{F}[G]$-module. Let F_{H} denote F viewed as an $\mathbb{F}[H]$-module. Then the multiplicity of F in E^{G} is equal to the multiplicity of E in F_{H}.

There is one more way to say it. Looking all the way back to Proposition 7.2.3, we recognize the dimensions of the Hom spaces in (8.24) as the kind of character convolutions that appear in character orthogonality. This at once produces the following Frobenius reciprocity result in terms of characters:
Theorem 8.6.3 Let H be a subgroup of a finite group G, E a representation of H, and F a representation of G, where E and F are finite dimensional vector spaces over a field \mathbb{F} in which $|G| 1_{\mathbb{F}} \neq 0$. Let F_{H} denote F viewed as a representation of H, and E^{G} the induced representation of G. Then

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} \chi_{E^{G}}(g) \chi_{F}\left(g^{-1}\right)=\frac{1}{|H|} \sum_{h \in H} \chi_{F_{H}}(h) \chi_{E}\left(h^{-1}\right) . \tag{8.25}
\end{equation*}
$$

We have seen that on a finite group K there is a useful hermitian inner product on the vector space of function $K \rightarrow \mathbb{C}$ given by

$$
\left\langle f_{1}, f_{2}\right\rangle_{K}=\frac{1}{|K|} \sum_{k \in K} f_{1}(k) \overline{f_{2}(k)} .
$$

In this notation, 8.25) reads

$$
\begin{equation*}
\left\langle\chi_{E^{G}}, \chi_{F}\right\rangle_{H}=\left\langle\chi_{F_{H}}, \chi_{E}\right\rangle_{G} \tag{8.26}
\end{equation*}
$$

8.7 Afterthoughts: Numbers

In Euclid's Elements, ratios of segments are defined by an equivalence class procedure: segments $A B, C D, A_{1} B_{1}, C_{1} D_{1}$ correspond to the same ratio

$$
A B: C D=A_{1} B_{1}: C_{1} D_{1}
$$

if for any positive integers m and n the inequality $m \cdot C D>n \cdot A B$ holds if and only if $m \cdot C_{1} D_{1}>n \cdot A_{1} B_{1}$, where whole multiples of segments and the comparison relation $>$ are defined geometrically. Then it is shown, through considerations of similar triangles, that there are well-defined operations of addition and multiplication on ratios of segments. Fast forwarding through history, and throwing in both 0 and negatives, shows how the axioms of Euclidean geometry lead to number fields. This is also reflected in the traditional ruler and compasses constructions, which show how a number field emerges from the axioms of geometry. A more subtle process leads to constructions of division rings and fields from the sparser axiom set of projective geometry. Turning now to groups, a finite group is, per definition, quite a minimal abstract structure, having just one operation defined on a nonempty set with no other structure. Yet geometric representations of such a group single out certain number fields corresponding to these geometries. Very concretely put, here is a natural question that was addressed from the earliest explorations of group representation theory: for a given finite group, is there a subfield \mathbb{F} of, say, \mathbb{C}, such that every irreducible complex represenation of G can be realized with matrices having elements all in the subfield \mathbb{F} ? The following magnificent result of Brauer [7], following up on many intermediate results from the time of Frobenius on, answers this question:

Theorem 8.7.1 Let G be a finite group, and $m \in\{1,2, \ldots\}$ be such that $g^{m}=e$ for all $g \in G$. For any irreducible complex representation ρ of G on a vector space V, there is a basis of V relative to which all entries of the matrix $\rho(g)$ lie in the field $\mathbb{Q}\left(\zeta_{m}\right)$, for all $g \in G$, with $\zeta_{m}=e^{2 \pi i / m}$ is a primitive m-th root of unity.

Here $\mathbb{Q}\left(\eta_{m}\right)$ is the smallest subfield of \mathbb{C} containing the integers and η_{m}. Weintraub [75] provides a thorough treatment of this result, as well as important other related results. Lang [53] also contains a readable account.

Exercises

1. Show that (8.3) is an isomorphism of vector spaces. Work out the representation on E^{m} which corresponds to $i_{H}^{G} \rho$ via this isomorphism.
2. For the dihedral group

$$
D_{4}=\left\langle c, r: c^{4}=r^{2}=e, \quad r c r^{-1}=c^{-1}\right\rangle
$$

and the cyclic subgroup $C=\left\{e, c, c^{2}, c^{3}\right\}$, work out the induced representations for
(i) the one dimensional representation ρ of C specified by $\rho(c)=i$, and
(ii) the two dimensional representation τ of C specified by

$$
\tau(c)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

3. Let G be a finite group, H a subgroup, R a commutative ring with 1 . Choose $g_{1}, \ldots, g_{m} \in G$ such that $g_{1} H, \ldots, g_{m} H$ are all the distinct left cosets of H in G. Show that $g_{1}, \ldots, g_{m} \in R[G]$ form a basis of $R[G]$, viewed as a right $R[H]$-module.

Chapter 9

Commutant Duality

Consider an abelian group E, written additively, and a set S of homomorphisms, addition-preserving mappings, $E \rightarrow E$. The commutant $S_{\text {com }}$ of S is the set of all maps $f: E \rightarrow E$ that preserve addition and for which

$$
f \circ s=s \circ f \text { for all } s \in S
$$

We are interested in the case where E is a module over a ring A, and S is the set of all maps $E \rightarrow E: x \mapsto a x$ with a running over A. In this case, $S_{\text {com }}$ is the ring $C=\operatorname{End}_{A}(E)$, and E is a module over both the ring A and the ring C. Our task in this chapter is to study how these two module structures on E interweave with each other.

We return to territory we have traveled before in Chapter 5, but on this second pass we have a special focus on the commutant. We pursue three distinct pathways, beginning with a quick, but abstract, approach. The second aproach is a more concrete one, in terms of matrices and bases. The third approach focuses more on the relationship between simple left ideals in a ring A and simple C-submodules of an A-module.

9.1 The Commutant

Consider a module E over a ring A. Let us look at what it means for a mapping $f: E \rightarrow E$ to be an endomorphism: in addition to the additivity condition

$$
\begin{equation*}
f(u+v)=f(u)+f(v) \quad \text { for all } u, v \in E \tag{9.1}
\end{equation*}
$$

the linearity of f means that it commutes with the action of A :

$$
\begin{equation*}
f(a u)=a f(u) \quad \text { for all } a \in A, \text { and } u \in E \tag{9.2}
\end{equation*}
$$

The case of most interest to us is $A=\mathbb{F}[G]$, where G is a finite group and \mathbb{F} a field, and E is a finite dimensional vector space over \mathbb{F}, with a given representation of G on E. In this case, the conditions (9.1) and (9.2) are equivalent to $f \in \operatorname{End}_{\mathbb{F}}(E)$ commuting with all the elements of G represented on E. Thus, $\operatorname{End}_{\mathbb{F}[G]}(E)$ is the commutant for the representation of G on E.

Sometimes the notation

$$
\operatorname{End}_{G}(E)
$$

is used instead of $\operatorname{End}_{\mathbb{F}[G]}(E)$, but there is potential for confusion; the minimalist interpretation of $\operatorname{End}_{G}(E)$ is $\operatorname{End}_{\mathbb{Z}[G]}(E)$, and at the other end it could mean $\operatorname{End}_{\mathbb{F}[G]}(E)$ where \mathbb{F} is some relevant field.

Here is a consequence of Schur's Lemma 3.2.1 rephrased in commutant language:

Theorem 9.1.1 Let G be a finite group represented on a finite dimensional vector space V over an algebraically closed field \mathbb{F}. Then the commutant of this representation consists of multiples of the identity operator on V if and only if the representation is irreducible.
(Instant exercise: check the 'only if' part.)
Suppose now that A is a semisimple ring, E is an A-module, decomposing as

$$
\begin{equation*}
E=E_{1}^{n_{1}} \oplus \ldots \oplus E_{r}^{n_{r}} \tag{9.3}
\end{equation*}
$$

where each E_{i} is a simple submodule, each $n_{i} \in\{1,2,3, \ldots\}$, and $E_{i} \not 千 E_{j}$ as A-modules when $i \neq j$. By Schur's lemma, the only A-linear map $E_{i} \rightarrow E_{j}$, for $i \neq j$, is 0 . Consequently, any element in the commutant $\operatorname{End}_{A}(E)$ can be displayed as a block-diagonal matrix

$$
\left(\begin{array}{ccccc}
C_{1} & 0 & 0 & \ldots & 0 \tag{9.4}\\
0 & C_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & 0 \\
0 & 0 & 0 & \ldots & C_{r}
\end{array}\right)
$$

where each C_{i} is in $\operatorname{End}_{A}\left(E_{i}^{n_{i}}\right)$. Moreover, any element of

$$
\operatorname{End}_{A}\left(E_{i}^{n_{i}}\right)
$$

is itself an $n_{i} \times n_{i}$ matrix, with entries from

$$
\begin{equation*}
D_{i}=\operatorname{End}_{A}\left(E_{i}\right), \tag{9.5}
\end{equation*}
$$

which, by Schur's lemma, is a division ring. Conversely, any such matrix clearly specifies an element of the endomorphism ring $\operatorname{End}_{A}\left(E_{i}^{n_{i}}\right)$.

To summarize:
Theorem 9.1.2 If E is a semisimple module over a ring A, and E is the direct sum of finitely many simple modules:

$$
E \simeq E_{1}^{m_{1}} \oplus \ldots \oplus E_{n}^{m_{n}}
$$

then the ring $\operatorname{End}_{A}(E)$ is isomorphic to a product of matrix rings:

$$
\begin{equation*}
\operatorname{End}_{A}(E) \simeq \prod_{i=1}^{n} \operatorname{Matr}_{m_{i}}\left(D_{i}\right) \tag{9.6}
\end{equation*}
$$

where $\operatorname{Matr}_{m_{i}}\left(D_{i}\right)$ is the ring of $m_{i} \times m_{i}$ matrices over the division ring $D_{i}=\operatorname{End}_{A}\left(E_{i}\right)$.

9.2 The Double Commutant

Recall that a ring B is simple if it is the sum of simple left ideals, all isomorphic to each other as B-modules. In this case any two simple left ideals in B are isomorphic, and B is the internal direct sum of a finite number of simple left ideals.

Consider a left ideal L in a simple ring B, viewed as a B-module. The commutant of the action of B on L is the ring

$$
C=\operatorname{End}_{B}(L)
$$

The double commutant is

$$
D=\operatorname{End}_{C}(L)
$$

Every element $b \in B$ gives a multiplication map

$$
l(b): L \rightarrow L: a \mapsto b a
$$

which, of course, commutes with every $f \in \operatorname{End}_{B}(L)$. Thus, each $l(b)$ is in $\operatorname{End}_{C}(L)$. We can now recall Theorem 5.7.1 in this language:

Theorem 9.2.1 Let B be a simple ring, L a non-zero left ideal in B, and

$$
\begin{equation*}
C=\operatorname{End}_{B}(L), \quad D=\operatorname{End}_{C}(L), \tag{9.7}
\end{equation*}
$$

the commutant and double commutant of the action of B on L. Then the double commutant D is essentially the original ring B, in the sense that the natural map $l: B \rightarrow D$, specified by

$$
\begin{equation*}
l(b): L \rightarrow L: a \mapsto b a, \quad \text { for all } a \in L \text { and } b \in B \tag{9.8}
\end{equation*}
$$

is an isomorphism.
Stepping up from simplicity, the Jacobson density theorem explains how big $l(A)$ is inside D when L is replaced by a semisimple A-module:

Theorem 9.2.2 Let E be a semisimple module over a ring A, and let C be the commutant $\operatorname{End}_{A}(E)$. Then for any $f \in D=\operatorname{End}_{C}(E)$, and any $x_{1}, \ldots, x_{n} \in E$, there exists an $a \in A$ such that

$$
\begin{equation*}
f\left(x_{i}\right)=a x_{i}, \quad \text { for } i=1, \ldots, n \tag{9.9}
\end{equation*}
$$

In particular, if A is an algebra over a field \mathbb{F}, and E is finite dimensional as a vector space over \mathbb{F}, then $D=l(A)$; in other words, every element of D is given by multiplication by an element of A.

Proof. View E^{n} first as a left A-module is the usual way:

$$
a\left(y_{1}, \ldots, y_{n}\right)=\left(a y_{1}, \ldots, a y_{n}\right)
$$

for all $a \in A$, and $\left(y_{1}, \ldots, y_{n}\right) \in E^{n}$. Any element of

$$
C_{n} \stackrel{\text { def }}{=} \operatorname{End}_{A}\left(E^{n}\right)
$$

is given by an $n \times n$ matrix with entries in C. To see this in more detail, let ι_{j} be the inclusion in the j-th factor

$$
\iota_{j}: E \rightarrow E^{n}: y \mapsto(0, \ldots, 0, \underbrace{y}_{j \text {-th }}, 0, \ldots, 0)
$$

and π_{j} the projection on the j-th factor:

$$
\pi_{j}: E^{n} \rightarrow E:\left(y_{1}, \ldots, y_{n}\right) \mapsto y_{j}
$$

Then

$$
\begin{align*}
F\left(\sum_{j=1}^{n} \iota_{j}\left(y_{j}\right)\right) & =\sum_{j, k=1}^{n} \pi_{k} F \iota_{j}\left(y_{j}\right) \\
& =\left[\begin{array}{ccc}
\pi_{1} F \iota_{1} & \ldots & \pi_{1} F \iota_{n} \\
\vdots & \vdots: & \vdots \\
\pi_{n} F \iota_{1} & \ldots & \pi_{n} F \iota_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \tag{9.10}
\end{align*}
$$

shows how to associate to $F \in C_{n}=\operatorname{End}_{A}\left(E^{n}\right)$ an $n \times n$ matrix with entries $\pi_{i} F \iota_{j} \in C=\operatorname{End}_{A}(E)$.

Moreover, E^{n} is also a module over the ring C_{n} in the natural way. Let $f \in D=\operatorname{End}_{C}(E)$. The map

$$
f_{n}: E^{n} \rightarrow E^{n}:\left(y_{1}, \ldots, y_{n}\right) \mapsto\left(f\left(y_{1}\right), \ldots, f\left(y_{n}\right)\right)
$$

is readily checked to be C_{n}-linear; thus,

$$
f_{n} \in \operatorname{End}_{C_{n}}\left(E^{n}\right)
$$

Now E^{n}, being semisimple, can be split as

$$
E^{n}=A x \bigoplus F
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is any given element of E^{n}, and F is an A-submodule of E^{n}. Let

$$
p: E^{n} \rightarrow A x \subset E^{n}
$$

be the corresponding projection. This is, of course, A-linear and is therefore an element of C_{n}. Consequently, $f_{n} p=p f_{n}$, and so

$$
f_{n}(p(x))=p\left(f_{n}(x)\right) \in A x
$$

Since $p(x)=x$, we have reached our destination 9.9. QED

9.3 Commutant Decomposition of a Module

Suppose E is a module over a semisimple ring A, L_{i} is a simple left ideal in A, and D_{i} is the division ring $\operatorname{End}_{A}\left(L_{i}\right)$. The elements of D_{i} are A-linear maps $L_{i} \rightarrow L_{i}$ and so L_{i} is, naturally, a left D_{i}-module. On the other hand, D_{i} acts
naturally on the right on $\operatorname{Hom}_{A}\left(L_{i}, E\right)$ by taking $(f, d) \in \operatorname{Hom}_{A}\left(L_{i}, E\right) \times D_{i}$ to the element $f d=f \circ d \in \operatorname{Hom}_{A}\left(L_{i}, A\right)$. Thus, $\operatorname{Hom}_{A}\left(L_{i}, E\right)$ is a right D_{i}-module. Hence there is the balanced tensor product

$$
\operatorname{Hom}_{A}\left(L_{i}, E\right) \otimes_{D_{i}} L_{i},
$$

which, for starters, is just a \mathbb{Z}-module. However, the left A-module structure on L_{i}, which commutes with the D_{i}-module structure, naturally induces a left A-module structure on $\operatorname{Hom}_{A}\left(L_{i}, E\right) \otimes_{D_{i}} L_{i}$ with multiplications on the second factor. We use this in the following result.

Theorem 9.3.1 If E is a module over a semisimple ring A, and L_{1}, \ldots, L_{r} a maximal set of non-isomorphic simple left ideals in A, then the mapping

$$
\begin{equation*}
\bigoplus_{i=1}^{r} \operatorname{Hom}_{A}\left(L_{i}, E\right) \otimes_{D_{i}} L_{i} \rightarrow E:\left(f_{1} \otimes x_{1}, \ldots, f_{r} \otimes x_{r}\right) \mapsto \sum_{i=1}^{r} f_{i}\left(x_{i}\right) \tag{9.11}
\end{equation*}
$$

is an isomorphism of A-modules. Here D_{i} is the division ring $\operatorname{End}_{A}\left(L_{i}\right)$, and the left side in (9.11) has an A-module structure from that on the second factors L_{i}.

Proof. The module E is a direct sum of simple submodules, each isomorphic to some L_{i} :

$$
\begin{equation*}
E=\bigoplus_{i=1}^{r} \bigoplus_{j \in R_{i}} E_{i j} \tag{9.12}
\end{equation*}
$$

where $E_{i j} \simeq L_{i}$, as A-modules, for each i and $j \in R_{i}$). In the following we will, as we may, simply assume that $R_{i} \neq \emptyset$, since $\operatorname{Hom}_{A}\left(L_{i}, E\right)$ is 0 for all other i. Because L_{i} is simple, Schur's Lemma implies that $\operatorname{Hom}_{A}\left(L_{i}, E_{i j}\right)$ is a one dimensional (right) vector space over the division ring D_{i}, and a basis is given by any fixed non-zero element $\phi_{i j}$. For any $f_{i} \in \operatorname{Hom}_{A}\left(L_{i}, E\right)$ let

$$
f_{i j}: L_{i} \rightarrow E_{i j}
$$

be the composition of f_{i} with the projection of E onto $E_{i j}$. Then

$$
f_{i j}=\phi_{i j} d_{i j}
$$

for some $d_{i j} \in D_{i}$. Any element of $\operatorname{Hom}_{A}\left(L_{i}, E\right) \otimes_{D_{i}} L_{i}$ is uniquely of the form

$$
\sum_{j \in R_{i}} \phi_{i j} \otimes x_{i j}
$$

with $x_{i j} \in L_{i}$ (see Theorem 12.9.1). Consider now the A-linear map

$$
J: \bigoplus_{i=1}^{r} \operatorname{Hom}_{A}\left(L_{i}, E\right) \otimes_{D_{i}} L_{i} \rightarrow E
$$

specified by

$$
J\left(\sum_{i=1}^{r} \sum_{j \in R_{i}} \phi_{i j} \otimes x_{i j}\right)=\sum_{i=1}^{r} \sum_{j \in R_{i}} \iota_{i j}\left(\phi_{i j}\left(x_{i j}\right)\right),
$$

where $\iota_{i j}: E_{i j} \rightarrow E$ is the canonical injection into the direct sum (9.12). If this value is 0 then each $\phi_{i j}\left(x_{i j}\right) \in E_{i j}$ is 0 and then, since $\phi_{i j}$ is an isomorphism, $x_{i j}$ is 0 . Thus, J is injective. The decomposition of E into the simple submodules $E_{i j}$ shows that J is also surjective. QED

Even though $\operatorname{Hom}_{A}\left(L_{i}, E\right)$ is not, naturally, an A-module, it is a left C-module, where

$$
C=\operatorname{End}_{A}(E)
$$

is the commutant of the action of A on E : if $c \in C$ and $f \in \operatorname{Hom}_{A}\left(L_{i}, E\right)$ then

$$
c f \stackrel{\text { def }}{=} c \circ f
$$

is also in $\operatorname{Hom}_{A}\left(L_{i}, E\right)$. This makes $\operatorname{Hom}_{A}\left(L_{i}, E\right)$ a left C-module.
Theorem 9.3.2 Let E be a module over a semisimple ring A, and let C be the ring $\operatorname{End}_{A}(E)$, the commutant of A acting on E. Let L be a simple left ideal in A, and assume that $\operatorname{Hom}_{A}(L, E) \neq 0$, or, equivalently, that E contains a submodule isomorphic to L. Then the C-module $\operatorname{Hom}_{A}(L, E)$ is simple.

Proof. Let $f, h \in \operatorname{Hom}_{A}(L, E)$, with $h \neq 0$. We will show that $f=c h$, for some $c \in C$. Consequently, any non-zero C-submodule of $\operatorname{Hom}_{A}(L, E)$ is all of $\operatorname{Hom}_{A}(L, E)$.

If u is any non-zero element in L then $L=A u$, and so it will suffice to show that $f(u)=\operatorname{ch}(u)$.

We decompose E as the internal direct sum

$$
E=F \oplus \bigoplus_{i \in S} E_{i}
$$

where each E_{i} is a submodule isomorphic with L, and F is a submodule containing no submodule isomorphic to L. For each $i \in S$ the projection $E \rightarrow E_{i}$, composed with the inclusion $E_{i} \subset E$, then gives an element

$$
p_{i} \in C
$$

Since $h \neq 0$, and F contains no submodule isomorphic to L, there is some $j \in S$ such that $p_{j} h(u) \neq 0$. Then $p_{j} h: L \rightarrow E_{j}$ is an isomorphism. Moreover, for any $i \in S$, the map

$$
E_{j} \rightarrow E_{i}: p_{j} h(y) \mapsto p_{i} f(y) \quad \text { for all } y \in L
$$

is well-defined, and extends to an A-linear map

$$
c_{i}: E \rightarrow E
$$

which is 0 on F and on E_{k} for $k \neq j$. Note that there are only finitely many i for which $p_{i}(f(u))$ is not 0 , and so there are only finitely many i for which c_{i} is not 0 . Let $S^{\prime}=\left\{i \in S: c_{i} \neq 0\right\}$. Then, piecing together f from its components $p_{i} f=c_{i} p_{j} h$, we have

$$
\sum_{i \in S^{\prime}} c_{i} p_{j} h=f
$$

Thus

$$
c=\sum_{i \in S^{\prime}} c_{i} p_{j}
$$

is an element of $\operatorname{End}_{A}(E)$ for which $f=c h$. QED
We have seen that any left ideal L in A is of the form $A y$ with $y^{2}=y$; the element $y \in L$ is called a generator of L.

Here is another interesting observation about $\operatorname{Hom}_{A}(L, E)$, for a simple left ideal L in A :

Theorem 9.3.3 If $L=A y$ is a left ideal in a semisimple ring A, with y an idempotent, and E is an A-module, then the map

$$
J: \operatorname{Hom}_{A}(L, E) \rightarrow y E: f \mapsto f(y)
$$

is an isomorphism of C-modules, where C is the commutant $C=\operatorname{End}_{A}(E)$. In particular, $y E$ is either 0 or a simple C-module if y is an indecomposable idempotent in A.

Proof. To start with, note that $y E$ is indeed a C-module.
For any $f \in \operatorname{Hom}_{A}(L, E)$ we have

$$
f(y)=f(y y)=y f(y) \in y E .
$$

The map

$$
\begin{equation*}
J: \operatorname{Hom}_{A}(L, E) \rightarrow y E: f \mapsto f(y) \tag{9.13}
\end{equation*}
$$

is manifestly C-linear.
The kernel of J is clearly 0 .
To prove that J is surjective, consider any $v \in y E$; define a map

$$
f_{v}: L \rightarrow E: x \mapsto x v
$$

This is clearly A-linear, and $J\left(f_{v}\right)=y v=v$, because $v \in y E$ and $y^{2}=y$. Thus, J is surjective.

Finally, if y is an indecomposable idempotent then $L=A y$ is a simple left ideal in A and then, by Theorem 9.3.2, $\operatorname{Hom}_{A}(E)$, which as we have just proved is C-isomorphic to $y E$, is either 0 or a simple C-module. QED

The role of the idempotent y in the preceding result is clarified in the following result.

Proposition 9.3.1 If idempotents u, v in a ring A generate the same left ideal, and if E is an A-module, then $u E$ and $v E$ are isomorphic C-submodules of E, where $C=\operatorname{End}_{A}(E)$.

Proof. Since $A u=A v$, we have then

$$
u=x v, \quad v=y u, \quad \text { for some } x, y \in A \text {. }
$$

Then the maps

$$
f: u E \rightarrow v E: w \mapsto y w, \quad \text { and } \quad h: v E \rightarrow u E: w \mapsto x w
$$

act by

$$
f(u e)=v e \quad \text { and } \quad h(v e)=u e
$$

for all $e \in E$. This shows that f and h are inverses to each other. They are also, clearly, both C-linear. QED

Let E be an A-module, where A is a semisimple ring, and L_{1}, \ldots, L_{r} are a maximal collection of non-isomorphic simple left ideals in A. Let y_{i} be a
generating idempotent for L_{i}; thus, $L_{i}=A y_{i}$. We are going to prove that there is an isomorphism

$$
\bigoplus_{i=1}^{r}\left(y_{i} E \otimes_{D_{i}} L_{i}\right) \simeq E
$$

where both sides have commuting A-module and C-module structures, with C being the commutant $\operatorname{End}_{A}(E)$, and D_{i} the division ring $\operatorname{End}_{A}\left(L_{i}\right)$. Before looking at a formal statement and proof, let us understand the structures involved here. Easiest is the joint module sructure on E : this is simply a consequence of the fact that the actions of A and C on E commute with each other:

$$
(a, c) x=a(c(x))=c(a(x)) \quad \text { for all } x \in E, a \in A, c \in C=\operatorname{End}_{A}(E)
$$

Next, consider the action of the division ring D_{i} on $L_{i}=A y_{i}$:

$$
d\left(a y_{i}\right)=d\left(a y_{i} y_{i}\right)=a y_{i} d\left(y_{i}\right)
$$

which is thus $v \mapsto v d\left(y_{i}\right)$ for all $v \in L_{i}$. The mapping

$$
D_{i} \rightarrow A: d \mapsto d\left(y_{i}\right)
$$

is an anti-homomorphism:

$$
d_{1} d_{2}\left(y_{i}\right)=d_{1}\left(d_{2}\left(y_{i}\right)\right)=d_{2}\left(y_{i}\right) d_{1}\left(y_{i}\right) .
$$

The set $y_{i} E$ is closed under addition and is thus, for starters, just a \mathbb{Z}-module. But clearly it is also a C-module, since

$$
c\left(y_{i} E\right)=y_{i} c(E) \subset y_{i} E .
$$

To make matters even more twisted, the mapping $D_{i} \rightarrow A^{\text {opp }}: d \mapsto d\left(y_{i}\right)$ makes $y_{i} E$ a right module over the division ring D_{i} with multiplication given by:

$$
\begin{equation*}
I_{\times}: y_{i} E \times D_{i} \rightarrow y_{i} E:(v, d) \mapsto v d \stackrel{\text { def }}{=} d\left(y_{i}\right) v \tag{9.14}
\end{equation*}
$$

Thus the mapping

$$
\begin{equation*}
y_{i} E \times L_{i} \rightarrow E:\left(v_{i}, x_{i}\right) \mapsto x_{i} v_{i} \tag{9.15}
\end{equation*}
$$

induces first an \mathbb{Z}-linear map

$$
y_{i} E \otimes_{\mathbb{Z}} L_{i} \rightarrow E
$$

and this quotients to a \mathbb{Z}-linear map

$$
\begin{equation*}
I: y_{i} E \otimes_{D_{i}} L_{i} \rightarrow E \tag{9.16}
\end{equation*}
$$

because

$$
I_{\times}(v d, x)-I_{\times}(v, d x)=x d\left(y_{i}\right) v-x d\left(y_{i}\right) v=0
$$

One more thing: $y_{i} E \otimes_{D_{i}} L_{i}$ is both an A-module and a C-module, with commuting module structures, multiplication being given by

$$
\begin{equation*}
a \cdot v \otimes x \mapsto v \otimes a x \quad \text { and } \quad c \cdot v \otimes x \mapsto c(v) \otimes x \tag{9.17}
\end{equation*}
$$

which, as you can check, are well-defined on $y_{i} E \otimes_{D_{i}} L_{i}$ and surely have all the usual necessary properties. This takes us a last step up the spiral: the mapping I is both A - and C-linear:

$$
\begin{align*}
I(a \cdot v \otimes x) & =I(v \otimes a x)=a x v=a I(v \otimes x) \tag{9.18}\\
I(c \cdot v \otimes x) & =I(c(v) \otimes x)=x c(v)=c(x v)=c I(v \otimes x) .
\end{align*}
$$

At last we are at the end, even if a bit out of breath, of the spiral of tensor product identifications:

Theorem 9.3.4 Suppose E is a module over a semismple ring A, let C be the commutant $\operatorname{End}_{A}(E)$, and let $L_{1}=A y_{1}, \ldots, L_{r}=A y_{r}$ be a maximal collection of non-isomorphic simple left ideals in A, with each y_{i} being an idempotent. Then the mapping

$$
\begin{equation*}
\bigoplus_{i=1}^{r} y_{i} E \otimes_{D_{i}} L_{i} \rightarrow E: \sum_{i=1}^{r} v_{i} \otimes x_{i} \mapsto \sum_{i=1}^{r} x_{i} v_{i} \tag{9.19}
\end{equation*}
$$

is an isomorphism both for A-modules and for C-modules. Each $y_{i} E$ is a simple C-module, and, of course, each L_{i} is a simple A-module.

Proof. On identifying $y_{i} E$ with $\operatorname{Hom}_{A}\left(L_{i}, E\right)$ by Theorem 9.3.3, the result becomes equivalent to Theorem 9.3.1. For a bit more detail do Exercise 9. 7 . QED

The awkwardness of phrasing the joint module structures relative to the rings A and C could be eased by bringing in a tensor product ring $A \otimes C$, but let us leave that as a trail unexplored.

Here is another version:

Theorem 9.3.5 Let A be a finite dimensional semisimple algebra over a field \mathbb{F}. Suppose E is a module over A, and let C be the commutant $\operatorname{End}_{A}(E)$. Then E, viewed as a C-module, is the direct sum of simple submodules of the form $y E$, with y running over a set of indecomposable idempotents in A.

We will explore this in matrix formulation in the next section. But you can also pursue it in Exercise 9.8. The relationship between C-submodules and right ideals in A is explored in greater detail in Exercise 9.6 (which loosely follows Weyl [76]).

9.4 The Matrix Version

In this section we dispell the ethereal elegance of Theorem 9.3 .4 by working through the decomposition in terms of matrices. We will proceed entirely independent of the previous section.

We work with an algebraically closed field \mathbb{F} of characteristic 0 , a finite dimensional vector space V over \mathbb{F}, and a subalgebra A of $\operatorname{End}_{\mathbb{F}}(V)$. Thus, V is an A-module. Let C be the commutant:

$$
C=\operatorname{End}_{A}(V)
$$

Our objective is to establish Schur's decomposition of V into simple C modules $e_{i j} V$:

Theorem 9.4.1 Let A be a subalgebra of $\operatorname{End}_{\mathbb{F}}(V)$, where $V \neq 0$ is a finitedimensional vector space over an algebraically closed field \mathbb{F} of characteristic 0. Let

$$
C=\operatorname{End}_{A}(V)
$$

be the commutant of A. Then there exist primitive idempotents $\left\{e_{i j}: 1 \leq\right.$ $\left.i \leq r, 1 \leq j \leq n_{i}\right\}$ in A that generate a decomposition of A into simple left ideals:

$$
\begin{equation*}
A=\bigoplus_{1 \leq i \leq r, 1 \leq j \leq n_{i}} A e_{i j}, \tag{9.20}
\end{equation*}
$$

and also decompose V, viewed as a C-module, into a direct sum

$$
\begin{equation*}
V=\bigoplus_{1 \leq i \leq r, 1 \leq j \leq n_{i}} e_{i j} V \tag{9.21}
\end{equation*}
$$

where each non-zero $e_{i j} V$ is a simple C-submodule of V.

Most of the remainder of this section is devoted to proving this result. We follow Dieudonné and Carrell [22] in examining the detailed matrix structure of A, to generate the decomposition of V.

Because A is semisimple, and finite dimensional as a vector space over \mathbb{F}, we can decompose it as a direct sum of simple left ideals $A e_{j}$:

$$
A=\bigoplus_{j=1}^{N} A e_{j}
$$

where the e_{j} are primitive idempotents with

$$
e_{1}+\cdots+e_{N}=1, \quad \text { and } \quad e_{i} e_{j}=0 \quad \text { for all } i \neq j
$$

Then V decomposes as a direct sum

$$
\begin{equation*}
V=e_{1} V \oplus \ldots \oplus e_{N} V \tag{9.22}
\end{equation*}
$$

(Instant exercise: Why is it a direct sum?) The commutant C maps each subspace $e_{j} V$ into itself. Thus, the $e_{j} V$ give a decomposition of V as a direct sum of C-submodules. What is, however, not clear is that each non-zero $e_{j} V$ is a simple C-module; the hard part of Theorem 9.4 .1 provides the simplicity of the submodules in the decomposition (9.21).

We decompose V into a direct sum

$$
\begin{equation*}
V=\bigoplus_{i=1}^{r} V^{i}, \quad \text { with } \quad V^{i}=V_{i 1} \oplus \ldots \oplus V_{i n_{i}} \tag{9.23}
\end{equation*}
$$

where $V_{i 1}, \ldots, V_{i n_{i}}$ are isomorphic simple A-submodules of V, and $V_{i \alpha}$ is not isomorphic to $V_{j \beta}$ when $i \neq j$. By Schur's lemma, elements of C map each V^{i} into itself. To simplify the notation greatly, we can then just work within a particular V^{i}. Thus let us take for now

$$
V=\bigoplus_{j=1}^{n} V_{j}
$$

where each V_{j} is a simple A-module and the V_{j} are isomorphic to each other as A-modules. Let

$$
m=\operatorname{dim}_{\mathbb{F}} V_{j}
$$

Fix a basis

$$
u_{11}, \ldots, u_{1 m}
$$

of the \mathbb{F}-vector space V_{1} and, using fixed A-linear isomorphisms $V_{1} \rightarrow V_{i}$, construct a basis

$$
u_{i 1}, \ldots, u_{i m}
$$

in each V_{i}. Then the matrices of elements in A are block diagonal, with n blocks, each block being an arbitrary $m \times m$ matrix T with entries in the field \mathbb{F} :

$$
\left[\begin{array}{cccc}
T & & & 0 \tag{9.24}\\
0 & T & & \\
& & \cdots & \\
0 & & & T
\end{array}\right]
$$

Thus, the algebra A is isomorphic to the matrix algebra $\operatorname{Matr}_{m \times m}(\mathbb{F})$ by

$$
T \mapsto\left[\begin{array}{cccc}
T & & & 0 \tag{9.25}\\
0 & T & & \\
& & \ldots & \\
0 & & & T
\end{array}\right]
$$

(Why 'arbitrary' you might wonder; see Exercise 9.10.] The typical matrix in $C=\operatorname{End}_{A}(V)$ then has the form

$$
\left[\begin{array}{ccccc}
s_{11} I & s_{12} I & \cdot & \cdot & s_{1 n} I \tag{9.26}\\
s_{21} I & s_{22} I & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
s_{n 1} I & \cdot & \cdot & \cdot & s_{n n} I
\end{array}\right]
$$

where I is the $m \times m$ identity matrix. Reordering the basis in V as

$$
u_{11}, u_{21}, \ldots, u_{n 1}, u_{12}, u_{22}, \ldots, u_{n 2}, \ldots, u_{1 m}, \ldots, u_{n m}
$$

displays the matrix (9.26) as the block diagonal matrix

$$
\left[\begin{array}{cccc}
{\left[s_{i j}\right]} & 0 & \cdot & 0 \tag{9.27}\\
0 & {\left[s_{i j}\right]} & \cdot & \\
\cdot & \cdot & \cdot & \\
0 & \cdot & \cdot & {\left[s_{i j}\right]}
\end{array}\right]
$$

where $s_{i j}$ are arbitrary elements of the field \mathbb{F}. Thus C is isomorphic to the algebra of $n \times n$ matrices $\left[s_{i j}\right]$ over \mathbb{F}. Now the algebra $\operatorname{Matr}_{n \times n}(\mathbb{F})$ is
decomposed into a sum of n simple ideals, each consisting of the matrices that have all entries zero except possibly those in one particular column. Thus,
each simple left ideal in C is n-dimensional over \mathbb{F}.
Let $M_{j h}^{i}$ be the matrix for the linear map $V \rightarrow V$ which takes $u_{i h}$ to $u_{i j}$ and is 0 on all the other basis vectors. Then, from 9.24 , the matrices

$$
\begin{equation*}
M_{j h}=M_{j h}^{1}+\cdots+M_{j h}^{n} \tag{9.28}
\end{equation*}
$$

form a basis of A, as a vector space over \mathbb{F}. Let

$$
e_{j}=M_{j j}
$$

for $1 \leq j \leq m$. This corresponds, in $\operatorname{Matr}_{m \times m}(\mathbb{F})$, to the matrix with 1 at the $j j$ entry and 0 elsewhere. Then A is the direct sum of the simple left ideals $A e_{j}$.

The subspace $e_{j} V$ has the vectors

$$
u_{1 j}, u_{2 j}, \ldots, u_{n j}
$$

as a basis, and so $e_{j} V$ is n-dimensional. Moreover, $e_{j} V$ is mapped into itself by C :

$$
C\left(e_{j} V\right)=e_{j} C V \subset e_{j} V .
$$

Consequently, $e_{j} V$ is a C-module. Since it has the same dimension as any simple C-module, it follows that $e_{j} V$ cannot have a non-zero proper C submodule; hence $e_{j} V$ is a simple C-module.

We have completed the proof of Theorem 9.4.1.

Exercises

1. Let A be a ring, and $A^{\text {opp }}$ the ring formed by the set A with addition same as the ring A but multiplication in the opposite order: $a \circ_{\text {opp }} b=b a$ for all $a, b \in A$. For any $a \in A$ let $r_{a}: A \rightarrow A: x \mapsto x a$. Show that $a \mapsto r_{a}$ gives an isomorphism of $A^{\text {opp }}$ with $\operatorname{End}_{A}(A)$.
2. Let A be a semisimple ring. Show that :(i) A is also 'right semisimple' in the sense that A is the sum of simple right ideals; (ii) every right ideal in A has a complementary right ideal; (iii) every right ideal in A is of the form $u A$ with u an idempotent.
3. Let G be a finite group and \mathbb{F} a field. Denote by $\mathbb{F}[G]_{L}$ the additive abelian group $\mathbb{F}[G]$ viewed, in the standard way, as a left $\mathbb{F}[G]$-module. Denote by $\mathbb{F}[G]_{R}$ the additive abelian group $\mathbb{F}[G]$ viewed as a left $\mathbb{F}[G]$ module through the multiplication given by

$$
x \cdot a=a \hat{x}
$$

for $x, a \in \mathbb{F}[G]$, with $\hat{x}=\sum_{g \in G} x(g) g^{-1} \in \mathbb{F}[G]$. Show that the commutant $\operatorname{End}_{\mathbb{F}[G]} \mathbb{F}[G]_{L}$ is isomorphic to $\mathbb{F}[G]_{R}$.
4. Suppose E is a left module over a semisimple ring A. Then $\hat{E}=$ $\operatorname{Hom}_{A}(E, A)$ is a right A-module in the natural way via the rightmultiplication in A : if $f \in \hat{E}$ and $a \in A$ then $f \cdot a: E \rightarrow A: y \mapsto f(y) a$. Show that the map

$$
E \rightarrow \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(E, A), A\right): x \mapsto \mathrm{ev}_{x}
$$

where $\operatorname{ev}_{x}(f)=f(x)$ for all $f \in \hat{E}$, is injective.
5. Let E be a left A-module, where $A=\mathbb{F}[G]$, with G being a finite group and \mathbb{F} a field. Assume that E is finite dimensional as a vector space over \mathbb{F}. Let $\hat{E}=\operatorname{Hom}_{A}(E, A), E^{\prime}$ the vector space dual $\operatorname{Hom}_{\mathbb{F}}(E, \mathbb{F})$, and $\operatorname{Tr}_{e}: \mathbb{F}[G] \rightarrow \mathbb{F}: x \mapsto x_{e}$ the functional which evaluates a general element $x=\sum_{g \in G} x_{g} g \in A$ at the identity $e \in G$. Show that the mapping

$$
I: \hat{E} \rightarrow E^{\prime}: \phi \mapsto \phi_{e} \stackrel{\text { def }}{=} \operatorname{Tr}_{e} \circ \phi
$$

is an isomorphism of vector spaces over \mathbb{F}.
6. Let E be a left A-module, where A is a semisimple ring, $C=\operatorname{End}_{A}(E)$, and $\hat{E}=\operatorname{Hom}_{A}(E, A)$. We view E as a left C-module in the natural way, and view E as a right A-module For any nonempty subset S of E define the subset $S_{\#}$ of A to be all finite sums of elements $\phi(w)$ with ϕ running over \hat{E} and w over S.
(i) Show that $S_{\#}$ is a right ideal in A.
(ii) Show that $(a E)_{\#}=a E_{\#}$ for all $a \in A$.
(iii) If W is a C-submodule of E then $W=W_{\#} E$.
(iv) Suppose U and W are C-submodules of E with $U_{\#} \subset W_{\#}$. Show that $U \subset W$. In particular, $U_{\#}=W_{\#}$ if and only if $U=W$.
(v) A C-submodule W of E is simple if $W_{\#}$ is a simple right ideal.
(vi) If W is a simple C-submodule of E, and if $E_{\#}=A$, then $W_{\#}$ is a simple right ideal in A.
(vii) If u is an indecomposable idempotent in A and the right ideal $u A$ lies inside $E_{\#}$ then $u E$ is a simple C-module.
7. With E an A-module, where A is a semisimple ring, and $L=A y$ a simple left ideal in A with idempotent generator y, use the the map $J: \operatorname{Hom}_{A}(L, E) \rightarrow y E: f \mapsto f(y)$ to transfer the action of the division ring $D=\operatorname{End}_{A}(L)$ from L to $y E$.
8. Prove Theorem 9.3.5.
9. Prove Burnside's theorem: If G is a group of endomorphisms of a finite dimensional vector space E over an algebraically closed field \mathbb{F}, and E is simple as a G-module, then $\mathbb{F} G$, the linear span of G inside $\operatorname{End}_{\mathbb{F}}(E)$, is equal to the whole of $\operatorname{End}_{\mathbb{F}}(E)$.
10. Prove Wedderburn's theorem: Let E be a simple module over a ring A, and suppose that it is faithful in the sense that if a is non-zero in A then the map $l(a): E \rightarrow E: x \mapsto a x$ is also non-zero. If E is finite dimensional over the division ring $C=\operatorname{End}_{A}(E)$ then $l: A \rightarrow$ $\operatorname{End}_{C}(E)$ is an isomorphism. Specialize this to the case where A is a finite dimensional algebra over an algebraically closed field \mathbb{F}.
11. Let E be a semisimple module over a ring A.
(a) Show that if the commutant $\operatorname{End}_{A}(E)$ is a commutative ring then E is the direct sum of simple sub- A-modules no two of which are isomorphic.
(b) Suppose E is the direct sum of simple submodules E_{α}, no two of which are isomorphic to each other and assume also that each commutant $\operatorname{End}_{A}\left(E_{\alpha}\right)$ is a field (that is, it is commutative); show that the $\operatorname{ring} \operatorname{End}_{A}(E)$ is commutative.
(Exercise 5.6 shows that when E is a direct sum of a set of nonisomorphic simple submodules then every simple submodule of E is one of these submodules.) Here is a case which is useful in the OkounkovVershik theory for representations of S_{n} : view S_{n-1} as a subgroup of
S_{n} in the natural way; then it turns out that $\mathbb{C}\left[S_{n-1}\right]$ has commutative centralizer in $\mathbb{C}\left[S_{n}\right]$. This then implies that in the decomposition of a simple $\mathbb{C}\left[S_{n}\right]$-module as a direct sum of simple $\mathbb{C}\left[S_{n-1}\right]$ modules, no two of the latter are isomorphic to each other.

Chapter 10

Character Duality

In the chapter we carry out a specific implementation of the dual decomposition theory explored in the preceding chapter. The symmetric group S_{n} has a natural action on $V^{\otimes n}$, for any vector space V, as in (10.1) below. Our first goal in this chapter is to identify, under some simple conditions, the commutant $\operatorname{End}_{\mathbb{F}[G]} V^{\otimes n}$ as the linear span of the operators $T^{\otimes n}$ on $V^{\otimes n}$ with T running over the group $G L_{\mathbb{F}}(V)$ of all invertible linear endomorphisms of V. The commutant duality theory of the previous chapter then produces an interlinking of the representations, and hence also of the characters, of S_{n} and those of $G L_{\mathbb{F}}(V)$. Following this, we will go through a fast proof of the duality formula connecting characters of S_{n} and that of $G L_{\mathbb{F}}(V)$, using the commutant duality theory. In the last section we will prove this duality formula again, but by more explicit computation.

10.1 The Commutant for S_{n} on $V^{\otimes n}$

For any vector space V, the permutation group S_{n} has a natural left action on $V^{\otimes n}$:

$$
\begin{equation*}
\sigma \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)} . \tag{10.1}
\end{equation*}
$$

The set of all invertible endomorphisms in $\operatorname{End}_{\mathbb{F}}(V)$ forms the general linear group

$$
G L_{\mathbb{F}}(V)
$$

of the vector space V. Here is a fundamental result from Schur [68]:

Theorem 10.1.1 Suppose V is a finite dimensional vector space over a field \mathbb{F}, and $n \in\{1,2, \ldots\}$ is such that n ! is not divisible by the characteristic of \mathbb{F} and, moreover, the number of elements in \mathbb{F} exceeds $\left(\operatorname{dim}_{\mathbb{F}} V\right)^{2}$. Then the commutant of the action of S_{n} on $V^{\otimes n}$ is the linear span of all endomorphisms $T^{\otimes n}: V^{\otimes n} \rightarrow V^{\otimes n}$, with T running over $G L_{\mathbb{F}}(V)$.

Proof. Fix a basis $\left|e_{1}\right\rangle, \ldots,\left|e_{d}\right\rangle$ of V, and let $\left\langle e_{1}\right|, . .,\left\langle e_{d}\right|$ be the dual basis in V^{\prime} :

$$
\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j} .
$$

Any

$$
X \in \operatorname{End}_{\mathbb{F}}\left(V^{\otimes n}\right)
$$

is then described in coordinates by the quantities

$$
\begin{equation*}
X_{i_{1} j_{1} ; \ldots ; i_{n} j_{n}}=\left\langle e_{i_{1}} \otimes \ldots \otimes e_{i_{n}}\right| X\left|e_{j_{1}} \otimes \ldots \otimes e_{j_{n}}\right\rangle \tag{10.2}
\end{equation*}
$$

Relabel the $m=N^{2}$ pairs (i, j) with numbers from $1, \ldots, m$. Denote $\{1, \ldots, k\}$ by $[k]$ for all positive integers k; thus, an element a in $[m]^{[n]}$ expands out to (a_{1}, \ldots, a_{n}) with each $a_{i} \in\{1, \ldots, m\}$, and encodes an n-tuple of pairs $(i, j) \in\{1, \ldots, N\}^{2}$.

The condition that X commutes with the action of S_{n} translates in coordinate language to the condition that the quantities $X_{i_{1} j_{1} ; \ldots ; i_{n} j_{n}}$ in (10.2) remain invariant when $i, j \in[N]^{[n]}$ are replaced by $i \circ \sigma$ and $j \circ \sigma$, respectively, for any $\sigma \in S_{n}$.

We will show that if $F \in \operatorname{End}_{\mathbb{F}}\left(V^{\otimes n}\right)$ satisfies

$$
\begin{equation*}
\sum_{a \in[m]^{[n]}} F_{a_{1} \ldots a_{n}}\left(T^{\otimes n}\right)_{a_{1} \ldots a_{n}}=0 \quad \text { for all } T \in G L_{\mathbb{F}}(V) \tag{10.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{a \in[m]^{[n]}} F_{a_{1} \ldots a_{n}} X_{a_{1} \ldots a_{n}}=0 \tag{10.4}
\end{equation*}
$$

for all X in the commutant of S_{n}. This means that any element in the dual of $\operatorname{End}_{\mathbb{F}}\left(V^{\otimes n}\right)$ that vanishes on the elements $T^{\otimes n}$, with $T \in G L_{\mathbb{F}}(V)$, vanishes on the entire subspace which is the commutant of S_{n}. This clearly implies that the commutant is spanned by the elements $T^{\otimes n}$.

Consider the polynomial in the $m=N^{2}$ indeterminates T_{a} given by

$$
p(T)=\left(\sum_{a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}} F_{a_{1} \ldots a_{n}} T_{a_{1} \ldots T_{a_{n}}}\right) \operatorname{det}\left[T_{i j}\right] .
$$

The hypothesis (10.3) says that this polynomial is equal to 0 for all choices of values of T_{a} in the field \mathbb{F}. If the field \mathbb{F} isn't very small, a polynomial $p(T)$ all of whose evaluations are 0 is identically 0 as a polynomial. Let us work through an argument for this. Evaluating the T_{k} at arbitrary fixed values in \mathbb{F} for all except one $k=k_{*}$, the polynomial $p(T)$ turns into a polynomial $q\left(T_{k_{*}}\right)$, of degree $\leq m$, in the one variable $T_{k_{*}}$, which vanishes on all the $|\mathbb{F}|$ elements of \mathbb{F}; the hypothesis $|\mathbb{F}|>N^{2}=m$ then implies that $q\left(T_{k_{*}}\right)$ is the zero polynomial. This means the the polynomials in the variables T_{a}, for $a \neq k_{*}$, given by the coefficients of powers of $T_{k_{*}}$ in $p(T)$, evaluate to 0 at all values in \mathbb{F}. Reducing the number of variables in this way, we reach all the way to the conclusion that the polynomial $p(T)$ is 0 . Since the polynomial $\operatorname{det}\left[T_{i j}\right]$ is certainly not 0 , it follows that

$$
\begin{equation*}
\sum_{a} F_{a_{1} \ldots a_{n}} T_{a_{1}} \ldots T_{a_{n}}=0 \tag{10.5}
\end{equation*}
$$

as a polynomial. Keep in mind that

$$
F_{a_{\sigma(1) \ldots a_{\sigma(n)}}}=F_{a_{1} \ldots a_{n}}
$$

for all $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}$ and $\sigma \in S_{n}$. Then from (10.5) we see that $n!F_{a_{1} \ldots a_{n}}$ is 0 , for all subscripts a_{i}. Since $n!$ is not 0 on \mathbb{F}, it follows that each F_{a} is 0 , and hence we have 10.4. QED

10.2 Schur-Weyl Duality

We can now apply the commutant duality theory of the previous chapter to obtain Schur's decomposition of the representation of S_{n} on $V^{\otimes n}$. Assume that \mathbb{F} is an algebraically closed field of characteristic 0 (in particular, \mathbb{F} is infinite); then

$$
\begin{equation*}
V^{\otimes n} \simeq \bigoplus_{i=1}^{r} L_{i} \otimes_{\mathbb{F}} y_{i} V^{\otimes n} \tag{10.6}
\end{equation*}
$$

where L_{1}, \ldots, L_{r} is a maximal string of simple left ideals in $\mathbb{F}\left[S_{n}\right]$ that are not isomorphic as left $\mathbb{F}\left[S_{n}\right]$-modules, and y_{i} is a generating idempotent in L_{i} for each $i \in\{1, \ldots, r\}$. The subspace $y_{i} V^{\otimes n}$, when non-zero, is a simple C_{n}-module, where C_{n} is the commutant $\operatorname{End}_{\mathbb{F}\left[S_{n}\right]}\left(V^{\otimes n}\right)$. In view of Theorem 10.1.1, the tensor product representation of $G L_{\mathbb{F}}(V)$ on $V^{\otimes n}$ restricts to an irreducible representation on $y_{i} V^{\otimes n}$, when this is nonzero.

The duality between S_{n} acting on the n-dimensional space V and the general linear group $G L_{\mathbb{F}}(V)$ is often called Schur-Weyl duality. For far more on commutants and Schur-Weyl duality see the book of Goodman and Wallach [39].

10.3 Character Duality, the High Road

As before let \mathbb{F} be an algebraically closed field of characteristic 0 . If A is a finite dimensional semisimple algebra over \mathbb{F}, and E an A-module with $\operatorname{dim}_{\mathbb{F}} E<\infty$, and C is the commutant $\operatorname{End}_{A}(E)$ then E decomposes through the map

$$
I: \bigoplus_{i=1}^{r} y_{i} E \otimes_{\mathbb{F}} L_{i} \rightarrow E: \sum_{i=1}^{r} v_{i} \otimes x_{i} \mapsto \sum_{i=1}^{r} x_{i} v_{i}
$$

which is both A-linear and C-linear, where y_{1}, \ldots, y_{r} are idempotents in A such that any simple A-module is isomorphic to $L_{i}=A y_{i}$ for exactly one i. For any $(a, c) \in A \times C$, we have the product $a c$ first as an element of $\operatorname{End}_{\mathbb{F}}(E)$ and then, by I^{-1}, acting on $\bigoplus_{i=1}^{r} y_{i} E \otimes_{\mathbb{F}} A y_{i}$. Comparing traces, we have

$$
\begin{equation*}
\operatorname{Tr}(a c)=\sum_{i=1}^{r} \operatorname{Tr}\left(a \mid L_{i}\right) \operatorname{Tr}\left(c \mid y_{i} E\right) \tag{10.7}
\end{equation*}
$$

where $a \mid L_{i}$ is the element in $\operatorname{End}_{\mathbb{F}}\left(L_{i}\right)$ given by $x \mapsto a x$.
We specialize now to

$$
A=\mathbb{F}\left[S_{n}\right]
$$

acting on $V^{\otimes n}$, where V is a finite dimensional vector space over \mathbb{F}. Then, as we know, C is spanned by elements of the form $B^{\otimes n}$, with B running over $G L_{\mathbb{F}}(V)$. Non-isomorphic simple left ideals in A correspond to inequivalent irreducible representations of S_{n}. Let the set \mathcal{R} label these representations; thus there is a maximal set of non-isomorphic simple left ideals L_{α}, with α running over \mathcal{R}. Then we have, for any $\sigma \in S_{n}$ and any $B \in G L_{\mathbb{F}}(V)$, the character duality formula

$$
\begin{equation*}
\operatorname{Tr}\left(B^{\otimes n} \cdot \sigma\right)=\sum_{\alpha \in \mathcal{R}} \chi_{\alpha}(\sigma) \chi^{\alpha}(B) \tag{10.8}
\end{equation*}
$$

where χ_{α} is the characteristic of the representation of S_{n} on $L_{\alpha}=\mathbb{F}\left[S_{n}\right] y_{\alpha}$, and χ^{α} that of $G L_{\mathbb{F}}(V)$ on $y_{\alpha} V^{\otimes n}$.

Recall the character orthogonality relation

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{\alpha}(\sigma) \chi_{\beta}\left(\sigma^{-1}\right)=\delta_{\alpha \beta} \quad \text { for all } \alpha, \beta \in \mathcal{R}
$$

Using this with (10.8), we have

$$
\chi^{\alpha}(B)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{\alpha}\left(\sigma^{-1}\right) s^{\sigma}(B)
$$

where

$$
\begin{equation*}
s^{\sigma}(B)=\operatorname{Tr}\left(B^{\otimes n} \cdot \sigma\right) \tag{10.9}
\end{equation*}
$$

Note that s^{σ} depends only on the conjugacy class of σ, rather than on the specific choice of σ. Denoting by K a typical conjugacy class, we then have

$$
\begin{equation*}
\chi^{\alpha}(B)=\sum_{K \in \mathcal{C}} \frac{|K|}{n!} \chi_{\alpha}(K) s^{K}(B) \tag{10.10}
\end{equation*}
$$

where \mathcal{C} is the set of all conjugacy classes in $S_{n}, \chi_{\alpha}(K)$ is the value of χ_{α} on any element in K, and s^{K} is s^{σ} for any $\sigma \in K$.

In the following section we will prove the character duality formulas (10.8) and (10.10) again, by a more explicit method.

10.4 Character Duality by Calculations

We will now work through a proof of the Schur-Weyl duality formulas by more explicit computations. This section is entirely independent of the preceding, and is close to the method of Weyl [76].

All through this section \mathbb{F} is an algebraically closed field of characteristic 0.

Let $V=\mathbb{F}^{N}$, on which the group $G L(N, \mathbb{F})$ acts in the natural way. Let

$$
e_{1}, \ldots, e_{N}
$$

be the standard basis of $V=\mathbb{F}^{N}$.
We know that $V^{\otimes n}$ decomposes as a direct sum of subspaces of the form

$$
y_{\alpha} V^{\otimes n}
$$

with y_{α} running over a set of indecomposable idempotents in $\mathbb{F}\left[S_{n}\right]$, such that the left ideals $\mathbb{F}\left[S_{n}\right] y_{\alpha}$ form a decomposition of $\mathbb{F}\left[S_{n}\right]$ into simple left submodules.

Let

$$
\chi^{\alpha}
$$

be the character of the irreducible representation ρ_{α} of $G L(N, \mathbb{F})$ on the subspace $y_{\alpha} V^{\otimes n}$, and

$$
\chi_{\alpha}
$$

be the character of the representation of S_{n} on $\mathbb{F}\left[S_{n}\right] y_{\alpha}$.
Our goal is to establish the relation between these two characters.
If a matrix $g \in G L(N, \mathbb{F})$ has all eigenvalues distinct, then the corresponding eigenvectors are linearly independent and hence form a basis of V. Changing basis, g is conjugate to a diagonal matrix

$$
D(\vec{\lambda})=D\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\left[\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \lambda_{N}
\end{array}\right]
$$

Then $\chi^{\alpha}(g)$ equals $\chi^{\alpha}(D(\vec{\lambda}))$. We will evaluate the latter.
The tensor product

$$
e_{i_{1}} \otimes \ldots \otimes e_{i_{n}}
$$

is an eigenvector of $D(\vec{\lambda})$ with eigenvalue $\lambda_{i_{1}} \ldots \lambda_{i_{N}}$, and these form a basis of \mathbb{F}^{N} as $\left(i_{1}, \ldots, i_{n}\right)$ runs over $[N]^{[n]}$. Hence every eigenvalue of $D(\vec{\lambda})$ is of the form $\lambda_{i_{1}} \ldots \lambda_{i_{N}}$. Moreover, the eigensubspace for $\lambda_{i_{1}} \ldots \lambda_{i_{N}}$ is the same for all $\vec{\lambda} \in \mathbb{F}^{N}$.

Fix a partition of n given by

$$
\vec{f}=\left(f_{1}, \ldots, f_{N}\right) \in \mathbb{Z}_{\geq 0}^{N}
$$

with

$$
|\vec{f}|=f_{1}+\cdots+f_{N}=n
$$

and let

$$
\vec{\lambda}^{\vec{f}}=\prod_{j=1}^{N} \lambda_{j}^{f_{j}}
$$

and

$$
V(\vec{f})=\left\{v \in V^{\otimes n}: D(\vec{\lambda}) v=\vec{\lambda}^{\vec{f}} v \quad \text { for all } \vec{\lambda} \in \mathbb{F}^{N}\right\}
$$

Thus every eigenvalue of $D(\vec{\lambda})$ is of the form $\vec{\lambda} \vec{f}$. From the observation in the previous paragraph, it follows that \mathbb{F}^{N} is the direct sum of the subspaces $V(\vec{f})$, with \vec{f} running over all partitions of n.

Since the action of $G L(N, \mathbb{F})$ on $V^{\otimes n}$ commutes with that of S_{n}, the action of $D(\vec{\lambda})$ on the vector

$$
y_{\alpha}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{n}}\right)
$$

is also multiplication by $\lambda_{i_{1}} \ldots \lambda_{i_{N}}$. The subspaces $y_{\alpha} V(\vec{f})$, for fixed \vec{f} and y_{α} running over the string of indecomposable idempotents adding up to 1 , direct sum to $V(\vec{f})$. Consequently,

$$
\begin{equation*}
\chi^{\alpha}(D(\vec{\lambda}))=\sum_{\vec{f} \in \mathbb{Z}_{\geq 0}^{N}} \overrightarrow{\lambda^{\prime}} \vec{f} \operatorname{dim}\left(y_{\alpha} V(\vec{f})\right) . \tag{10.11}
\end{equation*}
$$

The space $V(\vec{f})$ has a basis given by the set

$$
\left\{\sigma \cdot e_{1}^{\otimes f_{1}} \otimes \cdots \otimes e_{N}^{\otimes f_{N}}: \sigma \in S_{n}\right\}
$$

Note that

$$
\vec{e}^{\otimes \vec{f}}=e_{1}^{\otimes f_{1}} \otimes \cdots \otimes e_{N}^{\otimes f_{N}}
$$

is indeed in $V^{\otimes n}$, because $|\vec{f}|=n$.
The dimension of $y_{\alpha} V(\vec{f})$ is

$$
\begin{equation*}
\operatorname{dim}\left(y_{\alpha} V(\vec{f})\right)=\frac{1}{f_{1}!\ldots f_{N}!} \sum_{\sigma \in S_{n}(\vec{f})} \chi_{\alpha}(\sigma) \tag{10.12}
\end{equation*}
$$

where

$$
S_{n}(\vec{f})
$$

is the subgroup of S_{n} consisting of elements that preserve the sets

$$
\left\{1, \ldots, f_{1}\right\},\left\{f_{1}+1, \ldots, f_{2}\right\}, \ldots,\left\{f_{N-1}+1, \ldots, f_{N}\right\}
$$

and we have used the fact that χ_{α} equals the character of the representation of S_{n} on $\mathbb{F}\left[S_{n}\right] y_{\alpha}$. (If you have a short proof of 10.12) write it on the margins here, or else work through Exercise 10.2.)

Thus,

$$
\begin{equation*}
\chi^{\alpha}(D(\vec{\lambda}))=\sum_{\vec{f} \in \mathbb{Z}_{\geq 0}^{N}} \vec{\lambda} \vec{f} \frac{1}{f_{1}!\ldots f_{N}!} \sum_{\sigma \in S_{n}(\vec{f})} \chi_{\alpha}(\sigma) \tag{10.13}
\end{equation*}
$$

The character χ_{α} is constant on conjugacy classes. So the second sum on the right here should be reduced to a sum over conjugacy classes. Note that, with obvious notation,

$$
S_{n}(\vec{f}) \simeq S_{f_{1}} \times \ldots \times S_{f_{N}}
$$

The conjugacy class of a permutation is completely determined by its cycle structure: $i_{1} 1$-cycles, $i_{2} 2$-cycles,... . For a given sequence

$$
\vec{i}=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}
$$

the number of such permutations in S_{m} is

$$
\begin{equation*}
\frac{m!}{\left(i_{1}!1^{i_{1}}\right)\left(i_{2}!2^{i_{2}}\right)\left(i_{3}!3^{i_{3}}\right) \ldots\left(i_{m}!m^{i_{m}}\right)} \tag{10.14}
\end{equation*}
$$

because, in distributing $1, \ldots, m$ among such cycles, the $i_{k} k$-cycles can be arranged in i_{k} ! ways and each such k-cycle can be expressed in k ways. Alternatively, the denominator in (10.14) is the size of the isotropy group of any element of the conjugacy class.

The cycle structure of an element of

$$
\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in S_{f_{1}} \times \cdots \times S_{f_{N}}
$$

is described by a sequence

$$
\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right]=(\underbrace{i_{11}, i_{12}, \ldots, i_{1 f_{1}}}_{\vec{i}_{1}}, \ldots, \underbrace{i_{N 1}, \ldots, i_{N f_{N}}}_{\vec{i}_{N}})
$$

with $i_{j k}$ being the number of k-cycles in the permutation σ_{j}. Let us denote by

$$
\chi_{\alpha}\left(\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right]\right)
$$

the value of χ_{α} on the corresponding conjugacy class in S_{n}. Then

$$
\sum_{\sigma \in S_{n}(\vec{f})} \chi_{\alpha}(\sigma)=\sum_{\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right] \in[\vec{f}]} \chi_{\alpha}\left(\left(\vec{i}_{1}, \ldots, \vec{i}_{N}\right]\right) \prod_{j=1}^{N} \frac{f_{j}!}{\left(i_{j 1}!1^{i_{j 1}}\right)\left(i_{j 2}!2^{i_{j 2}}\right) \ldots}
$$

Here the sum is over the set $[\vec{f}]$ of all $\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right]$ for which

$$
i_{j 1}+2 i_{j 2}+\cdots+n i_{j n}=f_{j} \quad \text { for all } j \in\{1, \ldots, N\}
$$

(Of course, $i_{j n}$ is 0 when $n>f_{j}$.)
Returning to the expression for χ^{α} in 10.13 we have:

$$
\begin{aligned}
\chi^{\alpha}(D(\vec{\lambda})) & =\sum_{\vec{f} \in \mathbb{Z}_{\geq 0}^{N}} \vec{\lambda}^{\vec{f}} \sum_{\left[\overrightarrow{i_{1}}, \ldots, \vec{i}_{N}\right] \in[\vec{f}]} \chi_{\alpha}\left(\left[\overrightarrow{i_{1}}, \ldots, \vec{i}_{N}\right]\right) \prod_{j=1}^{N} \frac{1}{\left(i_{j 1}!1^{i_{j 1}}\right)\left(i_{j 2}!2^{i_{j 2}}\right) \ldots\left(i_{j n}!n^{i_{j n}}\right)} \\
& =\sum_{\vec{f} \in \mathbb{Z}_{\geq 0}^{N}} \vec{\lambda}^{\vec{f}} \sum_{\left[\overrightarrow{i_{1}}, \ldots, \vec{i}_{N}\right] \in[\vec{f}]} \chi_{\alpha}\left(\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right]\right) \prod_{1 \leq j \leq N, 1 \leq k \leq n} \frac{1}{i_{j k}!k^{i_{j k}}}
\end{aligned}
$$

Now χ_{α} is constant on conjugacy classes in S_{n}. The conjugacy class in $S_{f_{1}} \times \cdots \times S_{f_{N}}$ specified by the cycle structure

$$
\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right]
$$

corresponds to the conjugacy class in S_{n} specified by the cycle structure

$$
\vec{i}=\left(i_{1}, \ldots, i_{n}\right)
$$

with

$$
\begin{equation*}
\sum_{j=1}^{N} i_{j k}=i_{k} \quad \text { for all } k \in\{1, \ldots, n\} \tag{10.15}
\end{equation*}
$$

Recall again that

$$
\begin{equation*}
\sum_{k=1}^{n} k i_{j k}=f_{j} \tag{10.16}
\end{equation*}
$$

Note that then

$$
\vec{\lambda}^{\vec{f}}=\prod_{k=1}^{n}\left(\lambda_{1}^{k i_{1 k}} \ldots \lambda_{N}^{k i_{N k}}\right)
$$

Combining these observations we have

$$
\begin{equation*}
\chi^{\alpha}(D(\vec{\lambda}))=\sum_{\vec{i} \in \mathbb{Z}_{\geq 0}^{N}} \chi_{\alpha}(\vec{i}) \frac{1}{1^{i_{1}} 2^{i_{2}} \ldots n^{i_{n}}} \sum_{i_{j k}} \prod_{k=1}^{n} \frac{\lambda_{1}^{k i_{1 k}} \ldots \lambda_{N}^{k i_{N k}}}{i_{1 k}!i_{2 k}!\ldots i_{N k}!} \tag{10.17}
\end{equation*}
$$

where the inner sum on the right is over all $\left[\vec{i}_{1}, \ldots, \vec{i}_{N}\right]$ corresponding to the cycle structure $\vec{i}=\left(i_{1}, \ldots, i_{n}\right)$ in S_{n}, hence satisfying (10.15). We observe now that this sum simplifies:

$$
\begin{equation*}
\sum_{i_{j k}} \prod_{k=1}^{n} \frac{\lambda_{1}^{k i_{1 k}} \ldots \lambda_{N}^{k i_{N k}}}{i_{1 k}!i_{2 k}!\ldots i_{N k}!}=\frac{1}{i_{1}!\ldots i_{n}!} \prod_{k=1}^{n}\left(\lambda_{1}^{k}+\cdots+\lambda_{N}^{k}\right)^{i_{k}} \tag{10.18}
\end{equation*}
$$

This produces

$$
\begin{equation*}
\chi^{\alpha}(D(\vec{\lambda}))=\sum_{\vec{i} \in \mathbb{Z} \geq 0}^{N} \chi_{\alpha}(\vec{i}) \frac{1}{\left(i_{1}!1^{i_{1}}\right)\left(i_{2}!2^{i_{2}}\right) \ldots\left(i_{n}!n^{i_{n}}\right)} \prod_{k=1}^{n} s_{k}(\vec{\lambda})^{i_{k}} \tag{10.19}
\end{equation*}
$$

where s_{1}, \ldots, s_{n} are the symmetric polynomials given by

$$
\begin{equation*}
s_{m}\left(X_{1}, \ldots, X_{n}\right)=X_{1}^{m}+\cdots+X_{n}^{m} \tag{10.20}
\end{equation*}
$$

We can also conveniently define

$$
\begin{equation*}
s_{m}(B)=\operatorname{Tr}\left(B^{m}\right) \tag{10.21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\chi^{\alpha}(B)=\sum_{\vec{i} \in \mathbb{Z} \geq 0}^{N} \chi_{\alpha}(\vec{i}) \frac{1}{\left(i_{1}!1^{i_{1}}\right)\left(i_{2}!2^{i}\right) \ldots\left(i_{n}!n^{i_{n}}\right)} \prod_{k=1}^{n} s_{k}(B)^{i_{k}} \tag{10.22}
\end{equation*}
$$

for all $B \in G L(N, \mathbb{F})$ with distinct eigenvalues, and hence for all $B \in$ $G L(N, \mathbb{F})$. (All right, so there is a leap of logic which you should explore.) The beautiful formula 10.22 for the character χ^{α} of the $G L(V)$ in terms of characters of S_{n} was obtained by Schur [68].

The sum on the right in 10.22) is over all conjugacy classes in S_{n}, each labeled by its cycle structure

$$
\vec{i}=\left(i_{1}, \ldots, i_{n}\right)
$$

Note that the number of elements in this conjugacy class is exactly n ! divided by the denominator which appears on the right inside the sum. Thus, we can also write the Schur-Weyl duality formula as

$$
\begin{equation*}
\chi^{\alpha}(B)=\sum_{K \in \mathcal{C}} \frac{|K|}{n!} \chi_{\alpha}(K) s^{K}(B) \tag{10.23}
\end{equation*}
$$

where \mathcal{C} is the set of all conjugacy classes in S_{n}, and

$$
\begin{equation*}
s^{K} \stackrel{\text { def }}{=} \prod_{m=1}^{n} s_{m}^{i_{m}} \tag{10.24}
\end{equation*}
$$

if K has the cycle structure $\vec{i}=\left(i_{1}, \ldots, i_{n}\right)$.
Up to this point we have not needed to assume that α labels an irreducible representation of S_{n}. We have merely used the character χ_{α} corresponding to some left ideal $\mathbb{F}\left[S_{n}\right] y_{\alpha}$ in $\mathbb{F}\left[S_{n}\right]$, and the corresponding $G L(n, \mathbb{F})$-module $y_{\alpha} V^{\otimes n}$.

We will now assume that χ_{α} indeed labels the irreducible characters of S_{n}. Then we have the Schur orthogonality relations

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{\alpha}(\sigma) \chi_{\beta}\left(\sigma^{-1}\right)=\delta_{\alpha \beta}
$$

These can be rewritten as

$$
\begin{equation*}
\sum_{K \in \mathcal{C}} \chi_{\alpha}(K) \frac{|K|}{n!} \chi_{\beta}\left(K^{-1}\right)=\delta_{\alpha \beta} \tag{10.25}
\end{equation*}
$$

Thus, the $|\mathcal{C}| \times|\mathcal{C}|$ square matrix $\left[\chi_{\alpha}\left(K^{-1}\right)\right]$ has the inverse $\frac{1}{n!}\left[|K| \chi_{\alpha}(K)\right]$. Therefore also:

$$
\begin{equation*}
\sum_{\alpha \in \mathcal{R}} \chi_{\alpha}\left(K^{-1}\right) \frac{\left|K^{\prime}\right|}{n!} \chi_{\alpha}\left(K^{\prime}\right)=\delta_{K K^{\prime}}, \tag{10.26}
\end{equation*}
$$

where \mathcal{R} labels a maximal set of inequivalent irreducible representations of S_{n}. Consequently, multiplying (10.23) by $\chi_{\alpha}\left(K^{-1}\right)$ and summing over α, we obtain:

$$
\begin{equation*}
\sum_{\alpha \in \mathcal{R}} \chi^{\alpha}(B) \chi_{\alpha}(K)=s^{K}(B) \tag{10.27}
\end{equation*}
$$

for every conjugacy class K in S_{n}, where we used the fact that $K^{-1}=K$.
Observe that

$$
\begin{equation*}
s^{K}(B)=\operatorname{Tr}\left(B^{\otimes n} \cdot \sigma\right) \tag{10.28}
\end{equation*}
$$

where σ, any element of the conjugacy class K, appears on the right here by its representation as an endomorphism of $V^{\otimes n}$. The identity (10.28) is readily checked (Exercise 10. 3) if σ is the cycle ($12 \ldots n$), and then the general case follows by observing (and verifying in Exercise 10.3) that

$$
\begin{equation*}
\operatorname{Tr}\left(B^{\otimes j} \otimes B^{\otimes l} \cdot \phi \theta\right)=\operatorname{Tr}\left(B^{\otimes j}\right) \operatorname{Tr}\left(B^{\otimes l}\right) \tag{10.29}
\end{equation*}
$$

if ϕ and θ are the disjoint cycles $(12 \ldots j)$ and $(j+1 \ldots n)$.
Thus the duality formula 10.27) coincides exactly with the formula (10.8) we proved in the previous section.

Exercises

1. Let E be a module over a ring A, \vec{e} an element of E, and N the left ideal in A consisting of all $n \in A$ for which $n \vec{e}=0$. Assume that A decomposes as $N \oplus N_{c}$, where N_{c} is also a left ideal, and let $P_{c}: A \rightarrow A$ be the projection map onto N_{c}; thus, every $a \in A$ splits as $a=a_{N}+P_{c}(a)$, with $a_{N} \in N$ and $P_{c}(a) \in N_{c}$. Show that for any right ideal R in A :
(i) $P_{c}(R) \subset R$;
(ii) there is a well-defined map given by

$$
f: R \vec{e} \rightarrow P_{c}(R): x \vec{e} \mapsto P_{c} x
$$

(iii) the map

$$
P_{c}(R) \rightarrow R \vec{e}: x \mapsto x \vec{e}
$$

is the inverse of f.
2. Let G be a finite group, represented on a finite-dimensional vector space E over a field \mathbb{F} characteristic 0 . Suppose $\vec{e} \in E$ is such that the set $G \vec{e}$ is a basis of E. Denote by H the isotropy subgroup $\{h \in G: h \vec{e}=\vec{e}\}$, and $N=\{n \in \mathbb{F}[G]: n \vec{e}=0\}$.
(i) Show that

$$
\mathbb{F}[G]=N \oplus \mathbb{F}[G / H]
$$

where $\mathbb{F}[G / H]$ is the left ideal in $\mathbb{F}[G]$ consisting of all x for which $x h=x$ for every $h \in H$, and that the projection map onto $\mathbb{F}[G / H]$ is given by

$$
\mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto \frac{1}{|H|} \sum_{h \in H} x h
$$

(ii) Let y be an idempotent, and $L=\mathbb{F}[G] y$. Show that

$$
\begin{equation*}
\hat{L} \vec{e}=\hat{y} E \tag{10.30}
\end{equation*}
$$

where $\mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto \hat{x}$ is the \mathbb{F}-linear map carrying g to g^{-1} for every $g \in G \subset \mathbb{F}[G]$. Then, using Exercise 10.1, obtain the dimension formula

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}}(\hat{y} E)=\frac{1}{|H|} \sum_{h \in H} \chi_{L}(h), \tag{10.31}
\end{equation*}
$$

where $\chi_{L}(a)$ is the trace of the map $L \rightarrow L: y \mapsto a y$.
3. Verify the identity 10.28) in the case σ is the cycle ($12 \ldots n$). Next verify the identity 10.29 .

Chapter 11

Representations of $U(N)$

The unitary group $U(N)$ consists of all $N \times N$ complex matrices U that satisfy the unitarity condition:

$$
U^{*} U=I
$$

It is a group under matrix multiplication, and, being a subset of the linear space of all $N \times N$ complex matrices, it is a topological space as well. Multiplication of matrices is, clearly, continuous. The inversion map $U \mapsto U^{-1}=U^{*}$ is continuous as well. This makes $U(N)$ a topological group. It has much more structure, but we will have need for no more.

By a representation ρ of $U(N)$ we will mean a continuous mapping

$$
\rho: U(N) \rightarrow \operatorname{End}_{\mathbb{C}}(V)
$$

for some finite dimensional complex vector space V. Notice the additional condition of continuity required of ρ. The character of ρ is the function

$$
\begin{equation*}
\chi_{\rho}: U(N) \rightarrow \mathbb{C}: U \mapsto \operatorname{tr}(\rho(U)) \tag{11.1}
\end{equation*}
$$

The representation ρ is said to be irreducible if the only subspaces of V invariant under the action of $U(N)$ are 0 and V, and $V \neq 0$.

Representations ρ_{1} and ρ_{2} of $U(N)$, on finite dimensional vector space V_{1} and V_{2}, respectively, are said to be equivalent if there is a linear isomorphism

$$
\Theta: V_{1} \rightarrow V_{2}
$$

that intertwines ρ_{1} and ρ_{2} in the sense that

$$
\Theta \rho_{1}(U) \Theta^{-1}=\rho_{2}(U) \quad \text { for all } U \in U(N)
$$

If there is no such Θ then the representations are inequivalent. As for finite groups (Proposition 1.10.1), if ρ_{1} and ρ_{2} are equivalent then they have the same character.

In this chapter we will explore the representations of $U(N)$. Though $U(N)$ is definitely not a finite group, Schur-Weyl duality interweaves the representation theories of $U(N)$ and of the permutation group S_{n}, making the exploration of $U(N)$ a natural digression from our main journey through finite groups. For an interesting application of this duality, and duality between other compact groups and discrete groups, see the paper of Lévy[54].

11.1 The Haar Integral

For our exploration of $U(N)$ there is one essential piece of equipment we cannot do without: the Haar integral. Its construction would take as far off the main route, and so we will accept its existence and one basic formula that we will see in the next section. Now on to what it is. A readable exposition of the construction of Haar measure on a general topological group is given by Cohn [14, Chapter 9]; an account specific to compact Lie groups, such as $U(N)$, is in the book by Bröcker and tom Dieck [8].

On the space of complex-valued continuous functions on $U(N)$ there is a unique linear functional, the normalized Haar integral

$$
f \mapsto\langle f\rangle=\int_{U(N)} f(U) d U
$$

satisfying the following conditions:

- it is non-negative, in the sense that

$$
\langle f\rangle \geq 0 \quad \text { if } f \geq 0
$$

and, moreover, $\langle f\rangle$ is 0 if and only if f equals 0 ;

- it is invariant under left and right translations in the sense that

$$
\int_{U(N)} f(x U y) d U=\int_{U(N)} f(U) d U \quad \text { for all } x, y \in U(N)
$$

and all continuous functions f on $U(N)$;

- Finally, the integral is normalized:

$$
\langle 1\rangle=1
$$

In more standard notation, the Haar integral of f is denoted

$$
\int_{U(N)} f(g) d g .
$$

Let T denote the subgroup of $U(N)$ consisting of all diagonal matrices. A typical element of T has the form

$$
D\left(\lambda_{1}, \ldots, \lambda_{N}\right) \stackrel{\text { def }}{=}\left[\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \lambda_{N}
\end{array}\right]
$$

where $\lambda_{1}, \ldots, \lambda_{N}$ are complex numbers of unit modulus.
Thus T is the product of N copies of the circle group $U(1)$ of unit modulus complex numbers:

$$
T \simeq U(1)^{N}
$$

This makes it, geometrically, a torus, and hence the choice of notation. There is a natural Haar integral over T, specified by:

$$
\begin{equation*}
\int_{T} h(t) d t=(2 \pi)^{-N} \int_{0}^{2 \pi} \ldots \int_{0}^{2 \pi} h\left(D\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right)\right) d \theta_{1} \ldots d \theta_{N} \tag{11.2}
\end{equation*}
$$

for any continuous function h on T.

11.2 The Weyl Integration Formula

Recall that a function f on a group is central if

$$
f\left(x y x^{-1}\right)=f(y)
$$

for all elements x and y of the group.

For every continuous central function f on $U(N)$ the following integration formula (Weyl [76, Section 17]) holds:

$$
\begin{equation*}
\int_{U(N)} f(U) d U=\frac{1}{N!} \int_{T} f(t)|\Delta(t)|^{2} d t \tag{11.3}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta\left(D\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right) & =\operatorname{det}\left[\begin{array}{ccccc}
\lambda_{1}^{N-1} & \lambda_{2}^{N-1} & \cdots & \lambda_{N-1}^{N-1} & \lambda_{N}^{N-1} \\
\lambda_{1}^{N-2} & \lambda_{2}^{N-2} & \cdots & \lambda_{N-1}^{N-2} & \lambda_{N}^{N-2} \\
\vdots & \vdots & \because: & \vdots & \vdots \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{N-1} & \lambda_{N} \\
1 & 1 & \cdots & 1 & 1
\end{array}\right] \tag{11.4}\\
& =\prod_{1 \leq j<k \leq N}\left(\lambda_{j}-\lambda_{k}\right),
\end{align*}
$$

the last step being a famed identity. This Vandermonde determinant, written out as an alternating sum, is:

$$
\begin{equation*}
\Delta\left(D\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right)=\sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) \lambda_{1}^{N-\sigma(1)} \ldots \lambda_{N}^{N-\sigma(N)} \tag{11.5}
\end{equation*}
$$

The diagonal term is

$$
\lambda_{1}^{N-1} \lambda_{2}^{N-2} \ldots \lambda_{N-1}^{1} \lambda_{N}^{0}
$$

Observe that among all the monomial terms $\lambda_{1}^{w_{1}} \ldots \lambda_{N}^{w_{N}}$, where $\vec{w}=\left(w_{1}, \ldots, w_{N}\right) \in$ \mathbb{Z}^{N}, which appear in the determinant, this is the 'highest' in the sense that all such \vec{w} are $\leq(N-1, N-2, \ldots, 0)$ in lexicographic order (check dominance in the first component, then the second, and so on).

11.3 Character Orthogonality

As with finite groups, every representation is a direct sum of irreducible representations. Hence every character is a sum of irreducible representation characters with positive integer coefficients. (The details of this are farmed out to Exercise 11.1.)

Just as for finite groups, the character orthogonality relations hold for representations of $U(N)$: If ρ_{1} and ρ_{2} are inequivalent irreducible representations of $U(N)$ then

$$
\begin{equation*}
\int_{U(N)} \chi_{\rho_{1}}(U) \chi_{\rho_{2}}\left(U^{-1}\right) d U=0 \tag{11.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{U(N)} \chi_{\rho}(U) \chi_{\rho}\left(U^{-1}\right) d U=1 \tag{11.7}
\end{equation*}
$$

for any irreducible representation ρ. (You can work through the proofs in Exercise 11.3.)

Analogously to the case of finite groups, each $\rho(U)$ is diagonal in some basis, with diagonal entries being of unit modulus.

It follows then that

$$
\begin{equation*}
\chi_{\rho}\left(U^{-1}\right)=\overline{\chi_{\rho}(U)} \tag{11.8}
\end{equation*}
$$

The Haar integral specifies a hermitian inner product on the space of continuous functions on $U(N)$ by

$$
\begin{equation*}
\langle f, h\rangle=\int_{U(N)} f(U) \overline{h(U)} d U \tag{11.9}
\end{equation*}
$$

In terms of this inner product the character orthogonality relations say that the characters χ_{ρ} of irreducible representations form an orthonormal set of functions on $U(N)$.

11.4 Weights

Consider an irreducible representation ρ of $U(N)$ on a finite dimensional vector space V.

The linear maps

$$
\rho(t): V \rightarrow V
$$

with t running over the abelian subgroup T, commute with each other:

$$
\rho(t) \rho\left(t^{\prime}\right)=\rho\left(t t^{\prime}\right)=\rho\left(t^{\prime} t\right)=\rho\left(t^{\prime}\right) \rho(t)
$$

and so there is a basis $\left\{v_{j}\right\}_{1 \leq j \leq d_{V}}$ of V with respect to which the matrices of $\rho(t)$, for all $t \in T$, are diagonal:

$$
\rho(t)=\left[\begin{array}{cccc}
\rho_{1}(t) & 0 & \cdots & 0 \\
0 & \rho_{2}(t) & \cdots & 0 \\
\vdots & \vdots & \vdots & 0 \\
0 & 0 & \cdots & \rho_{d_{V}}(t)
\end{array}\right]
$$

where

$$
\rho_{r}: T \rightarrow U(1) \subset \mathbb{C}
$$

are continuous homomorphisms. Thus,

$$
\rho_{r}\left(D\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right)=\rho_{r 1}\left(\lambda_{1}\right) \ldots \rho_{r N}\left(\lambda_{N}\right)
$$

where $\rho_{r k}(\lambda)$ is ρ_{r} evaluated on the diagonal matrix that has λ at the k th diagonal entry and all other diagonal entries are 1. Since each $\rho_{r k}$ is a continuous homomorphism

$$
U(1) \rightarrow U(1)
$$

it necessarily has the form

$$
\begin{equation*}
\rho_{r k}(\lambda)=\lambda^{w_{r k}} \tag{11.10}
\end{equation*}
$$

for some integer $w_{r k}$. We will refer to

$$
\vec{w}_{r}=\left(w_{r 1}, \ldots, w_{r N}\right) \in \mathbb{Z}^{N}
$$

as a weight for the representation ρ.

11.5 Characters of $U(N)$

Continuing with the framework as above, we have

$$
\rho_{r}\left(D\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right)=\lambda_{1}^{w_{r 1}} \ldots \lambda_{N}^{w_{r N}}
$$

Thus,

$$
\begin{equation*}
\chi_{\rho}\left(D\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right)=\sum_{r=1}^{d_{V}} \lambda_{1}^{w_{r 1}} \ldots \lambda_{N}^{w_{r N}} . \tag{11.11}
\end{equation*}
$$

It will be convenient to write

$$
\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

and analogously for \vec{w}.
Two diagonal matrices in $U(N)$ whose diagonal entries are permutations of each other are conjugate within $U(N)$ (permutation of the basis vectors implements the conjugation transformation). Consequently, a character will have the same value on two such diagonal matrices. Thus,

$$
\chi_{\rho}\left(D\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right) \text { is invariant under permutations of the } \lambda_{j} \text {. }
$$

Then, by gathering similar terms, we can rewrite the character as a sum of symmetric sums

$$
\begin{equation*}
\sum_{\sigma \in S_{N}} \lambda_{\sigma(1)}^{w_{1}} \ldots \lambda_{\sigma(N)}^{w_{N}} \tag{11.12}
\end{equation*}
$$

with $\vec{w}=\left(w_{1}, \ldots, w_{N}\right)$ running over a certain set of elements in \mathbb{Z}^{N}. (If 'gathering similar terms' bothers you, wade through Theorem 12.6.2.)

Thus we can express each character as a Fourier sum (with only finitely many non-zero terms)

$$
\begin{equation*}
\chi_{\rho}(D(\vec{\lambda}))=\sum_{\vec{w} \in \mathbb{Z}_{\downarrow}^{N}} c_{\vec{w}} s_{\vec{w}}(\vec{\lambda}) \tag{11.13}
\end{equation*}
$$

where each coefficient $c_{\vec{w}}$ is a non-negative integer, and $s_{\vec{w}}$ is the symmetric function given by:

$$
\begin{equation*}
s_{\vec{w}}(\vec{\lambda})=\sum_{\sigma \in S_{N}} \prod_{j=1}^{N} \lambda_{\sigma(j)}^{w_{j}} \tag{11.14}
\end{equation*}
$$

The subscript \downarrow in $\mathbb{Z}_{\downarrow}^{N}$ signifies that it consists of integer strings

$$
w_{1} \geq w_{2} \geq \ldots \geq w_{N}
$$

Now ρ is irreducible if and only if

$$
\begin{equation*}
\int_{U(N)}\left|\chi_{\rho}(U)\right|^{2} d U=1 \tag{11.15}
\end{equation*}
$$

(Verify this as Exercise 11.4.) Using the Weyl integration formula, and our expression for χ_{ρ}, this is equivalent to

$$
\begin{equation*}
\int_{U(1)^{N}}\left|\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})\right|^{2} d \lambda_{1} \ldots d \lambda_{N}=N! \tag{11.16}
\end{equation*}
$$

Now the product

$$
\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})
$$

is skew-symmetric in $\lambda_{1}, \ldots, \lambda_{N}$, and is an integer linear combination of terms of the form

$$
\lambda_{1}^{m_{1}} \ldots \lambda_{N}^{m_{N}}
$$

So, collecting similar terms together, $\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})$ can be expressed as an integer linear combination of the elementary skew-symmetric sums

$$
\begin{align*}
a_{\vec{f}}(\vec{\lambda}) & =\sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) \lambda_{\sigma(1)}^{f_{1}} \ldots \lambda_{\sigma(N)}^{f_{N}} \\
& =\sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) \lambda_{1}^{f_{\sigma(1)}} \ldots \lambda_{N}^{f_{\sigma(N)}} \\
& =\operatorname{det}\left[\begin{array}{cccc}
\lambda_{1}^{f_{1}} & \lambda_{2}^{f_{1}} & \ldots & \lambda_{N}^{f_{1}} \\
\lambda_{1}^{f_{2}} & \lambda_{2}^{f_{2}} & \ldots & \lambda_{N}^{f_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_{1}^{f_{N}} & \lambda_{2}^{f_{N}} & \ldots & \lambda_{N}^{f_{N}}
\end{array}\right], \tag{11.17}
\end{align*}
$$

with $\vec{f}=\left(f_{1}, \ldots, f_{N}\right) \in \mathbb{Z}^{N}$. (Again, the 'collecting terms' argument is put on more serious foundations by Theorem 12.6.2.) Therefore,

$$
\int_{U(1)^{N}}\left|\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})\right|^{2} d \lambda_{1} \ldots d \lambda_{N}
$$

is an integer linear combination of inner products

$$
\begin{equation*}
\int_{U(1)^{N}} a_{\vec{f}}(\vec{\lambda}) \overline{a_{\vec{f}^{\prime}}(\vec{\lambda})} d \lambda_{1} \ldots d \lambda_{N} . \tag{11.18}
\end{equation*}
$$

Now we use the simple, yet crucial, fact that on $U(1)$ there is the orthogonality relation

$$
\int_{U(1)} \lambda^{n} \overline{\lambda^{m}} d \lambda=\delta_{n m}
$$

Consequently, distinct monomials such as $\lambda_{1}^{a_{1}} \ldots \lambda_{N}^{a_{N}}$, with $\vec{a} \in \mathbb{Z}^{N}$, are orthonormal. Hence, if $f_{1}>f_{2}>\cdots>f_{N}$, then the first two expressions in 11.17) for $a_{\vec{f}}(\vec{\lambda})$ are sums of orthogonal terms, each of norm 1 .

If \vec{f} and $\overrightarrow{f^{\prime}}$ are distinct elements of $\mathbb{Z}_{\downarrow}^{N}$, each a strictly decreasing sequence, then no permutation of the entries of \vec{f} could be equal to \vec{f}^{\prime}, and so

$$
\begin{equation*}
\int_{U(1)^{N}} a_{\vec{f}}(\vec{\lambda}) \overline{a_{f^{\prime}}(\vec{\lambda})} d \lambda_{1} \ldots d \lambda_{N}=0 \tag{11.19}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\int_{U(1)^{N}} a_{\vec{f}}(\vec{\lambda}) \overline{a_{\vec{f}}(\vec{\lambda})} d \lambda_{1} \ldots d \lambda_{N}=N! \tag{11.20}
\end{equation*}
$$

because $a_{\vec{f}}(\vec{\lambda})$ is a sum of N ! orthogonal terms each of norm 1 .
Putting all these observations, especially the norms 11.16 and 11.20, together we see that an expression of $\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})$ as an integer linear combination of the elementary skew-symmetric functions $a_{\vec{f}}$ will involve exactly one of the latter, and with coefficient ± 1 :

$$
\begin{equation*}
\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})= \pm a_{\vec{h}}(\vec{\lambda}) \tag{11.21}
\end{equation*}
$$

for some $\vec{h} \in \mathbb{Z}_{\downarrow}^{N}$. To determine the sign here, it is useful to use the lexicographic ordering on \mathbb{Z}^{N}, with $v \in \mathbb{Z}^{N}$ being $>$ than $v^{\prime} \in \mathbb{Z}^{N}$ if the first non-zero entry in $v-v^{\prime}$ is positive. With this ordering, let \vec{w} be the highest (maximal) of the weights.

Then the 'highest' term in $\chi_{\rho}(\vec{\lambda})$ is

$$
\lambda_{1}^{w_{1}} \ldots \lambda_{N}^{w_{N}}
$$

appearing with some positive integer coefficient, and the 'highest' term in $\Delta(\vec{\lambda})$ is the diagonal term

$$
\lambda_{1}^{N-1} \ldots \lambda_{N}^{0}
$$

Thus, the highest term in the product $\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})$ is

$$
\lambda_{1}^{w_{1}+N-1} \ldots \lambda_{N-1}^{w_{N-1}+1} \lambda_{N}^{w_{N}}
$$

appearing with coefficient +1 .
We conclude that

$$
\begin{equation*}
\chi_{\rho}(\vec{\lambda}) \Delta(\vec{\lambda})=a_{\left(w_{1}+N-1, ., w_{N-1}+1, w_{N}\right)}(\vec{\lambda}) \tag{11.22}
\end{equation*}
$$

and also that the highest weight term

$$
\lambda_{1}^{w_{1}} \ldots \lambda_{N}^{w_{N}}
$$

appears with coefficient 1 in the expression for $\chi_{\rho}(D(\vec{\lambda}))$. This gives a remarkable consequence:

Theorem 11.5.1 In the decomposition of the representation of T given by ρ on V, the representation corresponding to the highest weight appears exactly once.

The orthogonality relations (11.19) imply that

$$
\begin{equation*}
\int_{U(1)^{N}} \chi_{\rho}(\vec{\lambda}) \overline{\chi_{\rho^{\prime}}(\vec{\lambda})}|\Delta(\vec{\lambda})|^{2} d \lambda_{1} \ldots d \lambda_{N}=0 \tag{11.23}
\end{equation*}
$$

for irreducible representations ρ and ρ^{\prime} corresponding to distinct highest weights \vec{w} and $\overrightarrow{w^{\prime}}$.

Thus:
Theorem 11.5.2 Representations corresponding to different highest weights are inequivalent.

Finally, we also have an explicit expression, Weyl's formula [76, Eq (16.9)], for the character χ_{ρ} of an irreducible representation ρ, as a ratio of determinants:

Theorem 11.5.3 The character χ_{ρ} of an irreducible representation ρ of $U(N)$ is the unique central function on $U(N)$ whose value on diagonal matrices is given by

$$
\begin{equation*}
\chi_{\rho}(D(\vec{\lambda}))=\frac{a_{\left(w_{1}+N-1, \ldots, w_{N-1}+1, w_{N}\right)}(\vec{\lambda})}{a_{(N-1, \ldots, 1,0)}(\vec{\lambda})} \tag{11.24}
\end{equation*}
$$

where $\left(w_{1}, \ldots, w_{N}\right)$ is the highest weight for ρ. The division on the right in (11.24) is to be understood as division of polynomials, treating the $\lambda_{j}^{ \pm 1}$ as indeterminates.

Note that in 11.24 the denominator is $\Delta(\vec{\lambda})$ from 11.4.

11.6 Weyl Dimension Formula

The dimension of the representation ρ is equal to $\chi_{\rho}(I)$, but (11.24) reads $0 / 0$ on putting $\vec{\lambda}=(1,1, \ldots, 1)$ into numerator and denominator. L'Hôpital's rule may be applied, but it is simplified by a trick borrowed from Weyl. Take an indeterminate t, and evaluate the ratio in (11.24) at

$$
\vec{\lambda}=\left(t^{N-1}, t^{N-2}, \ldots, t, 1\right)
$$

Then $a_{\vec{h}}(\vec{\lambda})$ becomes a Vandermonde determinant

$$
\begin{aligned}
a_{\left(h_{1}, \ldots, h_{N}\right)}\left(t^{N-1}, \ldots, t, 1\right) & =\operatorname{det}\left[\begin{array}{ccccc}
t^{h_{1}(N-1)} & t^{h_{1}(N-2)} & \ldots & t^{h_{1}} & 1 \\
t^{h_{2}(N-1)} & t^{h_{2}(N-2)} & \ldots & t^{h_{2}} & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
t^{h_{N}(N-1)} & t^{h_{N}(N-2)} & \ldots & t^{h_{N}} & 1
\end{array}\right] \\
& =\prod_{1 \leq j<k \leq N}\left(t^{h_{j}}-t^{h_{k}}\right)
\end{aligned}
$$

Consequently,

$$
\frac{a_{\left(h_{1}, \ldots, h_{N}\right)}\left(t^{N-1}, \ldots, t, 1\right)}{a_{\left(h_{1}^{\prime}, \ldots, h_{N}^{\prime}\right)}\left(t^{N-1}, \ldots, t, 1\right)}=\prod_{1 \leq j<k \leq N} \frac{t^{h_{j}}-t^{h_{k}}}{t^{h_{j}^{\prime}}-t^{h_{k}^{\prime}}}
$$

Evaluating of the rational function in t on the right at $t=1$ gives us

$$
\prod_{1 \leq j<k \leq N} \frac{h_{j}-h_{k}}{h_{j}^{\prime}-h_{k}^{\prime}}=\frac{V D\left(h_{1}, \ldots, h_{N}\right)}{V D\left(h_{1}^{\prime}, \ldots, h_{N}^{\prime}\right)}
$$

where $V D$ denotes the Vandermonde determinant.
Applying this to the Weyl character formula yields the wonderful Weyl dimension formula:

Theorem 11.6.1 If ρ is an irreducible representation of $U(N)$ then the dimension of the corresponding representation space is

$$
\begin{equation*}
\operatorname{dim}(\rho)=\prod_{1 \leq j<k \leq N} \frac{w_{j}-w_{k}+k-j}{k-j} \tag{11.25}
\end{equation*}
$$

where $\left(w_{1}, \ldots, w_{N}\right)$ is the highest weight for ρ.

11.7 From Weights to Representations

Our next goal is to construct an irreducible representation of $U(N)$ with a given weight $\vec{w} \in \mathbb{Z}_{\downarrow}^{N}$. We will produce such a representation inside a tensor product of exterior powers of \mathbb{C}^{N}.

It will be convenient to work first with a vector $\vec{f} \in \mathbb{Z}_{\downarrow}^{N}$ all of whose components are ≥ 0. We can take \vec{f} to be simply \vec{w}, in case all w_{j} are non-negative. If, on the other hand, some $w_{i}<0$, then we set

$$
f_{j}=w_{j}-w_{N} \quad \text { for all } j \in\{1, \ldots, N\}
$$

Display \vec{f} as a tableau of empty boxes, with the first row having f_{1} boxes, followed beneath by a row of f_{2} boxes, and so on, with the N-th row containing f_{N} boxes. (We ignore the trivial case where all f_{j} are 0 .) For example

$$
\vec{f}=(7,5,4,2,1)
$$

Let f_{1}^{\prime} be the number of boxes in column 1 ; this is the largest i for which $f_{i} \geq 1$. In this way, let f_{j}^{\prime} be the number of boxes in column j (the largest i for which $f_{i} \geq j$). Now consider

$$
\begin{equation*}
V_{\vec{f}}=\bigwedge^{f_{1}^{\prime}} \mathbb{C}^{N} \otimes \bigwedge^{f_{2}^{\prime}} \mathbb{C}^{N} \otimes \ldots \otimes \bigwedge_{N}^{f_{N}^{\prime}} \mathbb{C}^{N} \tag{11.26}
\end{equation*}
$$

where the 0 -th exterior power is, by definition, just \mathbb{C}, and thus effectively dropped. (If $\vec{f}=0$ then $V_{\vec{f}}=\mathbb{C}$.)

The group $U(N)$ acts on $V_{\vec{f}}$ in the obvious way through tensor powers, and we have thus a representation ρ of $U(N)$. The appropriate tensor products of the standard basis vectors e_{1}, \ldots, e_{N} of \mathbb{C}^{N} form a basis of $V_{\vec{f}}$, and these basis vectors are eigenvectors of the diagonal matrix

$$
D(\vec{\lambda}) \in T
$$

acting on $V_{\vec{f}}$. Indeed, a basis is formed by the vectors

$$
e_{a}=\bigotimes_{j=1}^{N}\left(e_{a_{1, j}} \wedge \ldots \wedge e_{a_{f_{j}^{\prime}, j}}\right)
$$

with each string $a_{1, j}, \ldots, a_{f_{j}^{\prime}, j}$ being strictly increasing and drawn from $\{1, \ldots, N\}$. We can visualize e_{a} as being obtained by placing the number $a_{i, j}$ in the box in the i-th row at the j-th column, and then taking the wedge-product of the vectors $e_{a_{i, j}}$ down each column and then taking the tensor product across all the columns. For example:

$$
\begin{array}{|l|l|l|l}
\hline 1 & 3 & 4 & 8 \\
\hline 2 & 4 & 6 & \\
\hline 5 & 7 & & \\
y y & &
\end{array} \quad\left(e_{1} \wedge e_{2} \wedge e_{5} \wedge e_{3}\right) \otimes\left(e_{3} \wedge e_{4} \wedge e_{7}\right) \otimes\left(e_{4} \wedge e_{6}\right) \otimes e_{8} .
$$

Clearly,

$$
\begin{equation*}
\rho(D(\vec{\lambda})) e_{a}=\left(\prod_{i, j} \lambda_{a_{i, j}}\right) e_{a} . \tag{11.27}
\end{equation*}
$$

The highest weight term corresponds to precisely $e_{a^{*}}$, where a^{*} has the entry 1 in all boxes in row 1 , then the entry 2 in all boxes in row 2 , and so on. The eigenvalue corresponding to $e_{a^{*}}$ is

$$
\lambda_{1}^{f_{1}} \ldots \lambda_{N}^{f_{N}}
$$

The corresponding subspace inside $V_{\vec{f}}$ is one dimensional, spanned by $e_{a^{*}}$. Decomposing $V_{\vec{f}}$ into a direct sum of irreducible subspaces under the representation ρ, it follows that $e_{a^{*}}$ lies inside (exactly) one of these subspaces. This subspace $V_{\vec{f}}$ must then be the irreducible representation of $U(N)$ corresponding to the highest weight \vec{f}.

We took $\vec{f}=\vec{w}$ if $w_{N} \geq 0$, and so we are done with that case. Now suppose $w_{N}<0$. We have to make an adjustment to $V_{\vec{f}}$ to produce an irreducible representation corresponding to the original highest weight $\vec{w} \in$ $\mathbb{Z}_{\downarrow}^{N}$.

Consider then

$$
\begin{equation*}
V(\vec{w})=V_{\vec{f}} \otimes\left(\bigwedge^{-N}\left(\mathbb{C}^{N}\right)\right)^{\otimes\left|w_{N}\right|} \tag{11.28}
\end{equation*}
$$

where a negative exterior power is defined as a dual

$$
\bigwedge^{-m} V=\left(\bigwedge^{m} V\right)^{\prime} \text { for } m \geq 1
$$

The representation of $U(N)$ on $\Lambda^{-N}\left(\mathbb{C}^{N}\right)$ is given by

$$
U \cdot \phi=(\operatorname{det} U)^{-1} \phi \quad \text { for all } U \in U(N) \text { and } \phi \in \bigwedge^{-N}\left(\mathbb{C}^{N}\right)
$$

This is a one dimensional representation with weight $(-1, \ldots,-1)$, because the diagonal matrix $D(\vec{\lambda})$ acts by multiplication by $\lambda_{1}^{-1} \ldots \lambda_{N}^{-1}$.

For the representation of $U(N)$ on $V_{\vec{w}}$, we have a basis of $V_{\vec{w}}$ consisting of eigenvectors of $\rho(D(\vec{\lambda}))$; the highest weight is

$$
\vec{f}+\left(-w_{N}\right)(-1, \ldots,-1)=\left(f_{1}+w_{N}, \ldots, f_{N}+w_{N}\right)=\left(w_{1}, \ldots, w_{N}\right)
$$

by our choice of \vec{f}. Thus, $V(\vec{w})$ contains an irreducible representation with highest weight \vec{w}. But

$$
\operatorname{dim} V(\vec{w})=\operatorname{dim} V_{\vec{f}},
$$

and, on using Weyl's dimension formula, this is equal to the dimension of the irreducible representation of highest weight \vec{w}. Thus, $V(\vec{w})$ is the irreducible representation with highest weight \vec{w}.

11.8 Characters of S_{n} from Characters of $U(N)$

We will now see how Schur-Weyl duality leads to a way of determining the characters of S_{n} from the characters of $U(N)$.

Let $N, n \in\{1,2, \ldots\}$, and consider the vector space $\left(\mathbb{C}^{N}\right)^{\otimes n}$. The permutation group S_{n} acts on this by

$$
\begin{equation*}
\sigma \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)} \tag{11.29}
\end{equation*}
$$

The group $G L(N, \mathbb{C})$ of invertible linear maps on \mathbb{C}^{N} also acts on $\left(\mathbb{C}^{N}\right)^{\otimes n}$ in the natural way:

$$
B \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=B^{\otimes n}\left(v_{1} \otimes \ldots \otimes v_{n}\right)=B v_{1} \otimes \ldots \otimes B v_{n} .
$$

Back in Theorem 10.1.1, these actions are dual in the sense that the commutant of the action of $\mathbb{C}\left[S_{n}\right]$ on $\left(\mathbb{C}^{N}\right)^{\otimes n}$ is the linear span of the operators $B^{\otimes n}$ with B running over $G L(N, \mathbb{C})$. We can leverage this to the following duality for the unitary group:

Theorem 11.8.1 Let $N, n \in\{1,2, \ldots\}$, and consider $\left(\mathbb{C}^{N}\right)^{\otimes n}$ as a $\mathbb{C}\left[S_{n}\right]$ module by means of the multiplication specified in (11.29). Then the commutant $\operatorname{End}_{\mathbb{C}\left[S_{n}\right]}\left(\mathbb{C}^{N}\right)^{\otimes n}$ is spanned by the elements $U^{\otimes n}$, with U running over $U(N)$.

For a vector complex vector space W let us, for our purposes here only, declare the elements $A, B \in \operatorname{End}(W)$ to be orthogonal if $\operatorname{Tr}(A B)=0$. For any subspace $L \subset \operatorname{End}(W)$ let L^{\perp} be the set of all $A \in \operatorname{End}(W)$ orthogonal to all elements of L. We will use the fact that $L \mapsto L^{\perp}$ is injective. Note also that if A and $U B U^{-1}$ are orthogonal then $U^{-1} A U$ and B are orthogonal for any $U \in \operatorname{End}(W)$. You can work these out as Exercise 11.5.
Proof. In Theorem 10.1.1 we showed that $\operatorname{End}_{\mathbb{C}\left[S_{n}\right]}\left(\mathbb{C}^{N}\right)^{\otimes n}$ is the linear span of the operators $B^{\otimes n}$ with B running over $G L(N, \mathbb{C})$. Suppose now that $S \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{N}\right)^{\otimes n}$ is orthogonal to $D^{\otimes n}$ for all $D \in U(N)$. Then for any fixed $T \in U(N)$, the element $S_{1}=T^{\otimes n} S\left(T^{-1}\right)^{\otimes n}$ is also orthogonal to $D^{\otimes n}$ for all $D \in U(N)$. From this it follows that S_{1} is orthogonal to $D^{\otimes n}$ for all diagonal matrices $D \in G L(N, \mathbb{C})$, because $\operatorname{Tr}\left(S_{1} D^{\otimes n}\right)$, viewed as a polynomial in every particular diagonal entry of D, is zero on the infinite set $U(1) \subset \mathbb{C}$ and hence is 0 on all elements of \mathbb{C}. Now for any $N \times N$ hermitian matrix H there is a unitary matrix $T_{1} \in U(N)$ such that $T_{1}^{-1} H T_{1}=D$ is a diagonal
matrix. Hence S is orthogonal to $H^{\otimes n}$ for every hermitian matrix H. If H_{1} and H_{2} are hermitian then

$$
\begin{equation*}
\operatorname{Tr}\left(S\left(H_{1}+t H_{2}\right)^{\otimes n}\right)=0 \tag{11.30}
\end{equation*}
$$

for all real t, and hence the left side in 11.30), viewed as a polynomial in the variable t, is identically 0 . Therefore (11.30) holds for all $t \in \mathbb{C}$. Now for a general $B \in G L(N, \mathbb{C})$ we have $B=H_{1}+i H_{2}$, where H_{1} and H_{2} are hermitian. Hence S is orthogonal to $B^{\otimes n}$ for all $N \times N$ matrices $B \in G L(N, \mathbb{C})$. Thus, the linear span of $\left\{U^{\otimes n}: U \in U(N)\right\}$ is equal to the linear span of $\left\{B^{\otimes n}: B \in G L(N, \mathbb{C})\right\}$. QED

From the Schur-Weyl duality formula it follows that:

$$
\begin{equation*}
\operatorname{Tr}\left(B^{\otimes n} \cdot \sigma\right)=\sum_{\alpha \in \mathcal{R}} \chi_{\alpha}(\sigma) \chi^{\alpha}(B) \tag{11.31}
\end{equation*}
$$

where, on the left, σ represents the action of $\sigma \in S_{n}$ on $\left(\mathbb{C}^{N}\right)^{\otimes n}$, and $B \in U(N)$, and, on the right, \mathcal{R} is a maximal set of inequivalent representations of S_{n}. For the representation α of S_{n} given by the regular representation restricted on a simple left ideal L_{α} in $\mathbb{C}\left[S_{n}\right], \chi^{\alpha}$ is the character of the representation of $U(N)$ on

$$
\begin{equation*}
y_{\alpha}\left(\mathbb{C}^{N}\right)^{\otimes n} \tag{11.32}
\end{equation*}
$$

where y_{α} is a non-zero idempotent in L_{α}.
Now the simple left ideals in $\mathbb{C}\left[S_{n}\right]$ correspond to

$$
\begin{equation*}
\vec{f}=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{Z}_{\geq 0, \downarrow}^{n} \tag{11.33}
\end{equation*}
$$

(the subscript \downarrow signifying that $f_{1} \geq \ldots \geq f_{n}$) that are partitions of n :

$$
f_{1}+f_{2}+\ldots+f_{n}=n
$$

Recall that associated to this partition we have a Young tableau $T_{\vec{f}}$ of the numbers $1, \ldots, n$ in r rows of boxes:

1	2	\ldots	\ldots	\ldots	\ldots	f_{1}
$1+f_{1}$	\ldots	\ldots	\ldots	\cdots	$f_{2}+f_{1}$	
\ldots	\ldots	\ldots	\ldots			
\ldots	\ldots	\ldots	\ldots			
...	\ldots	n				

If $r<n$ then $f_{j}=0$ for $r<j \leq n$. Associated to $T_{\vec{f}}$ there is the idempotent

$$
\begin{equation*}
y_{\vec{f}}=\sum_{q \in C_{T_{\vec{f}}, p \in R_{T_{\vec{f}}}}}(-1)^{\operatorname{sgn}(q)} q p \tag{11.34}
\end{equation*}
$$

where $C_{T_{\vec{f}}}$ is the subgroup of S_{n} which, acting on the tableau $T_{\vec{f}}$, map the entries of each column into the same column, and $R_{T_{\vec{f}}}$ preserves rows. Let

$$
a_{i j} \in\{1, \ldots, n\}
$$

be the entry in the box in row i column j in the tableau $T_{\vec{f}}$. For example,

$$
a_{23}=f_{1}+3 .
$$

Let e_{1}, \ldots, e_{N} be the standard basis of \mathbb{C}^{N}. Place e_{1} in each of the boxes in the first row, then e_{2} in each of the boxes in the second row, and so on till the r-th row. Let

$$
e^{\otimes \vec{f}}=e_{1}^{\otimes f_{1}} \otimes \ldots \otimes e_{n}^{\otimes f_{n}}
$$

be the tensor product of these vectors (recall that if $r<j \leq n$ then $f_{j}=0$ and the corresponding terms are simply absent from $\left.e^{\otimes \vec{f}}\right)$. Then

$$
y_{\vec{f}} e^{\otimes \vec{f}}
$$

is a positive integral multiple of

$$
\sum_{q \in C_{T_{\vec{f}}}}(-1)^{\operatorname{sgn}(q)} q e^{\otimes \vec{f}}
$$

Let θ be the permutation that rearranges the entries in the tableau such that as one reads the new tableau book-style (row 1 left to right, then row 2 left to right, and so on) the numbers are as in $T_{\vec{f}}$ read down column 1 first, then down column 2 , and so on:

$$
\theta: a_{i j} \mapsto a_{j i}
$$

Then $y_{\vec{f}} e^{\otimes \vec{f}}$ is a non-zero multiple of θ applied to

$$
\otimes_{j \geq 1} \wedge_{i \geq 1} e_{a_{i j}}
$$

In particular,

$$
y_{\bar{f}}\left(\mathbb{C}^{N}\right)^{\otimes n} \neq 0
$$

if the columns in the tableau $T_{\vec{f}}$ have at most N entries each.
Under the action of a diagonal matrix

$$
D(\vec{\lambda}) \in U(N)
$$

with diagonal entries given by

$$
\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

on $\left(\mathbb{C}^{N}\right)^{\otimes n}$, the vector $y_{\vec{f}} e^{\otimes \vec{f}}$ is an eigenvector with eigenvalue

$$
\lambda_{1}^{f_{1}} \ldots \lambda_{N}^{f_{N}}
$$

Clearly, the highest weight for the representation of $U(N)$ on $y_{\vec{f}}\left(\mathbb{C}^{N}\right)^{\otimes n}$ is \vec{f}.
Returning to the Schur-Weyl character duality formula and using in it the character formula for $U(N)$ we have

$$
\begin{equation*}
\operatorname{Tr}\left(D(\vec{\lambda})^{\otimes n} \cdot \sigma\right)=\sum_{\vec{w}} \chi_{\vec{w}}(\sigma) \frac{a_{\left(w_{1}+N-1, \ldots, w_{N-1}+1, w_{N}\right)}(\vec{\lambda})}{a_{(N-1, . ., 1,0)}(\vec{\lambda})} \tag{11.35}
\end{equation*}
$$

where the sum is over all $\vec{w} \in \mathbb{Z}_{>0, \downarrow}^{N}$ satisfying $|\vec{w}|=n$.
Multiplying through in (11.35) by the Vandermonde determinant in the denominator on the right, we have

$$
\begin{equation*}
\operatorname{Tr}\left(D(\vec{\lambda})^{\otimes n} \cdot \sigma\right) a_{(N-1, \ldots, 1,0)}(\vec{\lambda})=\sum_{\substack{\vec{w} \in \mathbb{Z}_{\geq 0, \downarrow}^{N},|\vec{w}|=n}} \chi_{\vec{w}}(\sigma) a_{\left(w_{1}+N-1, \ldots, w_{N-1}+1, w_{N}\right)}(\vec{\lambda}) . \tag{11.36}
\end{equation*}
$$

To obtain the character value $\chi_{\vec{w}}(\sigma)$ view

$$
\begin{equation*}
\operatorname{Tr}\left(D(\vec{\lambda})^{\otimes n} \cdot \sigma\right) a_{(N-1, \ldots, 1,0)}(\vec{\lambda}) \tag{11.37}
\end{equation*}
$$

as a polynomial in $\lambda_{1}, \ldots, \lambda_{N}$. Examining the right side in (11.36), we see that

$$
w_{1}+N-1>w_{2}+N-2>\ldots>w_{N-1}+1>w_{N}
$$

and the coefficient of

$$
\lambda_{1}^{w_{1}+N-1} \ldots \lambda_{N}^{w_{N}}
$$

is precisely $\chi_{\vec{w}}(\sigma)$. This provides a way of reading off the character value $\chi_{\vec{w}}(\sigma)$ as a coefficient in $\operatorname{Tr}\left(D(\vec{\lambda})^{\otimes n} \cdot \sigma\right) a_{(N-1, \ldots, 1,0)}(\vec{\lambda})$, treated as a polynomial in $\lambda_{1}, \ldots, \lambda_{N}$.

We can work out the trace in (11.37) by using the identity 10.28) taking σ to be a product of cycles of lengths l_{1}, \ldots, l_{m}; this leads to

$$
\begin{equation*}
\operatorname{Tr}\left(D(\vec{\lambda})^{\otimes n} \cdot \sigma\right)=\prod_{j=1}^{m}\left(\lambda_{1}^{l_{j}}+\cdots+\lambda_{N}^{l_{j}}\right) \tag{11.38}
\end{equation*}
$$

Back in (11.4) we saw that

$$
a_{(N-1, . ., 1,0)}(\vec{\lambda})=\prod_{1 \leq j<k \leq N}\left(\lambda_{j}-\lambda_{k}\right) .
$$

Thus, for the partition $\vec{w}=\left(w_{1}, \ldots, w_{N}\right)$ of n, the value of the character $\chi_{\vec{w}}$ on a permutation with cycle structure given by the partition $\left(l_{1}, \ldots, l_{m}\right)$ of n is the coefficient of $\lambda_{1}^{w_{1}+N-1} \ldots \lambda_{N}^{w_{N}}$ in

$$
\begin{equation*}
\prod_{j=1}^{m}\left(\lambda_{1}^{l_{j}}+\cdots+\lambda_{N}^{l_{j}}\right) \prod_{1 \leq j<k \leq N}\left(\lambda_{j}-\lambda_{k}\right) \tag{11.39}
\end{equation*}
$$

Even if not explicit, this formula, due to Frobenius, is a wonderful concrete specification of the irreducible characters of the symmetric group.

Exercises

1. Prove that any finite dimensional representation of $U(N)$ is a direct sum of irreducible representations. Conclude that every character of $U(N)$ is a linear combination, with non-negative integer coefficients, of irreducible characters. [Hint: If $\rho: U(N) \rightarrow \operatorname{End}_{\mathbb{C}}(V)$ is a representation, consider $\rho(U(N))$ as a subset of the algebra $\operatorname{End}_{\mathbb{C}}(V)$.]
2. Prove Schur's Lemma for $U(N)$: if $\rho_{j}: U(N) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V_{j}\right)$, for $j \in$ $\{1,2\}$, are irreducible representations of $U(N)$ then the vector space $\operatorname{Hom}_{U(N)}\left(V_{1}, V_{2}\right)$ of all linear maps $T: V_{1} \rightarrow V_{2}$ that satisfy $T \rho_{1}(g)=$ $\rho_{2}(g) T$ for all $g \in U(N)$, is $\{0\}$ if ρ_{1} is not equivalent to ρ_{2}, and is one dimensional if ρ_{1} is equivalent to ρ_{2}. [Hint: As with the case of finite groups, see what irreducibility implies for the kernel and range of any $\left.T \in \operatorname{Hom}_{U(N)}\left(V_{1}, V_{2}\right).\right]$
3. For continuous functions f_{1} and f_{2} on $U(N)$, the convolution $f_{1} * f_{2}$ is defined to be the function on $U(N)$ whose value at any $g \in U(N)$ is given by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(g)=\int_{U(N)} f_{2}(g h) f_{1}\left(h^{-1}\right) d h \tag{11.40}
\end{equation*}
$$

(More honestly, this is $f_{2} * f_{1}$ by standard convention.) Let $\rho_{1}: U(N) \rightarrow$ $\operatorname{End}_{\mathbb{C}}\left(V_{1}\right)$ and $\rho_{2}: U(N) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V_{2}\right)$ be irreducible representations of $U(N)$. Show first that

$$
\chi_{\rho_{1}} * \chi_{\rho_{2}}= \begin{cases}\frac{1}{\operatorname{dim}_{\mathbb{C}} V_{1}} \chi_{\rho_{1}} & \text { if } \rho_{1} \text { and } \rho_{2} \text { are equivalent; } \tag{11.41}\\ 0 & \text { if } \rho_{1} \text { and } \rho_{2} \text { are not equivalent. }\end{cases}
$$

Then deduce the character orthogonality relation

$$
\begin{equation*}
\int_{U(N)} \chi_{\rho_{1}}(g) \chi_{\rho_{2}}\left(g^{-1}\right) d g=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{U(N)}\left(V_{1}, V_{2}\right) \tag{11.42}
\end{equation*}
$$

holding for any finite dimensional representations ρ_{1} and ρ_{2} on spaces V_{1} and V_{2}, respectively. [Hint: Imitate the case of finite groups, replacing the average over the group with the Haar integral.]
4. Show that a representation ρ of $U(N)$ is irreducible if and only if

$$
\int_{U(N)}\left|\chi_{\rho}(U)\right|^{2} d U=1
$$

[Hint: Use Exercise 11.3.]
5. Let V be a finite dimensional vector space over a field \mathbb{F}, and for $A, B \in$ $E=\operatorname{End}_{\mathbb{F}}(V)$ define

$$
(A, B)_{\operatorname{Tr}}=\phi_{A}(B)=\operatorname{Tr}(A B)
$$

(i) Show that the map $\phi_{A}: E \rightarrow E^{\prime}$, where E^{\prime} is the dual of E, is an isomorphism.
(ii) For L any subspace of E, let $L^{\perp}=\cap_{A \in L} \phi_{A}$. Show that $\left(L^{\perp}\right)^{\perp}=L$.
(iii) For any $A, B, T \in E$, with T invertible, show that $\left(A, T B T^{-1}\right)_{\operatorname{Tr}}=$ $\left(T^{-1} A T, B\right)_{T r}$.

Chapter 12

PS: Algebra

This lengthy postscript summarizes definitions, results, and proofs from algebra, some of it used earlier in the book and some providing a broader cultural background. The self-contained account here is strongly steered towards uses we make in representation theory. We have left Galois theory as a field too vast, ein zu weites Feld, for us to explore.

12.1 Groups and Less

A group is a set G along with an operation

$$
G \times G \rightarrow G:(a, b) \mapsto a \cdot b
$$

satisfying the following conditions:
(i) the operation is associative:

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad \text { for all } a, b, c \in G ;
$$

(ii) there is an element $e \in G$, called the identity element, for which

$$
\begin{equation*}
a \cdot e=e \cdot a=a \quad \text { for all } a \in G ; \tag{12.1}
\end{equation*}
$$

(iii) for each element $a \in G$ there is an element $a^{-1} \in G$, called the inverse of a, for which

$$
\begin{equation*}
a \cdot a^{-1}=a^{-1} \cdot a=e \tag{12.2}
\end{equation*}
$$

If $e^{\prime} \in G$ is an element with the same property (12.1) as e then

$$
e^{\prime}=e \cdot e^{\prime}=e^{\prime}
$$

and so the identity element is unique. If $a, a_{L} \in G$ are such that $a_{L} \cdot a$ is e, then

$$
a_{L}=a_{L} \cdot e=a_{L} \cdot\left(a \cdot a^{-1}\right)=\left(a_{L} \cdot a\right) \cdot a^{-1}=e \cdot a^{-1}=a^{-1},
$$

and, similarly, if $a \cdot a_{R}$ is e then a_{R} is equal to a^{-1}. Thus, the inverse of an element is unique.

Usually, we drop the \cdot in the operation and simply write $a b$ for $a \cdot b$:

$$
a b=a \cdot b
$$

If $a b=b a$ we say that a and b commute. The number of elements in G is called the order of G and denoted $|G|$. The order of an element $g \in G$ is $\min \left\{n \geq 1: g^{n}=e\right\}$.

If G_{1} and G_{2} are groups, and $f: G_{1} \rightarrow G_{2}$ a mapping satisfying

$$
\begin{equation*}
f(a b)=f(a) f(b) \quad \text { for all } a, b \in G_{1}, \tag{12.3}
\end{equation*}
$$

then f is a homomorphism of groups. Such a homomorphism carries the identity of G_{1} to the identity of G_{2}, and $f\left(a^{-1}\right)=f(a)^{-1}$ for all $a \in G_{1}$. A homomorphism that is a bijection is an isomorphism. The identity map $G \rightarrow G$, for any group G, is clearly an isomorphism. The composite of homomorphisms is a homomorphism, and the inverse of an isomorphism is an isomorphism.

The symmetric group S_{n} is the set of all bijections $[n] \rightarrow[n]$, under the operation of composition. Every permutation can be decomposed into a product of disjoint cycles. The length of a cycle is its order; for example, the length of (123) is 3, and the length of any transposition $t=(a b)$ is 2. The sum of the lengths of the disjoint cycles whose product is a given permutation s is the length $l(s)$ of s. Multiplying a permutation s by a transposition $t=(a b)$ either splits a cycle into a product of two disjoint cycles or combines two disjoint cycles into one; in either case

$$
\begin{equation*}
l(s t)=l(s) \pm 1 \tag{12.4}
\end{equation*}
$$

The signature map

$$
\begin{equation*}
\epsilon: S_{n} \rightarrow\{+1,-1\}: s \mapsto \epsilon(s) \stackrel{\text { def }}{=}(-1)^{l(s)} \tag{12.5}
\end{equation*}
$$

is then a homomorphism, viewing $\{+1,-1\}$ as a group under multiplication.
A subgroup of a group G is a nonempty subset H for which $a b \in H$ and $a^{-1} \in H$ for all $a, b \in H$; this means that H is a group when the group operation of G is restricted to H. A left coset of H in G is a subset of the form $x H=\{x h: h \in H\}$ for some $x \in G$. The set of all left cosets form the quotient G / H :

$$
\begin{equation*}
G / H=\{x H: x \in G\} . \tag{12.6}
\end{equation*}
$$

The fact that H is a subgroup ensures that distinct cosets are disjoint, and this implies

$$
\begin{equation*}
|H| \text { is a divisor of }|G|, \tag{12.7}
\end{equation*}
$$

an observation Lagrange made (for the symmetric groups S_{n}). A subgroup H of G is normal if $g H=H g$ for all $g \in G$; for a normal subgroup H, there is a natural operation on G / H given by

$$
\begin{equation*}
(a H)(b H)=(a b) H \quad \text { for all } a, b \in G \tag{12.8}
\end{equation*}
$$

which is well-defined and makes G / H also a group. In this case the natural projection map $G \rightarrow G / H: g \mapsto g H$ is a homomorphism.

The subset of even permutations in S_{n} is a subgroup, called the alternating group and denoted A_{n}.

Elements a, b in a group are conjugate if $b=g a g^{-1}$ for some $g \in G$. Conjugacy is an equivalence relation and partitions G into a union of disjoint conjugacy classes. The conjugacy class of a is the set $\left\{{g a g^{-1}}^{\prime} g \in G\right\}$.

The center Z_{G} of a group G is the set of all elements $c \in G$ that commute with all elements of G :

$$
\begin{equation*}
Z_{G}=\{c \in G: c g=g c \quad \text { for all } g \in G\} . \tag{12.9}
\end{equation*}
$$

An action of a group G on a nonempty set S is a mapping

$$
G \times S \rightarrow S:(g, s) \mapsto g s
$$

such that es $=s$ for all $s \in S$, where e is the identity element of G, and

$$
(g h) s=g(h s) \quad \text { for all } g, h \in G \text { and all } s \in S
$$

The set $G s=\{g s: g \in G\}$ is called the orbit of $s \in S$, and

$$
\begin{equation*}
\operatorname{Stab}(s)=\{g \in G: g s=s\} \tag{12.10}
\end{equation*}
$$

is a subgroup of G called the stabilizer or isotropy subgroup for $s \in S$. The map

$$
G \rightarrow G s: g \mapsto g s
$$

is surjective and the pre-image of any $g s$ is the subgroup $g \operatorname{Stab}(s) g^{-1}$ whose cardinality is

$$
|G| /|\operatorname{Stab}(s)|
$$

if G is finite. Since S is the union of all the distinct (and disjoint) orbits, we have

$$
\begin{equation*}
|S|=\sum_{j=1}^{m} \frac{|G|}{\left|\operatorname{Stab}\left(s_{j}\right)\right|} \tag{12.11}
\end{equation*}
$$

where $s_{1}, \ldots, s_{m} \in S$ are such that $G s_{1}, \ldots, G s_{m}$ are all the distinct orbits. As a typical application of this formula, suppose $|G|=p^{n}$, where p is prime and n is a positive integer, and $|S|$ is divisible by p; then 12.11) implies that the number of j for which $G s_{j}=\left\{s_{j}\right\}$ is divisible by p and hence greater than 1 if positive. The solution of Exercise $4 \sqrt{14}$ uses this.

If $f: G_{1} \rightarrow G_{2}$ is a homomorphism then the kernel

$$
\begin{equation*}
\operatorname{ker} f=\left\{g \in G_{1}: f(g)=e_{2}\right\} \tag{12.12}
\end{equation*}
$$

where e_{2} is the identity in G_{2}, is a subgroup of G_{1}; moreover, the image $\operatorname{Im}(f)=f\left(G_{1}\right)$ is a subgroup of G_{2}. Writing K for $\operatorname{ker} f$, there is a welldefined induced mapping

$$
\begin{equation*}
\bar{f}: G_{1} / K \rightarrow G_{2}: g K \mapsto f(g) \tag{12.13}
\end{equation*}
$$

which is an injective homomorphism.
A group A is abelian or commutative if

$$
a b=b a \quad \text { for all } a, b \in A .
$$

For many abelian groups, the group operation is written additively:

$$
G \times G \rightarrow G:(a, b) \mapsto a+b,
$$

the identity element denoted 0 , and the inverse of a then denoted $-a$.
A group C is cyclic if there is an element $c \in C$ such that C consists precisely of all the powers c^{n} with n running over \mathbb{Z}. Such an element c is called a generator of C.

A semigroup is a non-empty set T with a binary operation $T \times T \rightarrow T$: $(a, b) \mapsto a b$ which is associative. A monoid is a semigroup with an identity element; as with groups, this element is necessarily unique.

If S is a nonempty set, and $n \in\{0,1,2, \ldots\}$, we have the set $S^{n}=S^{\{1, \ldots, n\}}$ of all maps $\{1, \ldots, n\} \rightarrow S$, where S^{0} is taken to be the one-element set $1=\{\emptyset\}$. Display an element $x \in S^{n}$, for now, as a string $x_{1} \ldots x_{n}$, where $x_{j}=x(j)$ for each j. Then let

$$
\langle S\rangle=\cup_{n \geq 0} S^{n}
$$

and define the product of $x, y \in\langle S\rangle$ to be

$$
x y=x_{1} \ldots x_{n} y_{1} \ldots y_{m}
$$

if $x \in S^{n}$ and $y \in S^{m}$. This makes $\langle S\rangle$ a semigroup, with $1 \in S^{0}$ as identity element. This is the free monoid over the set S. If $S=\emptyset$ we take $\langle S\rangle$ to be the one-element group $\{1\}$.

12.2 Rings and More

A $\operatorname{ring} A$ is a set with two operations

$$
\begin{aligned}
\text { addition : } A \times A \rightarrow A:(a, b) \mapsto a+b \\
\text { multiplication }: A \times A \rightarrow R:(a, b) \mapsto a b,
\end{aligned}
$$

such that addition makes A an abelian group, multiplication is associative, multiplication distributes over addition:

$$
\begin{align*}
a(b+c) & =a b+a c \\
(b+c) a & =b a+c a \tag{12.14}
\end{align*}
$$

and A contains a multiplicative identity element 1_{A} (or, simply, 1). Since not everyone requires a ring to have 1 , we will often restate the existence of 1 explicitly when discussing a ring.

If A is a ring then on the set A we can define addition as for A but reverse multiplication to

$$
a \circ_{\mathrm{opp}} b=b a,
$$

for all $a, b \in A$. These operations make the set A again a ring, called the opposite ring of A and denoted A^{opp}.

The set \mathbb{Z} of all integers, with usual addition and multiplication, is a ring.
A division ring is a ring in which $1 \neq 0$ and every nonzero element has a multiplicative inverse. A field is a division ring in which multiplication is commutative.

A left ideal L in a ring A is a non-empty subset of A for which

$$
a l \in L \text { for all } a \in A \text { and } x \in L
$$

A right ideal J is a nonempty subset of A for which $x a \in J$ for all $x \in J$ and $a \in A$. A subset of A is a two sided ideal if it is both a left ideal and a right ideal.

A left (or right) ideal in A is principal if it is of the form $A c$ (or $c A$) for some $c \in A$. Note that $A x \subset A y$ is equivalent to y being a right divisor of x in the sense that $x=a y$ for some $a \in A$.

In \mathbb{Z} every ideal is principal and has a unique non-negative generator. Proof: If I is a nonzero ideal in \mathbb{Z}, choose $m \in I$ for which $|m|$ is least; then for any $a \in I$, dividing by m produces a quotient $q \in \mathbb{Z}$ and a remainder $r \in\{0, \ldots,|m|-1\}$, and then $a-q m=r$ is a non-negative element of I which is $<|m|$ and is therefore 0 , and so $a=q m \in m \mathbb{Z}$; thus $I \subset m \mathbb{Z} \subset I$ and so $I=m \mathbb{Z}$. If m and m_{1} both generate I then each is a divisor of the other and so $m= \pm m_{1}$, and nonnegativity picks out a unique generator.

If A is a ring, and I a two sided ideal in A, then the quotient

$$
\begin{equation*}
A / I \stackrel{\text { def }}{=}\{x+I: x \in A\} \tag{12.15}
\end{equation*}
$$

is a ring under the operations

$$
(x+I)+(y+I)=(x+y)+I, \quad(x+I)(y+I)=x y+I
$$

The multiplicative identity in A / I is $1+A$ (which is 0 if and only if $I=A$).
If S is a subset of a ring A then the set of all finite sums of elements of the form $x s y$, with x, y running over A, is a two sided ideal; clearly, it is the smallest two sided ideal of A containing S as a subset, and is called the two sided ideal generated by S.

If $a \in A$ and $m \in\{1,2,3, .$.$\} the sum of m$ copies of a is denoted $m a$; more officially, define inductively:

$$
1 a=a \text { and }(m+1) a=m a+a .
$$

Further, setting

$$
0 a=0,
$$

wherein 0 on the left is the integer 0 , and for $m \in\{1,2, .$.$\} , setting$

$$
(-m) a=m(-a),
$$

gives a map

$$
\mathbb{Z} \times A \rightarrow A:(n, a) \mapsto n a
$$

that is additive in n and in a, and also satisfies

$$
m(n a)=(m n) a \quad \text { for all } m, n \in \mathbb{Z} \text { and } a \in A
$$

The non-negative generator of the ideal $I_{A}=\{m \in \mathbb{Z}: m A=0\}$ in \mathbb{Z} is the characteristic of A. The term is generally used only when A is a field. Suppose $1 \neq 0$ in A and also that whenever $a b=0$, with $a, b \in A$, a or b is 0 ; then the characteristic p of A is either 0 or prime. Proof: If m and n are integers such that $m n$ is divisible by p then $m n \in I_{A}$, that is $m n 1_{A}=0$, and so $m 1_{A} n 1_{A}=0$, which then implies $m \in I_{A}$ or $n \in I_{A}$ so that m or n is divisible by p.

Theorem 12.2.1 Let A be a ring, p any positive integer, and C the two sided ideal generated by the set of elements of the form $a b-b a$ with a, b running over A. Then the map $\phi_{p}: x \mapsto x^{p}$ maps C into itself. Assume now that p is prime and $p a=0$ for all $a \in A$. Then

$$
\begin{equation*}
\bar{\phi}_{p}: A / C \rightarrow A / C: x+C \mapsto \phi_{p}(x)+C \tag{12.16}
\end{equation*}
$$

is a well-defined map and is a homomorphism of rings. Equivalently,

$$
\begin{gather*}
\phi_{p}(x+y)-\phi_{p}(x)-\phi_{p}(y) \in C \\
\phi_{p}(x y)-\phi_{p}(x) \phi_{p}(y) \in C \tag{12.17}
\end{gather*}
$$

for all $x, y \in A$.
The map ϕ_{p} is called the Frobenius map [30].
Proof. Observe that, for any $x_{j}, y_{j}, a_{j}, b_{j} \in A$ for $j \in[n]$ with n any positive integer,

$$
\left(\sum_{j=1}^{n} x_{j}\left(a_{j} b_{j}-b_{j} a_{j}\right) y_{j}\right)^{p}
$$

is a sum of n terms each of the form $x(a b-b a) y$ for some $x, a, b \in A$. This means ϕ_{p} maps C into itself. The definition of C implies that $a b c d-a c b d \in C$
for all $a, b, c, d \in A$. Then, by the binomial theorem, for any $x, y \in A$, and any positive integer q, we have

$$
(x+y)^{q}-\sum_{j=0}^{q}\binom{q}{j} x^{j} y^{q-j} \in C .
$$

If p is prime then $\binom{p}{j}=p!/[j!(p-j)!]$ is divisible by p when $j \in\{1, \ldots, p-1\}$, because the denominator $j!(p-j)$! contains no factor p whereas the numerator $p!$ does. Thus, if $p A=0$ then all terms in $\sum_{j=0}^{p}\binom{p}{j} x^{j} y^{p-j}$ are 0 except the terms for $j \in\{0, p\}$; so

$$
\begin{equation*}
(x+y)^{p}-x^{p}-y^{p} \in C . \tag{12.18}
\end{equation*}
$$

In particular,

$$
(x-y)^{p}-\left(x^{p}-y^{p}\right) \in C,
$$

for all $x, y \in A$, which is clear from (12.18) if p is odd, while if $p=2$ then $-a=a$ for all $a \in A$ and so again we are back to (12.18). Thus, if $x+C=y+C$, which means $x-y \in C$, then

$$
\phi_{p}(x)-\phi_{p}(y) \in \phi_{p}(x-y)+C \subset C .
$$

Hence, the mapping $\bar{\phi}_{p}: A / C \rightarrow A / C$ in 12.16) is well-defined. From 12.18) it follows that $\bar{\phi}_{p}$ preserves addition. Next, $(x y)^{p}-x^{p} y^{p} \in C$ because, as noted above, every time we commute two elements in A their difference is in C. Hence, $\bar{\phi}_{p}$ also preserves multiplication. Lastly, $\bar{\phi}_{p}$ maps 1 to 1 , because so does ϕ_{p}. QED

Suppose A_{1} and A_{2} are rings, and $f: A_{1} \rightarrow A_{2}$ a mapping for which

$$
\begin{align*}
f(a+b) & =f(a)+f(b) \tag{12.19}\\
f(a b) & =f(a) f(b)
\end{align*}
$$

for all $a, b \in A_{1}$, and f maps the multiplicative identity in A_{1} to that in A_{2}. Then we say that f is a homomorphism, or simply morphism, of rings. A morphism that is a bijection is an isomorphism. The identity map $A \rightarrow A$, for any ring A, is clearly an isomorphism. The composite of morphisms is a morphism, and the inverse of an isomorphism is an isomorphism.

A subring of a ring A is a non-empty subset B for which $x+y \in B$ and $x y \in B$ for all $x, y \in B$, and B contains a multiplicative identity; this means
that B is a ring when the ring operations of A are restricted to B. Note that 1_{A} might not be in B, in which case, of course, $1_{B} \neq 1_{A}$. The terminology here is a bit awkward.

If $f: A_{1} \rightarrow A_{2}$ preserves addition and multiplication then the kernel

$$
\operatorname{ker} f=f^{-1}(0)
$$

is a two sided ideal in A_{1}. The image $\operatorname{Im}(f)=f\left(A_{1}\right)$ is a subring of A_{2}. Writing J for ker f, there is a well-defined induced mapping

$$
\begin{equation*}
\bar{f}: A_{1} / J \rightarrow A_{2}: a+J \mapsto f(a) \tag{12.20}
\end{equation*}
$$

that is injective, preserves addition and multiplication, and is a morphism if f is a morphism of rings.

Now let A_{i} be a ring for each i in a non-empty set \mathcal{I}. Consider the product set

$$
P=\prod_{i \in \mathcal{I}} A_{i},
$$

which is the set of all maps $x: \mathcal{I} \rightarrow \cup_{i \in \mathcal{I}} A_{i}: i \mapsto x_{i}$ for which $x_{i} \in A_{i}$ for all $i \in \mathcal{I}$. We call x_{i} the i-th component of x. On P define addition and multiplication componentwise:

$$
\begin{align*}
& (x+y)_{i}=x_{i}+y_{i} \tag{12.21}\\
& \quad(x y)_{i}=x_{i} y_{i}
\end{align*}
$$

for all $i \in \mathcal{I}$. This makes P a ring, called the product of the family of rings A_{i}. For each i, the projection map $P \rightarrow A_{i}: x \mapsto x_{i}$ is a morphism of rings.

For each $i \in \mathcal{I}$ we have an injective mapping $j_{i}: A_{i} \rightarrow P$ where, for any $a \in A_{i}$, the element $j_{i}(a)$ has i-th component equal to a and all other components are 0 . Note that j_{i} preserves addition and multiplication, but doesn't generally carry 1 to 1 . Identifying A_{i} with $j_{i}\left(A_{i}\right)$ we can view A_{i} as a subring of of R.

If A is a ring and m and n positive integers, an $m \times n$ matrix M with entries in A is a mapping

$$
M:[m] \times[n] \rightarrow A:(i, j) \mapsto M_{i j} .
$$

This is best displayed as

$$
\left[M_{i j}\right]=\left[\begin{array}{cccc}
M_{11} & M_{12} & \ldots & M_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
M_{m 1} & M_{m 2} & \ldots & M_{m n}
\end{array}\right]
$$

The value $M_{i j}$ is the (i, j)-th entry of M, and is a diagonal entry of $i=j$. The transpose M^{t}, or M^{tr}, is the $n \times m$ matrix with entries specified by

$$
\left(M^{\operatorname{tr}}\right)_{i j}=\left(M^{t}\right)_{i j}=M_{j i}
$$

for all $i \in[n], j \in[m]$. The sum of $m \times n$ matrices M and N is defined pointwise

$$
(M+N)_{i j}=M_{i j}+N_{i j} \quad \text { for all } i \in[m], j \in[n] .
$$

If M is an $m \times n$ matrix and N an $n \times r$ matrix then $M N$ is the $m \times r$ matrix with entries specified by

$$
\begin{equation*}
(M N)_{i j}=\sum_{k=1}^{n} M_{i k} N_{k j} \tag{12.22}
\end{equation*}
$$

for all $i \in[m]$ and $j \in[r]$. The set of all $m \times m$ matrices is a ring, denoted $\operatorname{Matr}_{m \times m}(A)$, under this multiplication, with the multiplicative identity being the matrix I whose diagonal entries are all 1 and all other entries are 0.

A commutative ring is a ring in which multiplication is commutative.
An element a in a commutative ring R is a divisor of $b \in R$ if $b=a c$, for some $c \in R$. A divisor of 1 is called a unit.

An ideal I in a commutative ring R is a prime ideal if it is not R and has the property that if $a, b \in R$ have their product $a b$ in I then a or b is in I. In the ring \mathbb{Z} a nonzero ideal is prime if and only if it consists of all multiples of some prime number.

An ideal I in a commutative ring R is maximal if $I \neq R$ and if J is any ideal containing I then either $J=R$ or $J=I$. Applying Zorn's Lemma to increasing chains of ideals not containing 1 shows that every commutative ring with $1 \neq 0$ has a maximal ideal. (In the annoying distraction $R=\{0\}$ there is, of course, no maximal ideal.)

Every maximal ideal in a commutative ring with 1 is prime. Proof: If $x, y \in R$ have product $x y$ lying in a maximal ideal M, and $y \notin M$ then $M+R y$, being an ideal properly containing M, is all of R and hence contains 1 which is then of the form $m+r y$; multiplying by x shows that $x=x m+r x y$, which is in the ideal M.

A commutative ring R with multiplicative identity $1 \neq 0$ is an integral domain if whenever $a b=0$ for some $a, b \in R$ at least one of a and b is 0 .

Thus, an ideal I in a commutative ring R with 1 is prime if and only if $R \neq I$ and R / I is an integral domain. The most basic example of an integral domain is \mathbb{Z}.

A narrower generalization of \mathbb{Z} is the notion of a principal ideal domain: this is an integral domain in which every ideal is principal.

In a principal ideal domain every nonzero prime ideal is maximal. Proof: Suppose $p R \neq 0$ is prime and $c R$ is an ideal properly containing $p R$; then $p=a c$ for some $a \in R$ and so $a \in p R$ or $c \in p R$; proper containment rules out $c \in p R$, and we have $a=p u$ for some $u \in R$. Then $p=p c u$ and then, since $p \neq 0$ and R is an integral domain we conclude that $c u=1$ which implies $1 \in c R$ and hence $c R=R$. Hence $p R$ is maximal.

The argument above also shows that a generating element p of a nonzero prime ideal in a principal ideal domain is irreducible: p is not a unit and its only divisors are units and multiples of itself by units. In a principal ideal domain R an element p is irreducible if and only if it is prime, the sense that $p \neq 0$ and if p is a divisor of $a b$, for some $a, b \in R$, then p is a divisor of a or of b.

The essential idea of the following result on greatest common divisors goes back to Euclid's Elements:

Theorem 12.2.2 If $a_{1}, \ldots, a_{n} \in R$, where R is a principal ideal domain, then there is a $c \in R$ of the form $c=a_{1} b_{1}+\cdots+a_{n} b_{n}$, with $b_{1}, \ldots, b_{n} \in R$, such that $d \in R$ is a common divisor of a_{1}, \ldots, a_{n} if and only if it is a divisor of c. If a_{1}, \ldots, a_{n} are coprime in the sense that their only common divisors are the units in R, then $a_{1} d_{1}+\cdots+a_{n} d_{n}=1$ for some $d_{1}, \ldots, d_{n} \in R$.
Proof. Let c be a generator of the ideal $\sum_{i=1}^{n} R a_{i}$, hence of the form $\sum_{i=1}^{n} a_{i} b_{i}$ for some $b_{i} \in R$. Now $d \in R$ is a common divisor of the a_{i} if and only if $a_{1}, \ldots, a_{n} \in R d$, and this holds if and only if $R c \subset R d$, which is equivalent to d being a divisor of c. If a_{1}, \ldots, a_{n} are coprime then c, being a common divisor, is a unit; multiplying $c=\sum_{i} a_{i} b_{i}$ by an inverse of c produces $1=\sum_{i} a_{i} d_{i}$ for some $d_{i} \in R$. QED

Returning to general rings, here is a useful little stepping stone:
Proposition 12.2.1 Let A_{1}, \ldots, A_{n} be two sided ideals in a ring A, with $n \geq$ 2 , such that $A_{i}+A_{j}=A$ for all pairs i, j with $i \neq j$. Let B_{k} be the intersection of the A_{i} 's except for $i=k$:

$$
B_{k}=\underbrace{A_{1} \cap \ldots \cap A_{n}}_{\text {drop k-th term }}=\cap_{m \in[n]-\{k\}} A_{m}, \quad \text { for all } i \in[n] \text {, }
$$

with $[n]$ being $\{1, \ldots, n\}$. Then

$$
\begin{equation*}
A_{k}+B_{k}=A \quad \text { for all } k \in[n] \tag{12.23}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}+\cdots+B_{n}=A \tag{12.24}
\end{equation*}
$$

Proof. Fix any $k \in[n]$, and, for $j \neq k$, pick $a_{j} \in A_{j}$ and $a_{j}^{\prime} \in A_{k}$, such that $1=a_{j}+a_{j}^{\prime}$. Then

$$
1=\underbrace{\left(a_{1}+a_{1}^{\prime}\right) \ldots\left(a_{n}+a_{n}^{\prime}\right)}_{\text {dropk-th term }}=\text { terms involving } a_{j}^{\prime}+\underbrace{a_{1} \ldots a_{n}}_{\text {drop k-th term }} \in A_{k}+B_{k},
$$

because each A_{j} is a two sided ideal. Hence $A_{k}+B_{k}=A$. We prove (12.24) inductively. It is clearly true when n is 2 . Assuming its validity for smaller values of $n>2$, let B_{i}^{\prime} be defined as B_{i} except for the collection A_{1}, \ldots, A_{n-1}. Then

$$
B_{1}^{\prime}+\cdots+B_{n-1}^{\prime}=A,
$$

Picking $b_{i}^{\prime} \in B_{i}^{\prime}$ summing up to 1 , and $a_{n} \in A_{n}, b_{n} \in B_{n}$ adding to 1 , we have

$$
\begin{align*}
1 & =\left(b_{1}^{\prime}+\cdots+b_{n-1}^{\prime}\right)\left(a_{n}+b_{n}\right) \\
& =\underbrace{b_{1}^{\prime} a_{n}}_{\in B_{1}}+\cdots+\underbrace{b_{n-1}^{\prime} a_{n}}_{\in B_{n}}+\underbrace{1 \cdot b_{n}}_{\in B_{n}}, \tag{12.25}
\end{align*}
$$

which is just 12.24 . QED
This brings us to the ever-useful Chinese Remainder Theorem :

Theorem 12.2.3 Suppose A_{1}, \ldots, A_{n} are two sided ideals in a ring A, such that $A_{j}+A_{k}=A$ for every $j, k \in[n]=\{1, \ldots, n\}$ with $j \neq k$, and let $C=A_{1} \cap \ldots \cap A_{n}$. Then, for any $y_{1}, \ldots, y_{n} \in A$ there exists an element $y \in A$ such that $y \in y_{j}+A_{j}$ for all $j \in[n]$. More precisely, the mapping

$$
\begin{equation*}
f: A / C \rightarrow \prod_{j=1}^{n} A / A_{j}: a+C \mapsto\left(a+A_{j}\right)_{j \in[m]} \tag{12.26}
\end{equation*}
$$

is a well-defined isomorphism of rings.

For variations on this using only the lattice structure of sets of ideals in A, see Exercise 5,19,
Proof. The map f is well-defined and injective since $a+C=b+C$ is equivalent to $a-b \in C \subset A_{j}$, for each j, and this is equivalent to $a+A_{j}=$ $b+A_{j}$ for all $j \in[n]$. Clearly f preserves addition and multiplication, and maps 1 to 1 . Surjectivity will be proved by induction. To start off the induction, take $n=2$; since $y_{1}-y_{2} \in A=A_{1}+A_{2}$, we have $y_{1}-y_{2}=b_{1}-b_{2}$, for some $b_{1} \in A_{1}$ and $b_{2} \in A_{2}$, and so $y=y_{1}-b_{1}=y_{2}-b_{2}$ satisfies $y+A_{1}=y_{1}+A_{1}$ and $y+A_{2}=y_{2}+A_{2}$. Next, assuming $n>2$, let $B=A_{1} \cap \ldots \cap A_{n-1}$. By Proposition 12.2.1, $A_{n}+B=A$. Let $y_{1}, \ldots, y_{n} \in A$; inductively we can assume that there exists $x \in A$ such that

$$
\begin{equation*}
x+A_{j}=y_{j}+A_{j} \tag{12.27}
\end{equation*}
$$

for all $j \in[n-1]$. Then by the case of two ideals, it follows that there exists $y \in A$ such that $y+A_{n}=y_{n}+A_{n}$ and $y+B=x+B$, with the latter being equivalent to $y+A_{j}=x+A_{j}$ for all $j \in[n-1]$. Together with (12.27), this shows that there exists $y \in A$ for which $f(y)=\left(y_{1}+A_{1}, \ldots, y_{n}+A_{n}\right)$ QED

12.3 Fields

Recall that a field is a ring, with $1 \neq 0$, in which multiplication is commutative and every nonzero element has a multiplicative inverse. Thus, in a field, the nonzero elements form a group under multiplication.

Suppose R is a commutative ring with a multiplicative identity element $1 \neq 0$; then an ideal M in R is maximal if and only if the quotient $\operatorname{ring} R / M$ is a field. Proof: Suppose M is maximal; if $x \in R \backslash M$ then $M+R x$, being an ideal containing M, is all of R, which implies that $1=m+y x$, for some $y \in R$, and so $(y+M)(x+M)=1+M$, thus producing a multiplicative inverse for $x+M$ in R / M. Conversely, if R / M is a field then, first $M \neq R$, and if $x \in J \backslash M$, where J is an ideal containing M, then there is $y \in R$ with $x y \in 1+M$ and so $1=x y-m$ for some $m \in M$, which implies $1 \in J$ and so $J=R$.

Applying the construction above to the ring \mathbb{Z}, and a prime number p, produces the finite field

$$
\begin{equation*}
\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z} \tag{12.28}
\end{equation*}
$$

Let R be an integral domain and $S=R-\{0\}$. On the set $S \times R$ define the relation \simeq by $\left(s_{1}, r_{1}\right) \simeq\left(s_{2}, r_{2}\right)$ if and only if $s_{2} r_{1}=s_{1} r_{2}$. You check
easily that this is an equivalence relation. The set of equivalence classes is denoted $S^{-1} R$ and the image of (s, r) in $S^{-1} R$ denoted by r / s. Then $S^{-1} R$ is a ring with operations

$$
r_{1} / s_{1}+r_{2} / s_{2}=\left(r_{1} s_{2}+r_{2} s_{1}\right) /\left(s_{1} s_{2}\right), \quad\left(r_{1} / s_{1}\right)\left(r_{2} / s_{2}\right)=r_{1} r_{2} /\left(s_{1} s_{2}\right)
$$

with $0 / 1$ as zero element, and $1=1 / 1$ as multiplicative identity, which is $\neq 0$. Inside $S^{-1} R$ we have a copy of R sitting in through the elements $a / 1$. A crucial fact is that each element s of S is a unit element in $S^{-1} R$, because $s / 1$ clearly has $1 / s$ has multiplicative inverse. Elements r / s are called fractions and $S^{-1} R$ is the ring of fractions of R.

Suppose \mathbb{F}_{1} is a field, and $\mathbb{F} \subset \mathbb{F}_{1}$ is a subset that is a field under the operations inherited from \mathbb{F}_{1}. Then \mathbb{F}_{1} is called an extension of \mathbb{F}.

12.4 Modules over Rings

In this section A is a ring with a multiplicative identity element 1_{A}. A left A-module M is a set M that is an abelian group under an addition operation + , and there is an operation of scalar multiplication

$$
A \times M \rightarrow M:(a, v) \mapsto a v
$$

for which the following hold:

$$
\begin{aligned}
(a+b) v & =a v+b v \\
a(v+w) & =a v+a w \\
a(b v) & =(a b) v \\
1_{A} v & =v
\end{aligned}
$$

for all $v, w \in M$, and $a, b \in A$. Note that $0=0+0$ in A implies, on multiplying with v,

$$
0 v=0 \quad \text { for all } v \in M
$$

where 0 on the left is the zero in A, and 0 on the right is 0 in M.
A right A-module is defined analogously, except that the multiplication by scalars is on the right:

$$
M \times A \rightarrow M:(v, a) \mapsto v a
$$

and so the 'associative law' reads

$$
(v a) b=v(a b)
$$

By leftist bias, the party line rule is that an A-module means a left A-module.
A vector space over a division ring is a module over the division ring.
Any abelian group A is automatically a \mathbb{Z}-module, using the multiplication

$$
\mathbb{Z} \times A \rightarrow A:(n, a) \mapsto n a .
$$

If M and N are A-modules, a map $f: M \rightarrow N$ is linear if

$$
\begin{align*}
f(v+w) & =f(v)+f(w) \tag{12.29}\\
f(a v) & =a f(v)
\end{align*}
$$

for all $v, w \in M$ and all $a \in A$. The set of all linear maps $M \rightarrow N$ is denoted

$$
\operatorname{Hom}_{A}(M, N)
$$

and is an abelian group under addition. When $M=N$ we use the notation

$$
\operatorname{End}_{A}(M),
$$

for $\operatorname{Hom}_{A}(M, M)$, and the elements of $\operatorname{End}_{A}(M)$ are endomorphisms of M. If M and N are modules over a commutative ring R, then $\operatorname{Hom}_{R}(M, N)$ is an R-module, with multiplication of an element $f \in \operatorname{Hom}_{R}(M, N)$ by a scalar $r \in R$ defined to be the map

$$
r f: M \rightarrow N: v \mapsto r f(v) .
$$

Note that $r f$ is linear only on using the commutativity of R.
The ring $\operatorname{Matr}_{m \times n}(A)$ of $m \times n$ matrices over the ring A is both a left A-module and a right A-module under the natural multiplications:

$$
\begin{equation*}
a\left[M_{i j}\right]=\left[a M_{i j}\right] \quad \text { and } \quad\left[M_{i j}\right] a=\left[M_{i j} a\right] . \tag{12.30}
\end{equation*}
$$

A subset $N \subset M$ of an A-module M is a submodule of M if it is a module under the restrictions of addition and scalar multiplication, or, equivalently, if $N+N \subset N$ and $A N \subset N$. In this case, the quotient

$$
M / N=\{v+N: v \in M\}
$$

is an A-module with the natural operations

$$
(v+N)+(w+N) \stackrel{\text { def }}{=}(v+w)+N, \quad \text { and } \quad a(v+N) \stackrel{\text { def }}{=} a v+N
$$

for all $v, w \in M$ and $a \in A$. Thus, it is the unique A-module structure on M / N that makes the quotient map

$$
M \rightarrow M / N: v \mapsto v+N
$$

linear.
Let I be a nonempty set and for each $i \in I$, suppose we have a set M_{i}. Let $U=\cup_{i \in I} M_{i}$; then there is the Cartesian product set

$$
\begin{equation*}
\prod_{i \in I} M_{i} \stackrel{\text { def }}{=}\left\{m \in U^{I}: m(i) \in M_{i}, \quad \text { for every } i \in I\right\} \tag{12.31}
\end{equation*}
$$

and a projection map

$$
\begin{equation*}
\pi_{k}: \prod_{i \in I} M_{i} \rightarrow M_{k}: m \mapsto m_{k}=m(k) \tag{12.32}
\end{equation*}
$$

for each $k \in I$. For $m \in \prod_{i \in I} M_{i}$, the element $\pi_{k}(m)$ is the k-th component of m. If each M_{i} is an A-module then the product $\prod_{i \in I} M_{i}$ is an A-module in a natural way which makes each π_{i} an A-linear map. This module, along with these canonical projection maps, is called the product of the family of modules $\left\{M_{i}\right\}_{i \in I}$. Inside it consider the subset $\oplus_{i \in I} M_{i}$ consisting of all m for which $\left\{i \in I: \pi_{i}(m) \neq 0\right\}$ is a finite set. For each $k \in I$ and any $x \in M_{k}$, there is a unique element $\iota_{k}(x) \in \oplus_{i \in I} M_{i}$ for which the k-th component is x and all other components are 0 . Then $\oplus_{i \in I} M_{i}$ is a submodule of $\prod_{i \in I} M_{i}$, and, along with the A-linear canonical injections

$$
\begin{equation*}
\iota_{k}: M_{k} \rightarrow \oplus_{i \in I} M_{i} \tag{12.33}
\end{equation*}
$$

is called the direct sum of the family of modules $\left\{M_{i}\right\}_{i \in I}$. For the moment let us write M for the direct sum $\sum_{i \in I} M_{i}$. The linear maps

$$
\begin{equation*}
p_{k}=\iota_{k} \circ \pi_{k} \mid \oplus_{i \in I} M_{i}: M \rightarrow M \tag{12.34}
\end{equation*}
$$

are projections onto the subspaces $\iota_{k}\left(M_{k}\right)$ of M and are orthogonal idempotents:

$$
\begin{align*}
& p_{i}^{2}=p_{i} \quad p_{i} p_{k}=0 \quad \text { if } i, k \in I \text { and } i \neq k \\
& \sum_{i \in I} p_{i}(x)=x \quad \text { for all } x \in M, \tag{12.35}
\end{align*}
$$

on observing that in the sum above, only finitely many $p_{i}(x)$ are nonzero. Conversely, if M is an A-module and $\left\{p_{i}\right\}_{i \in I}$ is any family of elements in $\operatorname{End}_{A}(M)$ satisfying (12.35) then M is isomorphic to the direct sum of the subspaces $p_{i}(M)$ via the addition map

$$
\bigoplus_{i \in I} p_{i}(M) \rightarrow M: x \mapsto \sum_{i \in I} p_{i}(x) .
$$

The following Chinese Remainder flavored result will be useful later in establishing the uniqueness of the Jordan decomposition:

Proposition 12.4.1 Let A_{1}, \ldots, A_{n} be two sided ideals in a ring A, such that $A_{j}+A_{k}=A$ for all pairs $j \neq k$. Suppose E is an A-module, such that $C E=0$, where $C=A_{1} \cap \ldots \cap A_{n}$. Then E is the direct sum of the submodules $E_{j}=\left\{v \in E: A_{j} v=0\right\}$. Moreover, if $c_{1}, \ldots, c_{n} \in A$ then there exists $s \in A$ such that $s v=c_{j} v$ for all $v \in E_{j}$ and $j \in[n]$.

Proof. Let B_{i} be the intersection of all A_{j} except for $j=i$. Then by Proposition 12.2 .1 there exist $b_{1} \in B_{1}, \ldots, b_{n} \in B_{n}$, for which $b_{1}+\cdots+b_{n}=1$. So then for any $v \in E$,

$$
v=b_{1} v+\cdots+b_{n} v
$$

and $A_{j} b_{j} v \subset C v=0$, because $A_{j} b_{j} \subset A_{j} \cap B_{j}=C$, and so each $b_{j} v$ lies in E_{j}. Next, suppose

$$
\begin{equation*}
w_{1}+\cdots+w_{n}=0 \tag{12.36}
\end{equation*}
$$

where $w_{j} \in E_{j}$ for each $j \in[n]$. By Proposition 12.2.1, there exist $a_{j} \in A_{j}$ and $b_{j}^{\prime} \in B_{j}$ such that $a_{j}+b_{j}^{\prime}=1$ for each $j \in[n]$. Then, since $a_{j} w_{j}=0$, we have

$$
w_{j}=1 w_{j}=a_{j} w_{j}+b_{j}^{\prime} w_{j}=b_{j}^{\prime} w_{j},
$$

and, for $i \neq j$ we have

$$
b_{j}^{\prime} w_{i} \in B_{j} w_{i} \subset A_{i} w_{i}=0 \quad \text { if } i \neq j
$$

Thus, multiplying (12.36) by b_{j}^{\prime} produces $w_{j}=0$. Thus, E is the direct sum of the E_{j}. Note that E_{j} is indeed a submodule, because if $y \in E_{j}$ and $a \in A$ then $A_{j} a y \subset A_{j} y=\{0\}$ and so $a y \in E_{j}$. Finally, consider $c_{1}, \ldots, c_{n} \in A$. By the Chinese Remainder Theorem 12.2 .3 there exists $s \in A$ such that $s-c_{j} \in A_{j}$ for each $j \in[n]$, and so $s v=\left(c_{j}+s-c_{j}\right) v=c_{j} v$ for all $v \in E_{j}$. QED

An algebra A over a ring R is an R-module equipped with a binary operation of 'multiplication'

$$
A \times A \rightarrow A:(a, b) \mapsto a b
$$

which is bilinear:

$$
(r a) b=r(a b)=a(r b)
$$

for all $r \in R$ and all $a, b \in A$. Then

$$
(r s-s r)(a b)=(r a)(s b)-(r a)(s b)=0 \quad \text { for any } r, s \in R \text { and } a, b \in A
$$

and we work only with algebras over commutative rings. If A_{1} and A_{2} are algebras, a mapping $f: A_{1} \rightarrow A_{2}$ is a morphism of algebras if f preserves both addition and multiplication: $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$ for all $a, b \in A_{1}$. In this book we use only algebras for which multiplication is associative. If we are working with algebras which have multiplicative identities, a morphism is required to take the identity for A_{1} to that for A_{2}. A morphism of algebras that is a bijection is an isomorphism of algebras. The identity map $A_{1} \rightarrow A_{1}$ is clearly an isomorphism. The composition of morphisms is a morphism and the inverse of an isomorphism is an isomorphism.

Subalgebras and products of algebras are defined exactly as for rings, except that we note that subalgebras and product algebras also have R module structures.

12.5 Free Modules and Bases

For a module M over a ring A, the span of a subset T of an A-module is the set of all elements of M that are linear combinations of elements of T; this is, of course, a submodule of M. The module M is said to be finitely generated if it is the span of a finite subset. (Take the span of the empty set to be $\{0\}$.)

A set $I \subset M$ is linearly independent if for any $n \in\{1,2, \ldots\}, v_{1}, \ldots, v_{n} \in I$ and $a_{1}, \ldots, a_{n} \in A$ with $a_{1} v_{1}+\cdots a_{n} v_{n}=0$ the elements a_{1}, \ldots, a_{n} are all 0 . A basis of M is a linearly subset of M whose span is M. If M has a basis it is said to be a free module. (The zero module is free if you accept the empty set as its basis.)

From the general results of Theorem 5.2 .1 and Theorem 5.3 .3 it follows that any vector space V over a division ring D has a basis whose cardinality is
uniquely determined. The cardinality of a basis of V is called the dimension of V and denoted $\operatorname{dim}_{D} V$. Theorem 5.2.1 also shows that if I is a linearly independent subset of V, and S a subset of V that spans V, then there is a basis of V consisting of all the vectors in I and some of the vectors in S.

Theorem 12.5.1 Let R be a principal ideal domain. Any submodule of a finitely generated R-module is finitely generated. Any submodule of a finitely generated free R-module is again a finitely generated free R-module. Any two bases of a free R-module have the same cardinality.

Proof. Leaving aside the trivial case of zero modules, let M be an R-module which is the linear span of a set $S=\left\{a_{1}, \ldots, a_{n}\right\}$ of n elements, and let N be a submodule of M. To produce a spanning set for N, the only immediate idea is to somehow pick a 'smallest' element among the linear combinations $r_{1} a_{1}+\cdots+r_{n} a_{n}$ that lie in N; a reasonable first step in making this precise is to pick the one for which the coefficient r_{1} is the 'least'. To fill this out to something sensible, observe that the set I_{1} consisting of all $r_{1} \in R$ for which $r_{1} a_{1}+\cdots+r_{n} a_{n} \in N$ for some $r_{2}, \ldots, r_{n} \in R$, is an ideal in R and hence is of the form $r_{1}^{*} R$ for some $r_{1}^{*} \in R$; in particular, there is an element of N of the form $b_{1}=r_{1}^{*} a_{1}+\cdots+r_{n}^{*} a_{n}$ for some $r_{2}^{*}, \ldots, r_{n}^{*} \in R$. Then every element of N can be expressed as an R-multiple of b_{1} plus an element of N that is a linear combination of a_{2}, \ldots, a_{n}. Working our way down the induction ladder with n being the rung-count, we touch the ground level $n=0$ where the claimed result is obviously valid. Thus, N is the linear span of a subset containing at most n elements.

Next we turn to the case of free modules and assume that the spanning set S is a basis of M; let b_{1} be as constructed above. Inductively, we can assume that there exists a basis B^{\prime} of the submodule N^{\prime} of N spanned by a_{2}, \ldots, a_{n} :

$$
N^{\prime}=N \cap \sum_{j=2}^{n} R a_{j} .
$$

If $b_{1} \in N^{\prime}$ then $N^{\prime}=N$ and $B=B^{\prime}$ is a basis of N. If $b_{1} \notin N^{\prime}$ and $t_{1} b_{1}$, with $t_{1} \in R$, plus an element in the span of B^{\prime} is 0 then, expressing everything in terms of the linearly independent a_{i}, it follows that $t_{1} r_{1}^{*}=0$ and so, since $r_{1}^{*} \neq 0$ as $b_{1} \notin N$, we have $t_{1}=0$ and this, coupled with the linear independence of B^{\prime}, implies that $B=\left\{b_{1}\right\} \cup B^{\prime}$ is linearly independent.

Finally, consider a free R-module $M \neq 0$, and let B be a basis of M, and J a maximal ideal in R. There is the quotient map $M \rightarrow M / J M: x \mapsto$
$\bar{x}=x+J M$, and $M / J M$ is a vector space over the field R / J. If b_{1}, \ldots, b_{n} are distinct elements in the basis B then, for any $r_{1}, \ldots, r_{n} \in R$ for which the linear combination $r_{1} b_{1}+\cdots+r_{n} b_{n}$ is in $J M$, the fact that B is a basis implies that r_{1}, \ldots, r_{n} are in J. Thus $b \mapsto \bar{b}$ is an injection on B and the image \bar{B} is a basis for the vector space $M / J M$. The uniqueness of dimension for vector spaces then implies that the cardinality of B is $\operatorname{dim}_{R / J} M / J M$, independent of the choice of B. QED

An element m in an R-module M is a torsion element if it not 0 and if $r m=0$ for some nonzero $r \in R$. The module M is said to be torsion free if it contains no torsion elements. Thus, M is torsion free if for each nonzero $r \in R$, the mapping $M \rightarrow M: m \mapsto r m$ is injective.

A set $B \subset M$ is a basis of M if and only if M is the direct sum of the sumodules $R b$, with b running over B, and the mapping $R \rightarrow R b: r \mapsto r b$ is injective.

Theorem 12.5.2 A finitely generated torsion free module over a principal ideal domain is free.

Notice that \mathbb{Q}, as a \mathbb{Z}-module, is torsion free but is not free because no subset of \mathbb{Q} containing at least two elements is linearly independent and nor is any one-element set a basis of \mathbb{Q} over \mathbb{Z}.
Proof. Let M be a torsion free module over a principal ideal domain R, and, focusing on $M \neq\{0\}$, let b_{1}, \ldots, b_{r} span M. Assume, without loss of generality, that b_{1}, \ldots, b_{k} are linearly independent for some $k \leq r$, and every b_{i}, with $k+1 \leq i \leq r$, has a nonzero multiple, say $t_{i} b_{i}$, in the span of b_{1}, \ldots, b_{k}. Hence, with t being the product of these nonzero t_{i}, we have $t b_{i} \in N \stackrel{\text { def }}{=} R b_{1}+\cdots+R b_{k}$ for all $i \in\{k+1, \ldots, r\}$ (it holds automatically for $i \in[k])$. Thus, the mapping $M \rightarrow M: x \mapsto t x$ has image in N, and so, since M is torsion free, $\lambda_{t}: M \rightarrow N: x \mapsto t x$ is an isomorphism. Being isomorphic to the free module N (which has b_{1}, \ldots, b_{k} as a basis), M is also free. QED

If S is a non-empty set, and R a ring with identity 1_{R}, then the set $R[S]$, of all maps $f: S \rightarrow R$ for which $f^{-1}(R-\{0\})$ is finite, is an R-module with the natural operations of addition and multiplication induced from R :

$$
(f+g)(x)=f(x)+g(x), \quad(r f)(x)=r f(x)
$$

for all $x \in S, r \in R$, and $f, g \in R[S]$. The R-module $R[S]$ is called the free
R-module over S. It is convenient to write an element $f \in R[S]$ in the form

$$
f=\sum_{x \in S} f(x) x
$$

For $x \in S$, let $j(x)$ be the element of $R[S]$ equal to 1_{R} on x and 0 elsewhere. Then $j: S \rightarrow R[S]$ is an injection that can be used to identify S with the subset $j(S)$ of $R[S]$. Note that $j(S)$ is a basis of $R[S]$; that is, every element of $R[S]$ can be expressed in a unique way as a linear combination of the elements of $j(S)$:

$$
f=\sum_{x \in S} f(x) j(x)
$$

wherein all but finitely many elements are 0 . If M is an R-module and $\phi: S \rightarrow M$ a map then $\phi=\phi_{1} \circ j$, where $\phi_{1}: R[S] \rightarrow M$ is uniquely specified by requiring that it be linear and equal to $\phi(x)$ on $j(x)$. (For $S=\emptyset$ take $R[S]=\{0\}$.)

Let A be a ring, and E and F free A-modules with an n-element basis b_{1}, \ldots, b_{n} of E and an m-element basis c_{1}, \ldots, c_{m} of F. Then for any $f \in$ $\operatorname{Hom}_{A}(E, F)$ we have

$$
\begin{equation*}
f\left(\sum_{j=1}^{n} a_{j} b_{j}\right)=\sum_{j=1}^{n} a_{j} f\left(b_{j}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{j} f_{i j}\right) c_{i} \tag{12.37}
\end{equation*}
$$

with $f_{i j}$ being the c_{i}-th component of $f\left(b_{j}\right)$. This relation is best displayed in matrix form:

$$
\left[a_{1}, \ldots, a_{n}\right] \mapsto\left[a_{1}, \ldots, a_{n}\right]\left[\begin{array}{cccc}
f_{11} & f_{21} & \ldots & f_{m 1} \tag{12.38}\\
\vdots & \vdots & : \vdots & \vdots \\
f_{1 n} & f_{2 n} & \ldots & f_{m n}
\end{array}\right]
$$

Note that in the absence of commutativity of A, the matrix operation appears more naturally on the right, and clearly the matrix on the right here is not $\left[f_{i j}\right]$ itself but the transpose $\left[f_{i j}\right]^{t}$. A further significance of 12.38 is that, working with one fixed basis of E, for $f, g \in \operatorname{End}_{A}(E)$,

$$
(g f)_{i k}=\sum_{j=1}^{m} f_{j k} g_{i j}=\sum_{j=1}^{m} g_{i j} \circ_{\mathrm{opp}} f_{j k},
$$

so that the mapping

$$
\begin{equation*}
\operatorname{End}_{A}(E) \rightarrow \operatorname{Matr}_{m \times m}\left(A^{\mathrm{opp}}\right): f \mapsto\left[f_{i j}\right]^{t} \tag{12.39}
\end{equation*}
$$

is an isomorphism of rings, where A^{opp} is the opposite ring.

12.6 Power Series and Polynomials

In this section R is a commutative ring with multiplicative identity 1 , and \mathbb{F} is a field.

A power series in a variable X with coefficients in R is, formally, an expression of the form

$$
a_{0}+a_{1} X+a_{2} X^{2}+\cdots,
$$

where the coefficients a_{j} are all drawn from R.
For an official definition, consider an abstract element X, called a variable or indeterminate, and let, $\langle X\rangle$ be the free monoid over $\{X\}$. Then let $R[[X]]$ be the set of all maps

$$
a:\langle X\rangle \rightarrow R .
$$

Denote by a_{j} the image of X^{j} under a. Define addition in $R[[X]]$ pointwise

$$
(a+b)_{j}=a_{j}+b_{j} \quad \text { for all } j \in\{0,1,2, \ldots\}
$$

Define multiplication by

$$
(a b)_{n}=\sum_{j=0}^{n} a_{j} b_{n-j} \quad \text { for all } j \in\{0,1,2, \ldots\} .
$$

These operations make $R[[X]]$ a ring, called the ring of power series in X with coefficients in R. An element $a \in R[[X]]$ is best written in the form

$$
a(X)=\sum_{j} a_{j} X^{j}
$$

with the understanding that j runs over $\{0,1,2, \ldots\}$. With this notation, both multiplication and addition make notational sense; for example, the product of the power series $r X^{j}$ with the power series $s X^{k}$ is indeed the power series $r s X^{j+k}$, and

$$
\left(\sum_{j} a_{j} X^{j}\right)\left(\sum_{j} b_{j} X^{j}\right)=\sum_{j} c_{j} X^{j}
$$

where

$$
c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k} \quad \text { for all } j \in\{0,1,2, \ldots\} .
$$

If $1 \neq 0$ in R then $1 \neq 0$ in $R[[X]]$ as well.
More generally, if S is a non-empty set then we have first the set $R[[S]]_{\text {nc }}$ of power series in noncommuting indeterminates $X \in S$, defined to be the set of all maps

$$
a:\langle S\rangle \rightarrow R
$$

where $\langle S\rangle$ is the free monoid over S. Such a map is more conveniently displayed as

$$
a=\sum_{f \in\langle S\rangle} a_{f} f
$$

An element a for which $a_{f}=0$ except for exactly one $f \in S^{n}$, for some $n \in\{1,2, \ldots\}$, is a monomial. Addition is defined on $R[[S]]_{\text {nc }}$ pointwise and multiplication by

$$
\begin{equation*}
a b=\sum_{f \in\langle S\rangle}\left(\sum_{h, k \in\langle S\rangle, h k=f} a_{h} b_{k}\right) f \tag{12.40}
\end{equation*}
$$

where the inner sum on the right is necessarily a sum of a finite number of terms. This makes $R[[S]]_{\text {nc }}$ a ring.

Quotienting by the two sided ideal generated by all elements of the form $X Y-Y X$ with $X, Y \in S$ produces the ring $R[[S]]$ of power series in the set S of variables, with coefficients in R. If S consists of the distinct variables X_{1}, \ldots, X_{n}, then $R[[S]]$ is written as $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$.

Inside the ring $R\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ is the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ consisting of all elements $\sum_{j} a_{j} X_{1}^{j_{1}} \ldots X_{n}^{j_{n}}$, with j running over $\{0,1, \ldots\}^{n}$, for which the set $\left\{j: a_{j} \neq 0\right\}$ is finite. Thus, the monomials $X_{1}^{j_{1}} \ldots X_{n}^{j_{n}}$ form a basis of the free R-module $R\left[X_{1}, \ldots, X_{n}\right]$.

Quotienting $R\left[X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right]$ by the ideal generated by the elements $X_{1} Y_{1}-1, \ldots, X_{n} Y_{n}-1$ produces a ring which we will denote

$$
\begin{equation*}
R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right] \tag{12.41}
\end{equation*}
$$

This is a free R-module with basis $\left\{X_{1}^{j_{1}} \ldots X_{n}^{j_{n}}: j_{1}, \ldots, j_{n} \in \mathbb{Z}\right\}$, with X^{0} being 1. An element of this ring is called a Laurent polynomial.

For a non-zero polynomial $p(X) \in R[X]$, the largest j for which the coefficient of X^{j} is not zero is called the degree of the polynomial. We take the degree of 0 to be 0 by convention.

A polynomial $p(X) \in R[X]$ is monic if it is of the form $\sum_{j=0}^{n} p_{j} X^{j}$ with $p_{n}=1$ and $n \geq 1$.

If $a(X), b(X) \in \mathbb{F}[X]$, and the degree of $b(X)$ is ≥ 1, then there are polynomials $q(X), r(X) \in \mathbb{F}[X]$, with the degree of $r(X)$ being less than the degree of $b(X)$, such that

$$
a(X)=q(X) b(X)+r(X)
$$

This is the division algorithm in $\mathbb{F}[X]$. Inductive proof: If $a(X)$ has degree $<$ the degree of $b(X)$ simply set $q(X)=0$ and $r(X)=a(X)$. If $a(X)$ has degree $n \geq m$, the degree of $b(X)$, then $a(X)-\left(a_{n} b_{m}^{-1}\right) X^{n-m} b(X)$ has degree $<n$ and so by induction there exist $q_{1}(X), r_{1}(X) \in \mathbb{F}[X]$, with degree of $r_{1}(X)$ being $<$ degree $b(X)$, such that

$$
a(X)-\left(a_{n} b_{m}^{-1}\right) X^{n-m} b(X)=q_{1}(X) b(X)+r_{1}(X)
$$

and so we obtain the desired result with $q(X)=q_{1}(X)+\left(a_{n} b_{m}^{-1}\right) X^{n-m}$.
The polynomial ring $\mathbb{F}[X]$, for any field \mathbb{F}, is clearly an integral domain; it is, moreover, a principal ideal domain. Proof: For an ideal I that is neither 0 nor $\mathbb{F}[X]$, let $b(X)$ be a nonzero element of lowest degree; then for any $p(X) \in I$, we have $p(X)=q(X) b(X)+r(X)$ with $r(X)$ of lower degree than $b(X)$, but, on the other hand $r(X)=p(X)-q(X) b(X) \in I$ and so $r(X)$ must be 0 , and hence $I=b(X) \mathbb{F}[X]$.

If $q(X) \in \mathbb{F}[X]$ has no polynomial divisors other than constants (elements of \mathbb{F}) and constant multiples of $q(X)$, then $q(X)$ is said to be irreducible. The ideal $q(X) \mathbb{F}[X]$ is maximal if and only if $q(X)$ is irreducible. Thus, $q(X)$ is irreducible if and only if $\mathbb{F}[X] / q(X) \mathbb{F}[X]$ is a field.

For any commutative ring R, the derivative map

$$
\begin{equation*}
D: R[X] \rightarrow R[X]: \sum_{j=0}^{m} a_{j} X^{j} \mapsto \sum_{j=1}^{m} j a_{j} X^{j-1} \tag{12.42}
\end{equation*}
$$

is a derivation on the ring $R[X]$ in the sense that it satifies the following two conditions:

$$
\begin{align*}
D(p+q) & =D p+D q \tag{12.43}\\
D(p q) & =(D p) q+p D q,
\end{align*}
$$

for all $p, q \in R[X]$. These conditions are readily verified.
If $p(X)=\sum_{j=1}^{d} a_{j} X^{j} \in R[X]$, where R is a commutative ring, and $\alpha \in R$ then the evaluation of $p(X)$ at (or on) α is

$$
p(\alpha)=\sum_{j=1}^{d} a_{j} \alpha^{j} \in R .
$$

The element α is called a root of $p(X)$ if $p(\alpha)$ is 0 .
For a field \mathbb{F} and polynomial $p(X) \in \mathbb{F}[X]$ of positive degree, let $p_{1}(X)$ be a divisor of $p(X)$ of positive degree, and \mathbb{F}_{1} the field $\mathbb{F}[X] / p_{1}(X) \mathbb{F}[X]$. Since $p_{1}(X)$ is of positive degree, the map $c \mapsto c+p_{1}(X) \mathbb{F}[X]$ maps \mathbb{F} injectively into \mathbb{F}_{1}, and so we can view \mathbb{F} as being a subset of \mathbb{F}_{1}. Let

$$
\alpha=X+p_{1}(X) \mathbb{F}[X] \in \mathbb{F}_{1} ;
$$

then $p_{1}(\alpha)=0$, and so $p(\alpha)$ is also 0 . Thus, in the field \mathbb{F}_{1} the polynomial $p(X)$ has a root.

A field \mathbb{F} is algebraically closed if each polynomial $p(X) \in \mathbb{F}$ of degree ≥ 1, has a root in \mathbb{F}. In this case, a polynomial $p(X)$ of degree $d \geq 1$, splits into a product of d terms each of the form $X-\alpha$, for $\alpha \in \mathbb{F}$, and a constant.

Theorem 12.6.1 Let \mathbb{F} be a field and n a positive integer. Then \mathbb{F} has an extension that contains n distinct n-th roots of unity if and only if $n 1_{\mathbb{F}} \neq 0$ in \mathbb{F}.

Proof. Assume first that $n 1_{\mathbb{F}} \neq 0$. Let \mathbb{F}_{1} be an extension of \mathbb{F} in which $X^{n}-1$ splits as a product of linear terms: $X^{n}-1=\prod_{j=1}^{n}\left(X-\alpha_{j}\right)$, (we write 1 for $1_{\mathbb{F}}$). Suppose that α_{k} and α_{l} are equal to some common value α, for some distinct $k, l \in[n]$. Thus, $X^{n}-1=(X-\alpha)^{2} q(X)$, for a polynomial $q(X) \in \mathbb{F}_{1}[X]$. Applying the derivative D to this factorization of $X^{n}-1$ produces

$$
n X^{n-1}=2(X-\alpha) q(X)+(X-\alpha)^{2} D q(X)=(X-\alpha) h(X)
$$

where $h(X) \in \mathbb{F}_{1}[X]$. But this contradicts the fact that $X^{n}-1$ and $n X^{n-1}$ are coprime:

$$
\begin{align*}
n 1_{\mathbb{F}} & =X n X^{n-1}-n\left(X^{n}-1\right) \tag{12.44}\\
& =X(X-\alpha) h(X)-n(X-\alpha)^{2} q(X)
\end{align*}
$$

which is impossible since $X-\alpha$ is not a divisor of $n 1_{\mathbb{F}} \neq 0$. Thus, the n-th roots of 1 are distinct in \mathbb{F}_{1}.

For the converse, assume that $n 1_{\mathbb{F}}=0$, and let p be the characteristic of \mathbb{F}. Then

$$
X^{p}-1=(X-1)^{p}
$$

because the intermediate binomial coefficients are all divisible by p (see Theorem 12.2.1). Since p divides n, we have $n=p k$, for a positive integer k, and
$X^{n}-1=\left(X^{p}\right)^{k}-1$, of which $X^{p}-1=(X-1)^{p}$ is a factor, thus showing that not all n-th roots of 1 are distinct in this case. QED

An algebraic closure of a field \mathbb{F} is an algebraically closed field $\overline{\mathbb{F}}$ that contains a subfield isomorphic to \mathbb{F}. Every field has an algebraic closure (for a proof, see Lang [53]).

Let $\mathbb{Z}_{\downarrow}^{n}$ be the subset of \mathbb{Z}^{n} consisting of all strings $\left(j_{1}, \ldots, j_{n}\right)$ with $j_{1} \geq$ $\ldots \geq j_{n}$. Inside $\mathbb{Z}_{\downarrow}^{n}$ is the subset $\mathbb{Z}_{\downarrow \downarrow}^{n}$ of all strictly decreasing sequences.

Let R be a commutative ring with $1 \neq 0$. Denote a typical element of $R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ as $f\left(X_{1}, \ldots, X_{n}\right)$, or simply f. It can be expressed uniquely as a linear combination of monomials $X^{\vec{j}}=X_{1}^{j_{1}} \ldots X_{n}^{j_{n}}$, where $\vec{j}=$ $\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}_{\downarrow}^{n}$, with coefficients $f_{\vec{j}} \in R$ all but finitely many of which are 0 . If R_{1} is any commutative R-algebra and $a_{1}, \ldots, a_{n} \in R_{1}$ then denote by $f\left(a_{1}, \ldots, a_{n}\right)$ the evaluation of f at $X_{1}=a_{1}, . ., X_{n}=a_{n}$:

$$
\begin{equation*}
f\left(a_{1}, \ldots, a_{n}\right)=\sum_{\vec{j} \in \mathbb{Z}_{\downarrow}^{n}} f_{\vec{j}} a_{1}^{j_{1}} \ldots a_{n}^{j_{n}} . \tag{12.45}
\end{equation*}
$$

Note that, in particular, the a_{i} could be drawn from $R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ itself. If $\sigma \in S_{n}$, denote by $f_{\sigma}\left(X_{1}, \ldots, X_{n}\right)$ the element $f\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$.

For the following result we say that f is symmetric if $f_{\sigma}=f$ for all $\sigma \in S_{n}$. The set of all such symmetric f forms a subring $R_{\text {sym }}\left[X_{1}, \ldots, X_{n}\right]$ of $R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$. We say that f is alternating if $f\left(Y_{1}, \ldots, Y_{n}\right)=0$ whenever $\left\{Y_{1}, \ldots, Y_{n}\right\}$ is a strictly proper subset of $\left\{X_{1}, \ldots, X_{n}\right\}$.
Theorem 12.6.2 Let \mathbb{F} be a field that contains m distinct m-th roots of 1 for every $m \in\{1,2, \ldots\}$, and R a subring of \mathbb{F}.
(i) If $f \in R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ is such that $f\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0$ for all roots of unity $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$ then $f=0$.
(ii) $R_{\text {sym }}\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ is a free R-module with basis given by the symmetric sums

$$
\begin{equation*}
s(\vec{w})=\sum_{\sigma \in S_{n}} X_{\sigma(1)}^{w_{1}} \ldots X_{\sigma(n)}^{w_{n}} \tag{12.46}
\end{equation*}
$$

with $\vec{w}=\left(w_{1}, \ldots, w_{n}\right)$ running over $\mathbb{Z}_{\downarrow}^{n}$, and $s_{\overrightarrow{0}}$ defined to be 1 .
(iii) $R_{\text {alt }}\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ is a free R-module with basis given by the alternating sums

$$
\begin{equation*}
a(\vec{w})=\sum_{\sigma \in S_{n}}(-1)^{\sigma} X_{\sigma(1)}^{w_{1}} \ldots X_{\sigma(n)}^{w_{n}} \tag{12.47}
\end{equation*}
$$

$$
\text { with } \vec{w}=\left(w_{1}, \ldots, w_{n}\right) \text { running over } \mathbb{Z}_{\downarrow \downarrow}^{n} \text {. }
$$

Proof. (i) First suppose $n=1$, and $\phi \in R\left[X, X^{-1}\right]$ is 0 when X is evaluated at any root of unity in \mathbb{F}. Suppose $\phi=\sum_{k \in \mathbb{Z}} \phi_{k} X^{k}$, with $\phi_{k}=0$ for k not between integers l and u, with $l<u$, and let $a=\max \{0,-l\}$. Then $X^{a} \phi(X)$ is a polynomial that vanishes on infinitely many elements (all roots of unity) in the field \mathbb{F} and so $X^{a} \phi(X)=0$, whence $\phi=0$. Next, consider $n \geq 2$, and suppose $f \in R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ satisfies the condition given. Write f as an element of $R\left[X_{2}, X_{2}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]\left[X_{1}, X_{1}^{-1}\right]$, with X_{1}^{j} having coefficient $f_{j} \in R\left[X_{2}, X_{2}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$. Then by the $n=1$ case, each $f_{j}\left(\lambda_{2}, \ldots, \lambda_{n}\right)=0$ for each j and all roots λ_{k} of unity. Then, inductively, each f_{j} is 0 .
(ii) Consider a nonzero $f \in R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$, let W_{f} be the finite set $\left\{\vec{w} \in \mathbb{Z}_{\downarrow}^{n}: f_{\vec{w}} \neq 0\right\}$, and let $\vec{W}_{f}=\max W_{f}$ in the lexicographic order. Then

$$
g=f-f_{\vec{W}} s_{\vec{W}}
$$

is symmetric and if it is not 0 then $\vec{W}_{g}<\vec{W}$; working down the induction ladder of the finite set W_{f}, we see that the symmetric sums span $R\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$. The linear independence follows from observing that if $\vec{w}, \vec{w}^{\prime}$ are distinct elements of $\mathbb{Z}_{\downarrow}^{n}$ then $s_{\vec{w}}$ and $s_{\vec{w}^{\prime}}$ are sums over disjoint sets of monomials.
(iii) The argument is virtually the same as (ii) except substitute $a_{\vec{W}}$ for $s_{\vec{W}} \cdot$ QED

12.7 Algebraic Integers

If R is a subring of a commutative ring R_{1} with multiplicative identity $1 \neq 0$ lying in R, then an element $a \in R_{1}$ is said to be integral over R if $p(a)=0$ for some monic polynomial $p(X) \in R[X]$. All elements r of R are integral over R (think $X-r$).

With R and R_{1} as above, if $b_{1}, \ldots, b_{m} \in R_{1}$ then by $R\left[b_{1}, \ldots, b_{m}\right]$ is meant the subring of R_{1} consisting of all elements of the form $p\left(b_{1}, \ldots, b_{m}\right)$ with $p\left(X_{1}, \ldots, X_{m}\right)$ running over all elements of the polynomial ring $R\left[X_{1}, \ldots, X_{m}\right]$. Note that $R\left[b_{1}, \ldots, b_{m}\right]$ is a subalgebra of R_{1}, when both are also equipped with the obvious R-module structures.

Theorem 12.7.1 Suppose R is a subring of a commutative ring R_{1} with $1 \neq 0$ lying in R, and assume that R is a principal ideal domain. Then an
element $a \in R_{1}$ is integral over R if and only if the R-module $R[a]$ is finitely generated. If $a, b \in R_{1}$ are integral over R then so are $a+b$ and ab. Thus, the subset of R_{1} consisting of all elements integral over R is a subring of R_{1}.

Proof. Suppose a is integral over R. Then $a^{n}+p_{n-1} a^{n-1}+\cdots+p_{1} a+p_{0}=0$ for some positive integer n and $p_{0}, \ldots, p_{n-1} \in R$. Thus, a^{n} lies in the $R-$ linear span of $1, a, \ldots, a^{n-1}$, and hence by an induction argument all powers of a lie in the R-linear span of $1, \ldots, a^{n-1}$. Consequently, the R-module $R[a]$ is finitely generated. Conversely, suppose $R[a]$ is finitely generated as an R module. Then there exist polynomials $q_{1}(X), \ldots, q_{m}(X) \in R[X]$ such that the R-linear span of $q_{1}(a), \ldots, q_{m}(a)$ is all of $R[a]$. Let n be 1 more than the degree of $q_{1}(X) \ldots q_{m}(X)$; then a^{n} is an R-linear combination of $q_{1}(a), \ldots, q_{m}(a)$, and so this produces a monic polynomial, of degree n, which vanishes on a.

Suppose $a, b \in R_{1}$ are integral over R. Then, by the first part, the R-modules $R[a]$ and $R[b]$ are finitely generated, and then $R[a]+R[b]$ and $R[a] R[b]$ (consisting of all sums of products of elements from $R[a]$ and $R[b]$) are also finitely generated. Since $R[a+b] \subset R[a]+R[b]$ and $R[a b] \subset R[a] R[b]$ it follows from Theorem 12.5 .1 that these are also finitely generated and so, by the first part, $a+b$ and $a b$ are integral over R. QED

Elements of \mathbb{C} (or, if you prefer, $\overline{\mathbb{Q}}$) that are integral over \mathbb{Z} are called algebraic integers. Firmly setting aside the temptation to explore the vast and deep terrain of algebraic number theory let us mention only one simple observation:

Proposition 12.7.1 If $a, b \in \mathbb{Z}$ are such that a / b is an algebraic integer then $a / b \in \mathbb{Z}$.

Proof. Let $p(X)=\sum_{j=0}^{n} p_{j} X^{j} \in \mathbb{Z}[X]$ be a monic polynomial that vanishes on a / b. Assume, without loss of generality, that a and b are coprime. From $p(a / b)=0$ and $p_{n}=1$ we have $a^{n}=-\sum_{j=0}^{n-1} p_{j} b^{n-j} a^{j}$, but the latter is clearly divisible by b, which, since a and b are coprime, implies that $b= \pm 1$. QED

12.8 Linear Algebra

Let V be a vector space over a field \mathbb{F}. In this section we will prove some useful results in linear algebra on decompositions of elements of $\operatorname{End}_{\mathbb{F}}(V)$ into
convenient standard forms. Many of the arguments below would be much simpler if we were to assume that \mathbb{F} is algebraically closed and V is finite dimensional.

We will say that a linear map $S: V \rightarrow V$ is semisimple if there is a basis of V with respect to which the matrix of S is diagonal and there are only finitely many distinct diagonal entries. For such S there is then a nonzero polynomial $p(X)$ for which $p(S)=0$. Compare this with the definition of a semisimple element in the algebra $\operatorname{End}_{\mathbb{F}}(V)$ given in Exercise 5.13.

An $n \times n$ matrix M is said to be upper triangular if $M_{i j}=0$ whenever $i>j$. It is strictly upper triangular if $M_{i j}=0$ whenever $i \geq j$.

An element $N \in \operatorname{End}_{\mathbb{F}}(V)$ is nilpotent if $N^{k}=0$ for some positive integer k. Clearly, a nilpotent that is also semisimple is 0 . Moreover, the sum of two commuting nilpotents is nilpotent.

Here is a concrete picture of nilpotent elements in terms of ordered bases:
Proposition 12.8.1 Let $V \neq 0$ be a finite dimensional vector space, and \mathcal{N} a nonempty set of commuting nilpotent elements in $\operatorname{End}_{\mathbb{F}}(V)$. Then V has a basis relative to which all matrices in \mathcal{N} are strictly upper triangular.

Proof. First we show that there is a nonzero vector on which all $N \in \mathcal{N}$ vanish. Choose N_{1}, \ldots, N_{r} in \mathcal{N}, which span the linear span of \mathcal{N}. We show, by induction on r, that there is a nonzero $b \in \cap_{i=1}^{r} \operatorname{ker} N_{i}$. Observe that if ν is the smallest positive integer for which $N_{1}^{\nu_{1}}=0$ then there is a vector b_{1} for which

$$
N_{1}^{\nu_{1}-1} b_{1} \neq 0 \text { and } N_{1}^{\nu_{1}} b_{1}=0
$$

So $N_{1}^{\nu_{1}-1} b_{1}$ is a nonzero vector in ker N_{1}. Since N_{j} commutes with N_{1}, for $j \in\{2, \ldots, r\}$, we have

$$
N_{j}\left(\operatorname{ker} N_{1}\right) \subset \operatorname{ker} N_{1} .
$$

Hence, inductively, focusing on the subspace ker N_{1} and the restrictions of N_{2}, \ldots, N_{r} to ker N_{1}, there is a nonzero $v \in \operatorname{ker} N_{1}$ on which N_{2}, \ldots, N_{r} vanish. Hence, $b_{1} \in \cap_{j=1}^{r} \operatorname{ker} N_{j}$.

Now we use induction on $n=\operatorname{dim}_{\mathbb{F}} V>1$. The result that there is a basis making all $N \in \mathcal{N}$ strictly upper triangular is valid in a trivial way for one dimensional spaces because in this case 0 is the only nilpotent endomorphism. Assume that $n>1$ and that the result holds for dimension $<n$. Pick nonzero $b_{1} \in \cap_{j=1}^{r}$ ker N_{j}. Let

$$
\bar{V}=V / \mathbb{F} b_{1},
$$

and

$$
\bar{N}_{j} \in \operatorname{End}_{\mathbb{F}}\left(V_{1}\right)
$$

the map given by

$$
w+\mathbb{F} b_{1} \mapsto N_{j} w+\mathbb{F} b_{1}
$$

Note that $\operatorname{dim}_{\mathbb{F}} \bar{V}=n-1<n$, and each \bar{N}_{i} is nilpotent. So, by the induction hypothesis, \bar{V} has a basis $\bar{b}_{2}, \ldots, \bar{b}_{n}$ such that

$$
\bar{N}_{j} \bar{b}_{k}=\sum_{2 \leq l<k}\left(\bar{N}_{j}\right)_{l k} \bar{b}_{l}
$$

for some $\left(\bar{N}_{j}\right)_{l k} \in \mathbb{F}$, and all $j \in[r]$ and $k \in\{2, \ldots, n\}$. Then the matrix for each N_{j} relative to the basis b_{1}, \ldots, b_{n} is strictly upper triangular. QED

The ladder of consequences of the Chinese Remainder Theorem we have built is tall enough to pluck a pleasant prize, the Chevalley-Jordan decomposition:

Theorem 12.8.1 Let V be a vector space over a field \mathbb{F}, and $T \in \operatorname{End}_{\mathbb{F}}(V)$ satisfy $p(T)=0$ where $p(X) \in \mathbb{F}[X]$ is of the form

$$
p(X)=\prod_{j=1}^{m}\left(X-c_{j}\right)^{\nu_{j}}
$$

where $m, \nu_{1}, \ldots, \nu_{m}$ are positive integers and c_{1}, \ldots, c_{m} are distinct elements of \mathbb{F}. Then there exist $S, N \in \operatorname{End}_{\mathbb{F}}(V)$ satisfying:
(i) S is semisimple and N is nilpotent;
(ii) $S N=N S$;
(iii) $T=S+N$;
(iv) S and N are polynomials in T;
(v) there is a basis of V relative to which the matrix of S is diagonal and the matrix of N is strictly upper triangular.

If each $\nu_{j}=1$, that is the roots of $p(X)$ are all distinct, then there is a basis of V relative to which the matrix of T is diagonal; if, moreover, $p(X)$ is a polynomial of minimum positive degree that vanishes on T then the set of diagonal entries is exactly $\left\{c_{1}, \ldots, c_{m}\right\}$.

We will prove below in Proposition 12.8 .3 that the decomposition of T as $S+N$ here is unique. The last statement in the theorem above has been used in the proof of Proposition 1.11.1; however, you can check this special case more simply, without having to establish the decomposition theorem in full.
Proof. Apply Proposition 12.4.1 with A_{j} being the ideal in $A=\mathbb{F}[X]$ generated by $\left(X-c_{j}\right)^{\nu_{j}}$. Then, viewing V as an A-module by $a(X) v=a(T) v$ for all $a(X) \in A$, we see that V is the direct sum of the subspaces $V_{j}=\operatorname{ker}\left(T-c_{j}\right)^{\nu_{j}}$, and, moreover, there is a polynomial $s(X) \in A$ such that $S=s(T)$ agrees with $c_{j} I$ on V_{j} for each $j \in[m]$. Then S is semisimple. Taking $N=T-S$, we have $N^{\nu_{j}}$ equal to 0 on V_{j} for all $j \in[m]$, and so N is nilpotent. Since both S and N are polynomials in T they commute with each other (which is clear anyway on each V_{j} separately).

Choose, by Proposition 12.8.1 applied to just the one nilpotent $N \mid V_{j}$, an ordered basis in each V_{j} with respect to which the matrix for $N \mid V_{j}$ is strictly upper triangular. Stringing together all theses bases, suitably ordered, produces a basis for V relative to whch S is diagonal and N strictly upper triangular.

If each $\nu_{j}=1$ then the construction of S show that $T=S$ on each V_{j} and hence on all of V. If p is a polynomial of minimum positive degree for which $p(T)$ is 0 , then each $V_{j} \neq\{0\}$ (for otherwise $T-c_{j}$ is injective and hence has a left inverse which implies that $p(X) /\left(X-c_{j}\right)$ vanishes on $\left.T\right)$ and so every c_{j} appears among the diagonal matrix entries of S. QED

The definition of a semisimple element S is awkward in that it relies on a basis for the vector space. One simple consequence, easily seen by writing everything in terms of a basis of eigenvectors, is that $\operatorname{ker}(S-c)^{\nu}=\operatorname{ker}(S-c)$ for any $c \in \mathbb{F}$ and positive integer ν. If $p(S)=0$ for some positive degree polynomial $p(X) \in \mathbb{F}[X]$ then every eigenvalue of S is a zero of $p(X)$ and so there are only finitely many distinct eigenvalues of S. If W is a subspace of V that is mapped into itself by S, then $p(S \mid W)=p(S) \mid W=0$. Suppose $p(X)=$ $\prod_{j=1}^{n}\left(X-c_{j}\right)^{\nu_{j}}$, with c_{1}, \ldots, c_{m} are distinct elements of \mathbb{F} and ν_{j} are positive integers. Then W is the direct sum of the subspaces $\operatorname{ker}\left(S-c_{j}\right)^{\nu_{j}} \mid W=V_{j} \cap W$, where $V_{j}=\operatorname{ker}\left(S-c_{j}\right)^{\nu_{j}}=\operatorname{ker}\left(S-c_{j}\right)$. This means that W is the direct sum of the subspaces $W_{j}=\operatorname{ker}\left(S-c_{j}\right) \mid W$. Thus, $S \mid W$ is semisimple: if $S \in \operatorname{End}_{\mathbb{F}}(V)$ maps a subspace W into itself then the restriction of S to W is also semisimple.

Proposition 12.8.2 Let V be a vector space over a field \mathbb{F} and C a finite subset of $\operatorname{End}_{\mathbb{F}}(V)$ consisting of semisimple elements that commute with each other. Then there is a basis of V with respect to which the matrix of every $T \in C$ is diagonal. There exists a semisimple $S \in \operatorname{End}_{\mathbb{F}}(V)$ such that every element of C is a polynomial in S. In particular, the sum of finitely many commuting semisimple elements is semisimple.

For another, more abstract, take on this result, see Exercises 5. 12, 5. 13 , 5.14.

Proof. We prove this by induction on $|C|$, the case where this is 1 being clearly valid. Let $n=|C|>1$ and assume that the result is valid for lower values of $|C|$. Pick a nonzero $S_{1} \in C ; V$ is the direct sum of the subspaces $V_{c}=\operatorname{ker}\left(S_{1}-c I\right)$ with c running over \mathbb{F}. Let S_{2}, \ldots, S_{n} be the other elements of C. Since each S_{j} commutes with S_{1}, it maps each V_{c} into itself and its restriction to V_{c} is, as observed before, also semisimple. But then by the induction hypothesis each nonzero V_{c} has a basis of simultaneous eigenvectors of S_{2}, \ldots, S_{n}. Putting these bases together yields a basis of V that consists of simultaneous eigenvectors of S_{1}, \ldots, S_{n}. Thus, $V=W_{1} \oplus \ldots \oplus W_{m}$, where each S_{i} is constant on each W_{j}, say $S_{i} \mid W_{j}=c_{i j} I_{W_{j}}$. Now choose, for each $i \in[n]$, a polynomial $p_{i}(X) \in \mathbb{F}[X]$ such that $p_{i}(j)=c_{i j}$ for $j \in[m]$. Then $p_{i}(J)=S_{i}$, where J is the linear map equal to the constant j on W_{j}. QED

Now we can prove the uniqueness of the Chevalley-Jordan decomposition:
Proposition 12.8.3 Let V be a vector space over a field \mathbb{F}. If $T \in \operatorname{End}_{\mathbb{F}}(V)$ satisfies $p(T)=0$ for a polynomial $p(X) \in \mathbb{F}[X]$ that splits as a product of linear terms $X-\alpha$, then in a decomposition of T as $S+N$, with S semisimple and N nilpotent, and $S N=N S$, the elements S and N are uniquely determined by T.

Proof. Remarkably, this uniqueness follows from the existence of the decomposition constructed in Theorem 12.8.1. If $T=S_{1}+N_{1}$ with S_{1} semisimple, N_{1} nilpotent, and $S_{1} N_{1}=N_{1} S_{1}$, then S_{1} and N_{1} commute with T and hence with S and N because these are polynomials in T. Then $S-S_{1}=N_{1}-N$ with the left side semisimple and the right side nilpotent, and hence both are 0 . Hence $S=S_{1}$ and $T=T_{1}$. QED

This leads to the following sharper form of Proposition 12.8.2;
Proposition 12.8.4 Let $V \neq 0$ be a finite dimensional vector space over a field \mathbb{F} and C a finite subset of $\operatorname{End}_{\mathbb{F}}(V)$ consisting of elements that commute
with each other. Assume also that every $T \in C$ satisfies $p(T)=0$ for some positive degree polynomial $p(X) \in \mathbb{F}[X]$ that is a product of linear factors of the form $X-\alpha$ with α drawn from \mathbb{F}. Then there is an ordered basis b_{1}, \ldots, b_{n} of V such that every $T \in C$ has upper triangular matrix.

Proof. We prove this by induction on $|C|$, the case where this is 1 following from Theorem 12.8.1. Let $n=|C|>1$ and assume that the result is valid for lower values of $|C|$. Then V is the direct sum of the subspaces $V_{j}=$ $\operatorname{ker}\left(T_{1}-c_{j} I\right)^{\nu_{j}}$, where $p_{1}\left(T_{1}\right)=0$ for a polynomial $p_{1}(X)=\prod_{j=1}^{m}\left(X-c_{j}\right)^{\nu_{j}}$, with $c_{j} \in \mathbb{F}$ distinct and $\nu_{j} \in\{1,2, \ldots\}$. Let T_{2}, \ldots, T_{n} be the other elements of C. Since each T_{j} commutes with T_{1}, all elements of C map each V_{j} into itself. But then by the induction hypothesis each nonzero V_{j} has an ordered basis relative to which the matrices of T_{2}, \ldots, T_{n} are upper triangular. Stringing these bases together (ordered, say, with basis elements of V_{i} appearing before the basis elements of V_{j} when $i<j$) yields an ordered basis of V relative to which all the matrices of C are upper triangular. QED

12.9 Tensor Products

In this section R is a commutative ring with multiplicative identity element 1_{R}. We will also use, later in the section, a possibly non-commutative ring D.

Consider R-modules M_{1}, \ldots, M_{n}. If N is also an R-module, a map

$$
f: M_{1} \times \cdots M_{n} \rightarrow N:\left(v_{1}, \ldots, v_{n}\right) \mapsto f\left(v_{1}, \ldots, v_{n}\right)
$$

is called multilinear if it is linear in each v_{j}, with the other v_{i} held fixed:

$$
f\left(v_{1}, \ldots, a v_{k}+b v_{k}^{\prime}, \ldots, v_{n}\right)=a f\left(v_{1}, \ldots, v_{n}\right)+b f\left(v_{1}, \ldots, v_{k}^{\prime}, \ldots, v_{n}\right)
$$

for all $k \in\{1, \ldots, n\}, v_{1} \in M_{1}, \ldots, v_{k}, v_{k}^{\prime} \in M_{k}, \ldots, v_{n} \in M_{n}$ and $a, b \in R$.
Consider the set $S=M_{1} \times \ldots \times M_{n}$, and the free R-module $R[S]$, with the canonical injection $j: S \rightarrow R[S]$. Inside $R[S]$ consider the submodule J spanned by all elements of the form

$$
j\left(v_{1}, \ldots, a v_{k}+b v_{k}^{\prime}, \ldots, v_{n}\right)-a j\left(v_{1}, \ldots, v_{n}\right)-b j\left(v_{1}, \ldots, v_{k}^{\prime}, \ldots v_{n}\right)
$$

with $k \in\{1, \ldots, n\}, v_{1} \in M_{1}, \ldots, v_{k}, v_{k}^{\prime} \in M_{k}, \ldots, v_{n} \in M_{n}$ and $a, b \in R$. The quotient R-module

$$
\begin{equation*}
M_{1} \otimes \ldots \otimes M_{n}=R[S] / J \tag{12.48}
\end{equation*}
$$

is called the tensor product of the modules M_{1}, \ldots, M_{n}. Let τ be the composite map

$$
M_{1} \times \ldots \times M_{n} \rightarrow M_{1} \otimes \ldots \otimes M_{n}
$$

obtained by composing j with the quotient map $R[S] \rightarrow R[S] / J$. The image of $\left(v_{1}, \ldots, v_{n}\right) \in M_{1} \times \cdots \times M_{n}$ under τ is denoted $v_{1} \otimes \cdots \otimes v_{n}$:

$$
\begin{equation*}
v_{1} \otimes \cdots \otimes v_{n}=\tau\left(v_{1}, \ldots, v_{n}\right) \tag{12.49}
\end{equation*}
$$

The tensor product construction has the following 'universal property': if $f: M_{1} \times \cdots \times M_{n} \rightarrow N$ is a multilinear map then there is a unique linear map $f_{1}: M_{1} \otimes \cdots \otimes M_{n} \rightarrow N$ such that $f=f_{1} \circ \tau$, specified simply by requiring that

$$
f\left(v_{1}, \ldots, v_{n}\right)=f_{1}\left(v_{1} \otimes \ldots \otimes v_{n}\right)
$$

for all $v_{1}, \ldots, v_{n} \in M$. Occasionally, the ring R needs to be stressed, and we then write the tensor product as

$$
M_{1} \otimes_{R} \cdots \otimes_{R} M_{n}
$$

If all the modules M_{i} are the same module M, then the n-fold tensor product is denoted $M^{\otimes n}$:

$$
M^{\otimes n}=\underbrace{M \otimes \ldots \otimes M}_{n \text {-times }}
$$

A note of caution: tensor products can be treacherous; an infamous simple example is the tensor product of the \mathbb{Z}-modules \mathbb{Q} and $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$:

$$
\mathbb{Q} \otimes \mathbb{Z}_{2}=\{0\},
$$

because $1 \otimes 1=1 / 2 \otimes 2=0$, but $\mathbb{Z} \otimes \mathbb{Z}_{2} \simeq \mathbb{Z}_{2}$ (induced by $\mathbb{Z} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}$: $(m, n) \mapsto m n)$ even though \mathbb{Z} is a submodule of \mathbb{Q}.

There is a tensor product construction for two modules over a possibly non-commutative ring. We use this in two cases: (i) tensor products over division rings that arise in commutant duality; and (ii) the induced representation. Let D be a ring (not necessarily commutative) with multiplicative identity element 1_{D}, and suppose M is a right D-module and N a left D module. Let J be the submodule of the \mathbb{Z}-module $M \otimes_{\mathbb{Z}} N$ spanned by all elements of the form $(m d) \otimes n-m \otimes(d n)$, with $m \in M, n \in N, d \in D$. The quotient is the \mathbb{Z}-module

$$
\begin{equation*}
M \otimes_{D} N=\mathbb{Z}[M \times N] / J \tag{12.50}
\end{equation*}
$$

This is sometimes called the balanced tensor product. Denote the image of $(m, n) \in M \times N$ in $M \otimes_{D} N$ by $m \otimes n$. The key feature now is that

$$
\begin{equation*}
(m d) \otimes n=m \otimes(d n) \tag{12.51}
\end{equation*}
$$

for all $(m, n) \in M \times N$ and $d \in D$. The universal property for the balanced tensor product

$$
\begin{equation*}
t: M \times N \rightarrow M \otimes_{D} N:(m, n) \mapsto m \otimes n \tag{12.52}
\end{equation*}
$$

is that if $f: M \times N \rightarrow L$ is a \mathbb{Z}-bilinear map to a \mathbb{Z}-module L that is balanced, in the sense that $f(m d, n)=f(m, d n)$ for all $m \in M, d \in D, n \in N$, then there is a unique \mathbb{Z}-linear map $f_{1}: M \otimes_{D} N \rightarrow L$ such that $f=f_{1} \circ t$.

Now suppose M is also a left R-module, for some commutative ring R with 1 , such that $(a m) d=a(m d)$ for all $(a, m, d) \in R \times M \times D$. Then, for any $a \in R$,

$$
\begin{equation*}
M \times N \rightarrow M \otimes_{D} N:(m, n) \mapsto(a m) \otimes n \tag{12.53}
\end{equation*}
$$

is \mathbb{Z}-bilinear and balanced, and so induces a unique \mathbb{Z}-linear map specified by

$$
\begin{equation*}
l_{a}: M \otimes_{D} N \rightarrow M \otimes_{D} N: m \otimes n \mapsto a(m \otimes n) \stackrel{\text { def }}{=}(a m) \otimes n . \tag{12.54}
\end{equation*}
$$

The uniqueness implies that $l_{a+b}=l_{a}+l_{b}, l_{a b}=l_{a} \circ l_{b}$, and, of course, l_{1} is the identity map. Thus, $M \otimes_{D} N$ is a left R-module with multiplication given by $a(m \otimes v)=(a m) \otimes v$ for all $a \in R, m \in M$ and $m \in N$.

Despite the cautionary note and 'infamous example' described earlier, there is the following comforting and useful result:

Theorem 12.9.1 Let D be a ring, $\left\{M_{i}\right\}_{i \in I}$ a family of right D-modules with direct sum denoted M, and $\left\{N_{j}: j \in J\right\}$ a family of left D-modules with direct sum denoted N. Then the tensor product maps $t_{i j}: M_{i} \times N_{j} \rightarrow M_{i} \otimes N_{j}$: $(m, n) \mapsto m \otimes n$ induce an isomorphism

$$
\begin{equation*}
\Theta: \bigoplus_{(i, j) \in I \times J} M_{i} \otimes_{D} N_{j} \rightarrow M \otimes_{D} N: \oplus_{i, j} t_{i j}\left(m_{i}, n_{j}\right) \mapsto \sum_{i, j} \iota_{i}\left(m_{i}\right) \otimes \iota_{j}\left(n_{j}\right), \tag{12.55}
\end{equation*}
$$

where ι_{k} denotes the canonical injection of the k-th component module in a direct sum.

If each M_{i} is also a left R-module, where R is a commutative ring, satisfying

$$
\begin{equation*}
(a m) d=a(m d) \tag{12.56}
\end{equation*}
$$

for all $a \in R, m \in M_{i}, d \in D$, and all the balanced tensor products are given the left R-module structures, then Θ is an isomorphism of left R-modules.

If the right D-module M is free with basis $\left\{v_{i}\right\}_{i \in I}$ and the left D-module N is free with basis $\left\{w_{j}\right\}_{j \in j}$ then $M \otimes N$ is a free \mathbb{Z}-module with basis $\left\{v_{i} \otimes\right.$ $\left.w_{j}\right\}_{(i, j) \in I \times J}$.

Note that the statement about bases applies to the D-modules M and N, not to the R-module structures.
Proof. By universality, the bilinear balanced map $M_{i} \times N_{j} \rightarrow M \otimes_{D} N$: $(m, n) \mapsto \iota_{i}(m) \otimes \iota_{j}(n)$ factors through a unique \mathbb{Z}-linear map

$$
\begin{equation*}
\iota_{i j}: M_{i} \otimes_{D} N_{j} \rightarrow M \otimes_{D} N: t_{i j}(m, n) \mapsto \iota_{i}(m) \otimes \iota_{j}(n) . \tag{12.57}
\end{equation*}
$$

These maps then combine to induce the \mathbb{Z}-linear mapping Θ on the direct sum of the $M_{i} \otimes_{D} N_{j}$. Since every element of M is a sum of finitely many $\iota_{i}\left(m_{i}\right)$'s, and every element of N is a sum of finitely many $\iota_{j}\left(n_{j}\right)$'s it follows that Θ is surjective. Let π_{i} denote the canonical projection on the i-component in a direct sum. The map

$$
M \times N \rightarrow M_{i} \otimes_{D} N_{j}:(m, n) \mapsto \pi_{i}(m) \otimes \pi_{j}(n)
$$

is \mathbb{Z}-bilinear and balanced and induces a \mathbb{Z}-linear map $\pi_{i j}: M \otimes_{D} N \rightarrow$ $M_{i} \otimes_{D} N_{j}$. There is also the \mathbb{Z}-linear map $\iota_{i j}$ in 12.57 . Now the composite $\pi_{k} \circ \iota_{l}$ is 0 if $k \neq l$ and is the identity map if $k=l$. Hence,

$$
\pi_{i j} \circ \iota_{i^{\prime} j^{\prime}}= \begin{cases}\operatorname{id}_{M_{i} \otimes_{D} N_{j}} & \text { if }(i, j)=\left(i^{\prime}, j^{\prime}\right) \tag{12.58}\\ 0 & \text { if }(i, j) \neq\left(i^{\prime}, j^{\prime}\right) .\end{cases}
$$

If $x \in \bigoplus_{(i, j) \in I \times J} M_{i} \otimes_{D} N_{j}$ then, with $x_{i j}$ being the $M_{i} \otimes_{D} N_{j}$-component of x, the relations 12.58 imply $x_{i j}=\pi_{i j}(\Theta(x))$. Hence, if $\Theta(x)=0$ then $x=0$.

If all the modules involved are left R-modules satisfying (12.56) then Θ is R-linear as well. QED

For more on balanced tensor products see Chevalley [13].

12.10 Extension of Base Ring

Let R be a subring of a commutative ring R_{1}, with the multiplicative identity 1 of R_{1} lying in R. Then R_{1} is an R-module in the natural way. If M is an
R-module then we have the tensor product product

$$
R_{1} \otimes_{R} M
$$

which is an R-module, to start with. But then it becomes also an R_{1}-module by means of the multiplication-by-scalar map

$$
R_{1} \times\left(R_{1} \otimes M\right) \rightarrow R_{1} \otimes M:(a, b \otimes m) \mapsto(a b) \otimes m
$$

that is induced, for each fixed $a \in R_{1}$, from the R-bilinear map $f_{a}: R_{1} \times M \rightarrow$ $R_{1} \otimes M:(b, m) \mapsto(a b) \otimes m$. With this R_{1}-module structure, we denote $R_{1} \otimes_{R} M$ by $R_{1} M$. Dispensing with \otimes, the typical element of $R_{1} M$ looks like

$$
a_{1} m_{1}+\cdots+a_{k} m_{k}
$$

where $a_{1}, \ldots, a_{k} \in R_{1}$ and $m_{1}, \ldots, m_{k} \in M$. Pleasantly confirming intuition, $R_{1} M$ is free with finite basis if M is free with finite basis:

Theorem 12.10.1 Suppose R is a subring of a commutative ring R_{1} whose multiplicative identity 1 lies in R. If M is a free R-module with basis b_{1}, \ldots, b_{n}, then $R_{1} \otimes_{R} M$ is a free R_{1}-module with basis $1 \otimes b_{1}, \ldots, 1 \otimes b_{n}$.

Proof. View R_{1}^{n} first as an R-module. The mapping

$$
R_{1} \times M \rightarrow R_{1}^{n}:\left(a, c_{1} b_{1}+\cdots+c_{n} b_{n}\right) \mapsto\left(a c_{1}, \ldots, a c_{n}\right)
$$

with $c_{1}, \ldots, c_{n} \in R$, is R-bilinear, and hence induces an R-linear mapping

$$
L: R_{1} \otimes_{R} M \rightarrow R_{1}^{n}: a \otimes\left(c_{1} b_{1}+\cdots+c_{n} b_{n}\right) \mapsto\left(a c_{1}, \ldots, a c_{n}\right) .
$$

Viewing now both $R_{1} \otimes_{R} M$ and R_{1}^{n} as R_{1}-modules, L is clearly R_{1}-linear. Next we observe that the map L is invertible, with inverse given by

$$
R_{1}^{n} \rightarrow R_{1} \otimes_{R} M:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1} \otimes b_{1}+\cdots+x_{n} \otimes b_{n}
$$

Thus, L is an isomorphism of $R_{1} \otimes_{R} M$ with the free R_{1}-module R_{1}^{n}. The elements $(1,0, \ldots, 0), \ldots,(0, \ldots, 1)$, forming a basis of R_{1}^{n}, are carried by L^{-1} to $1 \otimes b_{1}, \ldots, 1 \otimes b_{n}$ in $R_{1} M$. This proves that $R_{1} M$ is a free R_{1}-module and $1 \otimes b_{1}, \ldots, 1 \otimes b_{n}$ form a basis of $R_{1} M$. QED

12.11 Determinants and Traces of Matrices

The determinant of a matrix $M=\left[M_{i j}\right]_{i, j \in[n]}$, with entries $M_{i j}$ in a commutative ring R, is defined to be

$$
\begin{equation*}
\operatorname{det} M=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) M_{1 \sigma(1)} \ldots M_{n \sigma(n)} \tag{12.59}
\end{equation*}
$$

As a special case, the determinant of the identity matrix I is 1 . Replacing σ by σ^{-1} in (12.59) shows that the determinant of M remains unchanged if rows and columns are interchanged:

$$
\begin{equation*}
\operatorname{det} M=\operatorname{det} M^{t} \tag{12.60}
\end{equation*}
$$

If the j-th row and k-th rows of M are identical, for some distinct $j, k \in[n]$, then in the sum (12.59) the term for $\sigma \in S_{n}$ cancels the one for $\sigma \circ(j k)$, and so det M is 0 in this case. Thus, a matrix with two rows or two columns has determinant 0 .

Continuing with 12.59 , for any $r \in[n]$, we have

$$
(\operatorname{det} M)=\sum_{j=1}^{n} M_{r j} \tilde{M}_{j r},
$$

where $\tilde{M}_{j r}$ is a polynomial in the entries $M_{k l}$, with $k \in[n]-\{r\}$ and $l \in$ $[n]-\{j\}$ with coefficients being ± 1; more precisely, $\tilde{M}_{r j}$ is $(-1)^{r+j}$ times the determinant of a matrix constructed by removing the r-th row and j-th colum from M. In fact, a little checking shows that

$$
\sum_{j=1}^{n} M_{r j} \tilde{M}_{j s}=(\operatorname{det} M) \delta_{r s}
$$

for all $r, s \in[n]$. Thus, if $\operatorname{det} M$ is invertible in R then the matrix M is invertible, with inverse being the matrix whose (r, s)-entry is $(\operatorname{det} M)^{-1} \tilde{M}_{r s}$.

The trace of a matrix $M=\left[M_{i j}\right]_{i, j \in[n]}$, with entries $M_{i j}$ in a commutative ring R is the sum of the diagonal entries:

$$
\begin{equation*}
\operatorname{Tr}(M)=\sum_{j=1}^{m} M_{j j} \tag{12.61}
\end{equation*}
$$

It is clear that the map Tr from the ring of $n \times n$ matrices to R is R-linear.
In the next section we will explore additional perspectives and properties of the determinant and trace.

12.12 Exterior Powers

Let E be an R-module, where R is a commutative ring. For any positive integer m and any R-module L, a map $f: E^{m} \rightarrow L$ is said to be alternating if it is multilinear and $f\left(v_{1}, \ldots, v_{m}\right)$ is 0 whenever $\left(v_{1}, \ldots, v_{m}\right) \in E^{m}$ has $v_{i}=v_{j}$ for some distinct $i, j \in[m]$. We will construct an R-module $\Lambda^{m} E$ and an alternating map

$$
w: E^{m} \rightarrow \Lambda^{m} E:\left(v_{1}, \ldots, v_{m}\right) \mapsto v_{1} \wedge \ldots \wedge v_{m}
$$

which is universal, in the sense that if L is any R-module and $f: E^{m} \rightarrow L$ is alternating then there is a unique R-linear map $f_{*}: \Lambda^{m} E \rightarrow L$ satisfying $f_{*} \circ w=f$. The construction is very similar to the construction of $E^{\otimes m}$ in section 12.9 . Let E_{m} be the free R-module on the set E^{m}, and A_{m} be the subspace spanned by elements of the following forms:

$$
\begin{array}{r}
\left(v_{1}, \ldots, v_{j}+v_{j}^{\prime}, \ldots, v_{m}\right)-\left(v_{1}, \ldots, v_{j}, \ldots, v_{m}\right)-\left(v_{1}, \ldots, v_{j}^{\prime}, \ldots, v_{m}\right) \\
\left(v_{1}, \ldots, a v_{j}, \ldots, v_{m}\right)-a\left(v_{1}, \ldots, v_{j}, \ldots, v_{m}\right) \tag{12.62}\\
\left(v_{1}, \ldots, v_{m}\right) \quad
\end{array} \quad \text { with } v_{i}=v_{k} \text { for some distinct } i, k \in[m], ~ \$
$$

where the elements $v_{1}, \ldots, v_{m}, v_{j}^{\prime}$ run over E and a runs over R. We define the exterior power $\Lambda^{m} E$ to be the quotient R-module

$$
\begin{equation*}
\Lambda^{m} E=E_{m} / A_{m} \tag{12.63}
\end{equation*}
$$

taken together with the map

$$
\begin{equation*}
w: E^{m} \rightarrow \Lambda^{m} E:\left(v_{1}, \ldots, v_{m}\right) \mapsto q j\left(v_{1}, \ldots, v_{m}\right) \tag{12.64}
\end{equation*}
$$

where $j: E^{m} \rightarrow E_{m}$ is the canonical injection of E^{m} into the free module E_{m}, and $q: E_{m} \rightarrow E_{m} / A_{m}$ is the quotient map. The definition of A_{m} is designed to ensure that w is indeed an alternating map and satisfies the universal property mentioned above. If $E^{\wedge m}$ is an R-module and $w_{*}: E^{m} \rightarrow E^{\wedge m}$ is alternating and also satisfies the universal property mentioned above then there are unique R-linear maps $i: \Lambda^{m} E \rightarrow E^{\wedge m}$ and $i_{0}: E^{\wedge m} \rightarrow \Lambda^{m} E$ such that $w_{*}=i \circ w$ and $w=i_{0} \circ w_{*}$, and then, examining the composites $i \circ i_{0}$ and $i_{0} \circ i$ in light of, again, the universal property, we see that both of these are the identities on their respective domains. Thus, the universal property pins down the exterior power uniquely in this sense.

Now assume that E is a free R-module and suppose it has a finite basis consisting of distinct elements y_{1}, \ldots, y_{n}. Fix $m \in[n]$. Let $E^{\wedge m}$ be the free R-module spanned by the $\binom{n}{m}$ indeterminates y_{I}, one for each m-element subset $I \subset[n]$. Define an alternating map $w_{*}: E^{m} \rightarrow E^{\wedge m}$ by requiring that

$$
w_{*}\left(y_{i_{1}}, \ldots, y_{i_{m}}\right)=y_{I}
$$

if $i_{1}<\ldots<i_{m}$ are the elements of I in increasing order. If L is an R-module and $f: E^{m} \rightarrow L$ is alternating then f is completely specified by its values on $\left(y_{i_{1}}, \ldots, y_{i_{m}}\right)$ for all $i_{1}<\ldots<i_{m}$ in $[n]$, and so $f=f_{*} \circ w_{*}$, where f_{*} is the linear map $E^{\wedge m} \rightarrow L$ specified by requiring that $f_{*}\left(y_{I}\right)=f\left(y_{i_{1}}, \ldots, y_{i_{m}}\right)$ for all $I=\left\{i_{1}<\ldots<i_{m}\right\} \subset[n]$. Thus, f_{*} is uniquely specified by requiring that $f=f_{*} \circ w_{*}$. Thus, $E^{\wedge m}$ is naturally isomorphic to $\Lambda^{m} E$, as noted in the preceding paragraph. Thus, $\Lambda^{m} E$ is free with a basis consisting of $\binom{n}{m}$ elements. In particular, $\Lambda^{n} E$ is free with a basis containing just one element.

For any endomorphism $A \in \operatorname{End}_{R}(E)$, the map

$$
E^{m} \rightarrow \Lambda^{m} E:\left(v_{1}, \ldots, v_{m}\right) \mapsto A v_{1} \wedge \ldots \wedge A v_{m}
$$

is alternating, and, consequently, induces a unique endomorphism $\Lambda^{m} A \in$ $\operatorname{End}_{R}\left(\Lambda^{m} E\right)$. If E is free with a basis containng n elements, so thay $\Lambda^{n} E$ is free with a basis consisting of 1 elememt, then $\Lambda^{n} A$ is multiplication by a unique element $\Delta(A)$ of R :

$$
\begin{equation*}
\left(\Lambda^{n} A\right)(u)=\Delta(A) u \quad \text { for all } u \in \Lambda^{n} E \tag{12.65}
\end{equation*}
$$

To determine the multiplier $\Delta(A)$ we can work out the effect of $\Lambda^{n} A$ on $y_{1} \wedge \ldots \wedge y_{n}$, where y_{1}, \ldots, y_{n} is a basis of E :

$$
\begin{equation*}
A y_{1} \wedge \ldots \wedge A y_{n}=\operatorname{det}\left[A_{i j}\right] y_{1} \wedge \ldots \wedge y_{n} \tag{12.66}
\end{equation*}
$$

by a simple calculation. Hence $\Delta(A)$ is called the determinant of the endomorphism A, and is equal to the determinant of the matrix of A with respect to any basis of E. It is denoted $\operatorname{det} A$:

$$
\operatorname{det} A=\Delta(A)=\operatorname{det}\left[A_{i j}\right]
$$

In particular, the determinant is independent of the choice of basis. Moreover, it is readily seen from (12.65) that

$$
\begin{equation*}
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \tag{12.67}
\end{equation*}
$$

for all $A, B \in \operatorname{End}_{R}(E)$ where, let us recall, E is a free R-module with finite basis. From 12.67) it follows that if A is invertible then its determinant is not 0 .

If M and N are $n \times n$ matrices with entries in a commutative ring R, then M and N naturally specify endomorphisms, also denoted by M and N, of $E=R_{1}^{n}$, where $R_{1}=R\left[M_{i j}, N_{k l}\right]_{i, j, k, l \in[n]}$, and so (12.67) implies the corresponding identity for determinants of matrices:

$$
\operatorname{det}(M N)=\operatorname{det}(M) \operatorname{det}(N)
$$

If $A \in \operatorname{End}_{R}(E)$, where E if a free R-module, where R is a commutative ring, having a basis with n elements, and t is an indeterminate, we have, for any $v_{1}, \ldots, v_{n} \in E$,

$$
\begin{equation*}
\left[\Lambda^{m}(t I+A)\right]\left(v_{1} \wedge \ldots v_{n}\right)=\sum_{k=0}^{n} t^{k} c_{n-k}(A)\left(v_{1} \wedge \ldots v_{n}\right) \tag{12.68}
\end{equation*}
$$

for certain endomorphisms $c_{0}(A), \ldots, c_{n}(A) \in \operatorname{End}_{R}\left(\Lambda^{n} E\right)$; we spare ourselves the notational change/precision needed in making (12.68) meaningful for an indeterminate t rather than for t in R. For example, $c_{n}(A)=\Lambda^{n} A$, and

$$
\begin{align*}
& \quad c_{1}(A)\left(v_{1} \wedge \ldots \wedge v_{n}\right)= \\
& A v_{1} \wedge v_{2} \wedge \ldots \wedge v_{n}+v_{1} \wedge A v_{2} \wedge v_{3} \wedge \ldots \wedge v_{n}+\ldots+v_{1} \wedge v_{2} \wedge \ldots \wedge A v_{n} \tag{12.69}
\end{align*}
$$

Each $c_{j}(A)$ is multiplication by a scalar, which we also denoted by $c_{j}(A)$. Taking the v_{i} in (12.69) to form a basis of E, it follows readily from (12.69) that $c_{1}(A)$ is the trace of the matrix $\left[A_{i j}\right]$ of A with respect to the basis $\left\{v_{i}\right\}$

$$
c_{1}(A)=\operatorname{Tr}\left[A_{i j}\right]_{i, j \in[n]}=\sum_{i=1}^{n} A_{i i},
$$

and so this may be called the trace of the endomorphism A, and denoted $\operatorname{Tr} A$:

$$
\begin{equation*}
\operatorname{Tr}(A) \stackrel{\text { def }}{=} \operatorname{Tr}\left[A_{i j}\right]_{i, j \in[n]}=\sum_{i=1}^{n} A_{i i} . \tag{12.70}
\end{equation*}
$$

Being equal to the multiplier $c_{1}(A)$, is actually independent of the choice of basis of E. More generally, $c_{j}(A)$, for $j \in[n]$, is equal to $c_{j}\left(\left[A_{r s}\right]\right)$, where c_{j}
this is defined for an $n \times n$ matrix $\left[M_{r s}\right]_{r, s \in[n]}$ with abstract indeterminate entries $M_{r s}$ by means of the identity:

$$
\begin{equation*}
\operatorname{det}(t I+M)=\sum_{k=0}^{n} t^{k} c_{n-k}(M) \tag{12.71}
\end{equation*}
$$

with t being, again, an indeterinate. Note that $c_{j}(M)$ is a polynomial in the entries $M_{r s}$ with integer coefficients; indeed, looking back at (12.68) makes it easier to see that $c_{j}(M)$ is the sum of determinants of all the $j \times j$ principal minors (square matrices formed by removing $n-j$ columns and the corresponding rows from M).

Note that

$$
c_{0}(M)=1, \quad c_{n}(M)=\operatorname{det} M
$$

for any $n \times n$ matrix M.
Now consider $n \times n$ matrices $\left[A_{i j}\right]$ and $\left[B_{i j}\right]$, whose entries are abstract symbols (indeterminates). Let t be another indeterminate. Then, working over the field \mathbb{F} of fractions of the ring $\mathbb{Z}\left[A_{i j}, B_{k l}\right]_{i, j, k, l \in[n]}$, we have

$$
\begin{align*}
\operatorname{det}(t I+A B) & =\operatorname{det} B^{-1} B(t I+A B) \\
& \left.=\operatorname{det} B(t I+A B) B^{-1} \quad(\text { by } 12.67)\right) \tag{12.72}\\
& =\operatorname{det}(t I+B A)
\end{align*}
$$

This shows that

$$
\begin{equation*}
c_{j}(A B)=c_{j}(B A) \quad \text { for all } j \in\{0,1, \ldots, n\} \tag{12.73}
\end{equation*}
$$

Since this holds for matrices with entries that are indeterminates it holds also for matrices with entries in any commutative ring (by realizing the indeterminates in this ring). Going further, since c_{j} of an endomorphism is equal to c_{j} of the matrix of the endomorphism relative to any basis, (12.73) holds also when A and B are endomorphisms of an R-module E that has a basis consisting of n elements, where n is any positive integer. Taking $j=1$ produces the following fundamental property of the trace

$$
\begin{equation*}
\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \tag{12.74}
\end{equation*}
$$

which can also be verified directly from the definition of trace of a matrix.

If T is an upper (or lower) triangular matrix then $\operatorname{det} A$ is the product of its diagonal entries. More generally,

$$
\begin{equation*}
c_{j}(T)=s_{j}\left(T_{11}, \ldots, T_{n n}\right)=\sum_{P \in \mathcal{P}_{j}} \prod_{i \in P} T_{i i} \tag{12.75}
\end{equation*}
$$

where \mathcal{P}_{j} is the set of all j-element subsets of $[n]$. The polynomials s_{j} are called the Newton polynomials. They appear traditionally in studying roots of equations, via the identity:

$$
\begin{equation*}
\prod_{i=1}^{n}\left(X-\alpha_{i}\right)=\sum_{j=0}^{n}(-1)^{n-j} s_{n-j}\left(\alpha_{1}, \ldots, \alpha_{n}\right) X^{j} \tag{12.76}
\end{equation*}
$$

(Comparing with 12.71 shows the relationship with c_{j} for an upper/lower triangular matrix.)

12.13 Eigenvalues and Eigenvectors

In this section V is a vector space over a field \mathbb{F}, with

$$
n=\operatorname{dim}_{\mathbb{F}} V \geq 1
$$

An eigenvalue of an endomorphism $T \in \operatorname{End}_{\mathbb{F}}(V)$ is an element $\lambda \in \mathbb{F}$ for which there exists a nonzero $v \in V$ satisfying

$$
\begin{equation*}
T v=\lambda v \tag{12.77}
\end{equation*}
$$

Thus, an element $\lambda \in \mathbb{F}$ is an eigenvalue of T if and only if $\operatorname{ker}(T-\lambda I) \neq 0$, which is equivalent to $T-\lambda I$ not being invertible. Hence, λ is an eigenvalue of T if and only if $\operatorname{det}(T-\lambda I)=0$. Using 12.71, this reads:

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} c_{n-j}(T) \lambda^{j}=0 \tag{12.78}
\end{equation*}
$$

If the field \mathbb{F} is algebraically closed, this equation has n roots (possibily not all distinct), and so in this case every endomorphism of V has an eigenvalue. Looking back at Theorem 12.8 .1 shows that when \mathbb{F} is algebraically closed there is a basis of V relative to which the matrix of T is upper triangular.

Chapter 13

Selected Solutions

110 Let V_{n} be a 1-dimensional vector space, for each $n \in \mathbb{N}=\{1,2,3, \ldots\}$, $V=\bigoplus_{n \in \mathbb{N}} V_{n}$, and e_{m} the element of V that has 0 in all entries except the m-th, in which the entry is 1 . Let N be the subspace of V^{\prime} consisting of all ϕ such that $\left\{m \in \mathbb{N}: \phi\left(e_{m}\right) \neq 0\right\}$ is finite (thus, N is isomorphic to V). Then N is a proper subspace of V^{\prime} but the annihilator N_{0} is all of V.

111 (i) Let $S: V \rightarrow V^{\prime \prime}$ be specified by $(S v)(\phi)=\phi(v)$ for all $v \in V$ and $\phi \in V^{\prime}$. Then, with ρ denoting the representation of G on V, and primes denoting duals,

$$
S(\rho(g) v)(\phi)=\phi(\rho(g) v)=(S v)\left(\rho^{\prime}\left(g^{-1}\right) \phi\right),
$$

for all $g \in G$, which says that $S \rho(g)=\rho^{\prime \prime}(g) S$. When V is finite dimensional, S is a vector space isomorphism. (ii) Let $T: V \rightarrow W$ be an intertwining map. Then the dual map $T^{\prime}: W^{\prime} \rightarrow V^{\prime}: \phi \mapsto \phi T$ is an intertwining map:

$$
\left(T^{\prime} \rho_{W}^{\prime}(g)\right)(\phi)=\phi \rho_{W}\left(g^{-1}\right) T=\phi T \rho_{V}\left(g^{-1}\right)=\left(\rho_{V}^{\prime}(g) T^{\prime}\right)(\phi)
$$

for all $\phi \in W^{\prime}$. When V and W are finite dimensional, T is an isomorphism of vector spaces if and only if T^{\prime} is an isomorphism of vector spaces.
1.14 Among all invariant subspaces of V, choose V_{1} to be one of minimum positive dimension. Then V_{1} is irreducible. Proceed with V / V_{1}.
1.18 (ii) For any $v, w \in V$ we have

$$
\begin{equation*}
\left\langle S_{*} v, S_{*} w\right\rangle=S\left(S_{*} v, w\right)=S\left(w, S_{*} v\right)=\left\langle w, S_{*}^{2} v\right\rangle \tag{13.1}
\end{equation*}
$$

and interchanging v and w gives

$$
\left\langle S_{*}^{2} w, v\right\rangle=\overline{\left\langle v, S_{*}^{2} w\right\rangle}=\overline{\left\langle S_{*} w, S_{*} v\right\rangle}=\left\langle S_{*} v, S_{*} w\right\rangle
$$

(iii) By (ii), $\left\langle S_{*}^{2} v, v\right\rangle=\left\langle S_{*} v, S_{*} v\right\rangle \geq 0$. Since $S \neq 0$ it is nondegenerate, by Theorem 1.9.1. Looking at the diagonal form matrix of S_{*} it follows that no diagonal entry is 0 , for otherwise that entire column would be 0 . In particular, S_{*} is invertible.
(iv) Choose a polynomial $P(X)$ such that $P(t)=\sqrt{t}$ for each diagonal entry t in the diagonal form of the matrix for S_{*}^{2}. Then $S_{0}=P\left(S_{*}^{2}\right)$ and hence commutes with S_{*} as well as with all $\rho(g)$, because $\rho(g)$ commutes with S_{*}^{2}.
(v) It is clear that $C=S_{*} S_{0}^{-1}$ is conjugate linear. Next, since S_{0} commutes with S_{*}, we have $C^{2}=S_{*}^{2} S_{0}^{-2}=I$. Since S_{*} and S_{0} commute with all $\rho(g)$, so does C.
(vi) Write any $v \in V$ as

$$
v=\frac{1}{2}(v+C v)+i \frac{1}{2 i}(v-C v)
$$

we observe that the first term is fixed by C and so is $\frac{1}{2 i}(v-C v)$. Thus $V=V_{\mathbb{R}}+i V_{\mathbb{R}}$, and the sum is direct because $V_{\mathbb{R}} \cap i V_{\mathbb{R}}=0$ since C acts as I on $V_{\mathbb{R}}$ and acts as $-I$ on $i V_{\mathbb{R}}$.
(vii) Since C commutes with $\rho(g)$ we have $\rho(g) V_{\mathbb{R}} \subset V_{\mathbb{R}}$ and hence also $\rho(g) i V_{\mathbb{R}} \subset i V_{\mathbb{R}}$. Choosing a real basis of $V_{\mathbb{R}}$ we have automatically a complex basis of V, and since $\rho(g)$ maps $V_{\mathbb{R}}$ real-linearly into itsef, the matrix of $\rho(g)$ in this basis has all entries real.
(viii) Let ρ be a complex irreducible representation of a finite group G on a vector space V. Suppose u_{1}, \ldots, u_{d} is a basis of V relative to which all entries of all matrices $\rho(g)$ are real. Let $V_{\mathbb{R}}$ be the real linear span of u_{1}, \ldots, u_{d}. Then ρ restricts to a real representation on $V_{\mathbb{R}}$, and V is the complexification $V=V_{\mathbb{R}}+i V_{\mathbb{R}}$. Let B be a
real inner product on $V_{\mathbb{R}}$ and take $S_{\mathbb{R}}$ to be the real bilinear form on $V_{\mathbb{R}}$ obtained by symmetrizing B :

$$
S_{\mathbb{R}}(v, w)=\sum_{g \in G} B(\rho(g) v, \rho(g) w)
$$

for all $v, w \in V_{\mathbb{R}}$. Then $S_{\mathbb{R}}$ is G-invariant and $S_{\mathbb{R}}(v, v) \geq 0$, with equality if and only if $v=0$. Now extend $S_{\mathbb{R}}$ complex-bilinearly to a complex bilinear form on V. Clearly, S is still G-invariant, nonzero, and symmetric.
(ix) This is simply an enumeration of all the cases already noted.

119 Pick $g \in G$ and choose a basis v_{1}, \ldots, v_{d} of V such that $\rho(g) v_{j}=\lambda_{j} v_{j}$ for all $j \in[d]=\{1, \ldots, d\}$. Then the vectors $v_{j} \otimes v_{j}$, for $j \in[d]$, and $v_{j} \otimes v_{k}+v_{k} \otimes v_{j}$, for $1 \leq j<k \leq d$ form a basis of $V^{\otimes 2}$, and the matrix of $\rho_{s}(g)$ for this basis is diagonal with entries λ_{j}^{2}, for $j \in[d]$, and $\lambda_{j} \lambda_{k}$ for $j<k$ in $[d]$, whence $\chi_{\rho_{s}}(g)$ is $\sum_{j} \lambda_{j}^{2}+\sum_{j<k} \lambda_{j} \lambda_{k}$, and so

$$
\begin{equation*}
\chi_{\rho_{s}}(g)=\left[\chi_{\rho}\left(g^{2}\right)+\chi_{\rho}(g)^{2}\right] / 2 \tag{13.2}
\end{equation*}
$$

This was noted by Frobenius and Schur [35, eqn (3), section 5] who refer to earlier work by Molien.
$1.20 \rho(g)$ is given by a diagonal matrix with respect to some basis, with roots of unity along the diagonal, and so $\left|\chi_{\rho}(g)\right| \leq d_{\rho}$ with equality if and only if all the diagonal entries of $\rho(g)$ are equal.
2.1 Character Table for D_{5} with generators c and r satisfying $c^{5}=r^{2}=e$ and $\mathrm{rcr}^{-1}=c^{-1}$:
2.4 Let $c=(123)$ and $r=(12)$, and specify the representation ρ_{1} on \mathbb{F}^{2} by the matrices

$$
\rho_{1}(c)=\left[\begin{array}{cc}
-1 & -1 \tag{13.3}\\
1 & 0
\end{array}\right], \quad \rho_{1}(r)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

If $v=(x, y) \in \mathbb{F}^{2}$ is mapped into a multiple $\lambda(x, y)$ by $\rho_{1}(r)$ then $\lambda^{2}=1$, and so $\lambda \in\{1,-1\}$. If $\lambda=1$ then $x=y$ and we can take both to be 1 ; then $\rho_{1}(c) v=(-2,1)$, which is a multiple of v if and only if $3=0$ in \mathbb{F}. If $\lambda=-1$ then we can take $v=(1,-1)$ and so $\rho_{1}(c) v=(0,1)$ which, again, is not a multiple of v. Thus, ρ_{1} is irreducible, as long as $3 \neq 0$ in \mathbb{F}.

	1	2	2	1
	e	c	c^{2}	r
ρ_{+}	1	1	1	1
ρ_{-}	1	1	1	-1
ρ_{1}	2	$\frac{-1+\sqrt{5}}{2}$	$-\frac{1+\sqrt{5}}{2}$	0
ρ_{2}	2	$-\frac{1+\sqrt{5}}{2}$	$\frac{-1+\sqrt{5}}{2}$	0

Table 13.1: Character Table for D_{5}

32 Choose g not the identity in $G, a=g-1$ and $b=1+g+\cdots+g^{n-1}$ where $n=|G|$; then $a b=0$.
3.3 If $v \in \mathbb{F}[G]$ then $v s=\epsilon(v) s$, where $\epsilon: \mathbb{F}[G] \rightarrow \mathbb{F}: \sum_{g \in G} x(g) g \mapsto$ $\sum_{g \in G} x(g)$. Thus, $\mathbb{F}[G] s=\mathbb{F} s$. Since $s^{2}=0$, the submodule $\mathbb{F}[G] s$ contains no nonzero idempotent and hence has no complement.
3.4 It is checked directly that ϵ is a ring homomorphism. Here is a more 'fundamental' argument. Let $i: G \rightarrow<G>_{R}: g \mapsto i(g)$ be the free R-module over the set G. Then the map $G \rightarrow R: g \mapsto 1$ induces a ring homomorphism $\epsilon_{1}:<G>_{R} \rightarrow R$, carrying $i(g)$ to g, for every $g \in G$. Now $R[G]$ is the quotient of $<G>_{R}$ by the two sided ideal generated by elements of the form $i(g) i(h)-i(g h)$, and ϵ_{1} is 0 on such elements. Hence, with $q:<G>_{R} \rightarrow R[G]$ denoting the quotient map, the induced map $\epsilon: R[G] \rightarrow R$, carrying $q(x)$ to $\epsilon_{1}(x)$ for every $x \in<G>_{R}$, is a ring homomorphism. If $v \in \operatorname{ker} \epsilon$ then $v=\sum_{g} x_{g} g$, with $\sum_{g} x_{g}=0$, and then $v=\sum_{g} x_{g}(g-1)$. The coefficient of any $g \neq e$ in $\sum_{g} \lambda_{g}(g-1)$ is λ_{g} and so this is 0 if $\sum_{g} \lambda_{g}(g-1)=0$.

35 The multiplicative structure of the center of $\mathbb{F}\left[D_{5}\right]$ is specified through: where $C=c+c^{4}, D=c^{2}+c^{3}$, and $R=\left(1+c+c^{2}+c^{3}+c^{4}\right) r$.
3.6 The central idempotents of $\mathbb{F}\left[D_{5}\right]$, where \mathbb{F} has characteristic 0 and

	1	C	D	R
1	1	C	D	R
C	C	$2+D$	$C+D$	$2 R$
D	D	$C+D$	$2+C$	$2 R$
R	R	$2 R$	$2 R$	$5(1+C+D)$

Table 13.2: Multiplication in the center of $\mathbb{F}\left[D_{5}\right]$
contains $\sqrt{5}$, are:

$$
\begin{gather*}
0 \\
\begin{array}{r}
u_{+}=\frac{1}{10}[1+C+D+R]
\end{array} \begin{array}{r}
\text { and } \quad u_{-}=\frac{1}{10}[1+C+D-R] \\
u_{1}
\end{array}=\frac{1}{10}[4+(\sqrt{5}-1) C-(\sqrt{5}+1) D] \\
u_{2}=\frac{1}{10}[4-(\sqrt{5}+1) C+(\sqrt{5}-1) D] \\
u_{+}+u_{-}, \quad u_{+}+u_{1}, \quad u_{+}+u_{2}, \quad u_{-}+u_{1}, \quad u_{-}+u_{2}, \quad u_{1}+u_{2} \\
u_{+}+u_{-}+u_{1}, \quad u_{+}+u_{-}+u_{2}, \quad u_{+}+u_{1}+u_{2}, \quad u_{-}+u_{1}+u_{2} \\
u_{+}+u_{-}+u_{1}+u_{2}=1
\end{gather*}
$$

where notation is as in 3.3.
3.7 See Lemma 7.1.1,

310 Subtract the first column from all the other columns. This transforms the Vandermonde determinant to

$$
\operatorname{det}\left[\begin{array}{ccc}
X_{2}-X_{1} & \ldots & X_{n}-X_{1} \\
\vdots & \ldots & \vdots \\
X_{2}^{n-1}-X_{1}^{n-1} & \ldots & X_{n}^{n-1}-X_{1}^{n-1}
\end{array}\right]
$$

Now factor out $\prod_{1<k \leq n}\left(X_{k}-X_{1}\right)$ to obtain
$\operatorname{det}\left[\begin{array}{ccc}1 & \ldots & 1 \\ X_{2}+X_{1} & \ldots & X_{n}+X_{1} \\ \vdots & \ldots & \vdots \\ X_{2}^{n-2}+X_{2}^{n-3} X_{1}+\ldots+X_{1}^{n-2} & \ldots & X_{n}^{n-2}+X_{n}^{n-3} X_{1}+\ldots+X_{1}^{n-2}\end{array}\right]$.
Subtract X_{1} times each row, except the last, from the next row, to reduce to the Vandermonde determinant in X_{2}, \ldots, X_{n}. Thus, inductively, we have the full factorization $\prod_{1 \leq j<k \leq n}\left(X_{k}-X_{j}\right)$. Alternatively, it is apparent that if $X_{i}=X_{j}$, in some realization of the indeterminates, then the determinant is 0 , and so the determinant is a multiple of $\prod_{1 \leq j<k \leq n}\left(X_{k}-X_{j}\right)$; comparing degrees and coefficients now yields the identity.
4.1 $I: \mathbb{F}[G] \rightarrow V: x \mapsto x v$ has a nonzero submodule of V as image and so I is surjective. Let $L_{0} \subset \mathbb{F}[G]$ be a complement to the submodule ker I. Then $I_{0}=I \mid L_{0}: L_{0} \rightarrow V$ is an isomorphism of $\mathbb{F}[G]$-modules.
4.2 Multiply the i-th row of $D=\operatorname{det}\left[X_{i-j \bmod n}\right]$ by θ^{i}, where $\theta^{n}=1$, and add all rows to obtain the factor $X_{0}+X_{1} \theta+\cdots+X_{n-1} \theta^{n-1}$, and the product of these n factors, one for each n-th root $\theta \in\left\{1, \eta, \ldots, \eta^{n-1}\right\}$, is a monic polynomial in X_{0} (with coefficients in $\mathbb{Z}\left[X_{1}, \ldots, X_{n-1}\right]$) of degree n just as D is. Alternatively, D applied to the column vector $u=\left(\begin{array}{c}1 \\ \theta \\ \vdots \\ \theta^{n-1}\end{array}\right)$, for θ any of the $n n$-th roots of unity, is $\left(X_{0}+X_{1} \theta+\right.$ $\cdots+X_{n-1} \theta^{n-1}$) times u, which shows that taking as basis of \mathbb{C}^{n} the n vectors u, the matrix is diagonalized with diagonal entries being the factors $X_{0}+X_{1} \theta+\cdots+X_{n-1} \theta^{n-1}$.
4.3 Let $R(g): x \mapsto g x$ and $R_{r}(g): x \mapsto x g$, as linear maps on $\mathbb{F}[G]$. Using the elements of G as a basis for $\mathbb{F}[G]$, we have the matrix entries

$$
\begin{align*}
R(g)_{a b} & =\delta_{g, a b^{-1}} \tag{13.5}\\
R_{r}(h)_{a b} & =\delta_{h, b^{-1} a}
\end{align*}
$$

So the group matrices, with variables X. and Y., for the group G and the opposite group $G^{\text {opp }}$ are

$$
\begin{gather*}
D_{G}(X) \stackrel{\text { def }}{=} \sum_{g} X_{g} R(g)=\left[X_{a b^{-1}}\right]_{a, b \in G} \tag{13.6}\\
D_{G^{\text {opp }}}(Y) \stackrel{\text { def }}{=} \sum_{g} Y_{g} R_{r}(g)=\left[Y_{b^{-1} a}\right]_{a, b \in G} .
\end{gather*}
$$

Since each $R(g)$ commutes with each $R_{r}(h)$, the group matrix $D_{G}(X)$ commutes with $D_{G^{\text {opp }}}(Y)$.
4.4 Let $p_{i}(X) \in \mathbb{F}[X]$ be a polynomial of positive degree for which $p_{i}\left(M_{i}\right)=$ 0 , and let \mathbb{F}_{1} be the extension of \mathbb{F} obtained by adjoining all roots of the polynomial $p_{1}(X) \ldots p_{m}(X)$. Since the matrices M_{i} commute with each other, the upper triangular form result in Proposition 12.8.4 shows that there is a basis of \mathbb{F}_{1}^{m} relative to which each M_{i}, viewed as an endomorphism of \mathbb{F}_{1}^{m}, is upper triangular. Let $\lambda_{i 1}, \ldots, \lambda_{i m}$ be the diagonal entries for the matrix of M_{i} in this basis; then $F_{Z G}$, reexpressed in this basis, is upper triangular with the diagonal entry at (j, j) being $\sum_{i=1}^{r} \lambda_{i j} X_{i}$, and so

$$
\operatorname{det} F_{Z G}=\prod_{j=1}^{r}\left(\sum_{i=1}^{r} \lambda_{i j} X_{i}\right)
$$

4.8 Any 1-dimensional representation ρ of G generates a 1-dimensional representation ρ_{0} of G / G^{\prime} given by $\rho_{0}\left(x G^{\prime}\right)=\rho(x)$, and every 1dimensional representation of G / G^{\prime} arises in this way from a 1-dimensional representation of G. Since G / G^{\prime} is abelian the number of inequivalent 1-dimensional representations of G / G^{\prime}, over the algebraically closed field \mathbb{F} in which $|G|$ and hence $\left|G / G^{\prime}\right|$ is not 0 , is $\left|G / G^{\prime}\right|$.
4.10 Let $A=\mathbb{Q}[G]$, and let A_{c} be a complementary subspace to $A y$, so that $A=A y \oplus A_{c}$. Suppose $y^{2}=\gamma y$. The trace of $T_{y}: A \rightarrow A: x \mapsto x y$ is, on one hand (by considering $g \mapsto g y$), $|G| y_{e}=|G|$, and it is also equal to $0+\gamma \operatorname{dim}_{\mathbb{Q}}(A y)$, because T_{y} maps A_{c} into the complementary space $A y$, and on $A y$ it acts as multiplication by γ. So

$$
\gamma=\gamma y_{e}=\left(y^{2}\right)_{e}=\sum_{g} y_{g} y_{g^{-1}} \in \mathbb{Z}
$$

is a positive integer divisor of $|G|$, and $\left(\gamma^{-1} y\right)^{2}=\gamma^{-1} y$.
4.11 We have $h u_{\tau}=\tau(h) u_{\tau}$ for every $h \in G$. So $\mathbb{F}[G] u_{\tau}=\mathbb{F} u_{\tau}$ is indecomposable.
4.12 Examining the coefficient of g on both sides of the relation $g y=y$ we have $y_{e}=y_{g}$.
4.13 Let $\epsilon: \mathbb{F}[G] \rightarrow \mathbb{F}: \sum_{g} x_{g} g \mapsto \sum_{g} x_{g}$ be the augmentation map, which is a homomorphism of rings. Then $\operatorname{ker} \epsilon$ is a proper nonzero ideal in $\mathbb{F}[G]$. If $\mathbb{F}[G]$ were semisimple then there would be an idempotent u such that $\operatorname{ker} \epsilon=\mathbb{F}[G] u$. For any $g \in G$, the element $g-1$ is in $\operatorname{ker} \epsilon$ and so $(g-1) u=g-1$, which means $(g-1) w=0$, where $w=1-u$, and this means $g w=w$. But then, as in 4. $\sqrt{12}$, the coefficient w_{g} of g in w is w_{e}. This being true for all $g \in G$, the element w must be 0 because G is infinite and, by definition, elements of $\mathbb{F}[G]$ are finite linear combinations of elements of G. Hence $u=1$, which contradicts $\operatorname{ker} \epsilon \neq \mathbb{F}[G]$.
4.14 Expressing E_{0} as the union of disjoint orbits $G x$, for $x \in E_{0}$, and noting that the number of elements in each orbit is a power of p, and $\{0\}$ is a one-element orbit, there are at least p one-element orbits. (See the discussion around equation (12.11).) In particular, there is a nonzero element $w \in E_{0}$ such that $G w=\{w\}$, and so $R w=R[G] w$ is an $R[G]$ submodule of E, hence equal to E if E is simple. Since $G w=\{w\}$ the action of G on E is trivial.
4.15 Assume \mathbb{F} has characteristic $p>0$ and $|G|=p^{n}$ for some positive integer n. Let y be a nonzero element in a simple left ideal in $\mathbb{F}[G][G]$. Then, by Exercise 4. 14, $g y=y$ for all $g \in G$, and so, by Exercise 4 . 12 , $y=y_{e} s$, where $s=\sum_{g} g$. Thus $\mathbb{F} s$ is the unique simple left (and right) ideal in $\mathbb{F}[G]$. In particular, remarkably, every nonzero left ideal in $\mathbb{F}[G]$ contains s. Hence $\mathbb{F}[G]$ cannot be the direct sum of two nonzero left ideals. Let M be a maximal ideal in $\mathbb{F}[G]$, and $q: \mathbb{F}[G] \rightarrow \mathbb{F}[G] / M$ the quotient map. The quotient $\mathbb{F}[G] / M$ is a simple module over $\mathbb{F}[G]$. By Exercise 4.14, G acts trivially on the simple $\mathbb{F}[G]$-module $\mathbb{F}[G] / M$. Hence $g x-x \in M$ for all $g \in G$ and all $x \in \mathbb{F}[G]$. In particular, $g-1 \in M$. But the elements $g-1$ span $\operatorname{ker} \epsilon$. So $\operatorname{ker} \epsilon \subset M$. Since $\operatorname{ker} \epsilon$ is a maximal ideal, it follows that M is a maximal ideal. In the converse direction, assume \mathbb{F} has characteristic $p>0, G$ a finite group, and $\mathbb{F}[G]$ is indecomposable. Suppose $q \neq p$ is a prime divisor of $|G|$;
then there is an element $x \in G$ of order q, and $y=q^{-1} \sum_{k=0}^{q-1} x^{k}$ is a nonzero idempotent not equal to 1 . The left ideals $\mathbb{F}[G] y$ and $\mathbb{F}[G](1-y)$ are nonzero and complementary.
5.1 (a) Is \mathbb{Z} a semisimple ring? No. Any ideal in \mathbb{Z} is of the form $a \mathbb{Z}$ for some $a \in \mathbb{Z}$, and $a \mathbb{Z} \subset b \mathbb{Z}$ if and only if a is an integer multiple of b; hence \mathbb{Z} contains no simple ideal.
(b) Is \mathbb{Q} a semisimple ring? Yes. In a field, any nonzero ideal is the full field itself, and so the field is simple and semisimple.
(c) Is a subring of a semisimple ring also semisimple? No, by (a) and (b).
5.2 The matrix $M_{a, b}=\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)$ is an idempotent if and only if it is either 0 or I, and so the nonzero left ideal $L=\left\{M_{0, b}: b \in \mathbb{C}\right\}$ contains no nonzero idempotent and therefore cannot have a complement.
5.3 If a is a nonzero element in a commutative simple ring B then $a B$, being a nonzero two sided ideal in B, is B, and so $a b=1$ for some $a \in B$.
5.5 Let $B=\operatorname{Matr}_{n}(D)$ be the algebra of $n \times n$ matrices over a division ring D.
(a) Let e_{1}, \ldots, e_{n} be the standard basis of D^{n}, and $E_{i j} \in \operatorname{Matr}_{n}(D)$ be the matrix all of whose columns are 0 except the j-th, which is e_{i}. Let $T \in L_{j}$ be nonzero; then $T_{l j} \neq 0$ for some $l \in[n]$ and then $T_{l j}^{-1} E_{i l} T=E_{i j}$ for every $i \in[n]$ and so $L_{j}=B T$. Hence L_{j} is a simple left ideal.
(b) Identify the matrix ring isomorphically with $\operatorname{End}_{D}\left(D^{n}\right)$, viewing D^{n} as a right D-module (or vector space), by considering $T \in B$ as the map $D^{n} \rightarrow D^{n}: v \mapsto T v$, with $T v$ obtained by matrix multiplication. Choose $S \in L$ with, say, the (l, k)-th entry nonzero; then $T=E_{1 l} S$ is a nonzero element of L with all rows other than the first being 0 . The map $T_{1}: D^{n} \rightarrow D$: $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{j=1}^{n} T_{1 j} a_{j}$ is surjective and a D-linear map of right D-modules. Pick $b_{1} \in D^{n}$ with $T_{1} b_{1}=1$; then, for any $v \in D^{n}$ we have $v-b_{1}\left(T_{1} v\right) \in \operatorname{ker} T_{1}$, and so the right D-module
D^{n} is the direct sum of $\operatorname{ker} T_{1}$ and $b_{1} D$. A basis of $\operatorname{ker} T_{1}$, together with b_{1}, forms a basis of D^{n}, and so $\operatorname{dim}_{D} \operatorname{ker} T_{1}=n-1$. Choose a basis b_{2}, \ldots, b_{n} of $\operatorname{ker} T_{1}$. Now $L=B T$ and so all elements of L vanish on b_{2}, \ldots, b_{n}. By the argument for (a), $\left\{T \in B: T b_{2}=\cdots=T b_{n}=0\right\}$ is a simple left ideal, and therefore is equal to L.
(c) Let $E_{i j}$ be the matrix with (i, j)-th entry 1 and all other entries 0 . Then each $E_{j j}$ is an idempotent, generates the simple left ideal $L_{j}=B E_{j j}$, and $E_{j j} E_{k k}=0$ if $j \neq k$.
5.7 Assume (i), and suppose $f: A y_{1} \rightarrow A y_{2}$ is A-linear, where, by semisimplicity, y_{i} is an idempotent with $L_{i}=A y_{i}$. Then $f\left(a y_{1}\right)=f\left(a y_{1} y_{1}\right)=$ $a y_{1} f\left(y_{1}\right) \in L_{1} L_{2}=0$, and so (ii) holds. Next assume $L_{1} L_{2} \neq 0$; then $y_{1} b y_{2} \neq 0$ for some $b \in A$ and so the map $A y_{1} \rightarrow A y_{2}: x \mapsto x b y_{2}$ is a nonzero A-linear map between simple modules and is hence an isomorphism. Equivalence with (iii) follows by symmetry.
5. 8 Assume (i), and suppose $f: A v_{1} \rightarrow A v_{2}$ is A-linear, where, by semisimplicity, v_{i} is an idempotent with $N_{i}=A v_{i}$. Then $f\left(a v_{1}\right)=f\left(a v_{1} v_{1}\right)=$ $a v_{1} f\left(v_{1}\right) \in N_{1} N_{2}=0$, and so (ii) holds. Next assume $N_{1} N_{2} \neq 0$; then $v_{1} b v_{2} \neq 0$ for some $b \in A$ and so the map $A v_{1} \rightarrow A v_{2}: x \mapsto x b v_{2}$ is a nonzero A-linear map. Equivalence with (iii) follows by symmetry. Equivalence of (ii) and (iv) is seen by decomposing N_{1} and N_{2} into simple submodules and observing that an A-linear map $f: N_{1} \rightarrow N_{2}$ is nonzero if and only if its restriction to some simple submodule $L_{1} \subset N_{1}$ is nonzero and hence an isomorphism onto $f\left(L_{1}\right) \subset N_{2}$.
5. 9 For $a_{0} \in A$ with $v=u a_{0}$, the map $A u \rightarrow A v: x \mapsto x a_{0}$ is a nonzero A-linear map and hence an isomorphism.
5.11 It is clear that D_{u} is closed under addition and multiplication, and $u u u=u \neq 0$ is the multiplicative identity in D_{u}. Next, if $u x u \neq 0$ then the map $f_{x}: A u \rightarrow A u: w \mapsto w u x u$ is A-linear and nonzero, and hence, by Schur's Lemma, f_{x} is surjective; thus there exists $y \in A$ such that $y u u x u=u$ and then $(u y u)(u x u)=u$. Thus every element $b \in D_{u}$ has a left inverse b_{L}; then $\left(b_{L}\right)_{L}=\left(b_{L}\right)_{L} u=\left(b_{L}\right)_{L}\left(b_{L} b\right)=\left[\left(b_{L}\right)_{L} b_{L}\right] b=u b=b$.
5.12 Suppose a_{1}, \ldots, a_{m} are the distinct idempotents in I, and let G be the set of all nonzero elements $x_{1} \ldots x_{m}$ where x_{j} is either a_{j} or $1-a_{j}$. Then G
consists of orthogonal idempotents adding up to $\prod_{j=1}^{m}\left(a_{j}+1-a_{j}\right)=1$. Next let G_{j} be the set of nonzero elements of the form $x_{1} \ldots x_{m}$ where $x_{i} \in\left\{a_{i}, 1-a_{i}\right\}$ for each i except that $x_{j}=a_{j}$. Then the elements of G_{j} add up to $1 \cdot a_{j}=a_{j}$. Moreover, the elements of $\cup_{j=1}^{m} G_{j}$ are mutually orthogonal. Thus, $a_{j} a=0$ for all $a \in G_{k}$ with $k \neq j$, and $a_{j} a=a$ for all $a \in G_{j}$, and so if a_{j} is a sum of elements of elements in G then multiplying by a_{j} makes every term in the sum 0 except those coming from G_{j} which remain as they are; hence the sum of the terms coming from outside G_{j} is 0 , but if a sum of orthogonal idempotents is 0 then each idempotent appearing in the sum is 0 . This proves uniqueness of decomposition.
5.13 For any polynomial $p(X) \in \mathbb{F}[X]$ we have $p(s)=\sum_{k=1}^{m} p\left(c_{k}\right) e_{k}$. Choose the polynomials $p_{j}(X)$ such that $p_{j}\left(c_{k}\right)=\delta_{j k}$; for example, $p_{1}(X)=$ $\left(X-c_{2}\right) \ldots\left(X-c_{m}\right) / \prod_{k=2}^{m}\left(c_{1}-c_{k}\right)$. Then $p_{j}(s)=e_{j}$. The subset B of A consisting of all elements of the form $p(s)$, with $p(X)$ running over $\mathbb{F}[X]$, is just the \mathbb{F}-linear span of e_{1}, \ldots, e_{m}, and this is closed under addition and multiplication, has $e_{1}+\cdots+e_{m}$ as the multiplicative identity, and is the sum of the simple ideals $B e_{j}=\mathbb{F} e_{j}$.
5.14 Let c_{1}, \ldots, c_{N} be the distinct elements of C, and choose, for each $j \in$ $[N]$, orthogonal nonzero idempotents $e_{j 1}, \ldots, e_{j n_{j}}$ such that c_{j} is an \mathbb{F} linear combination of the $e_{j i}$. By Problem 13, each $e_{j i}$ is a polynomial in c_{j}, and so all the $e_{j i}$, for all j and i, commute with each other. Then by Problem 12 there are orthogonal nonzero idempotents e_{1}, \ldots, e_{M} such that each $e_{j i}$ is a sum of certain of the e_{r} 's, and so each c_{j} is an \mathbb{F}-linear combination of the e_{i} 's.
5.15 Using the isomorphism of rings $A \simeq \prod_{i \in \mathcal{R}} \operatorname{End}_{C_{i}}\left(L_{i}\right): a \mapsto\left[a_{i}\right]_{i \in \mathcal{R}}$, an element $a \in A$ is an idempotent if and only if each of its components $a_{i} \in \operatorname{End}_{C_{i}}\left(L_{i}\right)$ is an idempotent, that is, a projection map. If the rank of the block matrix $\left[a_{i}\right]$ were not 1 , then we could write a_{i} as a sum of two nonzero orthogonal projections, and so a would not be indecomposable. Conversely, if the rank of $\left[a_{i}\right]_{i \in \mathcal{R}}$ is 1 then a is clearly indecomposable.
5.16 The map $A \rightarrow \prod_{i=1}^{s} \operatorname{End}_{\mathbb{F}}\left(L_{i}\right): x \mapsto\left(x_{1}, \ldots, x_{s}\right)$ is an isomorphism, where $x_{i}=\rho_{i}(x)$. Then for each relevant triple $\left(i_{0}, j_{0}, k_{0}\right)$ there is a unique element $a \in A$ such that that $\rho_{i}(a)$ is given by the $d_{i} \times d_{i}$
matrix whose $j k$ entry is $\delta_{i i_{0}} \delta_{j j_{0}} \delta_{k k_{0}}$. Therefore, the functions $\rho_{i, j k}$ are linearly independent over \mathbb{F}. The characters, being made up of sums of these matrix entries, are then also linearly independent.
5.17 If u and v belong to different A_{i} then $u v=0$. Suppose then that u and v both belong to the same A_{i}. Then we may as well assume that they are $d_{i} \times d_{i}$ matrices over $C_{i}=\operatorname{End}_{A}\left(L_{i}\right)$, where $d_{i}=\operatorname{dim}_{\mathbb{F}}\left(L_{i}\right)$. Since $u^{2}=u$, and u has rank 1 , we can choose a basis in which u has entry 1 at the top left corner and has all other entries equal to 0 . Then, for any matrix v, the product $u v$ has all entries 0 except those in the top row. Let λ be the top left entry of the matrix $u v$. Then

$$
(u v)^{n}=\lambda^{n-1} u v
$$

If $\lambda=0$ then $(u v)^{2}=0$. If $\lambda \neq 0$ then $\lambda^{-1} u v$ has 1 as top left entry and all rows below the top one are 0 ; hence, $\lambda^{-1} u v$ is a rank 1 projection, that is, an indecomposable idempotent. Thus, $u v$ is a multiple of an indecomposable idempotent. If u and v commute and $u v \neq 0$ then $(u v)^{2}=u^{2} v^{2}=u v \neq 0$, and so $\lambda^{-1} u v$ is an indecomposable idempotent for some $\lambda \in \mathbb{F}$, and then $\lambda^{-2}=\lambda^{-1}$ and so $\lambda=1$, and so $u v$ is a indecomposable idempotent.
5.18 (i) If S is a nonempty subset of \mathbb{L}_{M} then $\cap S$, the intersection of all the submodules in S, is the infimum of S, and $\sum S$, the sum of all the submodules in S, is the supremum.
(ii) It is clear that $(p+m) \cap b \supset(p \cap b)+m$. If $x \in p, y \in m \subset b$, and $x+y \in b$, then $x=(x+y)-y \in b$, and so $x+y \in(p \cap b)+m$.
(iii) In any nonempty set of left ideals, one of minimum dimension is minimal.
(iv) Let S be a nonempty set of left ideals, and suppose it does not contain a maximal element. Pick any $L_{1} \in S$; then by nonmaximality, there is an $L_{2} \in S$ which strictly contains in L_{1}; inductively there exist $L_{1} \subset L_{2} \subset \ldots$ with each L_{j} in S and all inclusions are strict. The union L of the L_{j} is a left ideal and hence, by semisimplicity of A, is of the form $A u$ for some element u. Then u lies in some L_{j}; but then since L_{j} is a left ideal, $A u \subset L_{j}$, contradicting the strict inclusion $L_{j+1} \subset L_{j}$.
(v) Since I is a right ideal, and J a left ideal, $I J$ is contained inside $I \cap J$. By semisimplicity, $J=A u$, for some idempotent $u \in J$. So if $a \in I \cap J$ then $a \in J$ and so $a=a u$ is in $I J$, being a product of $a \in I$ and $u \in J$.
(vi) This follows from (v) on writing the intersection of the ideals as products of the ideals, in which case the distributive law is easily checked, noting that $I I=I \cap I=I$.
5.19 (i) Let t_{c} be a complement of t. Then $s=\left(t+t_{c}\right) \cap s=t+\left(t_{c} \cap s\right)$, by modularity, and $t \cap\left(t_{c} \cap s\right) \leq t \cap t_{c}=0$. So $v=t_{c} \cap s$ works.
(ii) Suppose $S \subset \mathcal{A}$ is independent, $T \subset S$ and $a \in S-T$. Since a is an atom $y=a \cap \sum T$ is either a or 0 . If $y=a$ then $a \leq \sum T$ and so then $\sum S$ is equal to $\sum S-\{a\}$, contradicting independence of S. Conversely, suppose $a \cap \sum T=0$ for every $T \subset S$ and all $a \in S-T$. If T is a proper subset of S then such an a exists and so $\sum T$ cannot be equal to $\sum S$.
(iii) Choose a maximal $l \in \mathbb{L}$ such $l \leq m$ but $l \neq m$, if m itself is not an atom. Then by (i) there exists l_{m} such that $l+l_{m}=m$ and $l \cap l_{m}=0$. Note that $l_{m} \neq 0$; we show now that l_{m} is an atom. If $a \leq l_{m}$ then $a+l$ is $\leq m$ and so, by maximality of l, is either l or m. If $a+l=l$ then $a \leq l$ and so $a \leq l \cap l_{m}=0$; if $a+l=m$ then $a=a \cap\left(l+l_{m}\right)=(a \cap l)+l_{m}=0+l_{m}=l_{m}$, using modularity. Hence l_{m} is an atom.
(iv) Take $C=(A+I) \cap(B+J)$. Then, by modularity, $C+I=$ $(A+I) \cap(I+B+J)$ which is $=A+I$ since $I+J=1$; similarly, $C+J=B+J$. The next part follows by induction on observing that $I_{1}+\left(I_{2} \cap \ldots I_{m}\right)=R$ by choosing $x_{2}, \ldots, x_{m} \in I_{1}, y_{2} \in I_{2}, \ldots$, $y_{m} \in I_{m}$ satisfying $x_{a}+y_{a}=1$ for all a, which implies $1=\left(x_{2}+\right.$ $\left.y_{2}\right) \ldots\left(x_{m}+y_{m}\right)=$ terms involving $x_{a}+y_{1} \ldots y_{m} \in I_{1}+\left(I_{2} \cap \ldots I_{m}\right)$ since each I_{a} is a two sided ideal.

6.2 For the Youngtabs \begin{tabular}{|c|c|c}
i \& j \& k

, where \& $\{i, j, k\}=\{1,2,3\}$, the Young sym-

 metrizers are all equal to $\sum_{s \in S_{3}} s$. Then $\left.\mathbb{F}\left[S_{3}\right] y$

\hline 1 \& 2 \& 3

\hline

 \right\rvert\,

\hline 1 \& 2 \& 3

\hline
\end{tabular} and the representation of S_{3} on this vector space is trivial, with all elements represented as multipication by 1. Next, skipping ahead to

the finest partition:

$$
y_{\text {skew }} \stackrel{\text { def }}{=} y_{\left\lvert\, \frac{i}{j}\right.}^{\frac{j}{k}} \begin{aligned}
& \\
&
\end{aligned}=\sum_{s \in S_{3}} \operatorname{sgn}(s) s
$$

if $\{i, j, k\}=\{1,2,3\}$. Then $\mathbb{F}\left[S_{3}\right] y_{\text {skew }}=\mathbb{F} y_{\text {skew }}$, and the representation is by the even/odd signature. The other symmetrizers are:

$$
\begin{aligned}
& y=y_{\left\lvert\, \begin{array}{ll}
3 & 2 \\
\hline 1 &
\end{array}=\iota+(23)-(13)-(132) \quad w=y \begin{array}{|l|l}
\hline 3 & 1 \\
\hline 2 &
\end{array}=\iota+(13)-(23)-(231)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r|r|r|}
\hline & 1 & 3 \\
\hline 2 & \\
\hline
\end{array}=\iota+(31)-(21)-(213) \quad \begin{array}{rl|l|}
\hline 1 & 2 \\
3 &
\end{array}=\iota+(21)-(31)-(312)
\end{aligned}
$$

Of course, knowing any one of the above yields all the others by renaming the numbers. Next,

The dimensions of $\mathbb{F}\left[S_{3}\right] y_{T}$ then are obtained as

$$
\begin{gathered}
\operatorname{dim} \mathbb{F}\left[S_{3}\right] y \underset{1|2| 3}{1 / 2}=\frac{3!}{6}=1, \quad \operatorname{dim} \mathbb{F}\left[S_{3}\right] y \sqrt{\frac{1}{3} 2}=\frac{3!}{3}=2 \\
\operatorname{dim} \mathbb{F}\left[S_{3}\right] y_{\text {skew }}=\frac{3!}{6}=1 .
\end{gathered}
$$

The module $\mathbb{F}\left[S_{3}\right] y$ has a basis consisting of y and (23)y $=$\begin{tabular}{l}
y

\hline

 \left\lvert\,

\hline \& 3

\hline

.\right. Then the module $\mathbb{F}\left[S_{3}\right] w$ has basis w and $(13) w=$

\hline$\frac{1}{2}$ \& 3

\hline
\end{tabular} . These two modules have direct sum containg $\mathbb{F}\left[S_{3}\right] z$, because $z=y-(23) y+w$. On $\mathbb{F}\left[S_{3}\right] y$, with basis $\{y,(23) y\}$, the representation of S_{3} is specified explicitly by

$(12) \longrightarrow\left[\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right]$;
(13) $\longrightarrow\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right]$;
$(23) \longrightarrow\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] ;$
$(123) \longrightarrow\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right] ;$
$(132) \longrightarrow\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right]$.
6.3 Let v_{1}, \ldots, v_{k} be an \mathbb{F}-basis of E, and let M be the R-linear span of $\left\{\rho(s) v_{i}: s \in G, i \in[k]\right\}$. Then M is a finitely generated torsion free R-module and so, by Theorem 12.5.2, has an R-basis w_{1}, \ldots, w_{l}. In particular, each v_{i} is an R-linear combination of the w_{j}, and so E is spanned by $\left\{w_{1}, \ldots, w_{l}\right\}$ over the scalars \mathbb{F}. Suppose $\sum_{i=1}^{l} c_{i} w_{i}=0$, with $c_{i} \in \mathbb{F}$; since \mathbb{F} is the field of fractions of R, there is a nonzero $D \in R$ such that $D c_{i} \in R$ for each i, and then from $\sum_{i=1}^{l} D c_{i} w_{i}=0$ and linear independence of w_{i} over R we conclude that $D c_{i}=0$ and hence $c_{i}=0$ for each i. Thus, $\left\{w_{1}, \ldots, w_{l}\right\}$ is an \mathbb{F}-basis of E. Now the crucial observation is that $\rho(s) M \subset M$, for all $s \in G$, and so the matrix of $\rho(s)$ relative the the basis B has all entries in the ring R.
6.5 Check that

$$
(i j)[(i k)+(j k)]=(i k j)+(i j k)=[(i k)+(j k)](i j)
$$

for all $i<j<k$. This implies that X_{k} commutes with all transpositions in S_{k-1}. This implies that X_{k} commute with $R\left[S_{k-1}\right]$, and hence X_{1}, \ldots, X_{n} commute with each other and therefore generate a commutative subalgebra of $R\left[S_{n}\right]$.
7.3 Let M be a \mathbb{Z} module that is the \mathbb{Z}-linear span of a finite nonempty subset S, and $A: M \rightarrow M$ a \mathbb{Z}-linear map. For $s \in S$ the submodule of M spanned by $\left\{A^{k} s: k \in\{0,1,2, \ldots\}\right\}$ is also finitely generated, say by $p_{1}(A) s, \ldots, p_{j}(A) s$ for some polynomials $p_{i}(X) \in \mathbb{Z}[X]$, and so, if n_{s} is the degree of $p_{1}(X) \ldots p_{j}(X)$, the element $A^{n_{s}+1} s$ lies in the \mathbb{Z}-linear span of $1, A s, \ldots, A^{n_{s}} s$, which means that $q_{s}(A) s=0$ for some monic polynomial $q_{s}(X) \in \mathbb{Z}[X]$. Hence A is a root of the monic polynomial $\prod_{s \in S} q_{s}(X)$.
7.4 The idempotence relation $u_{i}^{2}=u_{i}$ implies

$$
\begin{equation*}
\frac{1}{|G|} \sum_{l=1}^{s} \chi_{i}\left(C_{l}^{-1}\right) C_{l}=\frac{1}{|G|^{2}} \sum_{1 \leq j, k \leq s} \chi_{i}\left(C_{j}^{-1}\right) \chi_{i}\left(C_{k}^{-1}\right) C_{j} C_{k} \tag{13.7}
\end{equation*}
$$

Then from

$$
\begin{equation*}
C_{j} C_{k}=\sum_{l=1}^{s} \kappa_{j k, l} C_{l} \tag{13.8}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
\chi_{i}\left(C_{l}^{-1}\right)=\frac{1}{|G|} \sum_{1 \leq j, k \leq s} \chi_{i}\left(C_{j}^{-1}\right) \chi_{i}\left(C_{k}^{-1}\right) c_{j k, l} \tag{13.9}
\end{equation*}
$$

7.5 In (7.81) let e and f run over basis elements of E and F, respectively, and e^{\prime} and f^{\prime} over corresponding dual bases, then sum over e and f :

$$
\begin{equation*}
\sum_{g \in G} \chi_{E}(g) \chi_{F}\left(g^{-1}\right)=0 \quad \text { for } E \text { and } F \text { not equivalent } \tag{13.10}
\end{equation*}
$$

7.6] The column vectors $V_{j}=\left[\chi_{i}\left(C_{j}\right)\right]_{1 \leq i \leq s}$, for $j \in\{1, \ldots, s\}$, are s mutually orthogonal nonzero vectors in \mathbb{C}^{s}, with the norm of V_{j} being $\sqrt{|G| /\left|C_{j}\right|}$. Therefore they are linearly independent, and the determinant of the character table matrix is nonzero.
7.7 Dedekind factors the determinant by the devilishly clever trick of multiplying it by

$$
\left|\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & 1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega & 1 & \omega^{2} & \omega \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & \omega & \omega^{2} & -1 & -\omega & -\omega^{2} \\
1 & \omega^{2} & \omega & -1 & -\omega^{2} & -\omega
\end{array}\right|,
$$

which results in amazing simplification of the algebra. Frobenius 31, §5] uses a more enlightening method.
7.8 By straightforward extension of the argument for (7.98), or by building inductively on 7.98), we obtain (7.127). Next, let R denote the regular representation, specified by

$$
R(x): \mathbb{F}[G] \rightarrow \mathbb{F}[G]: x \mapsto R(x) y=x y \quad \text { for all } x \in \mathbb{F}[G] .
$$

Then, as we know, $\operatorname{Tr} R(e)$ is $|G|$, and $\operatorname{Tr}(g)$ is 0 for all elements $g \in G$ other than e. From the structure of $\mathbb{F}[G]$ we also know that $\mathbb{F}[G]$ is the direct sum

$$
\mathbb{F}[G]=\bigoplus_{i=1}^{s}\left(L_{i 1} \oplus \ldots \oplus L_{i d_{i}}\right)
$$

and $R \mid L_{i j}$ is irreducible, say with character χ_{i}. So

$$
\operatorname{Tr} R(g)=\sum_{i=1}^{s} d_{i} \chi_{i}(g) \quad \text { for all } g \in G
$$

Using all this we have:

$$
\begin{align*}
\mid\left\{\left(t_{1}, \ldots, t_{m}\right) \in G^{m}\right. & \left.: t_{1} \ldots t_{m}=e, \quad a_{1} t_{1} \ldots a_{m} t_{m}=e\right\} \mid \\
& =\sum_{t_{1} \ldots t_{m}=e} \operatorname{Tr}_{e} R\left(a_{1} t_{1} \ldots a_{m} t_{m}\right) \\
& =\frac{1}{|G|} \sum_{t_{1} \ldots t_{m}=e} \operatorname{Tr} R\left(a_{1} t_{1} \ldots a_{m} t_{m}\right) \\
& =\frac{1}{|G|} \sum_{t_{1} \ldots t_{m}=e} \sum_{i=1}^{s} d_{i} \chi_{i}\left(a_{1} t_{1} \ldots a_{m} t_{m}\right) \\
& =\frac{1}{|G|} \sum_{i=1}^{s} d_{i}\left(\frac{|G|}{d_{i}}\right)^{m-1} \chi_{i}\left(a_{1}\right) \ldots \chi_{i}\left(a_{m}\right) \quad(\text { from }(7.127)) \tag{7.127}\\
& =\sum_{i=1}^{s}\left(\frac{|G|}{d_{i}}\right)^{m-2} \chi_{i}\left(a_{1}\right) \ldots \chi_{i}\left(a_{m}\right) \tag{13.11}
\end{align*}
$$

9.1 For any $a \in A$ we have $r_{a}: A \rightarrow A: x \mapsto x a$, an element of $\operatorname{End}_{A}(A)$. Clearly, $r_{a b}=r_{b} r_{a}$ for all $a, b \in A$, and so $A^{\mathrm{opp}} \rightarrow \operatorname{End}_{A}(A): a \mapsto r_{a}$ is a ring homomorphism. For any left A-linear $f: A \rightarrow A$, we have $f(x)=x(1)$ for all $x \in A$, and so $f=r_{f(1)}$. Thus, $a \mapsto r_{a}$ is a ring isomorphism.
9.2 By Theorem 9.3.5 applied to $E=A$, viewed as a left A-module, A is the sum of simple C-submodules of the form $y A$, where A is now being viewed as a left C-module, $C=\operatorname{End}_{A}(A)$, and y runs over indecomposable idempotents.
9.3 For $b \in \mathbb{F}[G]$, the map $L_{b}: \mathbb{F}[G] \rightarrow \mathbb{F}[G]: a \mapsto b a$ preserves addition and satisfies $L_{b}(a \hat{x})=b a \hat{x}=L_{b}(a) \hat{x}$. Hence $L_{b} \in \operatorname{End}_{\mathbb{F}[G]} \mathbb{F}[G]_{R}$. Moreover, $L_{b c}=L_{b} L_{c}$ and $L_{b+c}=L_{b}+L_{c}$; so $L: \mathbb{F}[G] \rightarrow \operatorname{End}_{\mathbb{F}[G]} \mathbb{F}[G]_{R}$: $b \mapsto L_{b}$ is a morphism of \mathbb{F}-algebras. Since $L_{b}(1)=b$, the map L is injective, Lastly, if $f \in \operatorname{End}_{\mathbb{F}[G]} \mathbb{F}[G]_{R}$ then $f(a)=f(1) a=L_{f(1)}(a)$ for all $a \in \mathbb{F}[G]$, and so L is also surjective.

95 For $\phi \in \hat{E}$, writing $\phi(v)$ as $\sum_{g \in G} \phi_{g}(v) g$, the $\mathbb{F}[G]$-linearity of ϕ is equivalent to $\phi_{g}(v)=\phi_{e}\left(g^{-1} v\right)$ for all $g \in G, v \in E$. Then from $(\phi \cdot h)(v)=\sum_{g} \phi_{g}(v) g h$ we have $(\phi \cdot h)_{e}(v)=\phi_{h^{-1}}(v)=\phi(h v)$ which shows that $I: \hat{E} \rightarrow E^{\prime}: \phi \mapsto \phi_{e}$ is an A-linear map of right A modules. Moreover, $\phi(v)=\sum_{g} \phi_{e}\left(g^{-1} v\right) g$ shows that I is injective, and the invserse of I is specified by $\left(I^{-1} f\right)(v)=\sum_{g} f\left(g^{-1} v\right) g$ and it is readily checked that $I^{-1} f$ is in \hat{E}.
9.6 Let E be a left A-module, where A is a semisimple ring, $C=\operatorname{End}_{A}(E)$, and $\hat{E}=\operatorname{Hom}_{A}(E, A)$. We view E as a left C-module in the natural way, and view \hat{E} as a right A-module For any nonempty subset S of E define the subset $S_{\#}$ of A to be all finite sums of elements $\phi(w)$ with ϕ running over \hat{E} and w over S.
(i) If $\phi \in \hat{E}, a \in A$, then $\phi \cdot a: E \rightarrow A: v \mapsto \phi(v) a$ is in \hat{E} and $(\phi \cdot a)(w)=\phi(w) a$ shows that $S_{\#} a \subset S_{\#}$.
(ii) Show that $(a E)_{\#}=a E_{\#}$ for all $a \in A$.
(iii) For $\phi \in \hat{E}, v \in E$, the map $E \rightarrow E: y \mapsto \phi(y) v$ is A-linear, which means that it is in C, and hence maps W into itself; hence $\phi(w) v \in W$ for all $w \in W$. Consequently, $W_{\#} E \subset W$. In the converse direction use the fact that the right ideal $W_{\#}$ has an idempotent generator u, so that $W_{\#}=u A$. Then for any $\phi \in \hat{E}$, and $w \in W$, we have $\phi(w) \in W_{\#}$ and so $u \phi(w)=\phi(w)$, which implies $\phi(u w-w)=0$. Thus every $\phi \in \hat{E}$ vanishes on $u w-w$. Now decompose $x=u w-w$ as a sum $\sum_{i} x_{i}$ with $x_{i} \in E_{i}$, where the E_{i} are simple A-submodules of E whose direct sum is E; if some $x_{j} \neq 0$ then its image in some left ideal, isomorphic to E_{i}, in A would be nonzero. Thus $x=0$, which means $w \in u A$ and so $w=u w \in u E=W_{\#} E$.
(iv) Write $U_{\#}=u A$ and $W_{\#}=w A$, with u, w idempotent. If $U_{\#} \subset$ $W_{\text {\# }}$ then $u \in w A$ and so $u=w a$ for some $a \in A$, and this implies $U=u E \subset w E=W$.
(v) Proof: Suppose $W_{\#}$ is a simple right ideal. Let $U \subset W$ be a C-submodule of E. Then $U_{\#} \subset W_{\#}$ and so $U_{\#}$ is $\{0\}$ or $W_{\#}$. If $U_{\#}=\{0\}$ then $U=\{0\}$ (by the argument used for (iii)), while if $U_{\#}=W_{\#}$ then $U=W$ by (iii).
(vi) Let J be a right ideal in A contained inside $W_{\#}$. Then $J=v A$ and $W_{\#}=u A$ for idempotents $u \in W_{\#}$ and $v \in J$. Then $v \in u A$ and so

$$
v E \subset u E=W
$$

Therefore $v E$ is $\{0\}$ or $u E$. Applying \# we have $v E_{\#}$ is $\{0\}$ or $u E_{\#}$. If $E_{\#}=A$ then this reads: J is either $\{0\}$ or $W_{\#}$. Thus, $W_{\#}$ is a simple right ideal.
(vii) If $u A \subset E_{\#}$ then $u A=u u A \subset u E_{\#} \subset u A$, and so $u A=u E_{\#}=$ $(u E)_{\#}$. Since u is an indecomposable idempotent, $(u E)_{\#}$ is simple and so $u E$ is a simple C-module.
9.7 For $v \in y E$, let $f_{v}: L \rightarrow E: x \mapsto x v$, which is A-linear, and $J\left(f_{v}\right)=v$. Let $d \in D$. From $d(a y)=d(a y y)=a y d(y)$, for all $a \in A$, we have $\left(f_{v} \circ d\right)(x)=x d(y) v$ and so $f_{v} \circ d=f_{d(y) v}$.
9.8 If y_{1}, \ldots, y_{s} are distinct nonzero orthogonal idempotents with sum 1 then they are linearly independent over the field \mathbb{F}, because if $\sum_{i} c_{i} y_{i}=0$ then, multiplying by any y_{k}, we have $c_{k} y_{k}=0$ and hence $c_{k}=0$ because y_{k} is not 0 . Therefore there is a maximal string, of finite length, e_{1}, \ldots, e_{N} of nonzero orthogonal idempotents whose sum is 1 . Each e_{j} is the necessarily indecomposable, and so $A e_{j}$ is a simple left ideal in A and $e_{j} E$ is a simple submodule of the C-module E. Then the sum $E=e_{1} E+\cdots+e_{N} E$, and the latter is a direct sum. Moreover, by Theorem 9.3.3, each non-zero $e_{i} E$ is a simple C-module.
9.11 (a) Suppose E contains two nonzero submodules E_{α} and E_{β} that are isomorphic to each other as A-modules and have $\{0\}$ as intersection. Let E be the direct sum of E_{α}, E_{β}, and a submodule F. Let $T: E_{\alpha} \rightarrow$ E_{β} be an A-linear isomorphism. Define $T_{0}: E \rightarrow E$ to be equal to T on E_{α} and 0 on $E_{\beta} \bigoplus F$, and $T_{1}: E \rightarrow E$ equal to T^{-1} on E_{β} and 0 on $E_{\alpha} \bigoplus F$. Then $T_{1} T_{0}$ is the identity on E_{α}, while $T_{0} T_{1}$ is 0 on E_{α}. Thus, $T_{0}, T_{1} \in \operatorname{End}_{A}(E)$ do not commute. (b) Suppose E is the direct sum of submodules E_{α}, with α running over a nonempty index set I, and E_{α} is not isomorphic to E_{β} for distinct $\alpha, \beta \in I$. Then any $T \in \operatorname{End}_{A}(E)$ maps each E_{α} into itself, and so $\operatorname{End}_{A}(E)$ is isomorphic to the product ring $\prod_{\alpha \in I} \operatorname{End}_{A}\left(E_{\alpha}\right)$ by $T \mapsto\left(T \mid E_{\alpha}\right)_{\alpha \in I}$. So if each $\operatorname{End}_{A}\left(E_{\alpha}\right)$ is commutative then so is $\operatorname{End}_{A}(E)$.
10.1 (i) Decompose $1 \in A$ as $1=y_{N}+y_{c}$, with $y_{N} \in N$ and $y_{c} \in N_{c}$. Then $y_{c}=y_{c} y_{N}+y_{c}^{2}$ shows that $y_{c}^{2}=y_{c}$ and $y_{c} y_{N}=0$, and, moreover, $a=a y_{N}+a y_{c}$ is th decomposition of $a \in A$ into a component in N and one in N_{c}. Thus, $P_{c}(a)=a y_{c}$. Then for a right ideal R, we have $P_{c}(R)=R y_{c} \subset R$. (ii) If $r \vec{e}=0$ then $r \in N$ and then $P_{c} r=0$; so $r \vec{e} \mapsto P_{c} r$ is well-defined. (iii) If $x \in P_{c}(R)$ then $f(x \vec{e})=P_{c} x=x$.
10.2 (i) Let $P_{c}(x)=\frac{1}{|H|} \sum_{h \in H} x h$ for all $x \in \mathbb{F}[G]$. Then $P_{c}(x) \in \mathbb{F}[G / H]$ and $P_{c}(y)=y$ for all $y \in \mathbb{F}[G / H]$, whence $P_{c}^{2}=P_{c}$; also, clearly $x-P_{c} x \in N$. If $w \in \mathbb{F}[G / H]$ then $w=\sum_{i=1}^{m} w\left(g_{i}\right) g_{i} \sum_{h \in H}$, where $g_{1} H, \ldots, g_{m} H$ are the distinct right cosets of H in G, and so is w also lies in N then, since $g_{1} \vec{e}, \ldots, g_{m} \vec{e}$ is a basis of E, it follows that each $w\left(g_{i}\right)$ is 0 . Thus every $x \in \mathbb{F}[G]$ splits uniquely as $x=\left(1-P_{c}\right) x+P_{c} x$, with the first term in N and the second in $\mathbb{F}[G / H]$; that is, $\mathbb{F}[G]=$ $N \oplus \mathbb{F}[G / H]$. (ii) Let L be a left ideal in $\mathbb{F}[G]$; then $\hat{L}=\{\hat{x}: x \in L\}$ is a right ideal, where $\hat{x}=\sum_{g \in G} x(g) g^{-1}$ for all $x \in \mathbb{F}[G]$. By Exercise 10.2(i), $\operatorname{dim}_{\mathbb{F}}(\hat{L} \vec{e})=\operatorname{dim}_{\mathbb{F}} P_{c}(\hat{L})$, and the latter is the trace of the map $P_{c} \mid \hat{L}: \hat{L} \rightarrow \hat{L}$. Next, by Exercise 10.2(ii),

$$
\operatorname{Tr}\left(P_{c} \mid \hat{L}: \hat{L} \rightarrow \hat{L}\right)=\frac{1}{|H|} \sum_{h \in H} \operatorname{Tr}(\hat{L} \rightarrow \hat{L}: x \mapsto x h)
$$

Using the isomorphism of \mathbb{F}-vector-space $L \rightarrow \hat{L}: x \mapsto \hat{x}$, the trace of $\hat{L} \rightarrow \hat{L}: x \mapsto x h$ is equal to the trace of $L \rightarrow L: x \mapsto h^{-1} x$, which is $\chi_{L}\left(h^{-1}\right)$. Combining everything gives

$$
\operatorname{dim}_{\mathbb{F}}(\hat{L} \vec{e})=\frac{1}{|H|} \sum_{h \in H} \chi_{L}(h) .
$$

Finally observe that if y is an idempotent generator of L then $\hat{L} \vec{e}=\hat{y} E$, because $\mathbb{F}[G] \vec{e}=E$.
11.1] If $\rho: U(N) \rightarrow \operatorname{End}_{\mathbb{C}}(V)$ is a representation, the linear span of $\rho(U(N))$ as a subset of the algebra $\operatorname{End}_{\mathbb{C}}(V)$, is a semisimple algebra, being a subalgebra of the semisimple algebra $\operatorname{End}_{\mathbb{C}}(V)$.
11.5 (i) Fix a basis e_{1}, \ldots, e_{N} of V, with $N \geq 1$, and for fixed $i, j \in[N]$ let $B \in E$ have matrix with all entries 0 except the entry at row j and column i; then $(A, B)_{\operatorname{Tr}}=A_{i j}$ the $i j$-th entry for the matrix of
A. Therefore, $\phi_{A}: E \rightarrow E^{\prime}$ is an isomorphism. (ii) For any subspace L of V, the dimension of L^{\perp} is $N-\operatorname{dim}_{\mathbb{F}} L$, and clearly $L \subset\left(L^{\perp}\right)^{\perp}$; hence $\left(L^{\perp}\right)^{\perp}=L$. (iii) This follows from: $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for all $A, B \in E$, which implies $\left(A, T B T^{-1}\right)_{\operatorname{Tr}}=\left(T^{-1} A T, B\right)_{\operatorname{Tr}}$.

Bibliography

[1] Alperin, J. L., and Bell, Rowen, B., Groups and Representations. Springer (1995).
[2] Artin, Emil, Geometric Algebra. Interscience Publishers (1957).
[3] Berkovic, Ya. G., and Zhmud', E. M., Characters of Finite Groups. Part I. Translated by P. Shumyatsky and V. Zobina. American Mathematical Society (1997).
[4] Birkhoff, Garrett, and Neumann, John von, The Logic of Quantum Mechanics, Annals of Math. 2nd Series Vol 37 Number 4, pp. 823-843 (1936).
[5] Blokker, Esko, and Flodmark, Stig, The Arbitrary Finite Group and Its Irreducible Representations, Int. J. Quant. Chem. 4, 463-472 (1971).
[6] Boerner, Hermann, Representations of Groups, With Special Consideration for the Needs of Modern Physics, North-Holland Publishing Company (1963).
[7] Brauer, Richard, On the Representation of a Group of Order g in the Field of g-Th Roots of Unity, Amer. J. Math. 67 (4), 461-471 (1945).
[8] Bröcker, Theodor, and Dieck, Tammo tom, Representations of Compact Lie Groups, Springer (1985).
[9] Burnside, William, The theory of groups of finite order. 2nd Edition, Cambridge University Press (1911).
[10] Burrow, Martin, Representation theory of finite groups. New York, Interscience Publishers (1962).
[11] Ceccherini-Silberstein, Tullio, Scarabotti, Fabio, and Tolli, Filippo, Representation Theory of the Symmetric Groups: The Pkounkov-Vershik Approach, Character Formulas, and Partition Algebras, Cambridge University Press (2010).
[12] Chalabi, Ahmed, Modules over group algebras and their application in the study of semi-simplicity, Math. Ann. 201 (1973), 57-63.
[13] Chevalley, Claude, Fundamental Concepts of Algebra. Academic Press, New York (1956).
[14] Cohn, Donald L., Measure Theory, Birkhäuser (1994).
[15] Curtis, Charles W., Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer. American Mathematical Society, London Mathematical Society (1999).
[16] Curtis, Charles W., and Reiner, Irving, Representation theory of finite groups and associative algebras. New York, Interscience Publishers (1962).
[17] Dedekind, Richard, Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler, in [20] (pages 103-147).
[18] Dedekind, Richard, Ub̈er die von drei Moduln erzeugte Dualgruppe, Mathematische Annalen 53 (1900), 371-403. Reprinted in [20] (pages 236-271)
[19] Dedekind, Richard, Letters to Frobenius (25th March 1896 and 6th April, 1896), in [20] (pages 420-424).
[20] Dedekind, Richard, Gesammelte mathematische Werke,Vol II, editors: Robert Fricke, Emmy Noether, Öystein Ore, Friedr. Vieweg \& Sohn Akt.-Ges. (1931).
[21] Diaconis, Persi, Group representations in probability and statistics, Lecture Notes-Monograph Series, Volume 11 Hayward, CA: Institute of Mathematical Statistics (1988). Available online.
[22] Dieudonné, Jean Alexandre, and Carrell, James B.: Invariant Theory Old and New. Academic Press (1971).
[23] Dixon, John D., High Speed Computation of Group Characters, Num Math. 10 (1967), 446-450.
[24] Dixon, John D., Computing Irreducible Representations of Groups, Mathematics of Computation 24 (111), 707-712, July 1970.
[25] Duke, William, and Hopkins, Kimberly, Quadratic reciprocity in a finite group, American Mathematical Monthly 112 (2005),, no. 3, 251256.
[26] Farb, Benson, and Dennis, R. Keith, Noncommutative Algebra, SpringerVerlag (1993).
[27] Feit, W., The Representation Theory of Finite Groups, North-Holland (1982).
[28] Frobenius, Ferdinand Georg, Über Gruppencharaktere. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 9851021 (1896). In the Collected Works: Gesammelte Abhandlungen. Vol III (pages 1-37) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[29] Frobenius, Ferdinand Georg, Über die Primfactoren der Gruppencharaktere. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1343-1382 (1896). In the Collected Works: Gesammelte Abhandlungen. Vol III (pages 38-77) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[30] Frobenius, Ferdinand Georg, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 689703 (1896) . In the Collected Works: Gesammelte Abhandlungen. Vol II, (pages 719-733) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[31] Frobenius, Ferdinand Georg, Über die Darstellungen der endlichen Gruppen durch linearen Substitutionen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 944-1015 (1897). In the Collected Works: Gesammelte Abhandlungen, Vol III (pages 82103) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[32] Frobenius, Ferdinand Georg, Über Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen. Sitzungsberichte der

Königlich Preußischen Akademie der Wissenschaften zu Berlin, 501-515 (1898). In the Collected Works: Gesammelte Abhandlungen. Vol III (pages 104-118) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[33] Frobenius, Ferdinand Georg, Über die Charaktere der symmetrischen Gruppe. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 516-534 (1900). In the Collected Works: Gesammelte Abhandlungen. Vol III (pages 148-166). Hrsg. von J.-P. Serre. Springer Verlag (1968).
[34] Frobenius, Ferdinand Georg, Über die charakterischen Einheiten der symmetrischen Gruppe. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 328-358 (1903). In the Collected Works: Gesammelte Abhandlungen, Vol III (pages 244-274) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[35] Frobenius, Ferdinand Georg, and Schur, Issai: Über die reellen Darstellungen der endlichen Gruppen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 186-208 (1906). In the Collected Works: Gesammelte Abhandlungen, Vol III (pages 355-377) Hrsg. von J.-P. Serre. Springer Verlag (1968).
[36] Fulton, William, Young Tableaux, Cambridge University Press (1997).
[37] Fulton, William, and Harris, Joe, Representation Theory, A First Course, Springer-Verlag (1991).
[38] Glass, Kenneth, and Ng, Chi-Keung, A Simple Proof of the Hook Length Formula. The American Mathematical Monthly, Vol. 111, No. 8 (Oct., 2004), pp. 700-704.
[39] Goodman, Roe, and Wallach, Nolan, R., Representations and Invariants of the Classical Groups, Cambridge University Press (1998).
[40] Hall, Brian C., Lie Groups, Lie Algebras, and Representations An Elementary Introduction. Springer-Verlag (2003).
[41] Hawkins, Thomas, Emergence of the Theory of Lie Groups: An Essay in the Histry of Mathematics 1869-1926. Springer-Verlag (2000).
[42] Hawkins, Thomas, New light on Frobenius' creation of the theory of group characters, Arch. History Exact Sci. Vol 12(1974), 217-243.
[43] Hill, Victor, E., Groups and Characters, Chaplan \& Hall/CRC (2000).
[44] Hora, Akihito, and Obata, Nobuaki, Quantum Probability and Spectral Analysis of Graphs, Springer-Verlag (2007).
[45] Humphreys, James E., Reflection Groups and Coxeter Groups, Cambridge University Press (1990).
[46] Hungerford, Thomas, W., Algebra, Springer-Verlag (1974).
[47] Isaacs, J. Martin, Character Theory of Finite Groups, Academic Press (1976).
[48] James, Gordon, and Liebeck, Martin, Representations and Characters of Groups. Cambridge University Press (2001).
[49] James, G. D., The Representation Theory of the Symmetric Groups, Springer-Verlag, Lecture Notes in Mathematics 682 (1978)
[50] Lam, T. Y., A First Course on Noncommutative Rings, Graduate Texts in Math., Vol. 131, Springer-Verlag, 1991.
[51] Lam, T. Y., Representations of Finite Groups: A Hundred Years, Part I. Notices of the American Mathematical Society. March 1998 Volume 45 Issue 3 (361-372).
[52] Lando, Sergei, and Zvonkin, Alexander. Graphs on Surfaces and their Applications. Springer Verlag (2004).
[53] Lang, Serge. Algebra. Springer 2nd Edition(2002) and 3rd Edition (2004).
[54] Lévy, Thierry, Schur-Weyl duality and the heat kernel measure on the unitary group. Adv. Math. 218 (2008), no. 2, 537-575.
[55] Littlewood, Dudley E., The Theory of Group Characters and Matrix Representations of Groups. Oxford at the Clarendon Press (1950).
[56] Maschke, Heinrich, Über den arithmetischen Charakter der Coefficienten der Substititionen endlicher linearer Substitutionensgruppen, Math. Ann. 50(1898), 492-498.
[57] Maschke, Heinrich, Beweis des Satzes, daß die jenigen endlichen linearen Substitutionensgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind, Math. Ann. 52(1899), 363-368.
[58] Molien, Theodor, Über Systeme höherer complexer Zahlen, Dissertation (1891), University of Tartu. http://dspace.utlib.ee/dspace/ handle/10062/110
[59] Mulase, Motohico, and Penkava, Michael, Volume of Representation Varieties (2002). Available online.
[60] Neusel, Mara D., Invariant Theory. American Mathematical Society (2006).
[61] Orlik, Peter, and Terao, Hiroaki, Arrangement of HYperplanes, Springer-Verlag (1992).
[62] Okounkov, Andrei, and Vershik, Anatoly. A New Approach to Representation Theory of Symmetric Groups. Erwin Schrödinger International Institute for Mathematical Physics preprint ESI 333 (1996).
[63] Passman, Donlald S., The algebraic structure of group rings. John Wiley \& Sons, New York, London, Sydney, Toronto (1977).
[64] Puttaswamiah, B. M., and Dixon, John, Modular Representations of Finite Groups, Academic Press (1977).
[65] Rota, Gian-Carlo, The Many Lives of Lattice Theory. Notices of the AMS, Volume 44, Number 11, December 1997, pp. 1440-1445.
[66] Schur, Issai, Neue Begründing der Theorie der Gruppencharaktere, Sitzungsberichte der Kniglich Preuischen Akademie der Wissenschaften zu Berlin, 406-432 (1905). In the Collected Works: Gesammelte Abhandlungen Vol I (pages 143-169) Hrsg. von Alfred Brauer u. Hans Rohrbach. Springer (1973).
[67] Schur, Issai, Über die rationalen Darstellungen der allgemeinen linearen Gruppe, J. reine angew. Math. 132 (1907) 85-137; in Gesammelte Abhandlungen Vol I (pages 198-250) Hrsg. von Alfred Brauer u. Hans Rohrbach. Springer (1973).
[68] Schur, Issai, Über die Darstellung der symmetrischen und der alternierenden Grupper durch gebrochene lineare Substititionen, in Gesammelte Abhandlungen Vol III (pages 68-85) Hrsg. von Alfred Brauer u. Hans Rohrbach. Springer (1973).
[69] Sengupta, Ambar N., The volume measure of flat connections as limit of the Yang-Mills measure, J. Geom. Phys. Vol 47 398-426 (2003).
[70] Serre, Jean Pierre,Linear Representations of Finite Groups. Translated by Leonard L. Scott. (4th Edition) Springer-Verlag (1993).
[71] Simon, Barry, Representation Theory of Finite and Compact Groups. American Mathematical Society (1995).
[72] Thomas, Charles, B. Representations of Finite and Lie Groups. Imperial College Press (2004).
[73] Varadarajan, Veeravalli S., The Geometry of Quantum Theory. Springer; 2nd edition (December 27, 2006)
[74] Wedderburn, J. H. M., On hypercomplex numbers, Proc. London Math. Soc. (Ser 2) 6 (1908), 77-118.
[75] Weintraub, Steven H., Representation Theory of Finite Groups: Algebra and Arithmetic. American Mathematical Society (2003).
[76] Weyl, Hermann. Group Theory and Quantum Mechanics. Dover (1956)
[77] Witten, Edward, On Quantum Gauge Theories in Two Dimensions, Commun. Math. Phys. 141 (1991), 153-209.
[78] Young, Alfred. Quantitative Substitutional Analysis I. Proc. Lond. Math. Soc. (1) 33 (1901). Available in the Collected Works published by University of Toronto Press, c1977.

Index

abelian group, 306
action, group, 305
algebra, 98, 320
algebraic independence, 87
algebraic integers, 330
alternating group, 305
Artin-Wedderburn structure theorem, 147
Artinian, left,, 158
ascending chain condition, 158
atom, 158
Börchers, 166
balanced map, 337
balanced tensor product, 256
basis, module, 320
blocks, 161
Blokker, 85
bra-ket formalism, 20
Brauer, 16
Burnside, 83, 214
Burnside $p q$ theorem, 231
Burnside theorem, 267
Carrell, 263
center
of $\mathbb{F}[G], 71,100,115$
of algebra, 71
of matrix algebras, 115
center of $\mathbb{F}\left[D_{5}\right], 350$
center of a group, 305
central idempotent, 74
central idempotents
in $\mathbb{F}\left[D_{5}\right], 88$
central idempotents in $\mathbb{F}\left[D_{5}\right], 350$
character, 27
character duality, Schur-Weyl , 272
character integrality, 213
character orthogonality, 48
character table, 54, 234
character table, $D_{5}, 349$
characteristic
of a field, 309
of a ring, 309
Chevalley-Jordan decomposition, 332
Chinese Remainder Theorem, 159, 314
circulant, 121
Clifford algebra, 61, 150, 151
column group, 174
commutant of S_{n} on $V^{\otimes n}, 269$
commuting semisimples, 157
complements
of modules, 81
complete set of coset representatives, 238
computational representation theory, 85
conjugacy class, 48, 305
conjugate, 305
conjugation, 31
convolution, 204
coprime, 313
cosets, 305
Coxeter group, 62
crystallographic groups, 61
cycle, 162
cycle length, 304
cycle structure, 276
cyclic group, 306
cyclic groups, 48
degree of polynomial, 325
descending chain condition, 158
determinant, 340
Dieudonné, 263
dihedral group, 51
dihedral group $D_{3}, 242$
dimension, vector space, 321
direct sum
of modules, 318
division algorithm, 326
division ring, 156
as commutant, 267
definition, 308
in Schur's Lemma, 104, 130, 253,
256
divisor
in ring, 308
Dixon, 42, 85, 216
dual representation, 17
irreducibility, 21
endomorphisms, 317
Euler, 51
extension field, 316
field, definition, 308
finitely generated module, 320
Flodmark, 85
Fourier sum, 289
free module, 320,323
Frobenius, 83
Frobenius character formula, 300
Frobenius map, 309
Frobenius reciprocity, 247
Frobenius-Schur indicator, 25, 228
fundamental group, 231
Galois group, 62
GAP, 216
gauge theories, 63
Gauss, 51
generator
of an ideal, 94
Gieseke, 166
group, 303
group algebra, 68
group determinant, 120, 218
group, abelian, 306
group, cyclic, 306
Haar integral, 284
Hecke algebra, 120
homomorphism, group, 304
hook length formula, 188
hyperplane arrangement, 189
ideal
principal, 308
two sided, 100,308
generated by a set, 308
left, 308
right, 308
idempotent
central, 74, 122, 138
central in $\mathbb{F}\left[S_{3}\right], 74$
definition, 137
in $\mathbb{F}[G], 73$
in $\mathbb{F}[G], 94$
indecomposable, 94, 117, 122, 124, lattice, 35, 158

138
primitive, 94
projection matrix, 117
idempotents
orthogonal, 73, 137, 318
orthogonal, 94
indecomposability criterion, 117
indecomposable
left ideal, 95, 122, 138
module, 122
right ideal, 138
indeterminates, noncommuting, 325
induced representation, functorial, 246
infimum, 158
injection
canonical, 318
inner product, 32
integral, 329
integral domain, 312
intersection lattice
for hyperplane arrangements, 189
invariant subspace, 16
involution, 35
irreducible, 313
irreducible polynomial, 326
irreducible represenation, 20
isomorphism of algebras, 320
isotropy, 306
Jacobson density theorem, 254
Jordan decomposition, 332
uniqueness, 319
Jucy-Murphy element, 192
kernel, 306, 311
Krull-Schmidt Theorem, 135
Lang, 150
complete, 158
intersection, 189
modular, 158
of submodules, 135
partition, 166
Laurent polynomial, 325
left ideal, 308
left module, 316
Legendre, 51
Legendre symbol, 50
linear independence, 320
Maschke's theorem, 81
matrix, 311
matrix algebra over division ring, 355
matrix element, 220
maximal element, 158
maximal ideal, 312
minimal element, 158
modular lattice, Dedekind, 158
module, left, 316
monic polynomial, 325
monomial, 325
morphism
of representations, 14
morphism of rings, 310
multilinear, 335
Noetherian, left, 158
non-degenerate bilinear form, 24
normal subgroup, 305
Okounkov-Vershik theory, 188, 192, 267
opposite multiplication, 105
opposite ring, 144,307
order, of a group, 304
orthogonality
of characters, 48
partition, 161,172
permutation length, 304
polynomial ring, 325
power series, 325
prime ideal, 312
principal ideal, 308
principal ideal domain, 313
product
of modules, 318
projection
canonical, 318
projective geometry, 35
projective representation, 36
quadratic form, 150
quadratic reciprocity, 51
quantum logic, 35
quaternions, 65
quotient module, 318
quotient representation, 16
reciprocity, Frobenius, 247
reflection, 188
reflection group, 189
reflection groups, 61
regular representation, 91
representation
complex, 12
equivalent, 14
irreducible, 20
one dimensional, 116
over rings, 14
quotient, 16
reducible, 20
definition, 12
dual, 17
faithful, 12
regular, 91
representation of $U(N), 283$
representations
sums of, 15
tensor products of, 15
Rieffel's theorem, 253
right ideal, 308
right ideals, isomorphic, 156
right module, 316
ring, 307
ring of fractions, 316
root of a polynomial, 327
row group, 174
sanity check, 154,355
Schur, 83
Schur's Lemma, 22, 130
for $\mathbb{F}[G], 70$
Schur's Lemma, commutant, 252
semigroup, 307
semisimple element, in algebra, 157
semisimple module, 129
definition, 81
semisimple ring, 129
definition, 81
semisimplicity
of $\mathbb{F}[G], 81$
shape of a Youngtab, 166
signature, 162, 304
simple module, 129
simple ring, 253
span, 320
splitting field
for algebras, 109
of a group, 23
splitting field, group, 219
stabilizer, 306
standard basis, 13
structure constants, 72,121
subalgebra, 320
subgroup, 305
subgroup, normal, 305
submodule, 317
subrepresentation, 16
subring, 310
supremum, 158
symmetric group, 304
symmetric group $S_{4}, 55$
symmetric tensor algebra, 85
synthetic geometry, 105
tensor algebra, 85
tensor product of modules, 336
tensor product, balanced, 337
tensor products
of representations, 15
torsion element, 322
torsion free, 322,361
trace, 340
transposition, 304
unitary group $U(N), 283$
universal property, tensor products, 336
upper triangular matrix, 331
Vandermonde determinant, 86, 286, 293, 299
variables, 325
vector space, 317
Wedderburn Theorem
for division algebras, 24,109
Wedderburn theorem, 267
weight of a $U(N)$ representation, 288
Weyl, 83
Weyl $U(N)$ character formula, 292

Weyl dimension formula, 293
Weyl groups, 62
Weyl integration formula, 286
Young complement, 168
Young diagrams, 163
Young symmetrizer, 173
Young symmetrizers for $S_{3}, 359$
Young tableau, 166
Young tableaux, 166
Youngtabs, 166

