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Abstract. We compute the transmission of two-dimensional (2D) electromagnetic waves through
a square lattice of lossless dielectric rods with a channel defect. The lattice is finite in the direction
of propagation of the incident wave and periodic in a transverse direction. We revisit a boundary-
integral formulation of 2D electromagnetic scattering [Venakides, Haider, and Papanicolaou, SIAM
J. Appl. Math., 60 (2000), pp. 1686–1706] that is Fredholm of the first kind and develop a second-kind
formulation. We refine the numerical implementation in the above paper by exploiting separability
in the Green’s function to evaluate the far-field influence more efficiently. The resulting cost savings
in computing and solving the discretized linear system leads to an accelerated method. We use it
to analyze E-polarized electromagnetic scattering of normally incident waves on a structure with a
periodic channel defect. We find three categories of resonances: waveguide modes in the channel,
high-amplitude fields in the crystal at frequencies near the edge of the frequency bandgap, and very
high-amplitude standing fields at frequencies in a transmission band that are normal to the direction
of the incident wave. These features are captured essentially identically with the first-kind as with
the second-kind formulation.
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1. Introduction. Calculations of electromagnetic (EM) scattering in photonic
crystal lattices play a central role in the design of optical and electronic devices in-
cluding filters, lasers, and microwave antennas. The manner in which waves propagate
through a photonic crystal is highly dependent on the geometry of the lattice, the loss
properties of the component dielectrics, and the dielectric contrast. Under conditions
of high dielectric contrast, it is well known that infinite two-dimensional (2D) lattices
exhibit photonic bandgaps, which are frequency intervals in which there are no waves
propagating through the lattice (see, e.g., [5], [9]).

In the practical case of a truncated photonic crystal, in particular a photonic
crystal slab, the bandgaps appear as frequency intervals of very low transmission.
When defects are introduced into the geometry, large fields at resonant frequencies
arise in the structure, causing irregular behavior in the transmission coefficient at
these frequencies.

In the present study, we consider EM scattering by a photonic crystal slab com-
prised of a square lattice of lossless dielectric rods. The slab is finite in one direction
X and periodic in the other direction Y . We first compute the effects of nonnormal
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incidence and consider briefly the effect of random perturbations of the perfect lattice
on the transmission coefficient. Then, as our primary focus, we analyze the scattering
of normally incident waves by a structure with a periodic channel defect (Figure 4.3)
that is parallel to the X-axis. We find three categories of resonances in the chan-
nel structure (Figure 4.5): waveguide modes in the channel at higher frequencies in
the bandgap, high-amplitude 2D modes in the structure at lower frequencies in the
bandgap, and very high-amplitude Y -resonating modes at frequencies to the left of
the bandgap. The last category of resonances is of particular interest as such reso-
nances have very high quality factors and exhibit characteristics similar to channel
drop filters [2], [3], which reflect incident radiation at a particular frequency while
allowing neighboring frequencies to penetrate the lattice.

In previous work [1], [8], we studied transmission through Fabry–Perot laser cav-
ities formed by two parallel mirrors comprised of circular dielectric rods in air. In
contrast to the channel in the present study, the Fabry–Perot cavity runs parallel to
the Y direction. In that case, resonant frequencies arise in the bandgap only. In [8],
the location of peaks in the transmission graph and their quality factor (Q-value),
which measures laser efficiency, were traced as a function of cavity width for the case
of lossless dielectrics. In the present study, we are concerned not only with charac-
teristics in the transmission coefficient at various types of resonant frequencies in the
band and the gap but also with the behavior of the electromagnetic field inside the
structure at these frequencies.

For our studies, we use a numerical implementation of a boundary-integral for-
mulation of the scattering problem that we developed in [8]. We also use a well-posed
formulation that we develop in section 2.2. The boundary-integral approach reduces
the problem from 2D to 1D and automatically enforces radiation conditions that are
inherent to the scattering problem through the choice of appropriate radiating Green’s
functions. In this study, we refine our previous model by exploiting separability in
the Green’s function to evaluate the far-field influence more efficiently. As in the pre-
vious study, an Ewald representation of the Green’s function is used to ensure rapid
convergence of the representation in the near field. The primary consequence of our
refined approach is that the (previously) dense matrix in the assembled system of
linear equations is reduced to a banded matrix, resulting in an accelerated method.
This simplification leads to significant cost savings in both computing and solving the
discretized integral system.

2. The scattering problem and its mathematical formulation. We de-
scribe in this section our extension of the boundary-integral formulation of the elec-
tromagnetic scattering problem, which was developed in [8]. The photonic crystal
under consideration is a mixed dielectric structure that is periodic in one direction
Y and finite in the other direction X. It is constant in the Z-direction. One period
consists of a finite number of parallel rods Dj transverse to the XY -plane, each having
a uniform dielectric permittivity εj . We call the period of the structure a cell, or a
supercell in the case in which it involves a finer periodic structure (Figure 2.1). The
space exterior to the rods has a uniform dielectric permittivity εext. We refer to this
structure as a photonic crystal slab.

We consider scattering by the structure of time-harmonic electric and magnetic
fields with either electric or magnetic polarization. In the former, the electric field
points parallel to the rods, and the magnetic field lies parallel to the XY -plane,
transverse to the rods. We refer to this as Ez-polarization. (In [8], these fields
were called transverse magnetic, or TM, fields.) We define Hz-polarization (TE) in
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Fig. 2.1. A plane cross-section of a y-periodic photonic crystal. The supercell enclosed in a
rectangle represents one period.

a corresponding fashion, with the magnetic field parallel to the rods. In either case,
the field component parallel to the rods has the form Ψ(X,Y )e−iωt, and Ψ satisfies
the Helmholtz equation

(∂2
X + ∂2

Y )Ψ +
ω2

c2
ε(X,Y )Ψ = 0,

in which c is the speed of light. This equation is valid in the interiors of the rods
and in the exterior, and matching conditions described below apply on the interface.
Because of the periodicity of the structure, the domain of the mathematical problem
is the strip {(X,Y ) : −∞ < X < ∞, 0 ≤ Y ≤ P}, where P is the period.

2.1. Equations for the electromagnetic field. In dimensionless form, we
scale the period to 2π, and we let ψ(x, y) denote the electric (Ez case) or magnetic
field (Hz case). Here ψ satisfies the nondimensional Helmholtz equation

(∂2
x + ∂2

y)ψ + k2ε(x, y)ψ = 0,(2.1)

in which k, the reduced (nondimensional) frequency, is given by k = ωp/(2πc), where
p is the Y -period of the structure. ε = εint/εext is the dielectric contrast between the
interior and the exterior and is equal to 1 in the exterior to the rods. The following
conditions also apply:

• The field ψext in the exterior is the sum of an incident plane wave ψinc and a
scattered wave ψsc.

• ψsc satisfies a radiation condition at x = ±∞.
• Let ψint denote the field inside rod Dj . On the boundary ∂Dj , the following
matching conditions hold:

ψext = ψinc + ψsc = ψint, ∂nψext = ∂nψinc + ∂nψsc = ν−1∂nψint,(2.2)

where ν = 1 for Ez waves and ν = ε for Hz waves.
If the incident field is produced at an angle of θ with the normal to the surface of

the crystal (x-axis), then, by requiring that it satisfy the Helmholtz equation (2.1),
we find that it has the form

ψinc = exp
(
i
√
k2 − (m̄+ β)2x+ i(m̄+ β)y

)
,

in which θ = arcsin((m̄ + β)/k), m̄ is an integer, and −1/2 < β ≤ 1/2. ψinc is
pseudoperiodic in the sense that

ψinc = eiβyψ̃inc(x, y),
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where ψ̃inc is 2π-periodic in y. Requiring that the scattered field also be pseudo-
periodic, so that ψsc = eiβyψ̃sc(x, y), where ψ̃sc is 2π-periodic in y, we find that, in
the exterior,

(∂2
x + ∂2

y)ψ̃sc + 2iβ∂yψ̃sc + (k2 − β2)ψ̃sc = 0.(2.3)

The radiating Green’s function for the exterior is then the pseudoperiodic function

G(r − r̂) = eiβ(y−ŷ)G̃(r − r̂),

in which G̃ is the field at the point r = (x, y) produced by a radiating periodic
monopole of (2.3):

G̃(r − r̂; k2, β) =
1

4π

∞∑
m=−∞

e−
√−λm |x−x̂|
√−λm

eim(y−ŷ),(2.4)

where λm = k2 − (m+ β)2.
Considering the matching conditions (2.2), the radiation condition on ψsc, and

the pseudoperiodicity of the incident and scattered fields and the Green’s function,
Green’s identity results in the following system of boundary-integral equations for the
total exterior field ψext and its normal derivative ∂nψext:

1 For any point r̂ ∈ ∂Dj ,

1

2
ψext(r̂) +

∫
∂D

[
−∂G(r̂ − r)

∂n(r)
ψext(r) +G(r̂ − r)

∂ψext

∂n(r)
(r)

]
ds(r) = ψinc(r̂),(2.5a)

1

2
ψext(r̂) +

∫
∂Dj

[
∂Φj(r̂ − r)

∂n(r)
ψext(r)− νΦj(r̂ − r)

∂ψext

∂n(r)
(r)

]
ds(r) = 0,(2.5b)

in which Φj is a Green’s function for the interior of rod j and ∂D is the union of
all ∂Dj .

This system (2.5) is Fredholm of the first kind in the functional variable ∂nψext.

2.2. A well-posed formulation of the boundary-integral equations. We
have developed a well-posed formulation of the problem, in which the boundary-
integral equations are Fredholm of the second kind.

Theorem 2.1. Suppose that the matching conditions (2.2), the radiating condi-
tion on ψsc, and the pseudoperiodicity of ψsc and ψinc are satisfied. Then the following
system of integral equations for ψext holds:

ψext(r̂) +

∫
∂D

[
∂(Φ−G)(r̂ − r)

∂n(r)
ψext(r)− (νΦ−G)(r̂ − r)

∂ψext

∂n(r)
(r)

]
ds(r) = ψinc(r̂),

(2.6a)

1 + ν

2

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
∂2(Φ−G)(r̂ − r)

∂n(r̂)∂n(r)
ψext(r)

− ∂(νΦ−G)(r̂ − r)

∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂ψinc

∂n(r̂)
(r̂).(2.6b)

1In [8], an extra term with a factor of β appears erroneously in equation 4.6 and propagates into
equations 4.12, 4.15, and 5.6. The error does not affect the results of that paper because only the
case β = 0 is considered. The authors apologize for the error.
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The notation ∂/∂n(r) refers to differentiation with respect to the variable r in the
normal direction to the boundary at the point r, and ∂/∂n(r̂) refers to differentiation
with respect to the variable r̂ in the normal direction to the boundary at the point
r̂. It is also understood that the interior Green’s function Φ(r̂ − r) is zero whenever
r and r̂ are on different rods.

These equations can be generalized to a system in which the scatterer has a
magnetic permeability that is different from the external medium.

Similar formulations for 3D EM scattering problems are derived in Müller [7].
Our formulation is derived below from the first-kind system (2.5).

Proof. We start with the equation for the external field for values of r̂ in the
domain exterior to the rods:

ψext(r̂) +

∫
∂D

[
−∂G(r̂ − r)

∂n(r)
ψext(r) +G(r̂ − r)

∂ψext

∂n(r)
(r)

]
ds(r) = ψinc(r̂).(2.7)

Let r̂ lie on a vector n(r̂) emanating normally from some point on the boundary of one
of the rods, and take the derivative of this equation with respect to r̂ in the direction
of n(r̂):

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
− ∂2G(r̂ − r)

∂n(r̂)∂n(r)
ψext(r) +

∂G(r̂ − r)

∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂ψinc

∂n(r̂)
(r̂).

The following identity holds:

∂2G(r̂ − r)

∂n(r̂)∂n(r)
+

∂2G(r̂ − r)

∂t(r̂)∂t(r)
= −n(r̂) · n(r)(∂2

x + ∂2
y)G(r̂ − r),

in which ∂t denotes a tangent derivative. The minus sign occurs because ∂n(r̂) and
∂t(r̂) denote derivatives with respect to r̂. Using this together with the Helmholtz
equation

(∂2
x + ∂2

y)G(r̂ − r) + k2G(r̂ − r) = 0 for r̂ �= r,

we eliminate the term containing two normal derivatives of G. Then, integrating by
parts in the term with the tangent derivatives, we obtain

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
− n(r̂) · n(r)k2G(r̂ − r)ψext(r)

− ∂G(r̂ − r)

∂t(r̂)

∂ψext

∂t(r)
(r) +

∂G(r̂ − r)

∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂ψinc

∂n(r̂)
(r̂).

We now allow r̂ to approach the boundary along the vector n(r̂), and the term con-
taining ∂G

∂n produces a singular contribution of − 1
2
∂ψext

∂n(r̂) (r̂). Thus, for r̂ ∈ ∂D, we

obtain

1

2

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
− n(r̂) · n(r)k2G(r̂ − r)ψext(r)

− ∂G(r̂ − r)

∂t(r̂)

∂ψext

∂t(r)
(r) +

∂G(r̂ − r)

∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂ψinc

∂n(r̂)
(r̂).(2.8)
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A similar derivation applies to the field in the interior of the rods:

(2.9)
1

2

∂ψint

∂n(r̂)
(r̂) +

∫
∂D

[
n(r̂) · n(r)k2εΦ(r̂ − r)ψint(r)

+
∂Φ(r̂ − r)

∂t(r̂)

∂ψint

∂t(r)
(r)− ∂Φ(r̂ − r)

∂n(r̂)

∂ψint

∂n(r)
(r)

]
ds(r) = 0.

The integral of the term containing the tangent derivative is a principal-value integral.
The leading order of this singularity, however, is independent of k and ε. Substituting
ψint = ψext and ∂nψint = ν∂nψext from conditions (2.2) into (2.9) and adding (2.8),
we obtain

1 + ν

2

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
− n(r̂) · n(r)k2 (G− εΦ) (r̂ − r)ψext(r)

− ∂(G− Φ)(r̂ − r)

∂t(r̂)

∂ψext

∂t(r)
(r) +

∂(G− νΦ)(r̂ − r)

∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂ψinc

∂n(r̂)
(r̂).

This equation contains no principal-value integral. In addition, the leading singular
part of G− Φ is C|r̂ − r|2 log |r̂ − r|, and we may therefore integrate again by parts.
This yields the equation

1 + ν

2

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
− n(r̂) · n(r)k2(G− εΦ)(r̂ − r)ψext(r)

+
∂2(G− Φ)(r̂ − r)

∂t(r̂)∂t(r)
ψext(r) +

∂(G− νΦ)(r̂ − r)

∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂ψinc

∂n(r̂)
(r̂).

The first two terms in the integral can now be replaced by

−∂2(G− Φ)(r̂ − r)

∂n(r̂)∂n(r)
ψext(r),

resulting in the second equation stated in the theorem.
The first equation is just the sum of (2.5).

2.3. The Ewald formulation of the Green’s function. The Ewald formu-
lation of the Green’s function allows one to compute G and its derivatives for small
values of |x̂ − x| for which the Fourier form (2.4) converges slowly. One writes G as
a sum

G(r − r̂) = G1(r − r̂) +G2(r − r̂),

in which

G1 =
1

2π

∞∑
m=−∞

ei(m+β)(y−ŷ)
∫ E2

0

1√
4πt

exp

[
λmt− (x− x̂)2

4t

]
dt,

G2 =
1

2π

∞∑
m=−∞

ei(m+β)(y−ŷ)
∫ ∞

E2

1√
4πt

exp

[
λmt− (x− x̂)2

4t

]
dt,
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and the number E is to be chosen judiciously. Following [8], we fix E|k| = 1. In [8],
G1 is further reduced to the form

G1(r − r̂) =
1

4π

∞∑
m=−∞

e−2πiβm
∞∑
n=0

(Ek)2n

n!
En+1

(
R2
m

4E2

)
,

in which R2
m = (x − x̂)2 + (y − ŷ + 2πm)2 and En(z) is the exponential integral of

degree n:

En(z) =

∫ ∞

1

e−zt

tn
dt.

By expanding exp((x− x̂)2/4t) in a Taylor series, we reduce G2 to the form

G2(r − r̂) =
1

2π

∞∑
m=−∞

ei(m+β)(ŷ−y)
∞∑
n=0

cm,n(x̂− x)2n,

in which

cm,n =
(
E2(n− 1

2 )
√
4π(−4)nn!)−1

En+ 1
2
(−E2λm).

For any value of k, we calculate a sufficient number of these coefficients once
and then use them to calculate the inner sum, for any values of x̂ and x, to great
precision. We find that this approach very significantly increases the efficiency in the
calculations over the reduction of G2 in [8] involving error functions.

The utility of the Ewald formulation arises from two features. First, the loga-
rithmic singularity of G is conveniently isolated in the term m = 0 of G1, and the
leading-order part occurs in the term n = 0 of that term. Separating the logarithmic
and regular parts of the exponential integrals in this term, one can then perform in-
tegrations using logarithmic Gaussian quadrature rules when |r̂− r| is small. Second,
the convergence of G2 is exponential, uniformly in |x̂− x|.

The exponential integrals are calculated in the following way: E1 is calculated
using polynomial and rational approximations, and E1/2 using the identity

E1/2(z) =

√
π

z
erfc(

√
z)

and polynomial approximations for the complex complementary error function (erfc):

erfc(z) =
2√
π

∫ ∞

z

e−t
2

dt.

Then, for n > 1, En(z) and En+1/2(z) and their derivatives are calculated using the
recursion relation

En+1(z) =
1

n
(e−z − zEn(z)),

dEn
dz

(z) = −En−1(z).

In addition, near the logarithmic singularity in G, we split En as follows:

En(z) = Esing
n (z) log(z) + Ereg

n (z).

Again, Ereg
1 is calculated using polynomial and rational approximations, and Esing

1 =
−1. Then, for n > 0, Ereg

n satisfies the same recursion relation as En, and Esing
n (z)

satisfies

Esing
n+1(z) = − z

n
Esing
n (z).
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3. Numerical calculations. We have presented two formulations of the
boundary-integral equations, one that is numerically ill-posed (2.5) and one that is
well-posed (2.6). We have implemented both of these numerically to simulate a variety
of experiments. We compare the results of the two schemes in section 4.2.

We now present our numerical scheme for the first-kind system. It can just as
well be applied to the second-kind system.

3.1. The finite approximating system. Define, for r̂ ∈ ∂Dj and functions ψ
and φ defined on ∂D,

L1(ψ, φ)(r̂) =
1

2
ψ(r̂) +

∫
∂D

[
−∂G(r̂ − r)

∂n(r)
ψ(r) +G(r̂ − r)φ(r)

]
ds(r),

L2(ψ, φ)(r̂) =
1

2
ψ(r̂) +

∫
∂Dj

[
∂Φj(r̂ − r)

∂n(r)
ψ(r)− νΦj(r̂ − r)φ(r)

]
ds(r).

We choose a finite-dimensional approximation space for the space of continuous func-
tions on ∂D spanned by basis functions {hi}Ni=1 and also choose N sample points
{r̂j}Nj=1. Let the incident and external fields be approximated by

(ψinc, ∂nψinc) ≈
(

N∑
i=1

cihi,

N∑
i=1

dihi

)
,

(ψsc, ∂nψsc) ≈
(

N∑
i=1

aihi,

N∑
i=1

bihi

)
.

We then arrive at an approximating finite-dimensional linear system for the sys-
tem (2.5):

L1

(∑
aihi,

∑
bihi

)
(r̂j) = ψinc(r̂j), j = 1, . . . , N,(3.1a)

L2

(∑
aihi,

∑
bihi

)
(r̂j) = 0, j = 1, . . . , N.(3.1b)

This is a 2N × 2N linear system for {ai, bi}Ni=1.
For all of the calculations in this paper, we have exactly parameterized the bound-

aries of the rods, divided each boundary into a number of elements, and then used
basis functions {hi} that correspond to three-node quadratic interpolation of the fields
along the elements. Thus there are two types of basis functions—one that is supported
on a single element, and another that is supported on two adjacent elements. The
numbers {ai, bi} and {ci, di} are the values of the fields ψext and ψinc at the endpoints
and midpoints of each element. As sample points {r̂j}, we have again chosen to use
the endpoints and midpoints of the elements. In computing the matrix elements of
the system (3.1), we have used regular Gaussian quadrature formulas for the inte-
grals over those elements for which the integrand has no singularity. For elements
whose support contains the sample point r̂j , we use Gaussian quadrature formulas
with logarithmic weights to compute the integrals of the singular term m = 0 of G1.

3.2. An accelerated computational scheme. Each term of the Fourier form
of the periodic Green’s function G(r̂ − r) and its derivatives can be written as a
product of a factor involving only x̂ and ŷ with a factor involving only x and y. This
separability is accompanied by exponential decay in m when |x− x̂| is not zero. When
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Fig. 3.1. The separability of the modes of the periodic Green’s function: the influence of one
group of rods on a remote point r̂ through the reference points r±

�
.

|x − x̂| is sufficiently large, this decay allows us to consider only a small number of
terms of the series, while the separability allows us to group influences as described
below. The computational advantage of this grouping is that it can be utilized to
lead to a sparse matrix in the final linear algebraic system. When |x− x̂| is small, we
use the Ewald representation. Although it displays fast convergence, as we discussed
above, we lose the advantage of separability in this regime. Our method is thus much
more efficient for structures with a supercell that is long in the x direction and short
in the y direction, and least efficient in the opposite case.

We partition the set of rods into L vertical groups and denote by D� the domain
consisting of the rods in group / (Figure 3.1). Set x+

� = sup{x : (x, y) ∈ ∂D�},
x−
� = inf{x : (x, y) ∈ ∂D�}, and r±� = (x±

� , 0). For each / = 1, . . . , L and each integer
m, define

L+
m,�(ψ, φ) =

1

4π
√−λm

�∑
�′=0

∫
∂D�′

e−
√−λm |x+

�
−x|−i(m+β)y

×
[
φ(r) +

(
−
√
−λm nx(r) + i(m+ β)ny(r)

)
ψ(r)

]
ds(r),

L−
m,�(ψ, φ) =

1

4π
√−λm

L∑
�′=�

∫
∂D�′

e−
√−λm |x−

�
−x|−i(m+β)y

×
[
φ(r) +

(√
−λm nx(r) + i(m+ β)ny(r)

)
ψ(r)

]
ds(r),

We call r±� the right and left reference points of influence for group /; r is a source
point, and r̂ is the influence point. L±

m,�(ψ, ∂nψ) represents the contribution of source

points located on ∂D� to the mth Fourier mode of the field at the reference point r±� .
See Figure 3.1 for an illustration.

Then, given r̂ ∈ ∂D such that x < x̂ for all (x, y) ∈ ∂D�, the integral in (2.5a),
restricted to

⋃
�′<� ∂D�, becomes

�∑
�′=1

∫
∂D�′

[
−∂G(r̂ − r)

∂n(r)
ψext(r) +G(r̂ − r)

∂ψext

∂n(r)
(r)

]
ds(r)

=

∞∑
m=−∞

e−
√−λm (x̂−x+

�
)+i(m+β)ŷL+

m,�(ψext, ∂nψext).
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If instead x̂ < x for all (x, y) ∈ ∂D�, then the integral in (2.5a), restricted to⋃
�′>� ∂D�′ , becomes

L∑
�′=�

∫
∂D�′

[
−∂G(r̂ − r)

∂n(r)
ψext(r) +G(r̂ − r)∂nψext(r)

]
ds(r)

=

∞∑
m=−∞

e
√−λm (x̂−x−

�
)+i(m+β)ŷL−

m,�(ψext, ∂nψext).

By using the reference points r±� , we compute exponentials only of quantities hav-
ing a negative real part, both in the definition of L±

m,� and in the separated factors
involving r̂.

Let us now augment the finite approximating system (3.1) by introducing the
auxiliary variables

ζ±m,� = L±
m,�

(∑
aihi,

∑
bihi

)
.(3.2)

We then approximate G using M = 2m0+1 values of m so that, for any sample point
r̂ that is at a sufficient distance from group / of rods, say x̂− x+

� > δ2, we may write

∑
i:supp(hi)∈

⋃
�′≤�

∂D�′

∫ [
−∂G(r̂ − r)

∂n(r)
aihi(r) +G(r − r̂)bihi(r)

]
ds(r)

≈
m0∑

m=−m0

e−
√−λm |x±

�
−x̂|−i(m+β)ŷζ±m,�.

(3.3)

If x−
� − x̂ > δ2, a similar approximation holds. In setting up the finite linear system,

we make use of the following recursion relations for the variables ζ±m,�:

ζ+
m,� = e−

√−λm (x+
�
−x+

�−1
)ζ+
m,�−1, / = 2, . . . , L,

ζ−m,� = e−
√−λm (x−

�+1
−x−

�
)ζ−m,�+1, / = 1, . . . , L− 1.

(Actually, ζ+
m,L and ζ−m,1 are not needed.)

An example with L = 14 is illustrated in Figure 3.2. The variables are arranged
in the order (a1, b1, . . . , aN , bN , ζ

±
m,�), and the rows represent the left-hand sides of

(3.1a), then of (3.1b), then the definitions (3.2) of the auxiliary variables ζ±m,�. The
shaded areas represent nonzero entries.

The key features of this matrix are these:
• The upper left block-diagonal portion records interactions between sample
points in one group of rods and elements in the same group through the
external Green’s function. When L becomes large with the number of rods
per group remaining small, this portion becomes increasingly sparse.

• In the lower portion defining the auxiliary variables, the number of nonzero
entries scales only linearly with L.

• The upper right portion brings in the interactions between rods in different
groups. The number of nonzero entries scales linearly in L.

• The middle block-diagonal structure becomes sparser as the number of rods
increases; it represents interaction between sample points in one rod and
elements in the same rod through the interior Green’s functions.
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(2LRJ)(RJ)

(2LRJ)J

(2LRJ)(2(M+R))

2LRJ 2L(M+R)

LRJ 2(M+R)(LRJ)

Fig. 3.2. The matrix for an L × R supercell of rods. J is the number of basis elements and
the number of sample points per rod, and M is the number of Fourier modes used in the auxiliary
variables ζ±

m,�
in the case for which R = 1. The numbers in the figure on the right bound the number

of nonzeros in each block of the matrix.

We have chosen, for the simulations in this paper, to solve the system using Gaussian
elimination with partial pivoting. With this method, the auxiliary variables provide
the most efficiency in the case in which the crystal consists of one horizontal row of
rods repeated periodically in y.

Let us now consider crystals that consist of L vertical groups of rods, each con-
taining R rods, each with J nodes. Suppose that we wish to calculate transmission
for actual incident frequencies up to a fixed maximal value. Since one period of
the structure contains R rods in the y-direction, the maximal value of the reduced
frequency k scales linearly in R, thereby increasing the number of penetrating (non-
decaying) modes of the Fourier form of the exterior Green’s function. The number of
modes M(R) used in the auxiliary variables must therefore also increase with R, say
M(R) = M + R. Figure 3.2 illustrates this case, with the number of nonzero entries
indicated as functions of L, R, and J .

If we fix R and J and use a Gaussian elimination method of solution, the multipli-
cation count of our algorithm is a linear function of L. However, since the separability
does not apply to the y-variable, it is not linear in R.

The separability can also be used to gain efficiency in the calculation of the matrix
entries. Let hi be a basis function, and let r±∗ = (x±

∗ , y∗) denote points on supp(hi)
such that x+

∗ = max{x : (x, y) ∈ supp(hi)} and x−
∗ = min{x : (x, y) ∈ supp(hi)}.

Then, for any sample point r̂ = (x̂, ŷ), one has

L1(aihi, bihi)(r̂) =

∞∑
m=−∞

e−
√−λm |x̂−x±

∗ |+i(m+β)(ŷ−y±∗ )

× 1

4π
√−λm

∫
supp(hi)

e−
√−λm |x±

∗ −x|−i(m+β)y

×
[
ai +

(
∓
√
−λm nx(r) + i(m+ β)ny(r)

)
bi

]
h(r)ds(r),

(3.4)

in which x+
∗ (x−

∗ ) is taken if x̂ > x+
∗ (x̂ < x−

∗ ). This means that, if the crystal contains
several rods of the same shape and size and basis functions are chosen identically on
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all these rods, then the integrals in (3.4) need to be computed only once. They may
then be used for each identical (but shifted) basis function and each sample point
r̂ = (x̂, ŷ) such that δ1 < x̂−x+

∗ < δ2 or δ1 < x−
∗ − x̂ < δ2. In addition, the computed

integrals for all basis elements in a group of rods may be used to build the auxiliary
variables ζ±m,�.

4. Computations and results. We use our computational model to simulate
Ez transmission (electric field normal to the xy-plane) through various crystals and
to analyze the electric fields generated inside the crystals. Our primary concern is an
investigation of the effects of introducing a periodic horizontal channel through the
crystal. We study various types of resonances that arise, and consider a theoretical
understanding of them. We also show some simulations of transmission through a
perfect crystal and through a randomly perturbed crystal at all angles of incidence.

We compute the transmission coefficient in the following way: At a point (x̂, 0)
located at a sufficient distance from the photonic crystal slab, we compute the pene-
trating plane-wave modes of the exterior field,

ψext =

∞∑
m=−∞

cme
−√−λm x+i(β+m)y,

that is, the modes m for which
√−λm is imaginary. The coefficients cm are given by

cm ≈
L∑
�=1

e−
√−λm |x+

�
−x̂|ζ+

m,� + δm̄,me
−√−λm x̂,

in which δ is the Kronecker delta symbol. The square of the transmission coefficient
is the ratio of the energy transmitted through the crystal, divided by the energy of
the incident wave:

T 2(k; θ) =

∑m2

m=m1
|cm|2√λm√
λm̄

,

where the sum is over propagating modes.

4.1. Advantages of the boundary-integral method. The boundary-integral
method is particularly well suited to studying resonant phenomena. We have seen
confirmation by a finite-difference time domain (FDTD) method [4] of all the features
in the transmission graph in Figure 4.5; however, the sharper features could not be
resolved in a reasonable amount of time. In addition, the shapes of the spikes that
we observe in the transmission graph for a photonic crystal with a channel defect
(see section 4.4) are not predictable, so the sharpness-enhancement methods used in
FDTD schemes cannot be applied effectively.

Our method also provides us with a theoretical and numerical tool to study fields
induced by arbitrary harmonic EM sources. In particular, it is interesting to investi-
gate the existence of EM waves in the absence of any source at all. These are surface
waves, which, in the case of photonic crystal slabs, would be EM states localized in
the crystal and traveling along its length. We are now investigating these problems,
which will be the subject of further communication.

4.2. Comparison of the first- and second-kind formulations. In our ex-
periments, we have used both the first-kind system (2.5) and the second-kind system
(2.6). In all the cases for which we have compared the two formulations, we find that
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Fig. 4.1. A comparison between Fredholm of the first kind and Fredholm of the second kind
results for the transmission graph of an E-polarized field through a 6 × 4 supercell with a channel
defect of width 0.5.

the transmission graphs are, practically speaking, identical. In particular, we observe
that the spikes that appear in the transmission graph of a crystal with a channel
defect are captured essentially identically with both systems. A comparison of results
is shown in Figure 4.1.

The deviation between the results from the first-kind and second-kind systems is
most apparent near the sharp features of the graph. Even so, with a discretization
of 12 elements per rod, the two systems give a difference of less than 10−6 in the
reduced frequency k at which the spike (c) in Figure 4.5 occurs. The width of the
spike at half its length is about 8× 10−6. The results for the transmission at the tip
of the spike differ by about 0.005, and the relative error between the results for the
maximal amplitude of the field in the crystal is less than 0.15%. Moreover, the two
formulations produce contour plots of the fields that look identical.

Thus, we demonstrate that, for systems of the size that we consider in this paper,
in which the matrix for the discretized system is typically around 1000×1000, the two
formulations give practically identical results. In computing the quadrature integrals
to set up the discrete system, it is faster to use the first-kind system. However,
at very sharp resonances ((c) and (d) in Figure 4.5), we find that, to match the
results obtained from the second-kind formulation at a certain discretization, a finer
discretization of the first kind is required. Some of the figures shown in this section
were computed using the first kind and others using the second; that information is
indicated in the captions.

4.3. Bandgaps. We compute Ez transmission through a perfect square lattice
five rods thick at all angles of incidence for reduced frequencies in the range (0, 1) (Fig-
ure 4.2(a)). At normal incidence (θ = 0), there are two frequency intervals for which
transmission is practically zero. The lower of these intervals contains a “complete
photonic bandgap,” that is, an interval of electromagnetic frequencies at which the
infinite crystal admits no propagating fields in any direction. This can be confirmed
by comparison with the atlas of complete bandgaps in Joannopoulos, Meade, and
Winn [5]. In Figure 4.2(a), one observes the persistence of the near-zero transmission
for all angles of incidence in this frequency interval. The upper interval, on the other
hand, is not a complete photonic bandgap, as varying the angle of incidence allows
fields at these frequencies to be transmitted.

We then take a 5×5 supercell within the perfect crystal and randomly perturb the
centers of the rods in both the x- and y-variables. Figure 4.2 shows the transmission
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Fig. 4.2. Transmission through a square lattice with a randomly perturbed 5 × 5 supercell.
The graphs show transmission as a function of frequency and angle of incidence: (a) no perturba-
tion, (b) perturbation of the centers up to 10% of the lattice constant, (c) perturbation up to 20%,
(d) perturbation up to 30%. The system of the first kind was used.

graph for all angles of incidence through three realizations, using different amounts
of perturbation.

Our most striking observation is the robustness of the complete bandgap under
perturbations. Whereas the incomplete gap disappears quickly under small random
perturbations, the complete gap persists even for perturbations up to 30% of the
lattice constant. Although the frequency interval over which the transmission is prac-
tically zero shrinks with increasing perturbation, all of our realizations have shown the
persistence of an interval for which transmission is blocked for all angles of incidence.

In [6], various types of perturbations are considered, and the bandgap interval for
both Ez and Hz waves is studied as the amount of perturbation increases.

4.4. Lattice with a channel defect. We analyze Ez EM scattering in a y-
periodic structure with a periodic channel defect, as depicted in Figure 4.3. In contrast
to the Fabry–Perot cavity considered in [8], the cavity in the current structure is
parallel to the x-axis, resulting in more complex 2D interactions of EM waves in
the structure. Our primary interest in this study is the characterization of resonant
frequencies that arise in the transmission coefficient. We limit our analysis to the case
of normal incidence.

We compute the transmission coefficient T (k) using several values of the channel
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Fig. 4.3. A crystal with a channel defect of size d in a 4 × 3 supercell. In the numerical
calculations, the period of the supercell is scaled to 2π.
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Fig. 4.4. Transmission of Ez fields of normal incidence through crystals with channel defects of
various sizes d in a 6× 4 supercell. Relative transmission T is plotted against the reduced frequency
k with θ = 0. The system of the first kind was used.

width d in a 6 × 4 supercell of circular dielectric rods (Figure 4.4). The ratio of the
radius of the rods to the distance between closest rods is 1/2π. We use eight elements
(sixteen nodes) per rod in the discretization, with eight quadrature points per element
in the integrations.

In plotting the transmission, we make physically meaningful comparisons of scat-
tering in the channel structure to scattering in the defect-free structure by fixing our
definition of the reduced frequency to be k = ωa/(2πc), where a is the lattice con-
stant or the distance between nearest rod centers. The introduction of a periodic
channel into the otherwise perfect structure results in “resonances” that are manifest
in the transmission graph as various sorts of spikes and humps that are absent in the
transmission graph of the perfect crystal. At these special frequencies, the electric
field in the crystal assumes various characteristics that are not present at a typical
frequency. The most notable of these are amplification and a departure from the
typical field pattern that resembles generally x-directional wave interference patterns.
(Figure 4.5(a) shows a typical field pattern in a near-transmission region of the lattice
with a channel.) We find three categories of resonances in the channel structure. All
of these categories have been confirmed by a finite-difference time domain numerical
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Fig. 4.5. The electric field produced by Ez fields normally incident to a crystal with a channel
defect of size d = 0.5 in a 6 × 4 supercell. One period of the crystal is shown, with the channel
at the top. The grey-scale indicates the magnitude of the electric field, with white representing the
highest value, and its maximum amplitude relative to the incident field is shown above each figure.
The system of the second kind was used.

method [4].

The first category of resonances (Figure 4.5(h, i)) appear at higher frequencies of
the bandgap and are characterized by local maxima in the transmission graph. They
are those that one might expect in a channel structure. Plots of the electric fields
in the structure at these frequencies typically show a low amplitude throughout the
crystal except for the area in the channel, in which larger-amplitude resonating fields
are present. We refer to these resonances as waveguide modes. The transmission
maxima at these resonances are diffuse and shift to lower frequencies as the channel
width d increases (Figure 4.4). With increasing d, the transmission also increases
as electromagnetic waves propagate more freely through the channel with the reso-
nances eventually disappearing. The low quality factor (Q-value) of these resonances
indicates that they are of limited practical interest in the design of photonic crystal
filters. (The Q-value is defined as Q = k/∆k, where ∆k is the width of the spike at
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half of its height.)

The other two categories of resonances appear at the left end of the bandgap
(second category, Figure 4.5(f, g)) and to the left of the gap in the first band (third
category, Figure 4.5(c, d)). These are typically dual spikes (a sharp dip followed by a
sharp peak, or the reverse) that, in contrast to the waveguide modes, exhibit higher
quality factors and attain their peak amplitude inside certain of the rods.

Resonances of the second category are characterized chiefly by an upward spike
and a smaller downward spike in the transmission graph and by a greatly amplified
electric field that has a genuinely 2D structure. We have observed more than a tenfold
amplification of the electric field.

The third category of resonances is characterized by a very sharp dual spike within
the near-transmission band. It is remarkable that the electric fields at these spikes
exhibit peak amplitudes as large as 170 times the incident amplitude and resemble
an interference pattern of waves propagating normal to the incident wave (in the y-
direction). A typical field with frequency in the band generally resembles interference
patterns of waves propagating in the x-direction.

In the most extreme cases ((c) and (d) of Figure 4.5), numerical computations of
the fields in the crystal produce essentially standing fields with oscillations running in
the y-direction. We make this more precise: The physically meaningful electric field
E(x, y) = Re(ψ(x, y)e−iωt) is the steady-state field induced by the incident source
cos(kx− ωt). In the case of the upward spike (d), we find that Im(ψ(x, y)) is nearly
zero, so that ψ(x, y) is practically a real function, and E(x, y) ≈ ψ(x, y) cos(ωt) a
standing field. Moreover, ψ(x, y) is equal to zero on nearly horizontal lines, and
the peaks and troughs of the field appear as horizontal light bands in Figure 4.5(d).
In the case of the downward spike (c), the situation is the same, except that now
Re(ψ(x, y)) is practically zero and E(x, y) ≈ −iψ(x, y) sin(ωt). Thus there is a phase
angle difference of π/2 between the fields at these two spikes.

These resonances are of particular interest, as they exhibit very high quality
factors and may provide a useful filtering property in that the structure can reflect
incident radiation at a particular frequency while allowing neighboring frequencies to
penetrate the lattice. In the most extreme case that we have observed (d = 0.5),
we see an extremely narrow frequency interval with a minimal transmission of about
11%, whereas neighboring frequencies are about 85% transmitted. At the frequency of
maximal reflection, the field is amplified over a hundredfold inside the crystal, and we
estimate the quality factor at around 2×105. The design of photonic crystal structures
with such a filtering property has been considered in work on channel drop filters, in
which two waveguides are separated by a photonic crystal resonator consisting of a
periodic lattice with a cavity defect [2], [3].

4.5. Theoretical considerations. The electric fields at resonances of the third
category resemble fields that are localized, or bound states, in the x-variable. A bound
state of the Helmholtz equation exists in the absence of a source and thus must occur
at a frequency for which the integral system has a nullspace. This is a frequency
within the continuous spectrum of the Helmholtz equation for which a bound state
exists in addition to the usual extended states. One may theorize that resonances of
the third category occur at such frequencies.

A simplified problem in which the analysis is more tractable can give us insight
into this eigenvalue problem. In fact, for the related problem in which we replace our
photonic crystal slab by a solid slab of uniform dielectric material that is infinite in
the y-direction and finite in the x-direction, we can prove the existence of solutions of
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Fig. 4.6. The spectrum of the Helmholtz equation for a slab of thickness 3 of uniform dielectric
permittivity 12. The grey area covers (k,m) pairs for which there is an extended solution of the form
φ(x)eimy. The curves trace out (k,m) pairs for which there exist additional solutions of the same
form that decay as |x| → ∞. The lower dotted line is |m| = k, and the upper one is |m| = √

12k.

the Helmholtz equation that are localized in the dielectric. The Helmholtz equation
becomes

(∂2
x + ∂2

y)ψ + k2ε(x)ψ = 0,

in which ε(x) = ε0 within the slab and ε(x) = 1 without. If we seek solutions of the
separable form

ψ(x, y) = φ(x)eimy,

we arrive at an eigenvalue problem for the linear Schrödinger operator applied to φ:

φ′′(x) + k2ε(x)φ(x) = m2φ(x).

We see that extended electromagnetic states exist for values of m such that m2 <
k2 (the continuous spectrum). In the interval k2 ≤ m2 < ε0k

2, there exist a finite
number of values of m for which there is a bound state φ(x), that is, a solution that
decays exponentially as |x| → ∞ (the point spectrum) (Figure 4.6).

Although the idea of a supercell is not naturally defined for the uniform slab,
we may artificially impose a period of 2π in the y-direction to relate to the slab of
photonic crystal. Thus we consider solutions of the form φ(x)eimy for integral values
of m. The point-spectrum values of m vary continuously with k and necessarily, for
certain values of k, attain integer values. At these values of k, we have extended y-
periodic solutions of the Helmholtz equation for |m| < k and additional bound states
φ(x)e±imy for some integer m such that k < |m| < ε0k. For example, in Figure 4.6,
at k ≈ 1.75, there exist solutions φm(x)e

imy that are extended electric fields for
m = −1, 0, 1 and bound fields for m = −4, 4.

Based on these observations for the uniform slab, we conjecture that such bound
states exist for slabs of a photonic crystal material. In our channel experiments, we
find that the condition number of the matrix for the discretized system increases
at the resonant frequencies and that the amount of increase depends roughly on the
sharpness of the anomaly in the transmission graph. At the resonance (c) in Figure 4.5,
with eight elements per rod, the condition number goes up to around 106 compared
to neighboring frequencies at which the condition number is around 103. The matrix
at the resonance has a small eigenvalue (of magnitude ≈ 10−5), but we cannot resolve
numerically whether the system of integral equations has a zero eigenvalue.
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Fig. 4.7. These data track a third-category spike for various values of the channel width d. For
d = 0.5, it is resonance c in Figure 4.5. The three field simulations show how the direction of the
field changes as the channel is introduced. Even a tiny defect of d = 0.001 produces a significant
change in the field. The maximum amplitude of the field is indicated above each figure. The system
of the first kind was used.

As the channel width decreases, the resonant frequency approaches a limiting
value, while the depth of the spike diminishes to zero. At the same time, the phenom-
ena of field amplification and the resemblance to y-directional interference patterns
disappear, and the fields resume their typical x-directional appearance with no con-
siderable amplification (Figure 4.7). Thus we demonstrate that these resonances are
a consequence of the channel. Whether they can exist only in the presence of an
electromagnetic source (i.e., the integral system has a nontrivial nullspace), however,
is unclear.

We have done similar simulations of transmission through crystal slabs that have
periodic defects. We have studied channel defects in a 6× 3 and 6× 5 supercell and
other defects such as the removal of just one rod from the supercell. Similar resonances
appear, and their locations differ from structure to structure. Thus it seems that at
least the second and third categories of resonances are a consequence of a general
periodic defect.

We see a similar resonance in another numerical experiment, in which we simulate
scattering through a defect-free crystal that is one rod thick with an unphysically high
dielectric contrast (Figure 4.8). We observe an increase in the condition number of
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Fig. 4.8. Ez transmission through a crystal that is one rod thick with dielectric contrast 100.
The field produced by an incident wave at the resonant frequency is shown (top right) along with
the field for a typical frequency of low transmission (bottom right). The maximum amplitude of the
field is indicated. The system of the second kind was used.

the discretized integral system at the frequency that corresponds to a downward spike
in the transmission graph and a high-amplitude localized field inside the rods. Again,
it is not clear that the integral system has a nontrivial nullspace at this resonant
frequency.

We are now making a theoretical and numerical study of bound states and reso-
nances, which will be the subject of further communication.
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