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Abstract—This communication investigates the sensitive be-
havior of dynamic resonant scattering when an extended system
is weakly coupled to a resonator (high-Q) and the source field
is nearly monochromatic but of finite energy. We analyze a
specific model that incorporates certain universal features of
resonance. It is a resonant modification of the Lamb model
for the interaction between an oscillator and a continuum. This
resonant Lamb model incorporates a two-part scatterer attached
to an infinite string with continuous spectrum. The non-resonant
part of the scatterer is associated with direct scattering; and
the resonant part—an oscillator coupled weakly to the string—
is associated with field amplification and delayed scattering.
A sharp anomaly in the transmission coefficient occurs when
the source frequency is within γ2 of the resonant frequency
(where γ is the coupling constant and the Q-factor is of order
γ−2); this anomaly is mollified as the source spreads spectrally.
Resonant amplification occurs when the source frequency is
within γ of the resonant frequency. The amount of amplification
depends on the relationships between the spectral width γ2 of
the transmission resonance, the spectral width σ of the source
field, and the difference between the source frequency and the
resonant frequency.

I. DYNAMIC RESONANCE

Photonic devices often require the precise tuning of certain
features of electromagnetic resonances, such as the central
frequency of the resonance, its spectral width or Q-factor
(quality factor), and its asymmetry. Mathematical analysis of
these features often assumes that a device is operating in the
ideal monochromatic regime. But finite-time operation causes
frequency broadening and can significantly alter the crisp
frequency-domain picture. It also raises additional questions
about the dynamical nature of resonance, such as the partition
of energy into direct and resonant scattering channels and the
build-up and decay time of resonant fields. Often a coupled-
mode analysis is invoked. Such models isolate phenomenolog-
ical component “modes” of a resonant scattering process and
can yield good predictive models; see [1] for a general theory
and [2], [3] for a coupled-mode theory for photonic resonators.

The present study analyzes resonant scattering of a system,
wherein the modes of the system are not postulated but
arise from the model itself. The goals include evaluating the
accuracy of a coupled-mode theory for a system by comparing

it to the true dynamics of the system; and quantifying the
delicate behavior of resonance features in the simultaneous
high-Q and near-monochromatic regimes. This paper confines
itself to the latter objective. High Q-factor means high resonant
amplification and slow energy decay from the resonator within
a narrow frequency band; and the near-monochromatic regime
refers to operation under a well-defined central, or carrier,
frequency that is tapered in time and space.

The scattering characteristics of a photonic device oper-
ating at resonance are very sensitive to parameters of the
structure and the source field. Specific devices are analyzed
with a combination of mathematical and numerical methods,
and the analysis often treats the resonant scattering of Gaus-
sian beams and pulses and how it depends on the angle of
incidence; see [4], [5], for example. The model we present in
this short communication is not complicated enough to address
aspects of angle of incidence. Our aim is to rigorously address
universal aspects of resonant amplification with regard to the
delicate balance between the spectral widths of the resonance
and the source field.

We analyze what we feel is the simplest model system
that exhibits certain essential features of photonic resonance
in the arbitrarily high-Q regime. The model is inspired by the
famous “Lamb model” proposed by H. Lamb to elucidate the
interaction between an extended medium and a nucleus [6].
Lamb’s model consists of an infinite string coupled to a
spring-mass system, in which radiation losses are felt by the
mass as equivalent to instantaneous linear damping. In our
modification, illustrated in Fig. 1, a point mass is attached to
the string, and that point mass is in turn weakly coupled to a
separate spring-mass resonator. The point mass on the string
serves as the non-resonant part of the scatterer, and the spring-
mass serves as the resonant part. Lamb-type models can serve
as elucidating prototypes for diverse scattering phenomena,
such as irreversibility [7], state transitions [8], gyroscopic
instability [9], and nonlinear bistability [10]. A very general
time-dynamic resonance theory that analyzes the intermediate
and long time behavior of quantum resonant states is developed
in [11].

The high-Q near-monochromatic regime involves three
simultaneously small physical parameters. The constant of



coupling, γ, between the point-mass and the resonator controls
the spectral width of the transmission resonance (Fig. 2, top),
which is of order γ2, and the Q-factor, which is of order γ−2.
The spectrum of the resonator is centered about a frequency ωc.
The source field will be a wave packet centered about a
frequency ω̄ with spectral width σ. The difference between
the central frequencies of the resonance and the source field
is denoted by η = ω̄ − ωc. The three parameters

γ2 : spectral width of transmission resonance
σ : spectral width of source field
η : difference between resonant and source frequencies

are considered to be small, and we will analyze the effects of
differing their relative sizes. Bei(kx��t)
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Fig. 1. A schematic depiction of a modified Lamb model that incorporates a
non-resonant part, which is the point-mass on the string; and a resonant part,
which is the spring-mass oscillator with arbitrarily high quality factor. The
line connecting the point-mass on the string with the spring-mass oscillator
(resonator) indicates an instantaneous coupling.

II. A RESONANT LAMB MODEL

The model of resonant scattering that we analyze is de-
picted schematically in Fig. 1. The ambient space is modeled
by a transmission line, or string, in which disturbances u(x, t)
travel according to the linear wave equation. The two-part scat-
terer consists of a non-resonant part and a resonant part, whose
displacements are denoted by y(t) and z(t). The equations of
motion are

utt(x, t) = c2uxx(x, t) for x 6= 0,

ÿ(t) = β
(
ux(0+, t)− ux(0−, t)

)
+ γ
(
z(t)− y(t)

)
with y(t) = u(0, t),

z̈(t) = −ω2
0z(t) + γ

(
y(t)− z(t)

)
.

The constant c is the celerity of waves in the string, β controls
the force exerted by the string on the point-mass, γ is the
coupling constant between the point-mass and the resonator,
and ω0 is the free oscillatory frequency of the resonator.

We have devised this resonant Lamb model so that, when
γ = 0, the string with the point-mass is completely decoupled
from the spring-mass. The free oscillation of the spring-mass
is then trivially an infinite-lifetime, finite-energy state, and its
frequencies ±ω0 are eigenvalues for the full system that are
embedded in the continuous spectrum of extended states of
the string. When the coupling γ is turned on, these eigen-
values become resonances in the lower-half complex plane
with imaginary part on the order of γ2. Scattering of waves
experience Fano resonance near ω0. This kind of resonance
has been analyzed in detail [2], [3], [12], [13].

A. Scattering solutions for the resonant Lamb model

We will consider source fields in the string that travel from
left to right and are partly reflected by the scatterer and partly
transmitted across it. Because the wave equation governs the

motion of disturbances in the string, the displacement of the
string during this scattering process has the form

u(x, t) =

{
J(x− ct) +R(x+ ct), x ≤ 0,
T (x− ct), x ≥ 0.

The function J(ξ) is the source field, and R(ξ) and T (ξ)
are the reflected and transmitted fields. If J(ξ) = 0 for
ξ > ξ0, then before time t = −ξ0/c, the excitation J(x− ct)
is supported completely to the left of the scatterer and is
approaching it. In this case, we assume that the scatterer and
the right side of the string are at rest before time t = −ξ0/c
so that R(ξ) = 0 for ξ < −ξ0 and T (ξ) = 0 for ξ > ξ0. By
moving ξ0 to ∞, one can allow J(ξ) to be a Gaussian, for
example.

By putting ξ = x− ct and setting x = 0, one observes that
the point-mass on the string experiences the source field J(ξ)
as a time-dependent input

j(t) := J(−c t) .
The Fourier-Laplace transform ̂(ω) of j(t) is

̂(ω) =

∫
j(t)eiωt dt .

B. Reduction to the scatterer

The dynamics of the string and scatterer can be reduced to
a system of ordinary differential equations for y and z,

ÿ(t) = −α ẏ(t) + γ
(
z(t)− y(t)

)
+ αj′(t)

z̈(t) = −ω2
0 z(t) + γ

(
y(t)− z(t)

)
.

in which α = 2β/c. With a solution to this system in hand,
the transmitted and reflected fields, and therefore the full field
u(x, t), is obtained through

T (ξ) = y(−ξ/c)
R(ξ) = y(ξ/c)− J(−ξ).

Under the Fourier-Laplace transform, this system becomes[
ω2 + iα ω − γ γ

γ ω2 − ω2
0 − γ

][
ŷ(ω)

ẑ(ω)

]
=

[
iα ω̂(ω)

0

]
.

The solution is

ŷ(ω) = iα
ω(ω2 − ω2

0 − γ)

D(ω)
̂(ω) (1)

ẑ(ω) = −iαγ ω

D(ω)
̂(ω), (2)

in which the determinant of the system is

D(ω) = (ω2 + iαω − γ)(ω2 − ω2
0 − γ)− γ2.

C. Monochromatic scattering

In the ideal monochromatic, or harmonic, setting, one takes
the source field in the string to be a pure traveling oscillation,

J(x− ct) = exp i (ω̄ x/c− ω̄t) .
(by moving ξ0 to infinity, the experiment is considered to have
started an infinite amount of time ago). With k̄ = ω̄/c, one



has J(ξ) = exp(ik̄ξ), and the transmitted and reflected fields
therefore have the oscillatory form

T (ξ) = t(ω̄)eik̄ξ, R(ξ) = r(ω̄)e−ik̄ξ.

The point-mass on the string experiences the input

j(t) = e−iω̄t,

and the response in the two parts of the scatterer are the
harmonic fields

y(t) = iα
ω̄(ω̄2 − ω2

0 − γ)

D(ω̄)
e−iω̄t (3)

z(t) = −iαγ ω̄

D(ω̄)
e−iω̄t (4)

In light of the relation T (ξ) = y(−ξ/c), one obtains
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Fig. 2. The simple resonant Lamb model exhibits Fano resonance, manifest
in the harmonic transmission coefficient |t(ω)|2 for γ = 0 (dashed) and for
γ = 0.08 (solid); and in the resonant amplification of the resonator log |z|
(below) for γ = 0.08. Here, ω0 = 1.2 and α = 1.5.

t(ω) = iα
ω(ω2 − ω2

0 − γ)

D(ω)
, (5)

and the conservation of energy law |t(ω)|2 + |r(ω)|2 = 1
implies the standard result

|t(ω)|2 ≤ 1.

The quantity |t(ω)|2 is called the monochromatic (or harmonic)
transmission coefficient. Plots of |t(ω)|2 for γ = 0 and small
nonzero γ, as well as the amplitude of the resonator z(t), are
shown in Fig. 2.

The sharp Fano “lineshape” and resonant amplification are
well understood through analyses based on a coupled-mode
theory [2], [3] and analyses based on the underlying equations
of electromagnetics [12], [10]. These theories give an account
of the high-Q monochromatic regime, in which the total energy
of the source field is infinite.

We now would like to quantify how the spectral broadening
of the source field due to having finite total energy affects these
resonant features. Dealing with finite-energy sources impels
one to investigate the temporal aspects of scattering.

III. DIRECT AND RESONANT SCATTERING

Direct and resonant scattering paths are described in [2]
for resonant scattering by photonic crystal slabs. The idea is
universal: Part of the energy of the source field is transmitted
directly across the scatterer or reflected directly back, and
part of it is coupled into the resonator, where it is resonantly
amplified if the source frequency is close to that of the free
resonator. The energy in the resonator then decays out, back
into the string, and contributes to delayed transmission and
reflection. A coupled-mode theory based on this mechanism
leads to good approximations of resonant behavior of fields [3].

A clean definition of the direct and resonant parts of the
scattering field is provided by the pole structure of the Fourier
transform of the solution. For the resonant Lamb model, the
four poles, which are the roots of the determinant D(ω), are
depicted in Fig. 3. A partial-fraction decomposition of the
functions multiplying ̂(ω) in (1,2) splits the solutions y(t)
and z(t) into four parts. Two of the poles, ω∗ and −ω̄∗,
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Fig. 3. The poles of ŷ(ω) and ẑ(ω) are the roots of the determinant D(ω).
For zero coupling γ = 0, the poles and are indicated by solid dots at ±ω0, 0,
and −iα. The pole at 0 is cancelled by a root in the expressions for ŷ(ω) and
ẑ(ω). For γ > 0, the poles are indicated by open circles. The eigenfrequencies
±ω0 move into the complex plane where they become resonances ω∗ and
−ω̄∗ with imaginary part on the order of γ2.

originate from the spring-mass system and are perturbations
of its characteristic frequencies ±ω0; these resonances have
negative imaginary part on the order of γ2. The resonance ω∗
is an analytic function of γ,

ω∗(γ) = ωc(γ) + iγ2κ(γ), (6)

in which ωc is the central (real) frequency of the resonance,
which is detuned from ω0 by order γ,

ωc(γ) = ω0 +
1

2ω0
γ +O(γ2), (7)

and the attenuation term κ(γ) has an expansion

κ (γ) = − α

ω0
2 (ω0

2 + α2)
+O (γ) . (8)

The poles ω∗ and −ω̄∗ naturally correspond to the resonant
part of the solution,

yres(t) =
i

2π
γ2

∫ (
A(γ)

ω − ω∗
− Ā(γ)

ω + ω̄∗

)
̂(ω) e−iωt dω , (9)

zres(t) =
i

2π
γ

∫ (
B(γ)

ω − ω∗
− B̄(γ)

ω + ω̄∗

)
̂(ω) e−iωt dω . (10)

The factor of γ2 in yres(t) is due to the numerator in (1) when
computing the residues. The non-resonant part of the solution
comes from the other two poles,

yreg(t) =
i

2π

∫ (
C1(γ)

ω − ω1
+

C2(γ)

ω − ω2

)
̂(ω) e−iωt dω , (11)



zreg(t) =
i

2π
γ

∫ (
D1(γ)

ω − ω1
+
D2(γ)

ω − ω2

)
̂(ω) e−iωt dω . (12)

Powers of γ have been extracted from these expressions so
that the γ-dependent residues A,B,C,D are of order 1.

The non-resonant part of the solution is associated with
direct scattering; particularly, T (ξ) = yreg(−ξ/c) is the “direct
transmission”. The factor of γ in zres(t) and zreg(t) manifests
the weak coupling from the string to the resonator, and the γ2

in yres(t) manifests the weak coupling back to the string.

The interesting resonant regime occurs when ̂(ω) is con-
centrated near the central frequency ωc = Re(ω∗) (and/or
−ωc) of the resonance (near-monochromatic). In that case the
resonator experiences resonant amplitude enhancement—zres
becomes very large despite the factor of γ—and slow decay.
The decay of its energy back into the string is manifest in
yres(t), which grows to order 1 despite the factor of γ2. This
is known as “delayed resonant transmission”. The analysis
is subtle with regard to the relationships between σ, γ, and
η = ω̄ − ωc when all three are small.

IV. NEAR-MONOCHROMATIC FIELDS

We now take J(ξ) to be a pure oscillation at frequency
ω̄ modulated by a broad envelope whose width is controlled
by σ−1 with σ being a small parameter,

J(ξ) = g
(
−σ ξ/c

)
exp

(
i
ω̄

c
ξ
)
.

By putting ξ = x−ct and setting x = 0, one observes that the
point-mass on the string experiences this wave temporally as

j(t) := J(−c t) = g(σt) exp (−iω̄t) . (13)

The spectral width of this source field is σ, which is evident
from the Fourier-Laplace transform of j,

̂(ω) =

∫
j(t)eiωt dt =

1

σ
ĝ

(
ω − ω̄
σ

)
. (14)

A. Resonant amplification

Given that the forcing frequency ω̄ is close to the central
frequency ωc of the resonance (η is small), ̂(ω) is concentrated
near the complex resonance ω∗. Thus just the first term of
zres(t) contributes significant amplification of the resonator.
We therefore analyze the quantity

zres*(t) =
i

2π
γ

∫
1

ω − ω∗
̂(ω)e−iωtdω (15)

Under the change of variable

ω = σφ+ ω̄,

and recalling that ω∗ = ωc−iκγ2 and η = ω̄−ωc, this integral
becomes

zres*(t) =
γ

η + iκγ2
e−iω̄t×

× i

2π

∫
η + iκγ2

σφ+ η + iκγ2
ĝ(φ)e−iσφtdφ︸ ︷︷ ︸

I(t)

, (16)

which we now analyze for large time (t > σ−1).

Suppose that the driving term j(t) is “turned on” at t = 0
and “turned off” at some later time. One might as well let
g(t) be supported in the interval [0, 1], that is, g(t) = 0 for
t < 0 and for t > 1. According to (13), this means that j(t)
begins oscillating at time t = 0 and quits at the large time
t = σ−1. Thus the scatterer is at rest for t ≤ 0, builds up
amplitude during the time interval from t = 0 to t = σ−1, and
then goes into a superposition of quasi-normal modes (we shall
just call them normal modes) corresponding to the four poles
for t > σ−1. We wish to determine the strength of the normal
mode corresponding to the resonance at ω∗, as it depends on
γ, η, and σ, all being considered to be small.

Given that g(t) is bounded and supported in the time
interval [0, 1], one has

|ĝ(φ)| ≤ Ce|Imφ|/φ as Imφ→ −∞,

|ĝ(φ)| ≤ C as Imφ→ 0,

ĝ(φ) ∼ C/φ for φ real and |φ| → ∞.
(17)

Thus, for time t > σ−1, the integrand of I(t) in (16) is
exponentially decaying as Imφ → −∞ and the integral can
be computed by the residue calculus,

I(t) =
η + iκγ2

σ
ĝ
(
− η + iκγ2

σ

)
e−κγ

2teiηt.

By defining the function

h(φ) = φ eiφ ĝ(−φ) , (18)

one obtains an expression for zres*(t) for large time,

zres*(t) =
γ

η + iκγ2
h
(η + iκγ2

σ

)
e−iσ

−1ω̄ ×

× e−iωc(t−σ−1)e−κγ
2(t−σ−1)

(for t > σ−1). (19)

Because of the bounds (17) on |ĝ(φ)|, the function h(φ) is
bounded by a constant for Imφ < 0.

The expression (19) simplifies further if one considers the
regime in which the spectral width of the source field is small
compared to the spectral width of the resonance, or σ � γ2.
In this case, the imaginary part of the argument of ĝ becomes
unbounded, and one can obtain the asymptotic value

ĝ
(
− η + iκγ2

σ

)
∼ g(1)

iσ

η + iκγ2
e−iη/σeκγ

2/σ (σ � γ2),

(20)
uniformly in η/σ. This results in an explicit asymptotic ex-
pression for zres*(t),

zres*(t) ∼ γ

η + iκγ2
ig(1)e−iσ

−1ω̄ ×

× e−iωc(t−σ−1)e−κγ
2(t−σ−1)

(for σ � γ2 and t > σ−1). (21)

We are now in a position to analyze resonant amplification
of the spring-mass resonator z(t) in the high-Q (γ small) and
near-monochromatic (σ small) regime. Equations (19) and (21)
for zres*(t) give an explicit expression for the coefficient of the
slowly decaying normal mode Ce−i(ωc+κγ2)(t−σ−1) associated



to the complex resonance ω∗ for large time t > σ−1. This is
one component of the solution z(t). The other three normal
modes in z(t) come from the second term in the integrand
of zres(t) (10) and the non-resonant part of z(t) (12). All
of these are of order γ. Any resonant amplification of the
spring-mass will come from the prefactors to the exponential
e−i(ωc+κγ2)(t−σ−1) in (19) or (21).

Consider first the regime γ2 � σ, when the spectral width
of the resonance is smaller than the spectral width of the source
field. In this case, the imaginary part in the argument of h in
(19) tends to zero, and one can use the definition (18) of h
and the second bound in (17) to obtain

zres*(t) ∼ γ

σ
ĝ(−η/σ)e−iωcte−κγ

2(t−σ−1)

(for γ2 � σ and η < Cσ). (22)

The reason for the constraint η < Cσ is that ĝ(−η/σ) van-
ishes when the argument becomes unbounded. The condition
η < Cσ guarantees that ĝ(−η/σ) is not zero (except perhaps
for special values of the argument). In this regime, resonant
amplification occurs when the additional relation σ � γ is
satisfied. Now, if γ2 � σ � η, one has ĝ(−η/σ) ∼ Cσ/η, so
that

zres*(t) ∼ C
γ

η
e−iωcte−κγ

2(t−σ−1)

(for γ2 � σ � η). (23)

Resonant amplification occurs under the additional condition
η � γ. The summary of the regime γ2 � σ is that resonance
occurs in the following situations:

|z(t = σ−1)| '
{
γ/σ (η < Cσ)
γ/η (σ � η � γ)

(γ2 � σ � γ).

(24)
The symbol “'” indicates that |z| is bounded from above and
below by positive multiples of the right-hand side. Of course,
as time progresses past t = σ−1, z(t) slowly decays by a
factor of e−κγ

2(t−σ−1). Observe that resonant amplification of
z(t) in this regime is always less than Cγ−1,

|z(t = σ−1)| ≤ Cγ−1 (γ2 � σ � γ). (25)

Consider now the regime σ < Cγ2, when the spectral
width of the source field is at least as small as the spectral
width of the resonance. The nonzero function h is bounded
by a constant, so all the important information is in the
amplification factor

A :=
γ

η + iκγ2
.

This factor depends only on γ and η, not on σ.

Given that |zres*(t)| ' A for t = σ−1 and that the other
normal modes in z(t) are of order γ, one obtains

|z(t = σ−1)| '
{
γ/η (γ2 � η < Cγ)
γ−1 (η < Cγ2)

(σ < Cγ2).

To see how A depends on the asymptotic relation between η
and γ, assume a power relation

η ∼ Cγp.

If p < 2, then the denominator of A is dominated by η, so that
|A| ∼ Cγ1−p (for a different constant C). If p ≥ 2, then the
denominator is dominated by γ2, and one obtains |A| ∼ Cγ−1.
In either case, |A| ∼ Cγ−q with q = min {p− 1, 1}:

|z(t = σ−1)| ' |A| ∼ Cγ−q, q = min {p− 1, 1} .

This relation is depicted in Fig. 4.

If p < 1, the forcing frequency is sufficiently far from
the resonant frequency so that the spring-mass is practically
at rest. And if p > 1, the forcing frequency is close enough
to the resonant frequency so that the spring-mass experiences
resonant amplification. This amplification does not exceed the
inverse power of γ, which was also the case for the regime
γ2 � σ.

R
es
on
at
or

am
pl
ifi
ed

at
re
st

R
es
on
at
or 1 2

p

-1

1

q

Fig. 4. Resonant amplification of the spring-mass resonator in the regime
σ < Cγ2, when the spectral width σ of the forcing field is comparable to
or smaller than the spectral width γ2 if the resonance. The function zres*(t)
depends on how the detuning of the forcing frequency ω̄ from the resonant
frequency ωc is related to coupling parameter γ (the spectral width of the
resonance is γ2). Set η = ω̄ − ωc, and consider γ, σ, and η all to be small.
If η and γ obey a power law η ∼ Cγp, then the amplification factor obeys a
power law |A| ∼ Cγ−q . The relation between the powers p and q is shown in
the graph. For p < 1 the spring-mass resonator has negligible amplitude—its
amplitude becomes zero as γ → 0. For p > 1, the spring-mass is resonantly
excited—its amplitude becomes unbounded as γ → 0.

B. Modified Fano resonance

The sharp asymmetric anomaly in the monochromatic
transmission coefficient depicted in Fig. 2 is typically known
as a Fano resonance, in reference to Ugo Fano’s famous
paper [14]. It is the result of the resonant interaction between a
continuum of extended states and a near-bound state. We will
analyze how this anomaly is modified when the source field
has a finite lifetime but is nearly monochromatic. It degenerates
as the source pulse becomes temporally shorter and spectrally
wider.

The transmission number T for a given incident source
field J(ξ) is defined as the ratio of total energy transmitted
across the resonator to the energy of J(ξ). Because of the
relations j(t) = J(−ct) and y(t) = T (−ct) and unitarity (up
to a constant) of the Fourier-Laplace transform, one has

T =
‖T‖2
‖J‖2 =

‖y‖2
‖j‖2 =

‖ŷ‖2
‖̂‖2 , (26)

in which ‖f‖ = (
∫
|f(s)|2ds)1/2, with integration over the

real line, denotes the quadratic norm of any function f .



In view of (1, 5, 14), one can define a σ-dependent trans-
mission coefficient Tσ(ω̄) to be the transmission number for a
near-monochromatic source field j(t) = g(σt) exp (−iω̄t),

Tσ(ω̄) :=

∥∥t(ω)σ−1ĝ
(
σ−1(ω − ω̄)

)∥∥2∥∥σ−1ĝ
(
σ−1(ω − ω̄)

)∥∥2

=

∥∥t(ω)ĝ
(
σ−1(ω − ω̄)

)∥∥2

σ ‖ĝ(ω)‖2
. (27)

(In taking the norms, one integrates over ω with ω̄ fixed.)
If the normalization ‖ĝ‖2 = 1 is taken, then this coefficient
simplifies to a convolution of t(ω) with σ−1

∣∣ĝ(σ−1ω)
∣∣2,

Tσ(ω) = |t|2 ∗ 1

σ

∣∣∣ĝ( ·
σ

)∣∣∣2 (ω), (28)

in which we have integrated over ω in (27) to compute the
norm and then replaced ω̄ with the variable ω. The mollifier
σ−1

∣∣ĝ(σ−1ω)
∣∣2 tends to a delta-function as σ vanishes, so that

Tσ(ω)→ |t(ω)|2 as σ → 0.

The near-monochromatic transmission coefficient Tσ(ω) is a
regularization of the monochromatic one T0(ω) := |t(ω)|2.

The width of the Fano resonance in Fig. 2 is of order γ2. In
other words, the transmission coefficient deviates significantly
from the “background” direct transmission when η < Cγ2.
Rigorous analyses are carried out in [12], [13]. Equation (28)
shows that the transmission anomaly persists for Tσ(ω) if σ is
small compared to γ2 and becomes smoothed out as σ becomes
relatively large,

σ � γ2 sharp anomaly,
σ ' γ2 weak anomaly,
σ � γ2 no anomaly.

V. CONCLUDING DISCUSSION

A resonant version of the classical Lamb model elucidates
the fine features of Fano resonance when the source field
is nearly monochromatic. A resonant mode weakly coupled
to a continuum of radiation states is modeled by a spring-
mass oscillator weakly attached to an infinite string. An exact
solution using the Fourier-Laplace transform allows one to
cleanly define direct and resonant, or delayed, transmission and
reflection. The resonant amplification of the slowly decaying
quasi-normal mode associated to the decay of energy out of
the resonator depends delicately on the parameters γ (coupling
to the resonator), σ (spectral width of the source field),
and η = ω̄ − ωc (difference between source and resonant
frequencies).

The resonant amplitude z(t) of the spring-mass oscillator
at time t = σ−1 depends on these three parameters as follows.
When σ is much larger than γ2, one has

|z(t)| ' γ

max{σ, η} � γ−1 (γ2 � σ), (29)

and when σ is not much larger than γ2, one has

|z(t)| ' γ

max{η, γ2} (σ < Cγ2). (30)

After time t = σ−1, the field decays at a slow exponential
rate on the order of γ2. More elaborate versions of the Lamb
model can be devised to elucidate more complex resonance
phenomena, such as dependence on the angle of incidence for
photonic systems.
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