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Abstract
The frequencies at which a string freely oscillates are commonly known as the
harmonics, or overtones, of the string. They are simple and easy to compute for
single stretched uniform string. But when several strings are coupled to each
other at their endpoints, the free oscillations of the configuration of strings
becomes more interesting and tricky to compute. Computation of the
frequencies amounts to finding the eigenvalues of a coupled system of ordinary
differential equations. Even for simple configurations, the results can be
unexpected. We calculate the free frequencies and the corresponding
vibrational displacement in some explicit examples. Dynamic animations bring
these vibrational modes to life!

Physics of free oscillations

I A wave is a disturbance which travels through a medium. When a wave is
present in a medium the individual particles of the medium are temporarily
displaced from their equilibrium position. Forces act on the particles which
cause the displacement and to restore them to their equilibrium position.

I The behavior of single strings may be intuitive given its occurrence in our
everyday life. Musicians in particular may be especially familiar with the
behavior of strings. As a the string vibrates, the traverse wave travels
perpendicular to the oscillations, and it obtains some frequency along with
particular harmonics.

I When a transverse wave on a string is fixed at the end point, the reflected
wave is inverted from the incident wave, but it is free at the end point, the
reflected wave is not inverted from the incident wave. The behavior of these
waves depends on influences such as the mass density of the string, tension,
the length of the string, and its vertical displacement.
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I The behavior of these waves are significantly more complicated when in
combination with several other strings. We will study the behavior of these
complex waves on strings to finds some interesting and unexpected results.
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Edge and vertex conditions

Edge Conditions:

First we will describe the equation that describes the motion of the
displacement of a string.
I x is the distance along the string
I u(x, t) displacement vertically
I ρ is the density of the string
I τ is the tension

The wave equation governs the displacement of a string:

ρ
d2u
dt2 = τ

d2u
dx2

This applies to each string represented by an edge of the graph.

Vertex Conditions:
Let u1, . . . , un denote the displacements of the n strings connected at a vertex,
with x = 0 corresponding to the joining vertex.
I At any vertex where multiple strings meet, the displacement of the strings

must be equal, so
u1(0, t) = · · · = un(0, t) (continuity)

I Since there is no point mass at any vertex where strings meet, the net force
at each vertex must equal zero. The force exerted by a string is proportional
to the derivative of its displacement out of the vertex along the corresponding
edge. Therefore, the sum these outward derivatives is zero:

n∑
i=1

∂ui

∂x
(0, t) = 0 (force balance)

Free oscillations

We seek displacements of the strings oscillating at frequency ω:
u(x, t) = f (x)eiωt

Inserting this into the wave equation gives the ODE −ρω2f (x) = τ f ′′(x), or

−f ′′(x) =
(ω

c

)2
f (x)

where the constant
c =

√
τ/ρ

is the speed, or celerity, of waves in the strings.
Putting ui(x, t) = fi(x)eiωt for the n edges emanating from a vertex, the vertex
conditions become

f1(0) = · · · = fn(0) (continuity)
n∑

i=1

f ′i (0) = 0 (force balance)

Eigenvalue problem for graphs

The problem of finding the free oscillatory motions u(x, t) = f (x)eiωt on the string
network as a whole becomes an eigenvalue problem for the operator −d2/dx2:

−f ′′(x) = λ f (x)

where the eigenvalue is related to the frequency and celerity by

λ =
(ω

c

)2

with all the functions f on the edges being subject to the vertex conditions of
continuity of force balance.

Computation of an example
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In this example, two strings of length 1 are connected to a
string of length 1/2 on a frictionless loop on a rod. The two
strings of length 1 are tied down at the other end, and the
string of length 1/2 is free to move along a frictionless rod.

Restrictions from ODE and vertex conditions
1. − d2

dx2f = λf
2. f1(0) = f2(0) = f ′3(0) = 0
3. f1(1) = f2(1) = f3(1/2)
4. f ′1(1) + f ′2(1) + f ′3(1/2) = 0

=⇒ f = a sin(
√
λx) + b cos(

√
λx)

⇒ f1 = a1 sin(
√
λx), f2 = a2 sin(

√
λx), f3 = a3 cos(

√
λx)

=⇒ a1 sin(
√
λ) = a2 sin(

√
λ) = a3 cos(

√
λ/2)

=⇒
√
λ
(
(a1 + a2) cos

√
λ− a3 sin(

√
λ/2)

)
= 0

Computing eigenvalues λ and eigenfunctions
The first equality in (3) leads to two distinct families of eigenfunctions:

Case 1: If sin
√
λ 6= 0

(3) =⇒ a1 = a2; then (3,4) becomes sin
√
λ − cos

√
λ
2

2 cos
√
λ − sin

√
λ
2

[a1

a3

]
=

[
0
0

]
Eigenvalue condition (EC) is det� = 0,
meaning that λ must satisfy

(EC) sin
√
λ sin

√
λ

2
+ 2 cos

√
λ cos

√
λ

2
= 0

Eigenfunctions: [f1, f2, f3] in (2) with
[a1, a2, a3] =

const.×

[
sin

√
λ

2
, sin

√
λ

2
, 2 cos

√
λ

]

Case 2: If sin
√
λ = 0

=⇒
√
λ = πk for k ∈ Z

Subcase 2A: a3 = 0
(4) =⇒ a1 + a2 = 0
Eigenfunctions: [f1, f2, f3] in (2) with
[a1, a2, a3] = const× [1,−1, 0]

Subcase 2B: cos
√
λ

2 = 0
=⇒

√
λ = π + 2nπ, n ∈ Z

(4) =⇒ a1 + a2 + (−1)na3 = 0
Eigenfunctions: [f1, f2, f3] in (2) with
[a1, a2, a3] = const× [1,−1, 0]

+ const× [1, 0, (−1)n+1]

Depictions of the eigenfunctions

To compute numerically the waves in our string, which are the eigenfunctions
computed above, I used Mathematica R©.
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Case 2B. This is a picture of
the displacement of the eleventh
mode of this family of free oscilla-
tions. For n = 11, the eigenvalue is
λ = (23π)2, which means that the
vibrational frequency is ω = 23πc.
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Case 1. This is a picture of the
displacement of the fifth mode of
this family of free oscillations. The
eigenvalue λ was computed nu-
merically.
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