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Three-dimensional quasi-periodic shifted Green function

throughout the spectrum—including Wood anomalies

Oscar P. Bruno∗, Stephen P. Shipman†, Catalin Turc‡, Stephanos Venakides§

Abstract

This contribution, Part II in a two-part series, presents an efficient method for evaluation of
wave scattering by doubly periodic diffraction gratings at or near “Wood anomaly frequencies”.
At these frequencies—which depend on the angle of incidence and periodicity of the grating,
and at which one or more grazing Rayleigh waves exist—the quasi-periodic Green function,
structured as a doubly infinite lattice sum of translated three-dimensional free-space Helmholtz
Green functions, ceases to converge. We present a modification of this lattice sum which results
by adding two types of terms to it. The first type adds linear combinations of “shifted” Green
functions, using shift values that ensure that the added spatial singularities introduced by these
terms are located below the grating and therefore outside of the physical domain. With suitable
coefficient choices these terms annihilate the growing contributions in the original lattice sum
and yield algebraic convergence. (Convergence of arbitrarily high order can be obtained by
including sufficiently many shifts.) The second type of added terms are quasi-periodic plane wave
solutions of the Helmholtz equation which reinstate certain necessary grazing modes without
leading to blow-up at Wood anomalies. In particular, using the new quasi-periodic Green
function, which we denote by Gq

p
(x), we establish, for the first time, that the Dirichlet problem

of scattering by a smooth doubly periodic scattering surface at a Wood frequency is uniquely
solvable. Additionally, we present an efficient high-order numerical method based on the Green
function Gq

p
(x) for the problem of scattering by doubly periodic three-dimensional surfaces at

and around Wood frequencies. We believe this is the first solver in existence that is applicable to
Wood-frequency doubly periodic scattering problems. We demonstrate the proposed approach
by means of applications to problems of acoustic scattering by doubly periodic gratings at
various frequencies, including frequencies away from, at, and near Wood anomalies.

Keywords: scattering, periodic Green function, lattice sum, smooth truncation, Wood
frequency, Wood anomaly, boundary-integral equations, electromagnetic computation

1 Introduction

This work presents the second part of a two-part contribution. The first part [8], which will be
referenced as Part I throughout this paper, introduced a “windowed Green function” method, which,
utilizing a smooth cutoff, approximates the quasi-periodic Green function with super-algebraically
small errors—that is, errors that admit upper bounds proportional to any negative power of the
numbers of terms used—for configurations that are not close to a certain set of “Wood frequencies”.
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As discussed in Part I and references therein, at Wood frequencies the classical quasi-periodic Green
function ceases to exist, and, therefore, integral equation methods based on such Green functions
are inapplicable. Following upon the two-dimensional work [4], the present Part II introduces an
additional element in the method: the “shifted” quasi-periodic Green function. By adding copies
of the quasi-periodic Green function that are shifted perpendicular to the plane of periodicity, one
obtains an algebraic convergence rate that increases with the number of shifts, even at and around
Wood frequencies. Using the new quasi-periodic Green function Gq

p(x), we establish, for the first
time, that the Dirichlet problem of scattering by a smooth doubly periodic surface, or diffraction
grating, at a Wood frequency is uniquely solvable. We present an efficient high-order numerical
method based on the Green function Gq

p(x) for the problem of scattering by doubly periodic three-
dimensional gratings at and around Wood frequencies. We believe this is the first solver in existence
that is applicable to doubly periodic scattering problems at Wood frequencies.

Wood frequencies depend on the wave vector parallel to the grating, and they occur when one
of the Rayleigh waves, or diffraction orders, is at the transition from propagating to evanescent
in the ambient medium and is thus exactly grazing the surface. Because of this, they are often
called “cutoff frequencies”. Certain scattering anomalies at or near these frequencies, known as
“Wood anomalies”, were first observed experimentally by Wood [25] and treated mathematically
by Rayleigh [23] and Fano [14]. A brief discussion concerning historical aspects in these regards
can be found in [4, Remark 2.2].

Computation of scattering by three-dimensional doubly periodic structures at or near Wood
frequencies is particularly challenging. As mentioned above, in boundary integral methods the
classical quasi-periodic Green function ceases to exist at Wood frequencies, even when the scattering
problem admits a unique solution. A boundary-integral method that employs the free-space Green
function and enforces periodicity through auxiliary layer potentials on the boundary of a period
has been developed for two-dimensional problems [1, 15], but a three-dimensional version of this
method does not as yet exist. Approaches based on finite-element methods [12] often rely on the
classical quasi-periodic Green functions in order to enforce the radiation condition at infinity; such
approaches must also necessarily fail at Wood anomalies. Finally, finite-element methods exist, such
as that presented in the contribution [11], which enforce the radiation condition on the basis of
sponge layers such as the perfectly-matched-layer technique. The results of that reference indicate
that such approaches may become problematic for truly quasi-periodic problems and, we suggest,
the difficulties are compounded at Wood frequencies, at which it would be necessary to damp waves
which travel in directions parallel to the absorbing layer.

The classical quasi-periodic Green function Gq(x) (x = (x, y, z) ∈ R
3) can be constructed as an

infinite sum of translated copies of the free-space Helmholtz Green function

G(x) =
eik|x|

4π|x| (1)

with doubly periodically distributed monopole singularities. Indeed, let x̃ = (x, y), α := (α, β) (the
Bloch wave-vector) and

r2mn = |x+mv1 + nv2|2 = |x̃+mv1 + nv2|2 + z2, (2)

in which v1 and v2 denote two independent vectors in R
2 that characterize the periodicity. The

quasi-periodic Green function can be expressed in the form

Gq(x) =
∑

m,n∈Z
G(x+mv1 + nv2) e

−iα·(mv1+nv2) =
1

4π

∑

m,n∈Z

eikrmn

rmn
e−iα·vmn , (3)
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in which vmn = mv1+nv2. As is well known, this expansion suffers from notoriously poor conver-
gence properties. Various methods to accelerate its convergence, notably the Ewald method [13, 10,
22], have been proposed. Importantly, however, the sum does not converge at Wood frequencies.
This is a difficulty that is not addressed by any of the aforementioned acceleration approaches.

The classical quasi-periodic Green function additionally admits a spectral representation that
results from application of the Poisson Summation Formula to the series (3): letting v∗

1 and v∗
2

denote the dual vectors defined by v∗
i · vj = δij , and letting D = ‖v1 × v2‖, v∗

jℓ = (2πj v∗
1 +

2πℓ v∗
2) +α and γjℓ = (k2 − ‖v∗

jℓ‖2)
1

2 , we have the alternative expansion

Gq(x̃, z) =
i

2D

∑

j,ℓ∈Z

1

γjℓ
eiv

∗
jℓ
·x̃ eiγjℓ|z| , (4)

which converges provided γjℓ 6= 0 for all j, ℓ—that is, away from Wood configurations (α, β, k)
where one of these exponents vanishes. The branch of the square root that defines γjℓ is selected
in such a way that

√
1 = 1, with a branch cut that coincides with the negative imaginary semiaxis.

The primary and dual periodicity lattices are denoted by

Λ = {vmn : m,n ∈ Z} and Λ∗ = {v∗
jℓ : j, ℓ ∈ Z}, (5)

respectively. The lattice sum (3) is only defined if γjℓ 6= 0 for all integer pairs (j, ℓ). A Wood
frequency (for given α) is a value of k for which at least one of the constants γjℓ vanishes. In such
cases both the spatial expansion (3) and the spectral representation (4) cease to exist.

This paper presents a Green function method that enables efficient and accurate evaluation of
wave scattering by doubly periodic structures throughout the spectrum, including frequencies at
and around Wood anomalies. The present contribution additionally incorporates the windowing
approach introduced in Part I, which accelerates the Green-function convergence: a windowed
version of the series (3) converges superalgebraically fast (i.e., faster than any power of the window
size) for non-Wood configurations. The convergence of this windowed series deteriorates near Wood
frequencies: the constants in the superalgebraic convergence estimates established in Part I grow
without bound as Wood configurations are approached, and the windowed version of the lattice
sum (3) once again fails to converge at Wood frequencies. When applied to the shifting method
introduced in this work, however, the smooth windowing method increases the algebraic convergence
rate at Wood anomalies by a factor equal to the truncation size raised to the power −1/2.

In order to re-establish convergence at Wood frequencies the proposed method replaces the free-
space Green function term eikrmn

rmn
by a p-th order equispaced finite-difference for this function with

respect to z, with p ≥ 3 and with step (or “shift”) d > 0. The combined effect of the windowing
and shifting/finite-differencing procedure yields a Green function which converges rapidly at all
frequencies. The approach is demonstrated in Section 5 via an application to the problems of
sound-soft and sound-hard scattering by doubly periodic surfaces throughout the spectrum. Other
scattering problems can be treated similarly—as demonstrated in the contributions [4] and [5]
concerning two-dimensional diffraction gratings and periodic arrays of cylinders, respectively.

The remainder of this paper is organized as follows. After some preliminaries in Section 2, the
shifted quasi-periodic Green function is introduced in Section 3. This section contains a proof of
high-order algebraic convergence of the shifted Green function and an existence and uniqueness
proof for configurations at and around Wood anomalies under Dirichlet boundary conditions. (Ap-
pendix A contains a lemma used in the aforementioned uniqueness proof, as well as a simplified
existence and uniqueness proof which is only valid away from Wood anomalies.) Section 4 then
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outlines our numerical implementation. A variety of results presented in Section 5 demonstrate the
character of the proposed solvers, for all configurations, far, near and at Wood anomalies.

2 Preliminaries

We consider the sound-soft problem of scattering by a doubly periodic scattering surface

Γ = {(x̃, z) : x̃ ∈ R
2 and z = f(x̃)}

where f is a smooth doubly periodic function of periodicity Λ:

f(x̃+mv1 + nv2) = f(x̃) for all x̃ ∈ R
2 and all m,n ∈ Z . (6)

Letting
Ω+ = {(x̃, z) : x̃ ∈ R

2 and z > f(x̃)}, (7)

and assuming an incident field
uinc(x) = exp[i(α · x̃− γz)] (8)

impinges upon the surface from above (where (α,−γ) is the wavevector and |α|2 + γ2 = k2), the
scattered field u under sound-soft conditions satisfies the equations

{

∆u+ k2u = 0 in Ω+

u = −uinc on Γ,
(9)

together with the Sommerfeld radiation condition [24]: letting z+ = max f we have

u(x̃, z) =
∑

j,ℓ∈Z
B+

jℓ exp i[(2πj v
∗
1 + 2πℓv∗

2) +α] · x̃ exp[iγjℓz], z > z+. (10)

Although not physically relevant for the grating problems considered in this paper, the set

Ω− = {(x̃, z) : x̃ ∈ R
2 and z < f(x̃)} (11)

below Γ and the associated radiation condition

u(x̃, z) =
∑

j,ℓ∈Z
B−

jℓ exp{i[(2πj v∗
1 + 2πℓv∗

2) +α] · x̃} exp[−iγjℓz], z < z−. (12)

(z− = min f) will be used in the existence and uniqueness proofs in Section 3.4 and Appendix A.

3 Shifted quasi-periodic Green function

The finite-difference half-space shifted Green function we use can be viewed as a generalization
of the Dirichlet half-space Green that results from the method of images. The method-of-images
Green function decays more rapidly at infinity than the free-space Green function itself. In the
three-dimensional case under consideration, such decay does not suffice to induce fast convergence,
or even absolute convergence, in a corresponding series of the form (3). (In contrast, absolute
convergence does result from use of the method-of-images Green function in the two-dimensional
case [4, Lemma 4.3 and Th. 4.4]). But viewing the method-of-images Green function as a finite
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difference of the lowest order, a generalization of this idea emerges: as shown in what follows, a
higher-order finite difference of the free-space Green function tends to zero more rapidly at infinity,
and thus gives rise to an absolutely convergent quasi-periodic Green function series. In fact, the
resulting quasi-periodic Green function can be made to converge with a prescribed order of accuracy
provided finite-differences of sufficiently high order are used.

To pursue this idea, fix a “shift” value d > 0 and define the shifted half-space Green function

G̃p(x) =

p
∑

q=0

apqG
(

x+ (0, 0, qd)
)

=

p
∑

q=0

apqG
(

x̃+ (0, 0, z + qd)
)

, (13)

where apq denote the finite-difference coefficients [4, 19]

apq = (−1)q
(

p

q

)

, 0 ≤ q ≤ p.

Clearly, the function G̃p(x) has poles at the points (0, 0,−qd) for 0 ≤ q ≤ p. As shown in Lemma 3.1
below, the shifted half-space Green function G̃p(x) tends to zero algebraically fast as x̃ tends to
infinity while z remains bounded. The shifted quasi-periodic Green function is then defined by

G̃q
p(x) =

∑

m,n∈Z
G̃p(x+mv1 + nv2) e

−iα·(mv1+nv2). (14)

The function G̃q
p(x) has poles at the points

x′
mnq = (mv1 + nv2, −qd ), m, n, q ∈ Z, 0 ≤ q ≤ p . (15)

Theorem 3.2 below shows that the sum on the right-hand side of equation (14) converges alge-
braically fast: a truncation of this series to |mv1 + nv2| ≤ A results in errors of order ⌈p/2⌉ − 1
(where ⌈r⌉ denotes the smallest integer greater than or equal to r) for all wavevectors k = (α,−γ)
and all periodicity lattices Λ, including Wood-anomaly configurations. That theorem also estab-
lishes that somewhat improved accuracies result when a smooth windowed truncation, as introduced
in Part I, is additionally employed.

When evaluated at (x̃− x̃′, z − z′) with (x̃, z) ∈ Γ and (x̃′, z′) ∈ Γ, the terms with q = 1, . . . , p
in the series (13)-(14) are weighted copies of the free-space Green function with sources at the
points (x̃′, z′ − qd) below the grating surface Γ, while the terms corresponding to q = 0 produce
the necessary sources on Γ. It follows that the layer potentials associated with the shifted Green
function (cf. equation (56) below) are well defined for all points x = (x̃, z) on and above the grating
surface, and satisfy the Helmholtz equation for x above Γ.

It is important to note that, as shown in Section 3.2, the addition of the shifted terms effec-
tively suppresses all contributions in equation (4) that contain vanishing denominators at Wood
frequencies, and thereby reinstates convergence of the quasi-periodic Green function even at such
frequencies. But such modes are required in the complete solution of the grating scattering problem.
Therefore corresponding quasi-periodic plane-wave terms need to be added to the Green function
to incorporate (now with controlled coefficients) all the necessary grazing modes, as detailed in
Section 3.2. The corresponding treatments for simply periodic scattering surfaces and arrays of
cylinders in two dimensions is presented in references [4] and [5], respectively.
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3.1 Convergence of the modified Green function at Wood frequencies

Lemma 3.1 below states that, as desired, the shifted half-space Green functions (13) enjoy enhanced
degrees of decay as x̃ → ∞. On the basis of this result, Theorem 3.2 then establishes the fast
convergence of two different truncations (using discontinuous and and smooth window functions)
for the spatial lattice sum (14). In preparation for the proofs, we examine the individual terms
G̃q

p(x+mv1 + nv2). Considering the relations (2), (3) and (13) and using the notations

g(ρ, ε) :=
eikρ

√
1+ε2

ρ
√
1 + ε2

, ρmn = |x̃+mv1 + nv2|, εmn = z/ρmn and ε̂mn = d/ρmn, (16)

the translated Green-function terms in the sum (14) can be expressed in the form

G̃p(x+mv1 + nv2) =

p
∑

q=0

apqg(ρmn, εmn + qε̂mn). (17)

Equivalently, letting

h(ρ, ε, ε̂) :=

p
∑

q=0

apqg(ρ, ε + qε̂), (18)

we have
G̃p(x+mv1 + nv2) = h(ρmn, εmn, ε̂mn). (19)

In order to estimate the asymptotics of the function h as ρ → ∞ we use the finite-difference
relation [17, p. 262, eq. 7]

p
∑

q=0

apqf(ε+ qε̂)) = (−1)pε̂pf (p)(ε+ ξ) ξ ∈ [0, pε̂], (20)

which is valid for every p-times continuously differentiable function f . Thus, for each pair of values
of ρ and ε̂ there exists ξρ,ε̂ ∈ [0, pε̂] such that

h(ρ, ε, ε̂) = (−1)pε̂p
∂pg

∂εp
(ρ, ε+ ξρ,ε̂),

and, therefore

h (ρ, z/ρ, d/ρ) = (−1)p
(

d

ρ

)p ∂pg

∂εp
(ρ, z/ρ + ξρ,d/ρ), ξρ,d/ρ ∈ [0, pd/ρ]. (21)

In view of the asymptotic bounds on ∂pg/∂εp in Lemma 3.1 below, one obtains hp
(

ρ, z/ρ, d/ρ
)

=

O
(

1/ρ⌈
p
2
⌉+1
)

as (ρ→ ∞) where the constant in the O-term, which depends on z, d and p, can be

taken to be fixed if d and p are given and z is contained in a bounded subset of R.

Lemma 3.1. The p-th order derivative of the function g with respect to ε satisfies
∣

∣

∣

∣

1

ρp
∂pg

∂εp
(ρ, ε)

∣

∣

∣

∣

≤ C

ρ⌈
p
2
⌉+1

(ρ ≥ 1, |ε| < 1), (22)

where the constant C is independent of ρ and ε for all ρ ≥ 1 and all ε satisfying |ε| < 1. Here, for
real x, ⌈x⌉ denotes the smallest integer larger than or equal to x. The estimate (22) is sharp: the
left-hand side in that equation does not decay like 1/ρt for any t > ⌈p2⌉+ 1. Furthermore,

h
(

ρ, z/ρ, d/ρ
)

= O
(

1

ρ⌈
p
2
⌉+1

)

(ρ→ ∞). (23)
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Proof. It suffices to establish that (22) holds and is sharp; Equation (23) then follows directly
from (21) and (22). In order to obtain the relation (22) we first note that the pth derivative ∂pg

∂εp

of g with respect to ε can be expressed as a finite linear combination of the form

∂pg

∂εp
(ρ, ε) =

∑

(m,n,ℓ)∈Sp

Cp
m,n,ℓ

εm(ikρ)n
√
1 + ε2

ℓ

eikρ
√
1+ε2

ρ
, (24)

in which Sp is a certain set of triples of non-negative integer indices and Cp
m,n,ℓ denote real valued

coefficients. Defining

Tm,n,ℓ(ρ, ε) =
εm(ikρ)n
√
1 + ε2

ℓ
for m,n, ℓ ≥ 0, (25)

we may thus write

∂pg

∂εp
(ρ, ε) =

∑

(m,n,ℓ)∈Sp

Cp
m,n,ℓTm,n,ℓ(ρ, ε)

eikρ
√
1+ε2

ρ
. (26)

But, it is easy to check that

g(ρ, ε) = T0,0,1(ρ, ε)
eikρ

√
1+ε2

ρ
, (27)

and that, defining the unary operators

f−Tm,n,ℓ(ρ, ε) = Tm+1,n,ℓ+2(ρ, ε), (28)

f0Tm,n,ℓ(ρ, ε) = Tm+1,n+1,ℓ+1(ρ, ε), and (29)

f+Tm,n,ℓ(ρ, ε) =

{

Tm−1,n,ℓ(ρ, ε) m ≥ 1

0 m = 0
(30)

we have

∂

∂ε

(

Tm,n,ℓ(ρ, ε)
eikρ

√
1+ε2

ρ

)

=
(

−ℓf−Tm,n,ℓ + f0Tm,n,ℓ +mf+Tm,n,ℓ

) eikρ
√
1+ε2

ρ
(m ≥ 0). (31)

We now may (and do) redefine the set Sp to ensure that it contains exactly the triples (m,n, ℓ)
corresponding to a sequence of p applications of the unary operators (30). Thus calling F =
{f−, f0, f+} we let

Sp = {(m,n, ℓ) : Tm,n,ℓ = f1f2 . . . fpT0,0,1 where fj ∈ F for j = 1, . . . , p}. (32)

Application of the operator f+ results in a decrease by one in the power of ε in the expres-
sion (25) for Tm,n,ℓ(ρ, ε), while application of either f0 or f− results in an increase by one in that
power. Susbstituting ε = z/ρ in (25), on the other hand, we obtain

Tm,n,ℓ(ρ, z/ρ) ∼ zm(ik)nρn−m (ρ→ ∞) for m ≥ 0,

and we thus define the ρ-order Q of Tm,n,ℓ by

Q(Tm,n,ℓ) = n−m.

Notice that an application of the operator f+ (resp. f0, f−) to Tm,n,ℓ results in an increase (resp.
no change, decrease) in the ρ-order Q.
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Let (m0, n0, ℓ0) be such that Q+ = Q(Tm0,n0,ℓ0) is greater than or equal to Q(Tm,n,ℓ) for all
(m,n, ℓ) ∈ Sp. We claim that Cp

m0,n0,ℓ0
6= 0. To establish this fact, first note that, in view of

equations (24) and (31), the coefficient Cp
m,n,ℓ in the sum (26) equals a sum of several contributions,

each one of which results from a sequence of p operations from the set {f0, f+} applied to the root
expression T0,0,1(ρ, ε). Indeed, while in principle all three elements in the set {f−, f0, f+} appear
as a contribution to a coefficent Cp

m,n,ℓ, it is easy to check that f− cannot appear as a contribution

towards the maximum order coefficient Cm0,n0,ℓ0 , since, as pointed out above, the f− operator
decreases the ρ-order Q.

Since none of the f0 and f+ contributions are negative, it only remains to check that there is
at least one positive contribution to the coefficient of C(m0, n0, ℓ0) of T (m0, n0, ℓ0) of ρ-order Q+.
But, in view of equation (30), a nonzero contribution of the form f1f2 . . . fpT0,0,1 to the coefficient
C(m0, n0, ℓ0) can only result provided no more than half of p operators used equals f+—which
implies, in particular, that Q+ ≤ p/2. In fact we have Q+ = p/2 (resp. Q+ = (p − 1)/2) for p
even (resp. for p odd), and a positive contribution to C(m0, n0, ℓ0) is provided by T (m0, n0, ℓ0) =

(f+)
p
2 (f0)

p
2T (0, 0, 1) for p even and by T (m0, n0, ℓ0) = (f+)

p−1

2 (f0)
p+1

2 T (0, 0, 1) for p odd. Taking
into account the factor of 1/ρ in each one of the terms in equation (26), equation (22) follows and,
thus, in view of (21), so does (23). The proof is now complete. �

Now we are able to prove the algebraic convergence of the lattice sum for G̃q
p(x).

Theorem 3.2 (Modified Green function for all frequencies; algebraic convergence). Let χ(r) be a
smooth truncation function equal to 1 for r < r1 and equal to 0 for r > r2 (0 < r1 < r2), and let p
denote an integer such that p ≥ 3. Then, for all real triples (k, α, β) = (k,α) (k 6= 0) the sums

Gp,A(x̃, z) =
1

4π

∑

m,n∈Z

|mv1+nv2|≤A

e−iα·(mv1+nv2)
p
∑

q=0

apq
eikr

q
mn

rqmn
and (33)

Ĝp,A(x̃, z) =
1

4π

∑

m,n∈Z
e−iα·(mv1+nv2)

p
∑

q=0

apq
eikr

q
mn

rqmn
χ(r̃mn/A) , (34)

where (rqmn)2 = |x̃+mv1 + nv2|2 + (z+ qd)2 and r̃mn = |x̃+mv1 + nv2| , converge to a radiating
quasi-periodic modified Green function G̃q

p(x) which satisfies the Partial Differential Equation

∇2G̃q
p(x) + k2G̃q

p(x) = −
∑

m,n∈Z

p
∑

q=0

eiα·(mv1+nv2)δ(x − x′
mnq) , (35)

as well as the quasi-periodicity condition G̃q
p(x+ (mv2 + nv2, 0)) = G̃q

p(x) eiα·(mv1+nv2). Further,
there exists a constant Cp = Cp(k, α, β) for which

∣

∣

∣Gp,A(x)− G̃q
p(x)

∣

∣

∣ <
Cp

A⌈p/2⌉−1
and (36)

∣

∣

∣
Ĝp,A(x)− G̃q

p(x)
∣

∣

∣
<

Cp

A⌈p/2⌉−1/2
(37)

for all sufficiently large values of A.

Proof. The sum (33) can be re-expressed in the form

Gp,A(x) =
1

4π

∑

m,n∈Z

|mv1+nv2|≤A

h(ρmn, z/ρmn, d/ρmn)e
−i(αm+βn). (38)
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But, in view of (23) and letting ν = ⌈p/2⌉+ 1 we see that

1

4π
h (ρmn, z/ρmn, d/ρmn) =

1

|vmn|ν
H(x;m,n)

for some function H which, for certain constants C and M satisfies |H(x;m,n)| < C as long as
|vmn| > M . Thus, the sum in (38) converges to a limit G̃q

p(x) as A→ +∞, and for A > M we have
∣

∣

∣
Gp,A(x)− G̃q

p(x)
∣

∣

∣
≤

∑

m,n∈Z

|mv1+nv2|>A

C

|vmn|ν
<

Cp

Aν−2
(39)

—a relation which establishes the desired result (36).
The proof of the bound (37) follows in part the proof of Theorem 2.1 in Part I [8]. For simplicity

we assume x̃ = (x, y) = 0 and α = 0; the extension of the proof to nonzero values of these quantities
is handled easily via consideration of standard properties of the Fourier transform, as described
explicitly at the end of the proof in [8]. Let U denote the finite set

U = {jv∗
1 + ℓv∗

2 : γjℓ = 0} ⊆ Λ∗. (40)

This set is nonempty exactly when k is a Wood frequency. Since k 6= 0, one has (0, 0) 6∈ U . The
assumption p ≥ 3 implies ν ≥ 3.

Let zq = z + dq. We may re-express (34) in the form

4π Ĝp,A(0, 0, z) =
∑

r∈Λ
χ(r/A)

p
∑

q=0

exp
(

ik
√

|r|2 + z2q
)

√

|r|2 + z2q

. (41)

Using the Poisson Summation Formula, this sum is transformed into a lattice sum in the Fourier
variable:

4π Ĝp,A(0, 0, z) =
∑

ξ∈Λ∗

F



χ(r/A)

p
∑

q=0

exp(ik
√

|r|2 + z2q )
√

|r|2 + z2q



 (ξ) = S1 + S2 (42)

in which

S1 =
∑

ξ∈Λ∗\U

p
∑

q=0

∫

R2

χ(r/A)
exp(ik

√

|r|2 + z2q )
√

|r|2 + z2q

e2πiξ·rdr and (43)

S2 =
∑

ξ∈U

∫

R2

χ(r/A)e2πiξ·r





p
∑

q=0

exp(ik
√

|r|2 + z2q )
√

|r|2 + z2q



 dr. (44)

The proof of in [8, Theorem 2.1] establishes that the sum S1 (U is empty in that work) converges
superalgebraically to a limit L, that is, it is equal to L+O(A−n) for each positive integer n. Thus,
it only remains to show that the sum S2 converges, with the difference from its limit being of
order O

(

A−(ν−3/2)
)

(or, equivalently, O
(

A−(⌈p/2⌉−1/2)
)

) as A → +∞. Each fraction in S2 can be
expressed as an exponential in r = |r|, multiplied by a Laurent expansion,

exp(ik
√

r2 + z2q )
√

r2 + z2q

=
eikr

r
gq(r) , gq(r) = 1 +

∞
∑

j=1

aqjr
−j . (45)
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The coefficients aqj depend on z, and the expansion is convergent when r > |zq|. In view of (18)
and (23) we see that

p
∑

q=0

gq(r) =
g(r)

rν−1
where g(r) =

∞
∑

j=0

ajr
−j for r > zq (with a0 6= 0), (46)

and clearly
g(Ar) → a0 as A→ ∞, (47)

with uniform convergence over the set r ≥ r1.
In order to study the contribution by the sum S2 we define the polar coordinates r = (r, θ)

and we note that, since ξ ∈ U , we must necessarily have ξ = (k/2π, γ). Then, using the rescaling
ρ = r/A and the notation ψ(ρ) = 1− χ(ρ), and in view of the fact that ν ≥ 3, we obtain

∫

R2

χ(r/A)e2πiξ·r





p
∑

q=0

exp(ik
√

|r|2 + z2q )
√

|r|2 + z2q



 dr

=

∫

R2

e2πiξ·r





p
∑

q=0

exp(ik
√

|r|2 + z2q )
√

|r|2 + z2q



 dr −
∫ 2π

0

∫ ∞

0
ψ(A−1r)eikr(cos θ+1) g(r)

rν−1
drdθ

= L̃ − A2−ν

∫ ∞

r1

ψ(ρ)
g(Aρ)

ρν−1

(∫ 2π

0
eiAk(cos θ+1)ρdθ

)

dρ

= L̃ − 2π A2−ν

∫ ∞

r1

ψ(ρ)
g(Aρ)

ρν−1
eiAkρJ0(Akρ)dρ, (48)

where J0 denotes the Bessel function of order 0. Clearly, the number L̃ does not depend on A. In
view of the well known Bessel function asymptotics J0(x) ∼ (2/xπ)1/2 cos(x− π/4), x→ +∞, and
since k 6= 0, we obtain the relation

∫

R2

χ(r/A)e2πiξ·r





p
∑

q=0

exp(ik
√

|r|2 + z2q )
√

|r|2 + z2q



 dr = L̃ + O
(

A3/2−ν
)

. (49)

It follows that the sum S2 converges with an error of O
(

1/A⌈p/2⌉−1/2
)

as A → ∞ (since ν =
⌈p/2⌉+1). Together with the superalgebraic convergence of S1 as A→ ∞, this fact establishes (37).
The proof is now complete. �

3.2 Complete Green function in Fourier space

In view of the Fourier expression (4) for the Green function away from Wood anomalies we obtain
the corresponding expression

G̃q
p(x̃, z) =

i

2D

∑

j,ℓ∈Z

1

γjℓ
ei v

∗
jℓ
·x̃

p
∑

q=0

apqe
iγjℓ|z+qd| .

for the shifted Green function. For z > 0 this expression can be made to read

G̃q
p(x̃, z) =

i

2D

∑

j,ℓ∈Z

1

γjℓ
eiv

∗
jℓ
·x̃ eiγjℓz(1− eiγjℓd)p. (50)
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In view of the limit limγjℓ→0
(1−e

iγjℓd)p

γjℓ
= 0 for p ≥ 2, we see that that (50) can be evaluated even

at Wood anomalies: letting
U = {(j, ℓ) ∈ Z

2 | γjℓ = 0}, (51)

we may continuously extend the function G̃q
p(x̃, z) to all frequencies, including Wood configurations,

by means of the expression

G̃q
p(x̃, z) =

i

2D

∑

(j,ℓ)6∈U
eiv

∗
jℓ
·x̃ eiγjℓz

(1− eiγjℓd)p

γjℓ
. (52)

Unfortunately, however, if γjℓ = 0 for some (j, ℓ), the corresponding Fourier component is not
present in the Green function (52) and, therefore, use of this Green function cannot give rise to a
uniquely solvable system of integral equations. To tackle this difficulty we follow [4] and introduce
a modified version Gq

p of G̃q
p, that is outgoing for z → ∞ (but not for z → −∞) and which contains

all necessary Fourier harmonics, even at Wood frequencies. The modified Green function is given by

Gq
p(x) = G̃q

p(x) + v(x),

where v(x̃, z) denotes a solution of the homogeneous Helmholtz equation of the form

v(x̃, z) =
i

2D

∑

(j,ℓ)∈U
bjℓ e

iv∗
jℓ
·x̃eiγjℓ z, (53)

where bjℓ 6= 0 are arbitrary non-zero complex constants. The function Gq
p(x̃, z) is α-quasi-periodic

in x̃ with periods v1 and v2, it satisfies (35) and, crucially, it contains all Fourier harmonics.
As shown in Section 3.4 and demonstrated numerically in Section 5, the complete Green function

Gq
p can be used to obtain uniquely-solvable integral-equation formulations aroundWood frequencies.

The analysis presented in Section 3.4 relies, in part, on use of yet another Green function, namely,
a non-radiating Green function defined by a slowly-convergent series which, however, 1) is well
defined at Wood frequencies; and 2) unlike the shifted Green function Gq

p, is a Helmholtz solution
for z < 0, and is therefore well suited for use as part of a proof that concerns the PDE domain
and its complement at a Wood frequency. This rather peculiar Green function is introduced in the
following section, and it is then used in the uniqueness proof presented in Section 3.4.

3.3 All space (non-radiating) Green function at and around Wood frequencies

In view of the relation
eiγjℓ|z|

γjℓ
=

cos(γjℓ z)

γjℓ
+ i

sin(γjℓ|z|)
γjℓ

, (54)

each term in the classical quasi-periodic Green function (4) equals the sum of two quantities, the
first of which diverges and the second of which tends to i|z| as γjℓ → 0. In view of the relation (52),
both terms can be made to vanish by using a p-th order finite-difference of shifted Green functions.
As an alternative, a direct removal of the diverging term (which amounts to addition of a solution
of Helmholtz’ equation) does produce a Helmholtz Green function for (k, α, β) in a neighborhood
of a given Wood anomaly triple (k0, α0, β0) at which γjℓ = 0. The resulting Green function at the
Wood configuration (k0, α0, β0) is thus given by

Bq(x̃, z) :=
i

2D

∑

(j,ℓ)6∈U
eiv

∗
jℓ
·x̃ 1

γjℓ
eiγjℓ|z| +

i

2D

∑

(j,ℓ)∈U
eiv

∗
jℓ
·x̃ i|z|. (55)
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This is not an outgoing Green function, on account of the terms that contain |z| as a factor. But
as indicated in the previous section, the function Bq(x̃, z) is a solution of the Helmholtz equation
except at the periodically distributed singular points (mv1 +nv2, 0), and, unlike the shifted Green
function Gq

p, it does not contain any additional singularities.

3.4 Uniquely solvable integral equations around Wood frequencies

We seek a scattered field above Γ in the form of a combined single- and double-layer potential

u(x) =

∫

Γper

(

iηGq
p(x− x′) + ξ

∂Gq
p(x− x′)
∂n(x′)

)

φ(x′)ds(x′) (56)

in terms of a quasi-periodic density φ defined on Γper, where

Γper = {(x̃, z) : x̃ = av1 + bv2 with 0 ≤ {a, b} ≤ 1, z = f(x̃)} . (57)

The domain Γper is that part of Γ that lies above the unit cell

Q = {x̃ = av1 + bv2 : 0 ≤ {a, b} < 1} , (58)

of the periodic lattice Λ.
The function u defined in (56) is quasi-periodic and outgoing as z → ∞, and it satisfies the

Helmholtz equation in R
3 \
⋃p

q=0(Γ
per − (0, 0, qd)). This function is a solution of (9) if and only if

φ solves the integral equation

ξφ(x)

2
+

∫

Γper

(

iηGq
p(x− x′) + ξ

∂Gq
p(x− x′)
∂n(x′)

)

φ(x′)ds(x′) = −ei(α·x̃−γz), x ∈ Γper. (59)

The following theorem establishes that this integral equation is uniquely solvable as long as the
shift distance d > 0 is selected in such a way that the restrictions

(

1− eiγjℓd
)

6= 0 for all (j, ℓ) ∈ Z
2 (60)

are satisfied. It is important to note that, since γjℓ is an imaginary quantity for j, ℓ large enough,
equation (60) amounts to a finite number of constraints.

Theorem 3.3. Let p ≥ 0, let ξ 6= 0 and η 6= 0 denote real numbers satisfying η/ξ < 0, and let
d > 0 be such that (60) holds. Then equation (59) admits a unique solution for all triples (k, α, β)
of wavenumbers, including Wood anomalies.

Proof. Given that the surface Γ is smooth and that Gq
p has the same singularity as G, it follows

that the integral operators on the left-hand side of equation (59) are compact operators in the
space L2(Γper). Thus, by the Fredholm theory, the unique solvability of equation (59) is equivalent
to the injectivity of the operator on the left-hand side of that equation. In order to establish
injectivity, and thereby complete the proof of the theorem, in what follows we show that any
solution φ ∈ L2(Γper) of the homogeneous equation

ξφ(x)

2
+

∫

Γper

(

iηGq
p(x− x′) + ξ

∂Gq
p(x− x′)
∂n(x′)

)

φ(x′)ds(x′) = 0, x ∈ Γper, (61)

must necessarily vanish.
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Let φ satisfy (61) and let u denote the corresponding Helmholtz solution (56). It follows
that u vanishes on Γper. Since u satisfies the outgoing radiation condition (10) at +∞ (because
Gq

p(x) does), by uniqueness of solution of the Dirichlet problem (9), which holds even at Wood
frequencies [24], it follows that u(x) = 0 for all x ∈ Ω+. In particular, letting ujℓ(z) denote the
Fourier coefficients of the doubly periodic function u(x̃, z)e−iα·x̃ with respect to x̃ for z > z+, we
have ujℓ(z) = 0 for all j, ℓ ∈ Z.

Given that for z > 0

Gq
p(x̃, z) =

i

2D

∑

(j,ℓ)6∈U
eiv

∗
jℓ
·x̃ (1− eiγjℓd)p

γjℓ
eiγjℓz +

i

2D

∑

(j,ℓ)∈U
bjℓ e

iv∗
jℓ
·x̃eiγjℓ z

(see Section 3.2) it follows that

ujℓ(z) =







c+jℓ
(1−e

iγjℓd)p

γjℓ
eiγjℓz, for (j, ℓ) 6∈ U

c+jℓbjℓ for (j, ℓ) ∈ U,
(62)

in which

c+jℓ =
1

2D

∫

Γ
φ(x′)e−iv∗

jℓ
·x̃′

e−iγjℓz
′ [

ξ(v∗
jℓ, γjℓ) · n(x′)− η

]

ds(x′). (63)

Under the assumptions of this theorem, u may vanish only if c+jℓ = 0 for all j, ℓ ∈ Z.
Using the non-radiating Green function introduced in Section 3.3 we then set

v(x) =

∫

Γ

(

iη Bq(x− x′) + ξ
∂Bq(x− x′)
∂n(x′)

)

φ(x′)ds(x′) , x 6∈ Γ. (64)

In view of (55), for z > z+ the function v admits the Fourier expansion

v(x̃, z) =
∑

j,ℓ∈Z
v+jℓ(z) e

iv∗
jℓ
·x̃ (z > z+) ,

in which

v+jℓ(z) = c+jℓ
1

γjℓ
eiγjℓz for (j, ℓ) 6∈ U, (65)

v+jℓ(z) = i
(

c+jℓz − c′jℓ
)

+ c′′jℓ for (j, ℓ) ∈ U, (66)

in which (recalling that |z| = z − z′ when x is above Γ, or z > f(x̃))

c′jℓ =
1

2D

[

−η
∫

Γ
φ(x′) z′ e−iv∗

jℓ
·x̃′

ds(x′) + ξ

∫

Γ
φ(x′)(v∗

jℓ, 0) · n(x′) z′ e−iv∗
jℓ
·x̃′

ds(x′)

]

, (67)

c′′jℓ =
ξ

2D

∫

Γ
φ(x′)(0, 0, 1) · n(x′) e−iv∗

jℓ
·x̃′

ds(x′) . (68)

Given that c+jℓ = 0 for all j, ℓ ∈ Z, it follows that

v+jℓ(z) =

{

0 , (j, ℓ) 6∈ U ,

−ic′jℓ + c′′jℓ , (j, ℓ) ∈ U .
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Therefore v(x̃, z) =
∑

(j,ℓ)∈U (−ic′jℓ + c′′jℓ) e
iv∗

jℓ
·x̃ for z > z+. The field v(x) satisfies the Helmholtz

equation for x 6∈ Γ, and v(x) is independent of z for z > z+. In view of the real-analyticity of
v(x) for x 6∈ Γ and the uniqueness of analytic continuation, it follows that v(x) is independent of z
everywhere above Γ and we have

v(x̃, z) =
∑

(j,ℓ)∈U
(−ic′jℓ + c′′jℓ) e

iv∗
jℓ
·x̃ for z ≥ f(x̃) . (69)

Now we turn our attention to the Fourier expansion

v(x̃, z) =
∑

j,ℓ∈Z
v−jℓ(z)e

iv∗
jℓ
·x̃ , z < z−

of the function v in the region z < z−. For (j, ℓ) ∈ U , the Fourier coefficients in this expansion
satisfy v−jℓ(z) = −v+jℓ, since the term |z − z′| in Bq(x− x′) equals −(z − z′) for z < z′. (There is no
such relation for (j, ℓ) 6∈ U .) For (j, ℓ) ∈ U we thus have

v−jℓ(z) = ic′jℓ − c′′jℓ .

The function v(x) satisfies the radiation condition (12) for z < z− since, in spite of linear terms
that are part of the Green function Bq, v itself does not contain such linear growth for z < z−.

The right-hand side expression in (69), considered as a function defined on all of R3, defines a
Helmholtz field that satisfies the outgoing condition for z → ∞ and z → −∞. Thus, by subtracting
it from v(x), one obtains the field

ṽ(x̃, z) := v(x̃, z)−
∑

(j,ℓ)∈U
(−ic′jℓ + c′′jℓ)e

iv∗
jℓ
·x̃ for (x̃, z) ∈ R

3

that satisfies the radiation conditions at both +∞ and −∞, and that vanishes for z > f(x̃). The
jump conditions of the single- and double-layer potentials that define v(x) in (64) imply that the
limits of ṽ(x) and its normal derivative from below Γ are

ṽ(x̃, f(x̃)−0) = −ξ φ(x̃, f(x̃)) , (70)

∂ṽ

∂n(x)
(x̃, f(x̃)−0) = iη φ(x̃, f(x̃)) . (71)

It follows that the function ṽ(x) restricted to the domain {z ≤ f(x̃)} satisfies the homogeneous
impedance boundary condition

∂ṽ

∂n(x)
(x̃, f(x̃)) +

iη

ξ
ṽ(x̃, f(x̃)) = 0 on Γ.

Since, per the discussion above, ṽ additionally satisfies the radiation condition (12), Lemma A.1
tells us that we must have ṽ(x) = 0 for all x below Γ. In view of (70) and/or (71) and the
assumption η/ξ < 0 it follows that φ(x) = 0 for all x ∈ Γ.
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k Unknowns A max |GA −Gref | Iter ε1 ε

1 16 × 16 30 4.4 × 10−2 13 1.0 × 10−1 1.8 × 10−1

1 16 × 16 60 3.1 × 10−3 13 6.3 × 10−3 6.6 × 10−3

1 16 × 16 120 4.3 × 10−4 13 4.8 × 10−4 4.3 × 10−4

1 16 × 16 160 3.7 × 10−5 13 1.3 × 10−4 2.3 × 10−4

1 16 × 16 240 2.4 × 10−6 13 4.9 × 10−6 6.7 × 10−6

Table 1: Convergence of the p = 0 Dirichlet solver (unshifted) as A grows, for a configuration away
from Wood anomalies. Normal incidence (α = 0) was assumed for this example. The reference
solution was produced using A = Aref = 320 and 16 × 16 unknowns, for which ε = 1.0× 10−6.

k Unknowns A GA GA,p, p = 3
Iter ε1 ε Iter ε1 ε

6 16 × 16 30 16 4.9 × 10−3 1.6 × 10−3 12 6.5 × 10−3 1.2 × 10−2

6 16 × 16 60 16 1.5 × 10−3 4.1 × 10−4 12 3.8 × 10−4 1.5 × 10−5

6 16 × 16 80 16 2.8 × 10−5 1.1 × 10−5 12 4.7 × 10−6 2.3 × 10−6

Table 2: Convergence of the p = 3 Dirichlet solver with shift parameter d = 2.4, away from Wood
frequencies, as A grows. Normal incidence. The reference solution was produced using corresponds
to A = Aref = 120, 32 × 32 unknowns, for which ε = 4.0 × 10−7.

4 High-order numerical evaluation of the boundary-layer poten-
tials with quasi-periodic Green functions

For our numerical treatment we reformulate the quasi-periodic scattering integral equation (59)
in terms of only periodic functions. We use the fact that the solution φ = φqper of the integral
equation (59) is α-quasi-periodic with respect to the lattice Λ, and that, therefore, the quantity

φper(x̃) = e−iα·x̃ φqper(x̃)

is periodic with respect to Λ. This allows us to express the integral equation (59) in the form

ξφper(x)

2
+

∫

Γper

(

ξ
∂Gper

p (x− x′)
∂n(x′)

+ iηGper
p (x− x′)

)

φper(x′)ds(x′) = −e−iγf(x̃), x̃ ∈ Γper, (72)

where the Λ-periodic Green function Gper
p is defined by

Gper
p (x,x′) = Gq

p(x,x
′)eiα·(x̃′−x̃). (73)

In practice, for any given p = 0, 1, . . . the quantity Ĝp,A (equation (34)) is used as an approximation
for Gq

p which, when subsituted in (73), results in the needed numerical approximation of Gper
p . We

solve equation (72) by means of the unaccelerated high-order Nyström procedure introduced in [6]
and Part I. For all the numerical experiments presented in Section 5 a single patch was used to
represent the biperiodic surfaces under consideration.
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k Unknowns A Iter ε1 ε

2π 24 × 24 20 19 3.2 × 10−2 1.7 × 10−2

2π 24 × 24 30 19 2.7 × 10−3 4.7 × 10−3

2π 24 × 24 40 19 6.9 × 10−4 4.0 × 10−4

2π 24 × 24 60 19 ref 2.4 × 10−6

2π ± 10−6 24 × 24 40 19 6.8 × 10−4 4.3 × 10−4

2
√
2π 24 × 24 30 25 1.3 × 10−2 1.5 × 10−2

2
√
2π 24 × 24 40 25 6.8 × 10−3 5.5 × 10−3

2
√
2π 24 × 24 80 25 8.9 × 10−5 2.1 × 10−4

2
√
2π 24 × 24 120 25 ref 3.8 × 10−5

2
√
2π ± 10−6 24 × 24 30 25 1.6 × 10−2 2.5 × 10−2

2
√
2π ± 10−6 24 × 24 80 25 8.9 × 10−5 1.5 × 10−4

4π 32 × 32 30 28 4.6 × 10−2 4.9 × 10−2

4π 32 × 32 60 28 2.4 × 10−3 1.1 × 10−3

4π 32 × 32 180 28 ref 2.2 × 10−4

Table 3: Convergence, as A grows, of the p = 3 Dirichlet solver at and around Wood frequencies.
Shift parameter d = 1.4, GMRES residual tolerance equal to 10−6. “Ref” refers to finely resolved
solutions against which the error of the coarser solutions is evaluated.

k Unknowns A Iter ε1 ε

2π 24 × 24 20 19 5.3 × 10−3 7.4 × 10−3

2π 24 × 24 30 19 5.7 × 10−4 1.7 × 10−3

2π 24 × 24 40 19 1.1 × 10−4 3.7 × 10−4

2π 24 × 24 80 19 ref 4.5 × 10−6

2π ± 10−6 24 × 24 40 19 1.1 × 10−4 3.6 × 10−4

2
√
2π 24 × 24 30 25 7.3 × 10−2 5.1 × 10−2

2
√
2π 24 × 24 40 25 4.1 × 10−3 2.8 × 10−3

2
√
2π 24 × 24 80 25 2.6 × 10−4 3.4 × 10−4

2
√
2π 24 × 24 160 25 ref 4.2 × 10−5

2
√
2π ± 10−6 24 × 24 80 25 2.5 × 10−4 3.5 × 10−4

4π 32 × 32 30 28 1.2 × 10−1 4.5 × 10−2

4π 32 × 32 60 28 2.7 × 10−3 1.6 × 10−3

4π 32 × 32 180 28 ref 1.1 × 10−4

Table 4: Convergence, as A grows, of the p = 3 Neumann solver at and around Wood frequencies.
Shift parameter d = 1.4, GMRES residual tolerance equal to 10−6. “Ref” refers to finely resolved
solutions against which the error of the coarser solutions is evaluated.
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5 Numerical results

We present numerical computations of scattering by the doubly periodic scattering surface f(x, y) =
1
2 cos(2πx) cos(2πy) with periodicity lattice vectors v1 = (1, 0, 0) and v2 = (0, 1, 0) and under
Dirichlet and Neumann boundary conditions. For non-Wood configurations we utilize the p = 0
(unshifted) version of the algorithm described in Section 4. At and around Wood configurations,
on the other hand, we use the p = 3 version of that algorithm. A fully three-dimensional single-core
Matlab implementation of these methods was used, which was neither accelerated nor optimized;
accordingly, our numerical error studies at Wood anomalies do not go beyond relative errors of the
order 10−4. Clear high-order convergence is observed in all cases.

We report the quality of the solutions on the basis of two error indicators. The first of these
indicators is the energy-conservation defect

ε =

∣

∣

∣

∣

∣

∣

∑

(j,ℓ)∈P

γjℓ
γ00

|Bjℓ|2 − 1

∣

∣

∣

∣

∣

∣

(74)

which we have verified (by means of numerical resolution studies) to be an excellent error predictor
for these solvers. An additional error estimator we present, ε1, on the other hand, equals the
absolute error in the Rayleigh coefficient B+

0,0 (as estimated by comparison with a reference solution
obtained by means of a highly-refined discretization, a large value of the window parameter A, and a
sufficiently small GMRES tolerance). The word “ref” on a table entry indicates that the parameter
values on that row were used to produce the reference solution necessary for evaluation of the errors
ε1 for the corresponding frequency k on the that table. The numbers of iterations required by the
GMRES solvers to reach specified tolerances are provided in each case.

Table 1 demonstrates the high-order character, as the window-size parameter A grows, for the
proposed p = 0 (unshifted) Dirichlet solvers at frequencies k away from Wood anomalies. Table 2
demonstrates the high-order character of the p = 3 (shifted) solver, as A grows, also under Dirichlet
boundary conditions and for values of k away fromWood anomalies. Tables 3 and 4, in turn, concern
configurations at and near Wood anomalies; Dirichlet (resp. Neumann) boundary conditions are
considered in the first (resp. second) of these tables. In the normal-incidence case considered in
those tables, the first three Wood anomalies occur at k = 2π, k = 2

√
2π, and k = 4π. Once again,

fast convergence is observed as A grows, even at and around Wood anomalies. We note that the
number of iterations required by the GMRES solvers based on Combined Field Integral Equations
remains small even for Wood and near-Wood parameters for both Dirichlet and Neumann problems.

A Appendix: Integral equations away from Wood frequencies

In order to establish the unique solvability of the integral equations (59), the proof of Theorem 3.3
relies on the following classical result on solutions to the homogeneous surface-impedance problem.

Lemma A.1. Let v(x) is a quasi-periodic field that satisfies the Helmholtz equation ∆v + k2v = 0
for z < f(x̃) (resp. z > f(x̃)), the outgoing condition (12) (resp. (10)) and the impedance condition

∂v

∂n
(x)− iζ v(x) = 0 (x ∈ Γ)

with ζ > 0 (resp. ζ < 0). Then v(x) = 0 for z < f(x) (resp. z > f(x)).
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Proof. We establish the result in the case z < f(x) and ζ > 0; the complementary case is handled
analogously. Consider the truncated period

Ω = {(x̃, z) : x̃ ∈ Q, z− < z < f(x̃)}

with lower boundary S = {(x̃, z) : x̃ ∈ Q, z = z−} oriented downward. Using integration by parts
we obtain

0 =

∫

Ω

(

∆v + k2v
)

v̄ =

∫

Ω

(

−|∇v|2 + k2|v|2
)

dx−
∫

Γper

∂v

∂n
v̄ ds −

∫

S

∂v

∂n
v̄ ds . (75)

(The integrals over the lateral sides of Ω add up to zero as a result of the assumed quasi-periodicity
of v.) In view of the impedance condition on Γ and the outgoing condition (12) we obtain

∫

Γ

∂v

∂n
v̄ ds +

∫

S

∂v

∂n
v̄ ds = iζ

∫

Γ
|v|2 ds +

i

2D

∑

(j,ℓ),γjℓ>0

γjℓ|c−jℓ|2.

The imaginary part of this quantity equals the imaginary part of (75) and it must therefore vanish.
It follows that v = 0 on Γ. The impedance condition then yields ∂v/∂n = 0 on Γ as well. By
Green’s identity it follows that v = 0 in Ω and therefore for all x with z < f(x̃) (x̃ ∈ R

2).

For completeness we now present a simpler alternative proof of Theorem 3.3, which, however,
is restricted to the case p = 0 (unshifted Green function) and to configurations away from Wood
anomalies.

Theorem A.2. Let η
ξ < 0, let p = 0, and let us assume that k is a wavenumber for which the

quasi-periodic Green function Gq
0 exists, that is, γjℓ 6= 0 for all pairs (j, ℓ) ∈ Z. Then the integral

equation (59) is uniquely solvable in L2(Γper).

Proof. Given that the surface Γ is smooth and that Gq
0 has the same singularity as G, it follows

that the integral operators on the left-hand side of equation (59) are compact operators in the space
L2(Γper). Thus, by Fredholm theory, the unique solvability of equation (59) is equivalent to the
injectivity of the operator on the left-hand side of that equation. In order to establish injectivity,
let φ0 ∈ L2(Γper) denote a solution of equation (59) with zero right hand-side, and let u± denote
the restrictions to Ω± of the potentials u defined by equation (56) above and below Γ with density
φ = φ0. It follows that u+ is a radiating solution of the Helmholtz equation in Ω+ with zero
Dirichlet boundary conditions, and hence u+ = 0 in Ω+ [24]. Using the jump relations satisfied by

the layer potentials in equation (56) we obtain u−|Γ = −ξφ0 and
(

∂u−

∂n

)

|Γ = iηφ0. Thus u− is a

quasi-periodic radiating solution of the Helmholtz equation in Ω− with zero impedance boundary
conditions ∂v

∂n(x) − iζ v(x) = 0, ζ = −η
ξ > 0 on Γ. By Lemma A.1 it follows that v− = 0 in Ω−,

and thus φ0 = 0 in L2(Γper), as desired. The proof of the theorem is now complete.

No uniqueness results exist for the Helmholtz scattering problem (9) under Neumann boundary-
value conditions and the radiation condition (10), even away fromWood anomalies—although it has
been repeatedly conjectured (cf. [18, p. 147]), [4]) that such a uniquess result does hold. Assuming
that the wavenumber k is such that this scattering problem does admit a unique solution, however,
we may seek the scattered field in the form

u(x) =

∫

Γ
Gq(x− x′)ψ(x′)ds(x′), x ∈ R

3 \ Γ (76)
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in terms of the unknown surface density ψ. Using the jump condition for the normal derivatives of
single-layer potentials and the sound-hard (Neumann) boundary condition, the unknown density
ψ is seen to be a solution of the integral equation

− ψ(x)

2
+

∫

Γ

∂Gq(x− x′)
∂n(x)

ψ(x′)ds(x′) = −i(α,−γ) · n(x) ei(α·x̃−γz), x = (x̃, z) ∈ Γ. (77)

Given that, addtionally, the scattering problems from doubly periodic surfaces and Dirichlet bound-
ary conditions admit unique solutions for all wavenumbers, it follows that the integral equations (77)
have themselves unique solutions.
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