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Abstract. We examine general copula models for the valuation of CDOs

and provide explicit formulas for the sensitivities with respect to spreads.
In the case of Gaussian copulas with non-uniform correlations, we prove a

functional relation between spread sensitivities and correlation sensitivities.

1. Introduction

The Gaussian copula model with uniform correlations has evolved as the indus-
try standard for the valuation of collateralized debt obligations (CDOs) referencing
liquidly traded credits. This model, established in the context of CDOs in the work
of Li [13], can be easily calibrated to observed market prices by varying the correla-
tion. In the context of the US subprime financial crisis and the subsequent market
turmoils, it has been heavily criticized for being too simplistic. Many extensions
of the Gaussian copula model are available in the literature, see [2] and [9]. A
good overview which also covers the practitioner’s view is given in the monograph
[3].

In this paper we examine general copula models, that is, not necessarily Gauss-
ian models, and provide explicit formulas for sensitivities with respect to spreads.
In the special case of Gaussian copulas with non-uniform correlations, we pro-
vide an explicit relation between the sensitivities with respect to spreads and the
correlation sensitivities.

Put more mathematically, we work with an RN -valued random variable X =
(X1, . . . , XN ) and study the ‘tranche loss’

L[a,b] =

{
N∑
m=1

lm1[Xm≤cm] − a

}
+

−

{
N∑
m=1

lm1[Xm≤cm] − b

}
+

,

where l1, . . . , lN > 0, 0 ≤ a ≤ b, and c1, . . . , cN ∈ R are parameters; we obtain
formulas for ∂E[L[a,b]]/∂cj that do not depend on any specific choice of the distri-
bution of X, and then, specializing to the case where X is Gaussian, with each Xj

being normalized to the standard Gaussian, we show that ∂E[L[0,a]]/∂rjk is ≤ 0,
where rjk = E[XjXk] is the correlation for any j 6= k. We establish other results
in this spirit and also indicate extensions to distributions other than Gaussian.
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In section 2 we work out a formula (2.21) for the ‘delta’ of a tranche for varia-
tions in the default probability of a specific constituent of the portfolio. This result
does not depend on any specific choice of copula. In section 3 we further examine
sensitivity to the default probability and obtain formulas using the specific copula
distribution; these are contained in Proposition 7.1 and Proposition 7.2. In section
4 we show, among other things, that for the Gaussian copula the expected loss
in an equity tranche decreases when correlation between the constituents of the
portfolio increases.

The work of Cousin and Laurent [4] uses very general order relation theory to
establish results on the sensitivity of equity tranche to correlation variation. This
approach uses the general theory of stochastic orders (Müller and Stoyan [16]).
The methods and strategy we use in the present paper are largely self-contained
and therefore more accessible. Our approach is in the spirit of Slepian inequalities
[18].

We refer to the work of Jarrow and van Deventer [10] for a thorough analysis
of the dependence of the risk of the equity tranche on correlation under various
scenarios and different models. In particular they observe that there are circum-
stances and models for which the equity tranche risk (suitably measured) does not
decrease as correlation increases. The work of Ağça and Islam [1] also explores
situations where an increase in correlation affects market-assessed default proba-
bilities and thereby also impacts the equity tranche spread, potentially increasing
it. Notwithstanding these cautionary findings, our work brings mathematical tech-
niques of Gaussian and related inequalities to the analysis of default phenomena,
the application to proving the relationship between equity tranche expected loss
and correlation being one illustration of these techniques.

2. Tranche loss function and delta

The default behavior in a CDO consisting of N names may be modeled by intro-
ducing random variables X1, . . . , XN , and certain threshold values c1, . . . , cN ∈ R,
with the event [Xm ≤ cm] being interpreted as default of the m-th name within a
given fixed time period. Thus the total loss during this period is

L =

N∑
m=1

lm1[Xm≤cm], (2.1)

where l1, . . . , lN > 0, with lm being the loss resulting from default of name m.
Increasing any cm potentially enlarges the corresponding set [Xm ≤ cm] and hence
also the value of L.

A tranche is described mathematically by a closed interval [a, b] with 0 ≤ a ≤ b,
and we define the corresponding tranche loss function t[a,b] by

t[a,b](x) = (x− a)+ − (x− b)+, for all x ∈ R,

=


0 if x < a;

x− a if x ∈ [a, b];

b− a if x > b.

(2.2)
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The first equation shows that t[a,b](x) is continuous in (a, b, x), and the second
triple of formulas show that it is a non-decreasing function of x.

Applying t[a,b] to the loss variable L, we see that t[a,b](L) represents the amount
for a total loss of L that would be apportioned to the tranche specfied by [a, b]. It
will be useful to note that

t[a,b](x) =

∫
[a,b]

1[0,x](s) ds (2.3)

for all x ≥ 0, and consequently

t[a,b](v)− t[a,b](u) =

∫
[a,b]

1(u,v](s) ds (2.4)

for all u ≤ v.
Combining the monotonicity observations we have made before, we see that for

any outcome ω ∈ Ω, the function

cj 7→ L[a,b](c1, . . . , cN )(ω)
def
= t[a,b]

( N∑
m=1

lm1[Xm≤cm](ω)
)

(2.5)

is monotone non-decreasing, with all values lying in the interval [0, b− a]; we can
check also that it is right-continuous. Hence the function

cj 7→ E
[
L[a,b](c1, . . . , cN )

]
(2.6)

is non-decreasing and right continuous.
Consequently, there is a Borel measure µj on R such that

µj
(
(u, v]

)
= E

[
L[a,b](c1, . . . , v, . . . cN )

]
− E

[
L[a,b](c1, . . . , u, . . . cN )

]
(2.7)

for all u ≤ v, where u and v appear in the j-th component on the right. We note
that

lj1[Xj≤v] − lj1[Xj≤u]
is 0 when Xj is ≤ u or is > v, and is equal to lj if Xj ∈ (u, v]. Thus,

L[a,b](c1, . . . , v, . . . cN )− L[a,b](c1, . . . , u, . . . cN )

=
(
t[a,b](lj + L′j)− t[a,b](L′j)

)
1[u<Xj≤v]

(2.8)

where

L′j =
∑

m∈{1,...,N}\{j}

lm1[Xm≤cm]. (2.9)

The threshold cj governs the default probability

pj = P[Xj ≤ cj ], (2.10)

and so the impact of an alteration in pj on expected tranche losses is related to
the sensitivity of such tranche losses to variation in cj .

The delta of the tranche [a, b] for the j-th threshold cj is a measure of the impact
on

E
[
L[a,b](c1, . . . , cN )

]
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of variation in cj , in relation to the impact on the loss on the entire ‘index’

E
[
L[0,Lmax](c1, . . . , cN )

]
=

N∑
m=1

lmE[1[Xm≤cm]], (2.11)

where
Lmax = l1 + · · ·+ lN . (2.12)

Thus, since only the j-th term is varied here, the delta should be

lim
ε↓0

E
[
L[a,b](c1, . . . , cj + ε, . . . cN )

]
− E

[
L[a,b](c1, . . . , cj , . . . cN )

]
ljE
[
1[cj≤Xj≤cj+ε]

] (2.13)

in some suitable sense. Here we have chosen to divide by lj , which is not always
done in practice. Notice also that the division by E

[
1[cj≤Xj≤cj+ε]

]
can also be

viewed as a measurement of the impact on the expected tranche loss due to a
change in the default probability pj of the j-th name. A reasonable precise formu-
lation of (2.13) is in terms of a Radon-Nikodym derivative. We define ∆j([a, b])
to be the Radon-Nikodym derivative

∆j([a, b]) =
dµj

ljdPXj
, (2.14)

where µj is the measure defined through (2.7), and PXj is the distribution measure
of Xj :

PXj (A) = P[Xj ∈ A]. (2.15)

Thus ∆j([a, b]) is the function on R for which

µj
(
(u, v]

)
= lj

∫ v

u

∆j([a, b])(c)dPXj (c)

= ljE
[
1[Xj∈(u,v] ]∆j([a, b])(Xj)

] (2.16)

for all u ≤ v. Equivalently,

µj(A) = ljE
[
1[Xj∈A]∆j([a, b])(Xj)

]
(2.17)

for all Borel A ⊂ R.
Looking back at the specification of µj in (2.7) and the observation (2.8) we

have

µj
(
(u, v]

)
= E

[
1[u<Xj≤v]

{
t[a,b]

(
lj + L′j

)
− t[a,b]

(
L′j
)}]

(2.18)

where
L′j =

∑
m∈{1,...,N}\{j}

lm1[Xm≤cm].

We can rewrite (2.18) after conditioning with respect to σ(Xj):

µj
(
(u, v]

)
= E

[
1[u<Xj≤v]D

]
(2.19)

where
D = E

[
t[a,b]

(
lj + L′j

)
− t[a,b]

(
L′j
)
|σ(Xj)

]
.

Comparing (2.19) with the specification of the delta in (2.16) we see that

∆j([a, b])(Xj) =
1

lj
E
[
t[a,b]

(
lj + L′j

)
− t[a,b]

(
L′j
)
|σ(Xj)

]
. (2.20)
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This roughly conforms to the idea that the delta measures the effect on the tranche
loss due to variation of the threshold cj . Next, recalling the expression for t[a,b](v)−
t[a,b](u) given in (2.4), we have

∆j([a, b])(Xj) =

∫
[a,b]

(
1

lj
E
[
1[L′j ,lj+L′j ](s) |σ(Xj)

])
ds, (2.21)

where the interchange of the integral
∫
. . . ds and the conditional expectation can

be justified by Fubini’s theorem. We can write (2.21) also as:

∆j([a, b])(Xj) =

∫
[a,b]

P
[
s− lj ≤ L′j ≤ s |σ(Xj)

]
lj

ds. (2.22)

If we take a = 0 and b = Lmax = l1 + · · · + lN in (2.21) then doing the integral∫ b
a
. . . ds first and then E[. . . |Xj ], we see that

∆j([0, L
max]) = 1.

Thus the tranche delta itself is a probability measure (this confirms at a very
general level a result proved in [15, Theorem 3.1] for the Gaussian copula).

3. Sensitivity to Thresholds

In this section we state our result concerning the sensitivity of expected tranche
losses to default probabilities pj as expressed through the default thresholds cj .
In the next section we shall see how sensitivity to the cj can be used to deter-
mine sensitivity to correlation when the distribution of the variables Xj is jointly
Gaussian. For the sake of expository clarity we defer the proofs of the results of
the present section to section 7.

Proposition 3.1. Let X = (X1, . . . , XN ) be an RN -valued random variable, with
density function p that satisfies

p(y1, y2, y3, . . . , yN ) ≤ B(y2, . . . , yN ) (3.1)

for all y ∈ RN and some B ∈ L1(RN−1). Let

L =

N∑
m=1

lm1[Xm≤cm],

where c1, . . . , cN ∈ R, and l1, . . . , lN > 0. Then the mixed partial derivative
∂2E[{L−a}+]

∂c1∂c2
exists and is non-negative:

∂2E [{L− a}+]

∂c1∂c2
≥ 0 (3.2)

for any a ≥ 0.
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4. Sensitivity to correlations

We specialize now to the case where the variables Xj have jointly Gaussian
distribution. Combining our previous results with some special properties of the
Gaussian we obtain the sensitivity of tranche losses to variation in correlation.
Gaussian inequalities of this nature were pioneered by Slepian [18] in the context
of extrema of Gaussian processes.

Theorem 4.1. Let (X1, . . . , XN ) be an RN -valued Gaussian variable, with each
Xm having mean 0 and variance 1, and covariance matrix R = [rjk] that is strictly
positive definite. Let

L =

N∑
m=1

lm1[Xm≤cm],

where c1, . . . , cN ∈ R, and l1, . . . , lN > 0. Then, for any a ≥ 0 and distinct
j, k ∈ {1, . . . , N},

∂rjkE[(L− a)+] = ∂cj∂ckE[(L− a)+]. (4.1)

Moreover,
∂E[(L− a)+]

∂rjk
≥ 0, (4.2)

and
∂E[t[0,a](L)]

∂rjk
≤ 0. (4.3)

Proof. Let

EL(c1, . . . , cN ) = E[(L− a)+]. (4.4)

The expectation E[(L− a)+] is given by

E[(L− a)+] =

∫
RN

(
lN (x)− a

)
+
Q(R, x) dx, (4.5)

where Q(R, x) is the Gaussian density

Q(R, x) =
(
det(2πR)

)−1/2
e−

1
2 〈x,R

−1x〉, (4.6)

and

lN (x) =

N∑
m=1

1(−∞,cm](xm). (4.7)

Note that lN is constant in the neighborhood of x if and only if xm 6= cm for each
component xm. Then

∂rjkE[(L− a)+] =

∫
RN

(
lN (x)− a

)
+
∂rjkQ(R, x) dx

=

∫
RN

(
lN (x)− a

)
+

∂2Q(R, x)

∂xj∂xk
dx,

(4.8)

on using dominated convergence in the first step and the Gaussian identity (4.15)
(proved below) in the second step. Writing the partial derivative ∂xj as the limit
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of a difference quotient and using dominated convergence, and repeating this for
xk, we have

∂rjkE[(L− a)+] = lim
εj↓0,εk↓0

1

εjεk

∫
RN

(
lN (x)− a

)
+

[∗] dx, (4.9)

where

[∗] = Q(R, x+ εjej + εkek)−Q(R, x+ εjej)−Q(R, x+ εkek) +Q(R, x). (4.10)

Splitting the integration on the right in (4.9) into four integrals corresplonding to
the terms in (4.10 ), and replacing xj by xj − εj and xk by xk − εk in these terms
judiciously, and then using

1(−∞,c](x− ε) = 1(−∞,c+ε](x),

we obtain

EL(c1, . . . , cj − εj , . . . , ck − εk, . . . , cN )− EL(c1, . . . , ck − εk, . . . , cN )

−EL(c1, . . . , cj − εj , . . . , cN ) + EL(c1, . . . , cN )
(4.11)

where EL is as defined by (4.4).
Dividing by εj and letting εj ↓ 0 yields

−∂EL(c1, . . . , cj , . . . , ck − εk, . . . , cN )

∂cj

+
∂EL(c1, . . . , cj , . . . , ck − εk, . . . , cN )

∂cj
,

(4.12)

with Proposition 7.2 guaranteeing that these partial derivates here do exist. Next,
dividing by εk and letting εk ↓ 0 we obtain, again using Proposition 7.2 for the
existence of the derivative,

∂2EL

∂cj∂ck
.

Looking back at (4.9) we conclude that

∂rjkE[(L− a)+] = ∂cj∂ckE[(L− a)+]. (4.13)

By Proposition 7.2 the right side here is ≥ 0. Note that Proposition 7.2 is ap-
plicable because the bound (3.1) holds for Q(R, x) with B being an appropriate
Gaussian function on RN−1.

The inequality (4.3) now follows on using

t[0,1](L) = L− (L− a)+

and the fact that L, being the sum of functions of the indivdual cj ’s has all the
mixed partial derivatives equal to 0. �

For the sake of completeness we include a proof of the following useful identity,
possibly first discovered by Plackett [17, eqn (3)], and used by Slepian [18, eqn
(34)], Joag-Dev et al. [11] and others in the context of Gaussian inequalities:
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Proposition 4.2. Let Q(R, x) be the Gaussian density

Q(R, x) =
(
det(2πR)

)−1/2
e−

1
2 〈x,R

−1x〉, (4.14)

where R is a d× d strictly positive-definite matrix R = [rjk] and x ∈ Rd. Then

∂Q(R, x)

∂rjk
=


1
2
∂2Q(R,x)
∂x2
j

if j = k;

∂2Q(R,x)
∂xj∂xk

if j 6= k.
(4.15)

Proof. We use the Gaussian integration formula

E[eaX ] = eaE[X]+ a2

2 var(X), (4.16)

for any Gaussian variable X and complex number a. Then∫
Rd
e〈a,x〉Q(R, x) dx = E[ea1Y1+...+adYd ] = e

1
2 〈a,Ra〉, (4.17)

where Y1, . . . , Yd are centered Gaussians with covariance

Cov(Yj , Yk) = rjk.

Taking partial derivatives of both sides of (4.17) with respect to rjk we have∫
Rd
e〈a,x〉

∂Q(R, x)

∂rjk
dx = e

1
2 〈a,Ra〉ajak if j 6= k.

and we recognize that the right side is equal to

e
1
2 〈a,Ra〉ajak =

∫
Rd

∂2e〈a,x〉

∂xj∂xk
Q(R, x) dx

and using integration by parts we can move the partial derivaties over to conclude
that for j 6= k:∫

Rd
e〈a,x〉

∂Q(R, x)

∂rjk
dx = e

1
2 〈a,Ra〉ajak =

∫
Rd
e〈a,x〉

∂2Q(R, x)

∂xj∂xk
dx.

The second terms in both integrands are L2(dx) functions and the above identity
holds for all complex a ∈ Cd; taking a ∈ iRN and using the injective nature of the
Fourier transform, we conclude that

∂Q(R, x)

∂rjk
=
∂2Q(R, x)

∂xj∂xk
, (4.18)

which is the second identity in (4.15 ). The first identity in (4.15 ) follows similarly
by using the integration formula:∫

Rd
e〈a,x〉

∂Q(R, x)

∂rjj
dx = e

1
2 〈a,Ra〉

1

2
a2j .

�
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5. Elliptically contoured distributions

An elliptically contoured distribution is a probablity measure on RN whose
density function is of the form

qR(x) =
1

(detR)1/2
q(〈x,R−1x〉), (5.1)

where R is a strictly positive definite matrix and q is a function normalized so that∫
RN qR(x) dx = 1. The two most widely used examples are the case of centered

Gaussian distributions and multivariate-t distributions. In the latter case the
function q is a constant times[

1 +
1

ν
〈x,R−1x〉

]− ν+N2
,

where ν > 0 is a parameter. The distribution described by qR has mean 0 and, as
may be verified by computation, covariance matrix R. Morever,

∂qR(x)

∂rjk
=

(
1− δjk

2

)
∂pR(x)

∂xj∂xk
for j, k ∈ {1, . . . , N}, (5.2)

where pR is related to p, given by

p(t) =
1

2

∫ ∞
t

q(s) ds, (5.3)

in the same way as qR is to q in (5.1). (In the Gaussian case in N dimensions,
the one-variable function q is given by q(s) = (2π)−N/2e−s/2, and p(t) coincides
with q(t), so that (5.2) becomes the Gaussian differential identity (4.15) we used
before.) The identity (5.2) was proved in Joag-Dev et. al [11, Prop. 2] and Gordon
[7, Prop. 1]. Then the equity-tranche sensitivity relation

∂E[t[0,a](L)]

∂rjk
≤ 0 for distinct j, k ∈ {1, . . . , N}, (5.4)

holds, with the proof being analogous to that of (4.3), assuming certain natural
conditions of smoothness and boundedness hold for q. Slepian-type inequalities
were first extended to elliptically contoured distributions in [5] and the method
greatly simplified in [11].

In this context let us make some remarks on correlation measures. A natural
measure of ‘rank correlation’ between two random variables X and Y is given by
Kendall’s tau [12]; the idea is that if (X ′, Y ′) is another instance (independent
copy) of (X,Y ) then the rank correlation is the expected value of the variable that
has value 1 if (X −X ′)(Y − Y ′) > 0, has value −1 if (X −X ′)(Y − Y ′) < 0. and
has value 0 in the case of ties:

τ = P[(X −X ′)(Y − Y ′) > 0]− P[(X −X ′)(Y − Y ′) < 0]. (5.5)

IfX and Y are replaced by h(X) and h(Y ), where h is a strictly increasing function,
then τ remains the same. For this reason τ is a better measure of correlation r
than the usual one in terms of normalized covariance, in situations where X and Y
are not directly meaningful variables but rather are proxies for some unobservable
variables. It has been shown by Lindskog et al. [14] that Kendall’s tau is related in
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a simple way to the traditional r in the case where (X,Y ) has elliptically contoured
distribution. The argument goes by using a suitable transformation of (X,Y ) to
reduce to the case where (X,Y ) is centered Gaussian, and then using the relation
(attributed in [14] to Stieltjes and Sheppard):

τ =
2

π
arcsin r. (5.6)

We indicate here a proof of this classical formula using the partial differential
equation for the the normal density Q(R, x), where now R is a 2× 2 matrix, with
the off-diagonal entries being r. (Note that in the case of variables X1, . . . , XN

we focus on pairs Xj , Xk.) We assume that r 6= 0, in which case X and Y are
nonzero and linearly independent (so that, furthermore, the probability of ties is
0); then

dτ

dr

=
d

dr

[
2

∫
x>x′,y>y′

Q(R, (x, y))Q(R, (x′, y′)) dxdydx′dy′ − 1

]
= 2

∫
x>x′,y>y′

[
∂2Q(R, (x, y))

∂x∂y
Q(R, (x′, y′)) +

∂2Q(R, (x′, y′))

∂x′∂y′
Q(R, (x, y))

]
dxdydx′dy′

= 4

∫
Q
(
R, (x, y)

)2
dxdy = 4

∫
(4π2 detR)−1e−〈v,R

−1v〉 dλ(v),

(5.7)

with λ being Lebesgue measure on R2, and we have used the formula

Q(R, v) =
1(

det(2πR)
)1/2 e−〈v,R−1v〉/2.

Setting v = 2−1/2R1/2w in the last integral in (5.7) we then have

dτ

dr
=

1

2π2 detR1/2

∫
R2

e−|w|
2/2 dλ(w) =

1

2π2 detR1/2
(2π)

=
1

π
√

1− r2
,

(5.8)

on taking, for the diagonal entries in the matrix R, the variances of X and Y to be
1. The case r = 1 arises from X = Y and in this case it is clear from the definition
of τ that τ = 1. Integrating (5.8) and requiring that τ → 1 as r → 1 we obtain
the relation

τ =
2

π
arcsin r.

6. Correlation between portfolios

Consider a portfolio consisting of N1 entities whose default behavior is governed
by a random variable X1 = (X11, . . . , X1N1), with j-th entity defaulting when X1j
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is below a threshold level c1j . Let us assume that there is a common random factor
Z1 to which the X1j are correlated through the relation:

X1j = ρ1jZ1 +
√

1− ρ21jε1j ,

where Z1, ε11, . . . , ε1N1 are independent variables, each with mean 0 and variance 1.
Now consider a second portfolio consisting of N2 entities whose default behavior
is governed in an analogous way by variables Z2, X2j and thresholds c2j . It is
then of interest to understand the sensitivity of the correlation between the equity
tranche losses of the two portfolios with respect to the correlation between Z1 and
Z2. To compute this sensitivity we assume that Z1, Z2, ε11, . . . , ε1N1 , ε21, . . . , ε2N2

are jointly Gaussian, each with mean 0 and unit variance. Let

Lm =

N1∑
j=1

lmj1[Xmj≤cmj ], for m ∈ {1, 2}. (6.1)

Let a1, a2 ≥ 0. Then by the same argument as was used for Theorem 4.1 we have:
Then

∂r1j,2kE [(L1 − a1)+(L2 − a2)+] = ∂c1j∂c2kE [(L1 − a1)+(L2 − a2)+] (6.2)

where

r1j,2k = E[X1jX2k].

Again following the methods used earlier we observe first that

∂c2kE [(L1 − a1)+(L2 − a2)+]

= lim
ε2↓0

1

ε2
E
[
(L1 − a1)+(l2k + L′2 − a2)+1[c2k<X2k≤c2k+ε2]

]
,

(6.3)

where

L′2 =
∑

m∈{1,...,N2}\{k}

lm1[X2m≤c2m]. (6.4)

The existence of the limit in (6.3) follows from the boundedness properties of
the Gaussian density. It is clear from the expression on the right in (6.3) that
this limit is ≥ 0. Applying the same argument now to the further derivative with
respect to c2k we obtain again a non-negative value. Hence,

∂r1j,2kE [(L1 − a1)+(L2 − a2)+] ≥ 0. (6.5)

7. Technical Results

In this section we prove technical results and use them to prove Proposition
3.1, which was presented in section 3.

Proposition 7.1. Let X be a random variable and Y an RM -valued random
variable, both defined on a probability space (Ω,F ,P). Let f1 and f0 be bounded
measurable functions on RM , and let us denote fj(y) by f(j, y). Suppose (X,Y )
has a continuous density function p on R × RM such that p is bounded by an
integrable function B on RM in the sense that p(x, y) ≤ B(y) for all (x, y) ∈ RM+1.
Then the function

φ : R→ R : c 7→ E[f(1[X≤c], Y )]
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is differentiable everywhere, the derivative being

φ′(c) =

∫
RM
{f(1, y)− f(0, y)} p(c, y) dy. (7.1)

Suppose now that the partial derivative ∂1p exists, and there is an integrable func-
tion B on RM in the sense that p(x, y) + |∂1p(x, y)| ≤ B(y) for all (x, y) ∈ RM+1.
Then φ′′(c) exists and

d2φ(c)

dc2
=

∫
RM
{f(1, y)− f(0, y)} ∂1p(c, y) dy. (7.2)

Proof. For any ε > 0 we have

f(1[X≤c+ε], Y )− f(1[X≤c], Y ) = {f(1, Y )− f(0, Y )} 1[c<X≤c+ε], (7.3)

and so

E[f(1[X≤c+ε], Y )]− E[f(1[X≤c], Y )] = E
[
{f(1, Y )− f(0, Y )} 1[c<X≤c+ε]

]
=

∫
[c,c+ε]

[∫
RM
{f(1, y)− f(0, y)} p(x, y) dy

]
dx.

(7.4)

Because of the boundedness condition we have imposed on p it follows by dom-
inated convergence that the term [· · · ] on the right in (7.4) is continuous as a
function of x. Consequently,

lim
ε↓0

1

ε
E[f(1[X≤c+ε], Y )]− E[f(1[X≤c], Y )]

=

∫
RM
{f(1, y)− f(0, y)} p(c, y) dy.

(7.5)

Working similarly with c and c− ε, we conclude that

dE[f(1[X≤c], Y )]

dc
=

∫
RM
{f(1, y)− f(0, y)} p(c, y) dy. (7.6)

Finally, the derivative formula (7.2) follows then using the boundedness assump-
tion on ∂1p. �

Now we apply Proposition 7.1 with X being X1,

Y = (X2, . . . , XN ),

and

f1(y) = t[a,b] (l1 + l′)

f0(y) = t[a,b] (0 + l′) .
(7.7)

where y = (y2, . . . , ym) and

l′ =

N∑
m=2

lm1(−∞,cm](ym). (7.8)
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Then

f(1[X≤c+ε], Y )− f(1[X≤c], Y )

= L[a,b](c1, . . . , cj + ε, . . . , cN )− L[a,b](c1, . . . , cj , . . . , cN )

= µj
(
(cj , cj + ε]) (using (2.7)).

(7.9)

Applying Proposition 7.1 we obtain:

dE[L[a,b](c1, . . . , cN )]

dc1
=

∫
RN−1

{f(1, y)− f(0, y)} p(c1, y) dy, (7.10)

where p is the density function (assumed to exist and satisfy the conditions of
Proposition 7.1) of (X1, . . . , XN ). Further, we can take the delta to be given by
the function ∆1([a, b]):

∆1([a, b])(c1) =

∫
RN−1 {f(1, y)− f(0, y)} p(c1, y) dy

l1p1(c1)
(7.11)

As a check we can take [a, b] = [0, Lmax], in which case f(a, y) = l1a+ y, and the
value on the right in (7.11) reduces to 1.

We can determine other second order sensitivities by using the following exten-
sion of Proposition 7.1:

Proposition 7.2. Let X1 and X2 be random variables and Y an RM -valued ran-
dom variable, all defined on a probability space (Ω,F ,P). Let fj,k, for j, k ∈ {0, 1},
be bounded measurable functions on RM , and let us denote fj,k(y) by f(j, k, y).
Suppose (X1, X2, Y ) has a continuous density function p on R2 ×RM such that p
is bounded by an integrable function B on R1+M in the sense that p(c1, c2, y) ≤
B(c2, y) for all (c1, c2, y) ∈ R2+M . Then for the function

φ : R2 → R : (c1, c2) 7→ E[f(1[X1≤c1], 1[X2≤c2], Y )]

the mixed partial derivative ∂2φ/∂c1∂c2 exists and

∂2φ(c1, c2)

∂c1∂c2

=

∫
RM
{f(1, 1, y)− f(1, 0, y)− f(0, 1, y) + f(0, 0, y)} p(c1, c2, y) dy.

(7.12)

Proof. By Proposition 7.1 we have

∂c1φ(c1, c2, y)

=

∫
RM+1

{
f(1, 1(−∞,c2](x2), y)− f(0, 1(−∞,c2](x2), y)

}
p(c1, x2, y)dx2dy.

(7.13)
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Then for any ε > 0 we have

∂c1φ(c1, c2 + ε, y)− ∂c1φ(c1, c2, y)

=

∫
RM+1

{
f(1, 1(−∞,c2+ε](x2), y)− f(0, 1(−∞,c2+ε](x2), y)

}
·

· p(c1, x2, y)dx2dy

−
∫
RM+1

{
f(1, 1(−∞,c2](x2), y)− f(0, 1(−∞,c2](x2), y)

}
p(c1, x2, y)dx2dy

=

∫
R1+M

D1(c2,c2+ε](x2)p(c1, x2, y) dx2 dy

(7.14)

where

D = f(1, 1, y)− f(1, 0, y)− f(0, 1, y) + f(0, 0, y).

Note that
∫
R[· · · ]1(c2,c2+ε](x2) dx2 is just

∫ c2+ε
c2

[· · · ] dx2. Dividing by ε and letting

ε ↓ 0, and arguing entirely similarly with (c2−ε, c2] instead of (c2, c2+ε], we obtain
the desired formula (7.12 ). �

We apply the preceding result to the special case where f is given as follows

fe(j, k, y) = {l1j + l2k + y − a}+, (7.15)

for some fixed a ∈ R, and Y = (X3, . . . , XN ). We assume that X = (X1, . . . , XN )
has a density function p satisfying the hypotheses in Proposition 7.2.

Lemma 7.3. For any l1, l2 ≥ 0 and any w ∈ R:

{l1 + l2 + w}+ − {l1 + w}+ − {l2 + w}+ + {w}+ ≥ 0. (7.16)

Proof. The function x 7→ x+ has increasing slopes in the sense that

(b+ h)+ − (a+ h)+ ≥ b+ − a+ if b ≥ a and h ≥ 0, (7.17)

which we can check separately in three cases: (i) if a < −h then the left side is
(b+ h)+ which is ≥ b+, the value of the right side; (ii) if a ∈ [−h, 0) then the left
side is b − a and the right side is b+ (which is ≤ b − a here since a < 0); (iii) if
a > 0 both sides equal b−a. We now take a = w, b = l1 +w, h = l2, and rearrange
the terms in (7.17) to obtain the desired inequality (7.16). �

Restating Lemma 7.3 in terms of the function fe given in (7.15) we see that

fe(1, 1, y)− fe(1, 0, y)− fe(0, 1, y) + fe(0, 0, y) ≥ 0 (7.18)

for all y ∈ R.
We can finally turn to the proof of the main result of section 3.

Proof. (Proof of Proposition 3.1.) We apply Proposition 7.2 applied with Y =
(X3, . . . , XN ), and taking for f the function fe given by

fe(j, k, y) = {jl1 + kl2 + y − a}+,

for all y ∈ R and j, k ∈ {0, 1}. Proposition 7.2can be applied because the inequality
(7.18) holds. �
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