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The Bound State Problem

A bound state is a finite-energy localized state of an extended system.
Bound states are created at discrete energies by a defect within an otherwise
homogeneous medium. As the number of defects increases, the system
supports more bound-state frequencies. We are interested in knowing how
these frequencies are distributed and how this distribution depends on the
distance L between the defects.
We analyze a toy model in which bound states can be computed analytically
and numerically. It consists of a radiation line with defects.

1 defect

2 defects

...
N defects

∞ defects

The state function φ for frequency ω satisfies −d2φ

dx2 = ωφ(x). In each of the
intervals separated by the defects, φ(x) has the form

φ(x) =

{
Ae−γx + Beγx for ω < 0
Aeikx + Be−ikx for ω > 0

in which γ= −ik and k =
√
ω .

We apply the following defect conditions on each defect in our model:
I Continuity at each defect: φ(0−) = φ(0+)

I Jump condition at each defect: φ′(0+)− φ′(0−) = −αφ(0)

One Defect on a Line

Starting with the simplest case of one defect
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The field in this case is as follows.

φ(x) =

{
A0e−γ(x+L) + B0eγx for x ≤ 0
A1e−γx + B1eγ(x−L) for x ≥ 0

The bound state of this model occurs when A0, B1 = 0 and A1, B0 6= 0.
To solve for ω’s when this occurs, we use the following matrices to relate the
field and coefficients on either side of the defect:

I

 φ(x)

γ−1φ′(x)

 = Φ(x)

An

Bn

 ; Φ(x) =

 e−γ(x−(n−1)L) eγ(x−nL)

−e−γ(x−(n−1)L) eγ(x−nL)



I

 φ(x+

γ−1φ′(x+)

 = Vα

 φ(x−)

γ−1φ′(x−)

 ; Vα =

 1 0
−α
γ 1


Φ(x) gives our field at x given the coefficients and Vα takes us from one side of a
defect to the other.
We create our transfer matrix, T, giving us A1,B1 from A0,B0.

T = Φ−1(0)VαΦ(0)

A0

B0

 =

e−γL(1 + α
2γ)

α
2γ

−α
2γ eγL(1− α

2γ)

A0

B0

 =

A1

B1


Recall, we are solving for the non-trivial solution of A0,B1= 0. This is equivalent
to saying the 2,2 entry of our transfer matrix is 0.

The final solution is ω = −α2

4 .

Two Defects on a Line

A second defect is added to our graph, at a distance of L.
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The field in this case is as follows.

φ(x) =


A0e−γ(x+L) + B0eγx for x ≤ 0
A1e−γx + B1eγ(x−L) for 0 ≤ x ≤ L
A2e−γ(x−L) + B2eγ(x−2L) for L ≤ x

The bound state of this model occurs when A0, B2 = 0 and A2, B0 6= 0.
We create our transfer matrix, T, giving us A2,B2 from A0,B0.

T

A0

B0

 = Φ−1(L)VαΦ(L)Φ−1(0)VαΦ(0)

A0

B0

 =

A2

B2


Our transfer matrix takes a special form of being the square of a monodromy
matrix, we refer to as M. Our transfer matrix can be written as follows.

T = M2 = [Φ−1(x)VαΦ(x)]2 =

[
e−γL(1 + α

2γ)
α
2γ

−α
2γ eγL(1− α

2γ)

]2

Recall, we are solving for the non-trivial solution of A0,B2= 0. This is equivalent
to saying the 2,2 entry of our transfer matrix is 0.
The system supports two bound states whose frequencies satisfy
α(1± e−

√
|ω|L) = 2

√
|ω|.

N Defects on a Line

We now analyze a graph with an arbitrary number of defects, N.
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The field in this case is as follows.

φ(x) =


A0e−γ(x+L) + B0eγx for x ≤ 0
Ane−γ(x−(n−1)L) + Bneγ(x−nL) for (n− 1)L ≤ x ≤ nL
ANe−γ(x−(N−1)L) + BNeγ(x−NL) for (N − 1)L ≤ x

The bound state of this model occurs when A0, BN = 0 and AN, B0 6= 0. We
create our transfer matrix, T, giving us AN,BN from A0,B0.

T

A0

B0

 = MN

A0

B0

 =

e−γL(1 + α
2γ)

α
2γ

−α
2γ eγL(1− α

2γ)

N A0

B0

 =

AN

BN


Recall, we are solving for the non-trivial solution of A0,BN= 0. This is equivalent
to saying the 2,2 entry of our transfer matrix is 0. We solve for this value by
diagonalizing our monodromy matrix, M.

MN = P−1DNP = 1
ad−bc

[
d −c
−b d

] [
λ 0
0 λ−

]−N [a b
c d

]
from which we find that t22 = λ−Nad − λNcb = 0
We substitute in values for a, b, c, and d we get a final equation of
e−γL(1 + α

2γ) sin(Nθ)− sin((N + 1)θ) = 0

By analyzing the characteristic polynomial, we see its eigenvalues, λ and λ−,
satisfy the property λλ− = 1

I Characteristic Polynomial= λ2− (eγL(1− α
2γ) + e−γL(1 + α

2γ))λ + 1

By analyzing the trace, we see its eigenvalues satisfy the property λ + λ− ∈ R
I Trace= eγL(1− α

2γ) + e−γL(1 + α
2γ)

Density of Bound States

From both of these observations can deduce the following.
I If | trace | ≤ 2 then λ = eiθ and λ− = e−iθ and that λ + λ− = 2 cos θ

I If | trace | ≥ 2 then λ, λ− ∈ R
We concern ourselves only with values of λ = eiθ which is the range for which
we get propagation throughout the periodic medium.

By analytically diagonalizing the Monodromy matrix we are left with the
following two equations to solve simultaneously:

I e−γL(1 + α
2γ) sin(Nθ)− sin((N + 1)θ) = 0

I 2 cos θ − eγL(1− α
2γ)− e−γL(1 + α

2γ) = 0

Solutions for this system of equations are shown below for varying values of L
and N.
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These graphs display bound-state solutions for ω, plotted on the ω axis, ranging
from -0.32 to -0.12.

Asymptotic Density of Bound States

Analyzing these results we can clearly note two things.
I As we increase the number of defects, N, the number of discrete

frequencies ω that create a bound state increases.

I As we increase the distance, L, between defects, the length of the interval
on which these frequencies fall decreases.

As N →∞, the bound state frequencies, ω, fill a band according to an

asymptotic density given by ρ(ω) =
1
π
θ′(ω).

ρ(ω)

ω−(L) ω+(L)

We see that solutions of ω are more dense near the ends of the band of bound
state frequencies. Email: swiese2@lsu.edu


