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Resonant Interaction Between Bound and Radiating States

Periodic structures, such as crystal lattices or the screen of a microwave
oven, possess two properties that make them physically interesting as well as
important for the engineering of a wide range of devices:
1) They allow waves (electromagnetic, elastic, acoustic) to propagate only at
frequencies in certain “propagation bands”. These waves are radiation states.
2) A defect in the structure can trap energy at characteristic frequencies by
allowing localized oscillations, called bound states.
Typically, a bound state is formed at a frequency out-
side a propagation band. But under special conditions,
a bound state can be formed at a frequency that is em-
bedded in the propagation band. Such states are un-
stable because they couple with radiation modes when
the system is slightly perturbed. This causes resonant
interaction between bound states and radiation, re-
sulting in field amplification and sensitive dependence
of energy transmission across the defect (see figure).
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Optical resonance in a waveguide.
κ is a perturbation parameter.

(Shipman/Venakides 2005)

This study examines this resonant interaction in a 1D lattice of interacting
beads. In order to trap energy in a defect at a frequency that allows radiation,
each bead must interact with four neighboring beads (not just two).

First and Second Neighbor Interactions in a Uniform Lattice

Consider an infinite chain of beads of mass m connected by springs. Each bead
is constrained to move vertically and is connected to its nearest neighbors by a
spring of tension τ1 and to its second neighbors by a spring of tension τ2.

The height xn(t) of the nth bead is governed by the equation of motion
mẍ = −τ1(xn− xn−1)− τ1(xn− xn+1)− τ2(xn− xn−2)− τ2(xn− xn+2)

In harmonic motion, each bead vibrates at the same frequency ω:
xn(t) = Une−iωt , Un = rneiθn

Inserting this form into the equations of motion gives the fourth-order recursion
− ω2mUn = τ1(Un+1 + Un−1− 2Un) + τ2(Un+2 + Un−2− 2Un) (1)

This system has solutions Un = zn, where z satisfies the polynomial equation
ω2m− 2(τ1 + τ2) + τ1(z + z−1) + τ2(z2 + z−2) = 0 (2)

which has four roots z. These roots come in reciprocal pairs z ∈ {z1, z−1
1 , z2, z−1

2 }.
The general solution for Un is a linear combination of elementary solutions:

Un = Azn
1 + Bz−n

1 + Czn
2 + Dz−n

2

We are particularly interested in the case that |z| = 1, that is, z = eik for k real,
because these roots correspond to propagating waves in the lattice:

xn(t) = zne−iωt = ei(kn−ωt) [propagating wave]

There is a propagation band of frequencies (0, ω1) for which there are such
solutions. The dispersion relation between wavenumber k and frequency ω is
obtained by putting z = eik into (2) (blue graph below):

ω2 m
2

= (τ1 + τ2)− τ1 cos k − τ2 cos 2k [dispersion relation]

In a subinterval (ω0, ω1), there are two propagating modes corresponding to two
pairs of wavenumbers k = ±k1 and k = ±k2 (blue). For ω ∈ (0, ω0), there is one
propagating mode z = e±ik (blue) and one exponential mode (z = −e±β) (red).
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Scattering by a Defect

Now suppose that the masses at n = −1, 0, 1 are defective.
Oscillatory sources to the right and left of the defect emit both propagating and
evanescent (exponentially decaying) waves, and these are scattered by the
defect, being partially reflected and partially transmitted. The position of the
beads is a superposition of evanescent sources, propagating sources and
scattered field evanescent responses, and propagating responses.

Un =

{
Un = Jrpeikn + Vlpe−ikn + Jrezn + Vlez−n n ≤ 0 ,

Un = Jlpe−ikn + Vrpeikn + Jlez−n + Vrezn n ≥ 0 .
(−1 < z < 0) (3)

The eight coefficients must satisfy four linear conditions:
Matching of solutions at n = 0
Balance of forces (the analog of (1)) at n = 1, n = 0, and n = 1

The system is too large to fit on this poster, but it can be put in matrix form

B ~V = A ~J [scattering problem] (4)

in which A and B are 4× 4 matrices, ~J are the incoming source fields, and ~V are
the outgoing scattered fields:

~J = [Jrp, Jlp, Jre, Jle]
T [incoming source] ~V = [Vlp,Vrp,Vle,Vre]

T [outgoing scattered]

Embedded Bound States: Trapping Energy at a Defect

In a propagation band, it is difficult to trap energy at a defect because it is
possible for energy to radiate out at that frequency and a purely evanescent
field is thus unstable. However, under specific conditions, energy can be
trapped in a field (a bound state) that is exponentially decaying as n→ ±∞.

Un =

{
z−n n ≤ 0
zn n ≥ 0 (−1 < z < 0)

[bound state]

Such a field must satisfy the balance-of-force equations analogous to (1) at
n = −1, 0, 1. Assuming the masses at n = −1 and n = 1 are equal (m−1 = m1),
this results in expressions for m1 and m0 as functions of ω (and all the other
fixed parameters):

m0 = τ1(2z− 2) + τ2(2z2− 2)

m1 = m−1 = τ1(z + z−1− 2) + τ2(z2− 1)
(z = z(ω)) (5)

These equations parameterize a curve (m0, m1) as
a function of ω (right). Each point on this curve cor-
responds to a bound state. A typical perturbation
of either mass from one of these pairs destroys the
bound state. A point such as the purple one is very
close to the curve, and so it corresponds to a sys-
tem that can almost trap energy. When an incident
wave impinges upon the defect, resonant amplifi-
cation causes the scattered field to resemble the
bound state. This resonance is analyzed in the fol-
lowing panel.
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Resonant Scattering Between Bound and Propagating States

Let us now combine the phenomena of scattering and trapped energy.
Question: What happens when source fields are scattered by a defect near
parameters (frequency, masses) of bound state?
Suppose the masses m−1 = m1 and m0 and the frequency ω are adjusted to trap
energy according to (5). Denote these special parameters by (m∗0,m

∗
1, ω

∗). The
bound state is of the form (3) with no incoming field ~J = 0 and evanescent
outgoing field ~V0 = [0, 0, 1, 1] (no energy propagates). Thus,

B ~V0 = 0
[

B = B(m∗0,m
∗
1, ω

∗)
]

This means 0 is an eigenvalue of the matrix B(m∗0,m
∗
1, ω

∗).

If the eigenvalue is simple, the matrix B(m0,m1, ω) has an eigenvalue
λ(m0,m1, ω) with eigenvector ~V(m0,m1, ω) that are analytic functions of the
parameters (m0,m1, ω) near (m∗0,m

∗
1, ω

∗):

B(m0,m1, ω)~V(m0,m1, ω) = λ(m0,m1, ω)~V(m0,m1, ω) (6)

The vector λ~V can be equated with A~J in the scattering problem (4), meaning
that ~V is the field that is scattered by the source field ~J = A−1λ~V.

Answer: Because λ is small near (m∗0,m
∗
1, ω

∗), the response field is large
compared to the source. This is the meaning behind resonance. So resonance
occurs when a system admitting an embedded bound state is perturbed.
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The graph on the left shows the Vre part of the outgoing field with incoming field
~J = [1, 0, 0, 0]T as a function of ω for a system that traps energy at
(m0,m1, ω) = (m∗0,m

∗
1, ω

∗) ≈ (1.786, 2.8381, 2), except that m0 has been perturbed
from 1.786 to 1.6. Equation (6) shows that the response is very large near
(m∗0,m

∗
1, ω

∗) since λ(m∗0,m
∗
1, ω

∗) = 0.
As the perturbed system vibrates near the frequency ω∗, the system resonates
because its parameters are near those which can trap energy.
Graphs of the propagating transmission coefficient Vrp vs. frequency ω below
show sharp anomalies near the frequency ω∗ of the bound state that emerge as
the mass m0 is perturbed from the special mass m∗0. One also observes a
leftward detuning (red shift) of the resonant frequency.
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