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INTRODUCTION

In this paper we show that the large-N limit of U(N) quantum gauge theory in two
dimensions leads to a ‘free’ white noise, a concept which we will explain. This is, we
hope, a first step towards a more complete stochastic geometry for the two-dimensional
Yang-Mills field, where stochasticity is in the sense of free probability.

The study of the large-N limit of U(N) gauge theories grew rapidly in the physics
literature since the seminal work of ’t Hooft [13]. In the bibliography we cite just a
small sample of works by Bralic [2], Douglas [3], D. Gross [6], Kazakov and Kostov
[7, 8]; see [11] for a larger bibliography. On the mathematical side, Singer’s paper [12]
lays out several mathematical challenges in the area. More recent works by Biane [1],
Lévy [9] and Xu [17] have greatly clarified the large-N limit of Wilson loop expectation
values (see also [11] on this and related questions).

QUANTUM YANG-MILLS ON THE PLANE

In this section we will present a largely self-contained account of quantum Yang-Mills
theory on the plane. The material is adapted and condensed from Driver [4] and Gross
et al. [5], to which refer for details and further references.

U(N) connections on the plane

Gauge fields are described mathematically by connections on principal bundles. We
will work entirely in the setting where spacetime is modeled by the Euclidean plane R2,
and the gauge symmetry group is U(N), the group of N×N complex unitary matrices.
In this setting, we can view a gauge field as a 1-form on R2 with values in the Lie algebra

u(N) = iHN ,



where HN is the space of all N×N Hermitian matrices. We will use the inner-product
on HN given by

〈X ,Y 〉= Tr(XY ).

This specifies, naturally, an inner-product on u(N).
Let

A

denote the space of all smooth 1-forms on R2 with values in u(N). Thus, a typical
element of A is a 1-form

A = Axdx+Aydy

where Ax and Ay are smooth functions

R2→ u(N).

The curvature of A is the u(N)-valued 2-form given by

FA = dA+A∧A =− f Adx∧dy,

where the wedge product on the right uses matrix multiplication, dσ is the area 2-form
on R2, and

f A : R2→ u(N)

may be viewed as the scalar curvature function.

The Yang-Mills action and gauge transformations

The dynamics of the gauge field theory is governed by the Yang-Mills action func-
tional

SYM(A) =
1

2g2

∫
R2
|| f A||2 dxdy, (1)

where g is to be viewed as a physical ‘coupling’ constant. Here the integrand uses
the inner-product on u(N), and we are using the ordinary Euclidean metric on R2 for
simplicity.

The Yang-Mills action is invariant with respect to the action of the group of gauge
transformations on the space of connections. A gauge transformation is, in this frame-
work, a smooth function

φ : R2→U(N).

The set of all such functions is a group G under pointwise multiplication, and this group
acts on the vector space A :

A ×G →A : (A,φ) 7→ Aφ = φ
−1Aφ +φ

−1dφ . (2)

The subgroup
G0



consisting of all φ which have the value I (identity matrix) at the origin o ∈ R2 is often
more convenient to work with. Since SYM is invariant under the action of G , it may be
viewed as a function on the quotients A /G and A /Go.

By choosing an appropriate gauge transformation in Go, any given connection form
can be brought to the special form

A = Axdx+0dy, (3)

with Ax vanishing on the x-axis. For this reason, we will identify A /Go with the space
Ax of smooth functions Ax on R2, vanishing on the x-axis.

For a connection A whose y-component is 0, we have

f A =
∂Ax

∂y

and this leads to an injection

A /Go 'Ax→ L2(R2)⊗u(N) : Ax 7→
∂Ax

∂y
(4)

Thus Ax may be recovered as

Ax(x,y) =
∫ y

0
f A(x,s)ds. (5)

The Yang-Mills measure

The quantum theoretic functional integral associated to the Yang-Mills gauge field
leads to a ‘measure’ on A given formally as

e−SYM(A)DA

where DA is the formal ‘Lebesgue measure’ on A . Passing to the quotient Ax, and
changing ‘variables’ A 7→ f A (a linear map), yields a Gaussian measure:

dµ
g
YM(F) =

1
Zg

e−||F ||
2
L2/(2g2) dF, (6)

with F running over a linear space of maps R2 → u(N). Technically, this measure
actually lives on a Hilbert-Schmidt completion of L2(R2;u(N)), and its support does
not contain only continuous functions.

Parallel transport and holonomy

Consider a piecewise smooth path

c : [a,b]→ R2



and a connection form A, i.e. a smooth 1-form on R2 with values in u(N). Associated to
this is a path

h : [a,b]→U(N)

specified through the differential equation

h′(t)h(t)−1 =−A
(
c′(t)

)
with initial condition h(a) = I. (7)

The path t 7→ h(t)∈U(N) describes parallel transport along the path c by the connection
A.

If c is a loop, then the full transport h(b) is the holonomy of A around c:

h(c;A) def= h(b). (8)

Under gauge transformations the holonomy is conjugated. In particular, if c is a loop
based at the origin o, and if φ ∈ Go, then

h(c;Aφ ) = h(c;A)

for all A ∈A . We will be concerned with holonomies only of such loops. Then, in view
of the gauge fixing (3), we may as well focus on connection forms A of the form

A = Axdx,

with Ax zero on the x-axis. Consider then a smooth path parametrized as

[0,b]→ R2 : t 7→
(
t,y(t)

)
The equation of parallel transport is then

h′(t)h(t)−1 =−Ax =−
∫ y(t)

0
f A(t,y)dy (9)

We can write this as
dh(t) =−dMA(t)h(t), (10)

where

MA(t) =
∫ t

0

∫ y(s)

0
f A(s,y)dyds, (11)

where we used (5).
Note that h(t) is the holonomy of the loop which travels up from o along the y-axis

to (0,y(0)), then proceeds along the path s 7→
(
s,y(s)

)
up to time t, then travels down

parallel to the y-axis till hits y = 0, and then returns to the origin along the x-axis.

Stochastic holonomy

Now passing to the quantum theory, we have to consider connections which are
in the support of the measure µ

g
YM. These connections are not continuous and so the



differential equation (7) is difficult to work with, to say the least. However, as first noted
by L. Gross, equation (10) is still sensible when viewed as a Stratonovich stochastic
differential equation, and is the correct replacement in the stochastic case.

Under the Gaussian measure µ
g
YM, the integral (11) acquires meaning as a u(N)-

valued Gaussian random variable. More generally, we have a probability space

(Ω,F ,µ
g
YM)

and for each f ∈ L2
real(R

2) we have a u(N)-valued random variable

M( f ) : Ω→ u(N) : ω 7→M( f )(ω) =
d

∑
j=1

M j( f )(ω)iTj,

where iT1, ..., iTd is an orthonormal basis of u(N), and each M j( f ) is a mean-0 Gaussian
variable satisfying the correlation condition∫

M j( f )Mk(h)dµ
g
YM = g2〈 f ,h〉L2(R2) (12)

One should think of M( f ) informally as an integral
∫
R2 f (x,y)iF(x,y)dxdy, where iF is

the u(N)-valued Gaussian field. In particular, if

f = 1S,

for some bounded Borel subset S of R2, then M( f ) has independent components M j(1S),
each Gaussian with mean 0 and variance equal to g2 times the area of S.

In particular, we take the random variable M(t), analogous to MA(t), to be given by
evaluating M on the indicator function of the region between the path [0, t]→ R2 : s 7→
(s,y(s)), and the x-axis. This is Gaussian, mean 0, with each component having variance
equal to g2 times the area of the region. Rescaling time by this area (times g2), the
stochastic parallel-transport equation is the same as that for Brownian motion on U(N).

We will henceforth work only with ‘well-behaved’ paths, i.e. piecewise smooth paths
in R2 which are composites of pieces which can be parametrized by the x-coordinate
and those which rise or fall parallel to the y-axis.

Applying these considerations to a simple loop C based at the origin, the stochastic
holonomy

h(C)

is a U(N)-valued random variable with distribution

Qg2S(x)dx,

where dx is unit-mass Haar measure on U(N), S is the area enclosed by C, and Qt(x) is
the heat kernel on U(N).

The heat kernel Qt(x) solves

∂Qt(x)
∂ t

=
1
2

∆Qt(x),



with Q0(x) = δI(x), the delta function at the identity I on U(N), and ∆ is the Laplacian on
U(N) for the chosen inner-product on u(N). The heat kernel is invariant under inverses:

Qt(x−1) = Qt(x)

and satisfies the convolution formula

Qt ∗Qs = Qt+s

For the standard Brownian motion t 7→ Bt on U(N), starting at the identity at t = 0, the
probability density function of Bt with respect to unit-mass Haar measure on U(N) is
Qt .

The following result (Gross et al. [5] and Driver [4]) summarizes the main facts about
stochastic holonomy under the Yang-Mills measure:

Theorem 0.1 If C is a simple closed loop in R2 enclosing an area S then the holonomy
h(C) is a U(N)-valued random variable whose distribution is given by

Qg2S(x)dx,

where dx is unit-mass Haar measure on U(N). Moreover, if C1, ...,CN are loops in
the plane which enclose non-overlapping regions then h(C1), ...,h(CN) are mutually
independent random variables.

Thus, in particular,∫
(trh(C))k dµ

g
YM =

∫
U(N)

(tr(x))k Qg2S(x)dx, (13)

The large-N limit of (13) has been studied by Biane [1], Xu [17], the author [11], and,
more extensively, by Lévy [9].

LIMITING FORM OF THE WHITE NOISE

As we have seen before, the curvature of the gauge field connection form is described,
in a suitable gauge, as a u(N)-valued Gaussian white noise process on the plane. In this
section we will determine the limiting form of this process, as N → ∞ and g2N is kept
constant

g̃2 = Ng2.

Notions from Algebraic Probability

Here we shall summarize some notions from algebraic probability theory. For an
extensive account we refer to the excellent monograph by Nica and Speicher [10] (note,
however, that our terminology is slightly different).



Consider a complex algebra A , with unit element 1, and an involution

A →A : a 7→ a∗

satisfying
(ab)∗ = b∗a∗

and
a∗∗ = a

for all a,b ∈A . Two examples to keep in mind are :

(E1) A is the set of all complex-valued random variables, on some probability space,
with finite moments of all orders, under pointwise operations;

(E2) A is the algebra of complex N×N matrices with the involution being given by the
adjoint.

An algebraic probability ‘measure’ on A is a linear map

φ : A → C

satisfying
φ(1) = 1

and
φ(aa∗)≥ 0 for all a ∈A .

We will call A , equipped with φ , an algebraic probability space.
In example (E1) above, we can take φ to be given by the expected value, and in (E2)

by the trace normalized N−1Tr.
If a ∈ A is a normal element, i.e. it commutes with a∗, and there is a unique Borel

measure µa on C such that

φ
(
P(a,a∗)

)
=
∫

C
P(z,z)dµa(z)

holds for all polynomials P(z,w) in two variables, them µa is called the distribution of
a.

Consider subalgebras B1, ...,Bn of A , each closed under the involution and con-
taining the unit element 1. These subalgebras are said to be mutually free if for any
b1, ...,bm ∈A , for which each φ(bi) is 0, we have

φ(b1...bm) = 0

whenever consecutive bi belong to different B j (more precisely, b1 ∈ B j(1), ...,bm ∈
B j(m) with j(1) 6= j(2) 6= ... 6= j(m)).

In particular, we say that elements a1, ...,am ∈ A are free if the unital ∗-closed
algebras generated by these elements are mutually free.

In example (E1), with A the algebra of bounded random variables on a probability
space and φ the expectation value, there is also the traditional probabilistic notion of in-
dependence. Consider ∗-closed, unital subalgebras B1, ...,Bn, and assume, furthermore,



that every bounded Borel function of each element of Bi is in Bi, for all i ∈ {1, ...,n}.
Then B1, ...,Bn are independent if for any b1, ...,bm ∈A , for which each φ(bi) is 0, we
have

φ(b1...bm) = 0

whenever the bi all belong to different B j, i.e. b1 ∈ B j(1), ...,bm ∈ B j(m), with
j(1), ..., j(m) distinct in {1, ...,n}. To compare this with the standard definition of
independence, take b j to be 1B j −E(1B j) for measurable sets B j.

Finally, we come to the important notion of convergence. Suppose A ,A1,A2, ... is
a sequence of algebraic probability spaces. Consider normal elements a j ∈ A j, for all
j ≥ 1, and a normal element a ∈A , and suppose

lim
N→∞

φ
(
P(aN ,a∗N)

)
= φ

(
P(a,a∗)

)
for all polynomials P in two variables (note that φ on the left depends on N, and could
more properly be denoted φN , but we will use the unadorned φ as much as possible
to denote the trace functional in any context). Then we say that the sequence (aN)N≥1
converges in distribution to a:

aN
d→ a. (14)

More generally, suppose, for each N, we have normal elements aN,1, ...,aN,m ∈AN , and
we also have a1, ...,am ∈ A . We say that (aN,1, ...,aN,m) converges in distribution to
(a1, ...,am), as N→ ∞, if

lim
N→∞

φ
(
P
(
aN,1,a∗N,1, ...,aN,m,a∗N,m

))
= P

(
a1,a∗1, ...,am,a∗m

)
for all polynomials P in 2m non-commuting variables.

Free Limit of the White Noise Process

For N ∈ {1,2, ...}, let AN be the algebra of all complex N×N random matrices a (on
some probability space) such that each entry of a has finite moments of all orders; for
a ∈AN let

φ(a) = E
(
TrN(a)

)
(15)

where
TrN =

1
N

Tr

Then (AN ,φ) is an algebraic probability space. It is a combination of the two basic
examples (E1) and (E2) described earlier.

Consider a real separable Hilbert space H. In the application we have, H is L2
real(R

2).
Suppose now that we have a probability space and for each N ∈ {1,2, ...}, and f ∈ H, a
random Hermitian N×N matrix

F( f ) ∈AN ,

satisfying the following conditions:

(i) F( f ) is a random Hermitian matrix;



(ii) F( f ) depends linearly on f ;
(iii) for f 6= 0, the random variable F( f ) on HN has density proportional to

e−Tr(T 2)/(2g2|| f ||2) = e
−N Tr(T 2)

2g̃2|| f ||2 (16)

with T running over HN , the space of N×N Hermitian matrices.

Note that F( f ) is an N×N matrix, and occasionally, to stress the role of N, we may
denote it as FN( f ). We also state separately that

If f and h are orthogonal in H then the entries of the matrix FN( f ) are
independent, as random variables, of the entries of FN(h).

For a Hermitian matrix T , we have

Tab = Sab + iAab,

where S is a real symmetric matrix, and A a real skew-symmetric matrix. Then

Tr(T 2) =
N

∑
a=1

T 2
aa +2 ∑

1≤a<b≤N
(S2

ab +A2
ab)

The density factor (16) is then

N

∏
a=1

e−T 2
aa/(2g2|| f ||2)

∏
1≤a<b≤N

e−S2
ab/(g2|| f ||2)e−A2

ab/(g2|| f ||2)

which means that the random variables corresponding to the matrix entries Taa, Sab, Aab,
for a < b, are independent mean-0 Gaussians, and

E(T 2
aa) =

g̃2|| f ||2

N
,

E(S2
ab) =

g̃2|| f ||2

2N

E(A2
ab) =

g̃2|| f ||2

2N

(17)

for all 1≤ a < b≤ N. Here, and always, E denotes the expectation value.
A celebrated result of Wigner [16, Equation (4)] (with sketch proof in the earlier

paper Wigner [15, pp. 552-557]) says that if T is a random Hermitian N×N matrix with
density proportional to

e−NTr(T 2)/2 (18)

then, for any p ∈ {0,1,2, ...},

lim
N→∞

E
[
TrN(T 2p)

]
=

1
p+1

(
2p
p

)
(19)



and, note again that T is an N×N matrix. The odd moments are zero by symmetry of
the Gaussian distribution. The moments on the right in (19) are those of the standard
semi-circular distribution

1
2π

√
4− x2 dx x ∈ [−2,2]. (20)

The semicircular distribution of radius r > 0 has density

2
πr2

√
r2− x2 dx x ∈ [−r,r]. (21)

From the Wigner semi-circular law (19) we conclude that

lim
N→∞

φ
(
FN( f )2p)= g̃2p|| f ||2p 1

p+1

(
2p
p

)
(22)

Now let f1, ..., fm ∈ H be orthogonal vectors. Then the random matrices

FN( f1), ...,FN( fm)

are mutually independent in the sense that each entry of the matrix FN( f j) is independent
of each entry of FN( fk) for j 6= k.

We will now use a powerful extension, due to Voiculescu [14, Theorem 2.2], of the
Wigner semi-circle law: if AN,1, ...,AN,m are independent Hermitian N×N random ma-
trices, each with Gaussian distribution given through (18), then (AN,1, ...,AN,m) con-
verges in distribution to (a1, ...,am) where a1, ...,am are mutually free elements in some
algebraic probability space with each a j having the standard semicircular distribution
(20).

We conclude then that

(FN( f1), ...,FN( fm)) d→ ( f ′1, ..., f ′m) (23)

where f ′1, ..., f ′m are mutually free elements in some algebraic probability space and each
f ′j is semicircular with radius 2g̃|| f j|| (if f j is 0 then f ′j is 0).

Clearly, we would like one algebraic probability space to which all the elements of
the form f ′ belong. Fortunately, this is possible, by means of the full Fock space:

F (H) =
⊕
n≥0

H⊗n
c , (24)

where Hc is the complexification of H, and the 0-th tensor power is simply C. The
element 1 in C, viewed as an element of F (H) is called the vacuum vector and we will
denote it as 1. The C∗-algebra

B
(
F (H)

)
of all bounded operators on the Hilbert space F (H), is an algebraic probability space
when equipped with the trace functional

φ(A) = 〈A1,1〉 for A ∈ B
(
F (H)

)
. (25)



Now for any f ∈ H let c( f ) be the creation operator defined on F (H) by

c( f )( f1⊗·· ·⊗ fn) = f ⊗ f1⊗·· ·⊗ fn

for all n ∈ {1,2, ...} and all f1, ..., fn ∈ H, and

c( f )1 = f .

The annihilation operator a( f ) is the adjoint

a( f ) = c( f )∗,

and acts by
a( f )( f1⊗·· ·⊗ fn) = 〈 f1, f 〉 f2⊗·· ·⊗ fn.

Then (see [10, Corollary 7.17]) the self-adjoint element

b( f ) = a( f )+ c( f )

is semicircular with radius 2|| f ||; moreover, if f1, ..., fm are orthogonal vectors in H then
b( f1), ...,b( fm) are mutually free.

The mapping
H→ B

(
F (H)

)
: f 7→ b( f )

may be thought of as a ‘free noise’ process, analogous the white noise process of
standard probability theory.

Combining all our observations, we see that the algebraic probability space
B
(
F (H)

)
, with the trace functional φ from (25), is the appropriate ‘limit’ of the

spaces (AN ,φ). To state this more precisely, let

F∞( f ) = g̃b( f ) for f ∈ H. (26)

Then, for any orthogonal f1, ..., fm ∈ H, we have(
FN( f1), ...,FN( fm)

) d→
(
F∞( f1), ...,F∞( fm)

)
(27)

as N→ ∞, keeping g̃ fixed.
We can remove the orthogonality assumption on the vectors f1, ..., fm. For non-zero

vectors f1, ..., fm, we can always express them as real linear combinations of a suitable
set of orthonormal vectors. Since both FN and b(·) are real-linear, (27) continues to hold.

CONCLUDING REMARKS

In this paper we have shown how the U(N) quantum Yang-Mills measure for the plane
R2 yields a free noise process as N → ∞. It would be of interest to relate this limit to
the approach described by Singer [12]. It should also be possible to connect the free-
noise process to the large-N limit of Wilson loop expectations described in the physics
literature as well as the mathematical works of Biane [1], Lévy [9], and Xu [17]. Results
concerning the large-N limit of Wilson loop expectations are reviewed and developed in
[11]. There are numerous outstanding mathematical challenges concerning the N = ∞

theory, as well as the limiting behavior as N→ ∞, that may be taken up.
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