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The Bound State Problem

Two Defects on a Line

Density of Bound States

A bound state is a finite-energy localized state of an extended system.

Bound states are created at discrete energies by a defect within an otherwise
homogeneous medium. As the number of defects increases, the system
supports more bound-state frequencies. We are interested in knowing how
these frequencies are distributed and how this distribution depends on the
distance L between the defects.

We analyze a toy model in which bound states can be computed analytically
and numerically. It consists of a radiation line with defects.
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The state function ¢ for frequency w satisfies y f = wo(x).

intervals separated by the defects, ¢(x) has the for)Fn
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in whichyv=—ik and k= w.

We apply the following defect conditions on each defect in our model:
» Continuity at each defect: ¢(07) = ¢(0")

» Jump condition at each defect: ¢'(07) — ¢'(07) = —a¢(0)

In each of the
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One Defect on a Line

Starting with the simplest case of one defect
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The field in this case is as follows.
b(x) = {AoeV(X+L) + Bpe™* forx <0
Aje * + BieVx L) forx > 0
The bound state of this model occurs when Ay, B; =0 and A;, By # 0.

To solve for w’'s when this occurs, we use the following matrices to relate the
field and coefficients on either side of the defect:
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d(x) gives our field at x given the coefficients and V,, takes us from one side of a

defect to the other.
We create our transfer matrix, T, giving us A, B; from Ay, By.
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Recall, we are solving for the non-trivial solution of Ay, Bi= 0. This Iis equivalent

to saying the 2,2 entry of our transfer matrix is O.
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The final solution is w = —%.

A second defect is added to our graph, at a distance of L.

The field in this case Is as follows.

A()e_V(XjLL) + Bpe ™ for x <0
d(x) = { Aje " + Bre?W b for0 <x<L
Aze_v(x_l‘) + BQéV(X_ZL) for L <x

The bound state of this model occurs when A, B, = 0 and A,, By # 0.
We create our transfer matrix, T, giving us A,, B, from Ay, By.
Ag
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Our transfer matrix takes a special form of being the square of a monodromy

matrix, we refer to as M. Our transfer matrix can be written as follows.
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Recall, we are solving for the non-trivial solution of Ay, B,= 0. This is equivalent
to saying the 2,2 entry of our transfer matrix is O.

The system supports two bound states whose frequencies satisfy
a(l 4+ e VEILy =2 /1]

T = M?

N Defects on a Line

We now analyze a graph with an arbitrary number of defects, N.
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The field in this case is as follows.
Apge WL 4 Be™ for x <0
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for (n — 1)L < x < nL
for (N —1)L <x

The bound state of this model occurs when Ay, By = 0 and Ay, By # 0. We
create our transfer matrix, T, giving us Ay, By from Ay, By.

—~vL e Qo
T :MN _ € i (1 | 27) E A() _ AN

By By > e’ (1 — 55 )| |Bo By

Recall, we are solving for the non-trivial solution of Ay, By= 0. This Is equivalent
to saying the 2,2 entry of our transfer matrix is 0. We solve for this value by
diagonalizing our monodromy matrix, M.
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from which we find that 1,0 = A\™Yad — \¥¢b = 0
We substitute in values for a, b, ¢, and d we get a final equation of

e (1 + £) sin(NO) — sin((N + 1)) = 0
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By analyzing the characteristic polynomial, we see its eigenvalues, A and A\,
satisfy the property A\~ =1

» Characteristic Polynomial= \* — (e"(1 — 32) + e (1 + 32))A + 1

By analyzing the trace, we see its eigenvalues satisfy the property A + A= € R
> Trace= e’*(1 — 35) + e (1 + 32
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From both of these observations can deduce the following.
» If | trace | < 2then A = ¢ and A~ = ¢ and that A + A\~ = 2 cos

» If | trace | > 2then A, A € R
We concern ourselves only with values of A = ¢ which is the range for which

we get propagation throughout the periodic medium.

By analytically diagonalizing the Monodromy matrix we are left with the
following two equations to solve simultaneously:

> ¢ (1 +55)sin(NO) — sin((N + 1)0) = 0

> 2cost) — (1 — ) —e (1 +55) =0

Solutions for this system of equations are shown below for varying values of L
and N.
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These graphs display bound-state solutions for w, plotted on the w axis, ranging
from -0.32 to -0.12.

Asymptotic Density of Bound States

Analyzing these results we can clearly note two things.

» AS we Increase the number of defects, N, the number of discrete
frequencies w that create a bound state increases.

» As we increase the distance, L, between defects, the length of the interval
on which these frequencies fall decreases.

As N — oo, the bound state frequencies, w, fill a band according to an

asymptotic density given by p(w) = % "W).
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We see that solutions of w are more dense near the ends of the band of bound
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