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MAGNETISM AND HOMOGENIZATION OF MICRORESONATORS∗

ROBERT V. KOHN† AND STEPHEN P. SHIPMAN‡

Abstract. Arrays of cylindrical metal microresonators embedded in a dielectric matrix were
proposed by Pendry et al. [IEEE Trans. Microw. Theory Tech., 47 (1999), pp. 2075–2084] as a
means of creating a microscopic structure that exhibits strong bulk magnetic behavior at frequencies
not realized in nature. This behavior arises for H-polarized fields in the quasi-static regime, in which
the scale of the microstructure is much smaller than the free-space wavelength of the fields. We
carry out both formal and rigorous two-scale homogenization analyses, paying special attention to
the appropriate method of averaging, which does not involve the usual cell averages. We show that
the effective magnetic and dielectric coefficients obtained by means of such averaging characterize
a bulk medium that, to leading order, produces the same scattering data as the microstructured
composite.
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1. Introduction. Within the field of artificial materials, there is presently in-
tense activity in the area of creating “metamaterials” with a negative bulk dielectric
or magnetic response. Materials with dielectric or magnetic coefficients that are either
simultaneously negative or of opposite sign offer a rich variety of interesting and use-
ful phenomena. As nature provides us with materials that exhibit negative response
only at rather restrictive frequencies, one of the aims of this field is to extend the se-
lection of frequencies by creating microscopic structures that have resonant response
when natural materials tend to be unresponsive. The field received a jump start
with the introduction of model structures of thin metallic wires for creating electric
resonance [16] and ring-type structures for creating magnetic resonance [17], which
were proposed by Pendry et al. in the late 1990s. Combinations of these effects were
investigated by Smith et al. [21] and many others to create “left-handed” materials
possessing a negative index of refraction. More recently, Pendry [15] proposed the cre-
ation of negative refraction by composites in which one of the components is chiral,
and the homogenization of such structures has been investigated in [11]. There seems
to be considerable debate and some confusion concerning the definition and mean-
ing of bulk effective electromagnetic coefficients in this setting; moreover, rigorous
mathematical treatment of the subject is still in its early stages.

Our intention with this work is to help clarify the meaning of the effective bulk
dielectric permittivity and magnetic permeability in the quasi-static limit, in which
the scale of the microstructure is small compared to the free-space wavelength of the
fields. We work only with a two-dimensional model of ring-type resonators, for which
magnetism is the dominant effect. The mathematical context of our study is periodic
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Fig. 1.1. The strip S, consisting of one period in x2 of the microstructured slab and surrounding
air. The segments Γ± are artificial boundaries used in the weak formulation of the scattering
problem. We define also Ωe = Ω \ Ωi and Ω0e = Ω0 \ Ωi.

homogenization. The relations between the D and E fields and between the B and H
fields of the individual components of the microstructured composite material

(1.1) D = εE, B = μH

give rise to bulk coefficients ε∗ and μ∗ that govern certain average fields on the macro-
scopic level:

(1.2) Dav = ε∗Eav, Bav = μ∗Hav.

What is noteworthy in the homogenization of microresonators is that these average
fields are not to be understood in the standard way as microcell averages. Indeed,
as Pendry et al. [17] observed, even if μ = μ0 for all components, we still obtain a
nontrivial magnetic response μ∗ �= μ0.

The crucial ingredient for emergence of magnetic behavior is the presence of a
component with extreme physical properties. In fact, the rings in our resonators must
possess high conductivity or internal capacitance tending to infinity as the inverse of
the characteristic length of the microstructure.

For broad discussions of electromagnetic materials with negative coefficients, one
may consult [18, 23, 19], for example.

1.1. Magnetism from microresonators. In our model, the microresonators
are represented by infinitely long rods with conducting surfaces (Figure 1.1). The
fields are harmonic (with frequency ω) and magnetically polarized. The magnetic
field, denoted by the scalar h(x1, x2), is directed parallel to the rods, while the electric
field E(x1, x2) lies in the plane perpendicular to the rods. The electric field induces a
current j on the surfaces of the resonators; it is related to the tangential component
E(x1, x2) through a complex (more on this in section 1.3) surface conductivity σs: j =
σsE · t. The current, in turn, effects a discontinuity in the magnetic field hi − he = j,
where he and hi denote the values of h exterior and interior to the microresonators.
The Maxwell system of PDEs reduces to the following system for h and E (where
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64 ROBERT V. KOHN AND STEPHEN P. SHIPMAN

∇⊥ := k×∇ = 〈−∂/∂x2, ∂/∂x1〉):

∇⊥ ·E − iωμh = 0

∇⊥h− iωεE = 0

}
off the surfaces of the microresonators,(1.3)

he − hi + σsE · t = 0 with E · t continuous on the surfaces,(1.4)

with the convention that the unit tangent vector is directed in the counterclockwise
sense.

The quasi-static limit amounts to fixing the frequency and allowing the period of
the microstructure to tend to zero. This is to be contrasted with the work of Sieven-
piper et al. [20], for example, who devise capacitative structures for the manipulation
of photonic spectral gaps, a phenomenon that is pronounced when the wavelength and
period are comparable. Starting from (1.3)–(1.4), we shall derive a system of Maxwell
equations governing suitably defined macroscopic fields. Because the currents around
the resonators flow in microscopic loops, they do not appear as currents in the homog-
enized equations. Instead, their bulk effect is manifest through the effective magnetic
coefficient μ∗, which is complex (even if ε and μ are real) because it incorporates the
effect of loss due to the currents. Our homogenized system is

∇⊥ ·Eav − iωμ∗h0
e = 0,

∇⊥h0
e − iωε∗Eav = 0.

(1.5)

It is important that the equations for the bulk fields are posed in terms of the exterior
value of the magnetic field, which is denoted by h0

e , not in terms of its cell average.
At the risk of redundancy, we emphasize the following two key points:
1. The characteristic of the microstructure that is crucial for the emergence of

magnetic response from nonmagnetic components is that one of the mate-
rial properties, the surface conductivity, is extreme. More precisely, it scales
inversely with the microscopic length scale.

2. In the homogenized Maxwell system, the macroscopic H field is not the cell
average of the field but rather the value exterior to the resonator. The macro-
scopic B field, however, is the usual microcell average.

In fact, not only are the H and B fields averaged over different parts of a unit cell,
but so are the E and D fields. This means that, just as we have discussed for the
magnetic coefficient, even if ε = ε1 in all components of the unit cell, the effective
dielectric coefficient ε∗ will typically be different from ε1. This feature distinguishes
the homogenization of microresonators from the more “standard” homogenization
of composites with perfectly bonded interfaces and material properties that are not
extreme, in which all macroscopic fields are understood as microcell averages.

The second feature is already present in the problem of homogenization porous
media, in which the cell average is taken outside the holes [8]. More recently, both
of these features appeared in the work of Bouchitté and Felbacq [4, 5, 10, 9], who
demonstrated the emergence of bulk magnetic behavior from nonmagnetic materials in
a somewhat different but related problem. The extreme property in their setting is the
dielectric coefficient inside a periodic inclusion, which tends to infinity as the inverse
area of a microcell. The magnetic field in the matrix, exterior to the inclusions, has
vanishing fine-scale variation and appears as the macroscopic field in the homogenized
equations. This exterior value drives the fine-scale oscillations in the interior, whose
resonant frequencies produce extreme magnetic behavior. The point in their problem
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as well as ours is that the effective equation involves only the H field exterior to the
inclusion (or resonator), but the B field must be averaged over the entire microcell. A
similar problem in which fiber arrays have extreme conducting properties in the plane
perpendicular to the fibers but not in the direction of the fibers has been investigated
rigorously by Cherednichenko, Smyshlyaev, and Zhikov [7]. Here again, the field in
the matrix appears in the effective equations, which possess the additional feature of
spatial nonlocality in the direction of the fibers. These problems are to be contrasted
with the case of a small-volume-fraction array of conducting metallic fibers of finite
length, treated by Bouchitté and Felbacq [6]. In that setting, the conductivity is
extreme, but the field averages are nevertheless taken in the usual way.

We shall discuss the homogenized system (1.5)—and our scheme for defining “av-
eraged fields” and “effective properties”—further in section 2, and we offer a system-
atic justification in section 4.4 following the formal asymptotic analysis. The main
points are these:

1. The effective coefficients ε∗ and μ∗ describe the limiting behavior of the scat-
tering problem.

2. Taking the value of H exterior to the resonators as the macroscopic field is the
only choice that preserves the Maxwell-type structure of the effective system
of PDEs (see the comments following (2.4)).

3. The averaging scheme is consistent with the treatment of the E, D, H, and
B fields as differential forms (section 4.4).

Point 1 means that the field scattered by a microstructured object when illumi-
nated by a plane wave should tend to the field scattered by an object of the same
shape consisting of a material possessing the bulk coefficients. In particular, the re-
flection and transmission coefficients associated to scattering by a microstructured
slab should approach those for the homogenized slab. This is the model we have cho-
sen for our analysis. It is important to keep in mind that, in any scattering problem,
we assume that no resonator is cut or exposed to the air, so that the H field in the
matrix dielectric surrounding the resonators connects continuously with the H field
in the air. In other words, the air-composite interface cuts only through the matrix
material. Although we do not treat boundary-value problems, it is evident by the
same reasoning that the same effective equations remain valid for problems in which
the boundary is exposed only to the matrix.

1.2. Scaling of fields in the quasi-static limit. Let us take a more careful
look at our particular scalings.

As one expects, the variation of h at the scale of the microstructure, which we
denote by η, vanishes in the matrix as this fine scale tends to zero (the quasi-static
limit); the microscopic variation of h is due solely to its discontinuities at the current-
carrying surfaces of the resonators. (On the other hand, the electric field E will have
nonvanishing microperiodic oscillations in the matrix, even if ε and μ are constant.)
In the quasi-static limit, therefore, the jump in h, which we call the current j, is
constant around a single microresonator.

We have emphasized the point that interesting magnetic behavior arises only
when the microresonators are highly conducting. This means that the surface con-
ductivity σs tends to infinity as the size η of a period cell tends to zero. The reason is
described by Pendry et al. [17] and is borne out by our homogenization analysis. The
electromotive force (EMF) around a single resonator is given by the line integral of
the electric field around its surface. If the interior of one resonator occupies a region
Gη, then, by using the first of the Maxwell equations (1.3), we can write the EMF in
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two ways:

EMF =

∫
∂Gη

E · tds ∼ ηO(E · t),(1.6)

EMF = iω

∫
Gη

μhdA ∼ η2O(h).(1.7)

As h is of order 1 in η, E · t is forced to be of order η on the surface of the resonators.
Now, by using the relation he−hi+σsE ·t = 0, we observe that, in order that nontrivial
behavior emerge at the microscopic level, we should use a highly conducting material,
namely, σs ∼ η−1. In summary, the relevant scalings in our analysis are the following:

h and E in the matrix: O(1),
current and discontinuity of h on surfaces: O(1),
E · t on surfaces: O(η),
surface conductivity: O(η−1).

1.3. The model for microresonators. If the resonator consists of a solid metal
cylinder, the connection between the current and the electromagnetic fields is accom-
plished by a simple constitutive law relating j to E · t through a real scalar σs, the
surface conductivity. In this case, the resonator acts purely as an inductor. If the
solid cylinder is replaced by a uniform solid metal ring, effectively the same situation
persists, as there is no uneven distribution of charge on the two surfaces of the ring
that would give rise to capacitative effects.

More elaborate resonators allow for capacitative effects by forcing nonuniform
buildup of charge around the ring. These are known as split-ring resonators (SRRs)
(see [17, 19], for example), composite ring structures consisting in part of dielectric
material and in part of one or more incomplete metal rings. As the temporal distri-
bution of charge is out of phase with that of the current, so also are the inductive and
capacitative contributions to the jump in h.

It is not our intention to provide a rigorous account of the inductive and capaci-
tative effects of SRRs in the quasi-static limit.1 Rather, in this work we are content
to observe that, in the literature, the EMF around the ring arises from integrating
two quantities around it, both related to the current j:

1. an inductive component ρj, where the real quantity ρ is the effective resistance
of the metal in the composite ring, and

2. a capacitative component j/(−iωC), where the real quantity C is the capac-
itance arising from splits in the rings or the proximity of two closely stacked
metal rings within the compound ring.

Now, by using the representation EMF =
∫
∂Gη

E · tds, we model a general res-

onator by a single closed loop (a cylindrical surface in the three-dimensional realiza-
tion) on which the inductive and capacitative effects are manifest through a single
phenomenological complex constitutive law j = σsE · t, where σs = σ1

s + iσ2
s . This

amounts to defining a singular current σ1
s E · t and a singular D field of strength

−(σ2
s /ω)E · t around the resonator.
We now demonstrate the nature of the correspondence between our formula for

the effective magnetic permeability and that obtained by Pendry et al. First, consider

1The task of providing such an account, i.e., justifying (1.10) below starting from the Maxwell
equations, remains in our view an open problem worthy of analysis.
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Fig. 1.2. Left: An example of a SRR. The current flows in the direction of the arrows. The
splits in the rings cause the charge to be nonuniform, creating a large D field between the rings.
This allows the current to follow a complete circuit by passing from one ring to the other through
a capacitative gap. Right: The microscopic unit cell Q coordinatized by the variable y = x/η.
The idealized metal-dielectric microresonator consists of the boundary ∂G of a simply connected
domain G.

the case that μ = μ0 in all components and that the resonator is represented by a
simple metal cylinder of (nondimensional) radius R < 1 in relation to a scaled unit
cell (Figure 1.2, right). The actual radius is r = ηLR, where L is an arbitrary fixed
length corresponding to 1 in the macroscopic variable x. Keeping in mind that the
conductivity should tend to infinity with η−1, we set it equal to

(1.8) σs =
1

η ρ
,

where ρ is a fixed real constant. From (4.9), (4.11), and (4.18), we obtain

(1.9) μ∗ = μ0

[
1 − πR2

(
1 +

2iρ

ωRμ0

)−1
]
,

which is the formula (13) in [17].2

Now, in order to incorporate capacitance into a SRR as in Figure 1.2, we take a
phenomenological step and observe that, in order that our model produce formula (20)
of [17], the complex conductivity must now be set equal to

(1.10) σs =
1

η
(ρ + iτ)

−1
=

1

η

(
ρ + i

3Δ

2π2ωε0r2

)−1

,

where d = ηLΔ is the small distance between the outer and inner shells making up
the circumference of the resonator. Here Δ is the nondimensionalized distance in a
rescaled unit cell (Figure 1.2, left). The coefficient ε0 appears in (1.10) because it is
assumed that ε = ε0 in the dielectric between the inner and outer rings. The formula
for μ∗ becomes

(1.11) μ∗ = μ0

[
1 − πR2

(
1 +

2

ωRμ0
(iρ− τ)

)−1
]
.

2To make the connection to formula (13) μeff = 1 − πr2

a2 (1 + 2iσ
ωrμ0

)−1 and (17) or (20) μeff =

1− πr2

a2 (1+ 2iσ
ωrμ0

− 3d
π2μ0ω2ε0r3

)−1 in [17], one must relate the notation in that paper to our notation

in the following way: a �→ ηL, r �→ r, d �→ d, μ0μeff �→ μ∗, σ �→ ηLρ. Note that the symbol σ in [17]
denotes the resistance of the metal, which is the reciprocal of conductivity.
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In order that the imaginary part of σs tend to infinity as η−1, we must have

(1.12) Δ ∼ η2.

This means that the actual distance d = ηLΔ between shells would have to decrease
as the cube of the cell length in order for the complex part of σs to have an effect in
(1.9) in the limit as η → 0. Of course, if the dielectric coefficient is allowed to tend
to zero at some rate, the extreme rate of convergence of Δ to zero can be relaxed.

We observe from (1.11) that, if μ0 is real and positive, μ∗ has a positive imaginary
part (provided ρ > 0). The assumption used above that μ ≡ μ0 in all components
was merely a simplification; even if μ varies in space, a similar calculation of μ∗ is
straightforward. It reveals that, if μ is real and positive throughout the structure,

(1.13) Im(μ∗) > 0.

We shall need this fact in section 5.
We note that our homogenization-based analysis might not always be adequate

for modeling the behavior of a specific device. In particular, it is difficult to fabricate
microresonators with shells that are extremely close to each other; moreover, the
regime of interest is often not quasi-static; e.g., the wavelength may be only several
times the length of a unit cell.

1.4. Our approach. The effective tensors ε∗ and μ∗ and the unit-cell problem
that determines them, together with the first-order correction to the leading-order H
field, are obtainable through formal asymptotic analysis, which we carry out because
we feel that it provides a clear intuitive point of view. We then prove the main
results rigorously by using the method of two-scale convergence (see Allaire [1] for a
systematic treatment).

The main ideas of the rigorous two-scale arguments are these. The weak form
of the scattering problem (Problem 5.1 in section 5) is posed within the η-dependent
space

(1.14) H1(Ωη
e ) ⊕H1(Ωη

i ),

where Ωη
e and Ωη

i are the domains exterior to and interior to the microresonators. The
boundary term, involving the conductivity, brings the jump discontinuity of the H
field into the equation. Notice that, if the conductivity remained bounded as η → 0,
this term would be of order η−1 and the jump would disappear in the limit. Thus, as
we have pointed out, we take the conductivity to be of order η−1 so that the boundary
integrals remain on the same order as the area integrals.

We then show that the scattering problem always has a solution hη for each η.
As we do not have a priori bounds on the solutions, we first scale them and obtain
the two-scale limits of the scaled solutions as well as those of their gradients. The
uniqueness of the solution of the homogenized system governing these scaled solutions
then allows us to obtain a posteriori uniform bounds on the actual solutions.

The main result is Theorem 5.6, which presents the two-scale variational problem
for the functions h0

e(x), h0
i (x), h1

e(x, y), and h1
i (x, y) in the two-scale limits

hη(x) ⇀⇀ h0(x, y) = χe(y)h
0
e(x) + χi(y)h

0
i (x),

∇hη(x) ⇀⇀ χe(y)[∇h0
e(x) + ∇yh

1
e(x, y)] + χi(y)[∇h0

i (x) + ∇yh
1
i (x, y)],

(1.15)

and its equivalence to the homogenized Maxwell system together with the unit cell
problem (section 4.2) that determines the gradients of the corrector functions h1

e and
h1

i as well as the effective coefficients μ∗ and ε∗.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOMOGENIZATION OF MICRORESONATORS 69

In Theorem 5.7, we obtain the strong two-scale convergence of hη and ∇hη to
their two-scale limits. Strong two-scale convergence strengthens two-scale convergence
by asserting convergence of energies. Theorem 5.8 asserts the convergence of the
transmission and reflection by the microstructured slab to that of the homogenized
one.

2. Overview of results. This section serves to highlight the main results of the
calculations of section 4, including the “unit-cell problem” for the corrector functions
and definitions of the effective electric and magnetic coefficients. In the presentation,
we try to illuminate the physical meaning of the results and the methods of averaging.

The feature of our system that leads to interesting magnetic behavior, as pre-
viously discussed, is the high surface conductivity of the resonators, which scales
inversely to the length of the period microcell; that is, σs (x) = σ(x, x/η)/η for x on
the surfaces of the resonators. The dielectric and magnetic coefficients in the matrix
exterior and interior to the surface of the resonators remain bounded and are given
by ε(x, x/η) and μ(x, x/η).

The Maxwell system for H-polarized fields reduces to an elliptic equation for the
scalar magnetic field h which includes interaction with a current on the surface of a
conducting resonator. Because of the extreme value of the conductivity, to leading
order, the magnetic field h behaves on the microscopic scale as a piecewise constant
function, with jump discontinuities at the microresonator interfaces given by the sur-
face current. The electric field, by contrast, exhibits fine-scale oscillations of order 1
in the matrix, and its tangential component is continuous across the microresonator
interfaces.

The exterior and interior values of h, as functions of the macroscopic variable x,
are related to each other through a fixed complex ratio m(x) determined by the shape
and conductivity of the microresonator, the magnetic coefficient in its interior, and
the frequency. Representing the leading-order behavior of the exterior and interior
values of h by the functions h0

e(x) and h0
i (x), we will show in section 4.2 that

(2.1) h0
i (x) = m(x)h0

e(x), m(x) =
ρ̂(x)

ρ̂(x) − iωμ̂(x)
,

in which μ̂ and ρ̂ are weighted averages of the magnetic coefficient and the resistance
(the reciprocal of the conductivity) of the microresonator. Thus as a function of
macro- and microscopic variables, the leading behavior of h is given by

(2.2) h0(x, y) = M(x, y)h0
e(x),

where M(x, y), which characterizes the microscopic variation of h, takes on two values:
M(x, y) = χG(y) + m(x)χG∗(y). As we have mentioned in the introduction, the
physical principle behind the expression for m(x) is a balance of electromotive forces,
which, in the microscopic variable, takes the form

(2.3)

∫
∂G

1

σ(x, y)

(
h0

i (x) − h0
e(x)

)
ds(y) = iω

∫
G

μ(x, y)h0
i (x) dA(y).

The question now arises as to which value of h should be recognized as the ap-
propriate macroscopic magnetic field in the homogenized bulk medium. The model
problem of scattering by a slab that we have chosen represents a practical class of
problems in which the boundary of the composite cuts through the dielectric matrix
only so that the boundary conditions involve only the exterior H field. In our case,
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we have interface conditions between the slab and the surrounding air (continuity of h
and E · t). Therefore we arrive at effective equations that govern h0

e(x) and the usual
microcell average Eav(x) of the E field:

∇⊥ ·Eav(x) − iωμ∗(x)h0
e(x) = 0

∇⊥h0
e(x) − iωε∗(x)Eav(x) = 0

(homogenized system).(2.4)

This system is evidently of two-dimensional Maxwell form, which may be seen
a posteriori as another justification for choosing the exterior value of h. Indeed, if
the microresonators vary macroscopically, implying that m(x) is not constant, then
the system (2.4), rewritten in terms of h0

i or some combination of h0
e and h0

i , say,
h0

av(x) = a(x)h0
e(x), would contain an extra term −a(x)−1∇⊥a(x)h0

av(x) in the second
equation of (2.4), placing the system outside of the usual Maxwell type. The reason
that this term is not present with the choice h0

e lies in the unit-cell problem for the
corrector functions.

Because to leading order E · t vanishes on the surfaces of the microresonators, the
cell problem is decoupled into parts exterior and interior to the domain G. It gives
the order-η corrector h1(x, y) as well as the leading-order part of the E field E0(x, y).
In its weak form, it reads

∫
G∗

E0
e (x, y) · ∇⊥v(y) dA(y) = 0 for all v ∈ H1

#(G∗)

E0
e (x, y) =

1

iω
ε(x, y)−1

(
∇⊥h0

e(x) + ∇⊥
y h1

e(x, y)
) (exterior cell problem)

(2.5)

in the exterior, which is a periodic-Neumann boundary-value problem for h1
e(x, y),

and ∫
G

E0
i (x, y) · ∇⊥v(y) dA(y) = 0 for all v ∈ H1(G)

E0
i (x, y) =

1

iω
ε(x, y)−1

(
∇⊥h0

i (x) + ∇⊥
y h1

i (x, y)
) (interior cell problem)(2.6)

in the interior, which is a Neumann problem for h1
i (x, y). The interior cell problem

has a simple explicit solution:

∇⊥
y h1

i (x, y) = −∇⊥h0
i (x)

E0
i (x, y) = 0

(interior).(2.7)

The second equation of (2.4) relates h0
e to Eav(x) =

∫
Q E0(x, y) dA(y). It is

obtained by averaging E0(x, y) over Q, which is equivalent to integrating E0
e (x, y)

over G∗ (since E0
i = 0), and using the definition in the second equation in (2.5). Thus

Eav(x) is a linear function of ∇⊥h0
e(x):

(2.8)

Eav(x) =
1

iω

∫
G∗

ε(x, y)−1
(
∇⊥h0

i (x) + ∇⊥
y h1

i (x, y)
)
dA(x) =

1

iω
ε∗(x)−1∇⊥h0

e(x).

This expression defines ε∗(x) in the usual way as an effective tensor for a periodic
medium with inclusions that are perfect conductors, inside of which the electric field
vanishes. In section 4.4, we argue that ε∗ is an effective dielectric permittivity in the
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sense that Dav = ε∗Eav, where the average electric displacement field Dav is defined
in the appropriate way.

The effective magnetic permeability μ∗(x) is defined by

(2.9) μ∗(x) =

∫
Q
M(x, y)μ(x, y) dA(y)

and arises upon integrating over Q the equation

(2.10) ∇⊥
x ·E0(x, y) + ∇⊥

y ·E1(x, y) − iω μ(x, y)h0(x, y) = 0 for y /∈ ∂G,

where E1 is the order-η corrector to E0.
The noteworthy feature in this definition is that, even if μ is real (and, say,

constant throughout Q), μ∗ will still be complex-valued. This is because the usual
cell average is used in averaging the B field μh, whereas the average of h is taken
exterior to the microstructure. The physical correctness of this method of averaging
was noticed by Pendry et al. In section 4.4, we give a discussion of the averages of the
four fields E, h, D, and b and how they emerge naturally in the effective equations.

Finally, we come to the specific problem of the scattering of plane waves by a slab
of the composite medium. Of course, one expects that, in the quasi-static limit, the
reflection and transmission coefficients will approach those of a slab of a homogeneous
medium possessing the effective coefficients ε∗ and μ∗. In fact, in practice one would
like to be able to deduce these bulk properties from scattering measurements. This
has been the subject of many works in the literature, for example, those of O’Brien
and Pendry [13, 14] and Smith et al. [22], in which the scattering data obtained from
a transfer matrix method for a periodic slab are compared to those obtained from
expressions for the effective tensors of the corresponding homogeneous medium. In the
present work, this agreement is established in the quasi-static limit by demonstrating
that the limiting values of the electric and magnetic fields to the left and right of the
slab are precisely those associated with scattering by a homogeneous slab. This result
is embodied in the statement that the limiting electromagnetic fields outside the slab
connect continuously to the fields Eav and h0

e within the slab, where they solve the
effective equations (2.4).

3. Scattering by a slab with microresonators. As our model problem, we
choose the scattering of plane waves by a microstructured slab of a composite material
formed by periodically embedding metal microresonators in a dielectric matrix. The
width of the slab is fixed, as the size of a cell tends to zero. We allow the material
properties as well as the shape of the microresonators to vary on the macroscopic
scale but require that this variation be periodic with period 2π in the x2 direction,
parallel to the slab. The fields will then be allowed to be pseudoperiodic in x2.

As we have discussed, an important feature of the model is the requirement that,
at the slab-air interface, only the dielectric matrix have contact with the air.

3.1. Reduced Maxwell equations. Due to the macroscopic periodicity of the
structure and the pseudoperiodicity of the fields, the analysis of the scattering problem
can be restricted to the strip

(3.1) S := {(x1, x2) : 0 ≤ x2 ≤ 2π} .

As illustrated in Figure 1.1, a period of the slab occupies a fixed subdomain Ω0 of
S, bounded below and above by the lines x2 = 0 and x2 = 2π and on the sides
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by Σ− (at x1 = a) and Σ+ (at x1 = b). The union of the regions enclosed by the
microresonators contained in Ω0 is called the interior domain Ωi, and its boundary ∂Ωi

is identified with the resonators themselves or, perhaps more correctly, the surfaces
of the resonators.

Because we consider electromagnetic fields in a linear medium, we may treat
harmonic fields at fixed frequency ω,

(3.2) E(x1, x2, x3, t) = E(x1, x2, x3)e
−iωt, H(x1, x2, x3, t) = H(x1, x2, x3)e

−iωt,

which, when inserted into the time-dependent Maxwell system, yield the harmonic
Maxwell system for the spatial envelopes of the fields:

∇×E − iω μH = 0,

∇×H + iω εE − J = 0.
(3.3)

In this work, we study two-dimensional structures, in which the medium and the
fields are invariant in one spatial dimension. In this situation, the Maxwell equations
decouple into E-polarized and H-polarized fields; we study the latter:

H(x1, x2, x3) = 〈0, 0, h(x1, x2)〉,
E(x1, x2, x3) = 〈E1(x1, x2), E2(x1, x2), 0〉, E(x1, x2) = 〈E1(x1, x2), E2(x1, x2)〉,
J(x1, x2, x3) = 〈J1(x1, x2), J2(x1, x2), 0〉, J(x1, x2) = 〈J1(x1, x2), J2(x1, x2)〉.

(3.4)

With the notation

(3.5) ∇⊥ := k×∇ =

〈
− ∂

∂x2
,

∂

∂x1

〉
(the formal adjoint of ∇⊥ · is −∇⊥), the curls of E and H are expressed as

∇×E = ∇⊥ ·E,

∇×H = −∇⊥h,
(3.6)

and the Maxwell system reduces to

∇⊥ ·E − iω μh = 0,

∇⊥h− iω εE + J = 0.
(3.7)

The relevant fundamental theorem involving the operator ∇⊥ · is

(3.8)

∫
R

∇⊥ ·F dA =

∫
∂R

F · tds,

in which F is a vector field, R is a bounded domain in R
2 with boundary ∂R, and t

is the counterclockwise unit tangent vector to ∂R.
We incorporate the regular part of the current J into the electric displacement

field D = εE by allowing ε to be complex3 and retain only the singular part of J

3With ε = ε′ + iε′′, the conductivity in the material away from the metal rings is σ := ωε′′.
In −iω εE = −iω ε′E + σE, the term −iω ε′E is identified with the time derivative of the electric
displacement and σE with the current density J off the surface of the resonator.
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in the equation. As explained in section 1.3, our resonators are characterized by a
complex surface conductivity σs relating the surface current to the electric field on
the boundary of each resonator:

(3.9) J = σs (E · t)δ∂Ωi
t.

Fixing a Bloch wave vector κ in the x2 direction in the first Brillouin zone, κ ∈
[−1/2, 1/2), the scattered magnetic field hsc (total field minus incident field) has the
outgoing form

(3.10) hsc(x1, x2) =

∞∑
m=−∞

c±mei((m+κ)x2+νm|x1|), x1 < a or x1 > b,

in which the exponents νm, which depend on ω and κ, are defined by

(3.11) ν2
m + (m + κ)2 − ε0μ0ω

2 = 0

and the convention that νm > 0 if ν2
m > 0 and iνm < 0 if ν2

m < 0. The incident
magnetic field is

(3.12) hinc(x1, x2) = ei(m̄+κ)x2eiνm̄x1 ,

in which νm̄ > 0.

3.2. Microstructure. The microstructure at each value of x is described by
means of a microscopic variable y ∈ R

2 and its fundamental period cube Q = [0, 1]2

(Figure 1.2). The boundaries of the microresonators are defined through a microscopic
domain G in Q with boundary ∂G and exterior domain G∗ = Q\G and three complex-
valued functions of both macroscopic and microscopic variables that have period Q
in y. The domain G is assumed to be simply connected and contained wholly within
the unit cell Q. Our analysis could be extended to the case in which G consists of
more than one simply connected component or in which the microresonators cannot
be modeled by a domain contained wholly within the unit cell. However, our model
seems to include all of the SRRs we have seen in the literature.

The dielectric permeability ε(x, y) is a tensor, whereas the magnetic permeability
μ(x, y) and the conductivity σ(x, y) are scalars. The tensor ε, considered as a matrix,
is symmetric, the real parts of all three quantities are positive and bounded from
above and below, and their imaginary parts are semidefinite:

0 < ε− ≤ Re ε(x, y)ξ · ξ ≤ ε+, 0 ≤ Im ε(x, y)ξ · ξ, x ∈ Ω0, y ∈ Q, ξ ∈ R
2,

0 < μ− ≤ Reμ(x, y) ≤ μ+, 0 ≤ Imμ(x, y), x ∈ Ω0, y ∈ Q,

0 < σ− ≤ Reσ(x, y) ≤ σ+, Imσ(x, y) ≤ 0, x ∈ Ω0, y ∈ ∂G.

(3.13)

Both ε and μ are assumed to be continuous in x and continuous in y off the boundary
∂G. Thus we allow different values in the interior and exterior of the resonators. To
define the actual microstructure at a fixed fine scale η, we set

εη(x) = ε(x, x/η), x ∈ Ω0,

μη(x) = μ(x, x/η), x ∈ Ω0,

ση(x) = σ(x, x/η), x ∈ ∂Ωi.

(3.14)
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As we wish to allow the conductivity of the metal cylinders to tend to infinity with
1/η, we take

(3.15) σs =
1

η
ση(x)

as the surface conductivity in (3.9). Outside the slab, we take ε and μ to be constant:

(3.16) εη(x) = ε0 and μη(x) = μ0 for x ∈ Ω \ Ω0.

The interior domain Ωi depends on η and is expressed in terms of the domains G
through

(3.17) Ωη
i = {x ∈ Ω0 : x/η ∈ G + n for some n ∈ Z

2}.

We have discussed the restriction that the edges of the slab not intersect the
resonators. It is convenient, however, to assume a bit more: that the width of the
slab encompass an integer number of period cells. Therefore we require η = (b− a)/n
for some integer n. Since we also assume that the structure is 2π-periodic in the slow
variable x2, we also require that η = 2π/m for some integer m. These conditions are
equivalent to the condition that b−a is rationally related to π. The set of permissible
values of η is denoted by Υ:

(3.18) η ∈ Υ.

For each η, we let Eη, hη denote a solution to the scattering problem, which is
posed in its strong PDE form as follows. The subscripts e and i refer to exterior and
interior values of functions.

Problem 3.1 (scattering by a slab, strong form). Find a function hη and a vector
field Eη in the strip S such that

∇⊥ ·Eη − iω μηhη = 0

∇⊥hη − iω εηEη = 0

}
on S \ ∂Ωη

i ,(3.19)

Eη · t continuous across ∂Ωη
i ,(3.20)

hη
e − hη

i +
ση

η
Eη · t = 0 on ∂Ωη

i ,(3.21)

hη(x1, 2π) = eiκx2hη(x1, 0) and ∂x2h
η(x1, 2π) = eiκx2∂x2h

η(x1, 0),(3.22)

hη(x) = hinc(x1, x2) +

∞∑
m=−∞

amei((m+κ)x2−νmx1) for x1 < a,(3.23)

hη(x) =

∞∑
m=−∞

bmei((m+κ)x2+νmx1) for x1 > b.(3.24)

Equivalently, one could pose the PDE as a divergence-form elliptic operator on
hη alone and use the second Maxwell equation as the definition of Eη:

(3.25)
∇⊥ · ((εη)−1∇⊥hη) + ω2 μηhη = 0

Eη = 1
iω (εη)−1∇⊥hη

}
in S \ ∂Ωη

i .

The first equation reduces to ∇ · ((εη)−1∇hη) + ω2 μηhη = 0 if ε is scalar, and condi-
tions involving Eη · t are parsed in terms of hη through Eη · t = 1

iω (k× ε−1∇⊥hη) ·n.
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4. Formal expansion analysis. In the formal asymptotic analysis of the strong
form system, we assume that hη and Eη have expansions

hη(x) = h0(x, x/η) + ηh1(x, x/η) + O(η2),(4.1)

Eη(x) = E0(x, x/η) + ηE1(x, x/η) + O(η2),(4.2)

and that these expansions can be differentiated term by term. By inserting these into
the scattering Problem 3.1, the results announced in section 2 emerge.

4.1. Expansion of the Maxwell system. The first of the Maxwell equations,
∇⊥ ·Eη − iω μηhη = 0, gives

η−1∇⊥
y ·E0(x, y) + (∇⊥

x ·E0(x, y) + ∇⊥
y ·E1(x, y)) − iω μ(x, y)h0(x, y) = O(η),

which yields the equations

(4.3)
∇⊥
y ·E0(x, y) = 0

∇⊥
x ·E0(x, y) + ∇⊥

y ·E1(x, y) − iω μ(x, y)h0(x, y) = 0

}
for y /∈ ∂G.

Similarly, the second of the Maxwell equations, ∇⊥hη − iω εE = 0, gives

η−1∇⊥
y h0(x, y) + (∇⊥

x h0(x, y) + ∇⊥
y h1(x, y)) − iωε(x, y)E0(x, y) = O(η),

which yields the equations

(4.4)
∇⊥
y h0(x, y) = 0

∇⊥
x h0(x, y) + ∇⊥

y h1(x, y) − iω ε(x, y)E0(x, y) = 0

}
for y /∈ ∂G.

The interface conditions tell us that

E0 · t and E1 · t are continuous on ∂G,

E0 · t = 0

h0
e − h0

i + σE1 · t = 0

}
on ∂G.

Let a microcell (Q + m)/η, with m ∈ Z
2 depending on η, be chosen such that it

contains a fixed point x, and set x̂ = mη. If we integrate in x over the part of Ωi

and its boundary contained in this microcell, we obtain, after making the change of
variable x′ = x̂ + ηy,
(4.5)

η

∫
∂G

η

σ
(hη

e−hη
i )ds(y) = −η

∫
∂G

Eη·tds(y) = −η2

∫
G

(∇⊥·Eη)dA(y) = −iω η2

∫
G

μhη dA(y),

in which the functions of x′ and y are evaluated at (x̂+ ηy, y). The expansions of Eη

and hη then yield the equations

(4.6)

∫
∂G

σ−1(x, y)(hn
e (x, y) − hn

i (x, y)) ds(y) = −iω

∫
G

μ(x, y)hn
i (x, y) dA(y)

at each order n = 0, 1, 2, etc.
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4.2. The cell problem and the homogenized system. From the first of the
pair (4.4), ∇⊥

y h0(x, y) = 0, which is valid for each x ∈ Ω and for y /∈ ∂G, we infer
exterior and interior values of the magnetic field that are independent of y:

(4.7) h0(x, y) =

{
h0

e(x), y ∈ G∗,

h0
i (x), y ∈ G.

The relation between the exterior and the interior values is obtained from (4.6), which
expresses a balance of electromotive forces on the boundary of a single inclusion,

(4.8) ρ̂(x)(h0
e(x) − h0

i (x)) + iωμ̂(x)h0
i (x) = 0,

in which

(4.9) μ̂(x) =

∫
G

μ(x, y) dA(y), ρ̂(x) =

∫
∂G

σ(x, y)−1 ds(y),

and we obtain hi(x) = m(x)he(x) and thus an expression for the magnetic field in a
cell in terms of its value exterior to the inclusion,

(4.10) h0(x, y) = M(x, y)h0
e(x),

in which

(4.11) M(x, y) =

{
1, y ∈ G∗,

m(x), y ∈ G,
m(x) =

ρ̂(x)

ρ̂(x) − iωμ̂(x)
.

We next use the first equation of (4.3) and the second of (4.4), together with the
continuity of E · t on the interfaces, to obtain the unit-cell problem

∇⊥
y ·E0(x, y) = 0,(4.12)

∇⊥
x h0(x, y) + ∇⊥

y h1(x, y) − iωε(x, y)E0(x, y) = 0 off ∂G,(4.13)

E0
e (x, y) · t = E0

i (x, y) · t = 0 on ∂G,(4.14)

h1(x, y) and E0(x, y) periodic in y.(4.15)

This problem determines h1 and E0 as functions of y, for each value of x. It is an
inhomogeneous periodic-Neumann problem with input ∇xh

0, in which the exterior
and interior first-order corrections h1

e and h1
i are decoupled due to the homogeneous

boundary condition on the interface ∂G and are determined up to two additive con-
stants in y, which are functions of x. One relation between these functions of x is
provided again by (4.6):

(4.16)

∫
∂G

σ−1(x, y)(h1
e(x, y) − h1

i (x, y)) ds(y) = −iω

∫
G

μ(x, y)h1
i (x, y) dA(y).

As we have mentioned in section 2, the interior value of E0 vanishes identically.
To obtain a PDE governing the average exterior H field h0

e and the average E field
Eav, we integrate the second equation of the pair (4.3) over the unit cell Q, as well as
the second equation of (4.4) after applying ε(x, y)−1. The result is the homogenized
system

∇⊥ ·Eav(x) − iωμ∗(x)h0
e(x) = 0,

∇⊥h0
e(x) − iωε∗(x)Eav(x) = 0.

(4.17)
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The effective magnetic permeability tensor μ∗ is given by

(4.18) μ∗(x) =

∫
Q
M(x, y)μ(x, y) dA(y),

and the effective dielectric tensor ε∗ arises as we have explained in section 2:

Eav(x) =

∫
Q
E0(x, y) dA(y)(4.19)

=
1

iω

∫
G∗

ε(x, y)−1
(
∇⊥h0

e(x) + ∇⊥
y h1

e(x, y)
)
dA(y) =

1

iω
ε∗(x)−1∇⊥h0

e(x).

In order to justify calling ε∗ an effective dielectric permittivity, we must ensure
that ε∗E is correctly interpreted as an appropriate cell average of the electric dis-
placement field D. We address this issue in section 4.4.

4.3. Corrector functions. Because of the condition (4.14) that E0
e (x, y) · t =

E0
i (x, y) · t = 0 on ∂G, the interior and exterior gradients of the corrector function

h1(x, y) are decoupled and are determined as linear functions of ∇h0
e(x) and ∇h0

i (x)
through the cell problem restricted to G∗ and G:

∇⊥
y h1

e(x, y) = Pe(x, y)∇⊥h0
e(x) in G∗,(4.20)

∇⊥
y h1

i (x, y) = Pi(x, y)∇⊥h0
i (x) in G.(4.21)

The corrector matrices Pe (resp., Pi) is defined by setting Peξ (resp., Piξ) equal to the
unique solution of the cell problem in which ξ stands for ∇⊥h0

e(x) (resp., ∇h0
i (x)).

Posed in their weak forms, these problems are∫
G∗

ε(x, y)−1 [ξ + Pe(x, y)ξ] · ∇⊥v(y) dA(y) = 0 for all v ∈ H1
#(G∗),(4.22) ∫

G

ε(x, y)−1 [ξ + Pi(x, y)ξ] · ∇⊥v(y) dA(y) = 0 for all v ∈ H1(G).(4.23)

As we have seen, Pi admits a very simple form:

(4.24) Pi(x, y)ξ = −ξ.

The tensor ε∗(x) is defined through

(4.25) ε∗(x)−1ξ =

∫
G∗

ε(x, y)−1 [ξ + P (x, y)ξ] dA(y).

The term of inhomogeneity ∇⊥
x h0(x, y) in the cell problem might as well be parsed

in terms of the average exterior H field h0
e and its gradient:

(4.26)

∇⊥
x h0(x, y) = ∇⊥

x

(
M(x, y)h0

e(x)
)

=

{
∇⊥h0

e(x), y ∈ G,

m(x)∇⊥h0
e(x) + ∇⊥m(x)h0

e(x), y ∈ G∗.

From this point of view, the corrector function h1(x, y) is a linear function of ∇⊥h0
e(x)

and h0
e(x) for any fixed value of x, so that it is determined in two parts, given by

a corrector matrix P̃ (x, y) applied to the gradient ∇⊥h0
e(x) and a corrector vector

Q̃(x, y), which multiplies the scalar h0
e(x):

(4.27) ∇⊥
y h1(x, y) = P̃ (x, y)∇⊥h0

e(x) + Q̃(x, y)h0
e(x),
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and one computes that these are related to Pe and Pi by

P̃ (x, y) = χe(y)Pe(x, y) − χi(y)m(x),(4.28)

Q̃(x, y) = χi(y)∇⊥m(x).(4.29)

4.4. Discussion of average fields. The homogenized system (4.17) is clearly
of Maxwell form, in which Eav(x) and h0

e(x) play the role of electric and magnetic
fields in a bulk two-dimensional medium. These fields are certain microcell averages
of the actual electromagnetic fields in the microscale composite, Eav(x) being the
usual cell average and h0

e(x) being the average over the part of the cell exterior to the
microresonator. We expect additionally that the fields ε∗(x)Eav(x) and μ∗(x)h0

e(x)
should represent suitable cell averages of the D field εE and the B field 〈0, 0, μh〉.

In the medium exterior to the slab (air, for example) all of these fields reduce to E,
h, D = εE, and b = μh. In the composite, one has be careful about how cell averages
are to be understood. The standard point of view in the physics literature (see, for
example, [17, 19]) is based on the fact that one should keep in mind the different
geometrical roles of these fields: Averages of the E and H fields should be taken
over line segments traversing a microperiod in the direction of each field component
separately because these fields are naturally integrated over one-dimensional curves
(they are fundamentally one-forms). On the other hand, averages of the D and B fields
should be taken over sides of the unit cube perpendicular to each component separately
because these fields are naturally integrated over surfaces (they are fundamentally
two-forms).

In the two-dimensional H-polarized reduction, this scheme amounts to computing
averages in the following way. Since H is out of plane, its average is taken simply by
evaluating h at a suitable point, whereas the average of b must be taken over the entire
unit cell. The xi-component of the E field should be averaged over a line segment
in the xi-direction, whereas the average of the xi-component of the D field reduces
to the average over a line segment in the xi′ -direction, where i′ = (i + 1) (mod 2),
because D is constant in the out-of-plane direction.

We now demonstrate that, from this point of view, the tensors ε∗(x) and μ∗(x)
that emerge in the homogenized equations do indeed relate the natural cell averages
of E and D to each other as well as those of h and b.

In defining hav, a choice between its evaluation in the exterior or the interior
of the resonator needs to be made. In problems of scattering by a slab, one avoids
cutting through a microresonator and therefore arranges the slab-air interface such
that the air is incident with the dielectric matrix of the composite that is exterior to
the resonators. The exterior H field is therefore the one that connects continuously
with the H field in the air, and therefore we should work with the average of h in the
exterior:

(4.30) hav(x) := h0
e(x).

Evidently, since h is constant in y to leading order exterior to the resonator and
constant in the out-of-plane direction, no averaging of oscillations is truly taking
place in this definition.

The B field, which is identified with its out-of-plane component b = μh, should
be averaged over the cell Q:

(4.31) bav(x) :=

∫
Q
μ(x, y)h0(x, y) dA(y),
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which is exactly equal to (iω)−1 times the second term in the right-hand side of the
first equation in (4.17), and we have therefore

(4.32) bav(x) = μ∗(x)hav(x).

Now let us examine the E and D fields. Let e1 and e2 denote the vectors 〈1, 0〉
and 〈0, 1〉, and set i′ = (i + 1) (mod 2). The cell average of the ei-component of the
E field should be taken over a line segment in the direction of ei traversing a period
cell:

(4.33) Eav(x) · ei :=

∫ 1

yi=0
yi′=c

E0(x, y) · ei dyi.

These integrals are independent of yi′ because ∇⊥
y ·E0(x, y) = 0, and therefore, by

this definition, Eav can be taken to be the area integral of E0(x, y) over Q, as we have
defined it above in (4.19).

The ei-component of the D field D = εE is averaged over a line segment in the
direction of ei′ :

(4.34) Dav(x) · ei :=

∫ 1

yi′=0
yi=c

ε(x, y)E0(x, y) · ei dyi′ .

If the path of integration remains exterior to G, this yields

(4.35) Dav(x) · ei =
1

iω

∫ 1

yi′=0
yi=c

(
∇⊥
x h0

e(x) + ∇⊥
y h1(x, y)

)
· ei dyi′ =

1

iω
∇⊥
x h0

e(x) · ei,

and therefore, with this definition of Dav, we obtain from the homogenized equation
(4.17),

(4.36) Dav(x) = ε∗(x)Eav(x).

5. Two-scale convergence analysis. This section establishes with mathemat-
ical rigor the results of the formal analysis. Our main result is that the solution of the
problem of scattering by the microstructured slab tends to the solution of the problem
of scattering by a homogeneous slab. This amounts to convergence of the electromag-
netic fields to the average fields discussed in the previous section and the fact that
these average fields satisfy the effective system (4.17) in the slab. Of course we must
also show that the field hav = h0

e connects continuously to the function h in the air and
that the tangential component of Eav at the edge of the slab connects continuously
to that of E from the side of the air.

These things are properly handled by means of the weak form of the scattering
problem. The outgoing conditions for the scattered field are most conveniently ex-
pressed by employing the Dirichlet-to-Neumann map T on the sides Γ± for outgoing
fields. This means that fields of the form (3.10) are characterized equivalently by

(5.1)
∂hsc

∂n

∣∣∣∣
Γ±

= −T
(
hsc|Γ±

)
.

For g ∈ H
1
2 (Γ±), and {ĝκm} denoting the Fourier transform of ge−iκx2 , this map is

defined through

(5.2) (T̂ g)κm = −iνmĝκm .
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T is a bounded operator from H
1
2 (Γ±) to H− 1

2 (Γ±), with norm ‖T‖H1/2→H−1/2 =
C1 +C2|ω| for some positive constants C1 and C2. For real values of ω and κ, it has a
finite-dimensional negative imaginary subspace spanned by the functions ei(m+κ)x2 for
which ν2

m > 0 and a positive subspace equal to the space orthogonal to the imaginary
one. We denote the corresponding decomposition of T by T = T+ + iT−.

Denote by H1
κ(Ωη

e ) the κ-pseudoperiodic subspace of H1(Ωη
e ):

(5.3) H1
κ(Ωη

e ) =
{
u ∈ H1(Ωη

e ) : u|x2=2π = e2πiκu|x2=0

}
.

It is natural to identify H1
κ(Ωη

e ) with a subspace of L2(Ω) by extension by zero into
Ωη

i and H1(Ωη
i ) with a subspace of L2(Ω) by extension by zero into Ωη

e . We can then
define the space V η in which hη resides by

(5.4) H1
κ(Ωη

e ) ⊕H1(Ωη
i ) =: V η ↪→ L2(Ω) ↪→ (V η)∗ ∼= V η.

It will be convenient also to define V 0 := H1
κ(Ω).

The following weak form of the scattering problem is equivalent to the strong
form for smooth ε, μ, and σ and for functions he and hi that are smooth in Ωe and Ωi.

Problem 5.1 (scattering by a slab, weak form). Find a function hη
ω = hη =

hη
e ⊕ hη

i ∈ V η such that

∫
Ω

[(
(εη)−1∇⊥hη

)
·∇⊥v − ω2μη hη v̄

]
dA− iω

∫
∂Ωη

i

η(ση)−1(hη
e − hη

i )(v̄e − v̄i) ds

+ ε−1
0

∫
Γ±

(Thη
e )v̄e dx2 = −2iνm̄ε−1

0

∫
Γ−

ei((m̄+κ)x2+νm̄x1)v̄e dx2

(5.5)

for all v = ve ⊕ vi ∈ V η, and let Eη ∈ L2(Ω) be defined by

(5.6) Eη =
1

iω
(εη)−1∇⊥hη in Ωη

e ∪ Ωη
i .

This scattering problem always has a solution. It is possible to prove that, on
finite intervals of the real ω-axis avoiding a discrete set of frequencies, hη

ω is unique
for all η sufficiently small, but this fact will not be needed in our analysis.

Theorem 5.2 (existence of solutions). For each frequency ω and η ∈ Υ, the
scattering Problem 5.1 has a solution hη.

Before proving the theorem, we look more carefully at the forms involved in the
weak formulation of the scattering problem.

Let the form aηω(u, v) in V η be defined by the left-hand side of the equality in
Problem 5.1, with u in place of hη. We split aηω into two parts:

aηω(u, v) = bηω(u, v) − ω2cη(u, v),(5.7)

bηω(u, v) :=

∫
Ω

(
(εη)−1∇⊥u

)
·∇⊥v dA(5.8)

− iω

∫
∂Ωη

i

η(ση)−1(ue − ui)(v̄e − v̄i) ds + ε−1
0

∫
Γ±

(Tue)v̄e dx2,

cη(u, v) :=

∫
Ω

μη uv̄ dA.(5.9)
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The incident plane-wave field provides the forcing function for the scattering problem,
given by the functional f on V η defined by

(5.10) f(v) := −2iνm̄ε−1
0

∫
Γ−

ei((m̄+κ)x2+νm̄x1)v̄e dx2.

The form bηω is coercive, with constants that are independent of η, and f is uniformly
bounded:

|bηω(u, v)| ≤ (γ1 + γ2|ω|)‖u‖V η‖v‖V η ,(5.11)

Re bη(u, u) ≥ δ‖u‖2
V η ,(5.12)

‖f‖(V η)∗ < C.(5.13)

The second inequality holds because of the upper bound on εη. In order to estab-
lish the upper bound on |aη(u, v)|, one uses the bound on T discussed above and
Lemma 5.3 showing that the term involving the interface ∂Ωη

i is a bounded form on
V η. The bound on f is proved in Lemma 5.4.

Lemma 5.3. There exists a constant C such that the following hold for each
η ∈ Υ:

1. For all u = ue ⊕ ui and v = ve ⊕ vi in V η, the following inequality holds:

(5.14)

∣∣∣∣∣
∫
∂Ωη

i

η(ση
s )−1(ue − ui)(v̄e − v̄i) ds

∣∣∣∣∣ ≤ C‖u‖V η‖v‖V η .

2. For each u = ue ⊕ ui ∈ V η, there are functions ũe ∈ H1
κ(Ω) and ũi ∈ H1(Ω)

such that ũe|Ωη
i

= ue|Ωη
i
, ũi|Ωη

i
= ui|Ωη

i
, and

(5.15) ‖ũe‖H1(Ω) ≤ C‖u‖H1(Ωη
e ), ‖ũi‖H1(Ω) ≤ C‖u‖H1(Ωη

i ).

Proof. To prove part 1, we use a Poincaré inequality in the square Q: For we ∈
H1(G∗),

(5.16)

∫
∂G

|we(y)|2 ds(y) ≤ C

∫
G∗

(
|we(y)|2 + |∇we(y)|2

)
dA(y).

Rescaling this estimate to a cell of size η in the variable x and summing over all cells
in Ω0 yields

(5.17)

∫
∂Ωη

i

|ue(x)|2 ds(x) =
C

η

∫
Ωη

e

(
|ue(x)|2 + η2|∇ue(x)|2

)
dA(x).

This, together with an analogous estimate involving Ωη
i , gives

(5.18)

∫
∂Ωη

i

|ue|2 ds ≤ C

η
‖ue‖2

H1(Ωη
e ),

∫
∂Ωη

i

|ui|2 ds ≤ C

η
‖ui‖2

H1(Ωη
i ).

Finally, by recalling that σ− ≤ Reσ(x, y), we obtain

∣∣∣∣∣
∫
∂Ωη

i

η(ση
s )−1(ue − ui)(v̄e − v̄i) ds

∣∣∣∣∣
2

≤ η2(σ−)−2

∫
∂Ωη

i

|ue − ui|2 ds

∫
∂Ωη

i

|ve − vi|2 ds

≤ C2(σ−)−2
(
‖ue‖H1(Ωη

e ) + ‖ui‖H1(Ωη
i )

)2 (
‖ve‖H1(Ωη

e ) + ‖vi‖H1(Ωη
i )

)2

≤ C2(σ−)−2‖u‖2
V η‖v‖2

V η .

(5.19)
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An extension of u = ue in part 2 can be obtained from the extension operator
defined in [8]. For the convenience of the reader and coherence of this text, we include
a proof. The extension is accomplished by defining ũe to be a harmonic function in
Ωη

i whose trace on ∂Ωi coincides with that of ue. The extension is κ-pseudoperiodic
because ue is and ∂Ω ∩ ∂Ωi = ∅. Let x̂n = nη ∈ Ω0, where n ∈ Z

2. By using the
following standard inequalities in the unit cube:∫

Q
|∇yũe(x̂ + ηy)|2 dA(y) ≤ c

∫
G∗

|∇yue(x̂ + ηy)|2 dA(y),(5.20) ∫
Q
|ue(x̂ + ηy)|2 dA(y) ≤ c

∫
G∗

(|ue(x̂ + ηy)|2 + |∇yue(x̂ + ηy)|2) dA(y),(5.21)

we obtain the estimates in the scaled cubes x̂n + ηG∗:

(5.22)

∫
ηQ

|∇xũe(x̂ + x)|2 dA(x) ≤ c

∫
ηG∗

|∇xue(x̂ + x)|2 dA(x)

and

(5.23)

∫
ηQ

|ũe(x̂ + x)|2 dA(x) ≤ c

∫
ηG∗

(|ue(x̂ + x)|2 + η2|∇xue(x̂ + x)|2) dA(x).

By summing up over all microcells in Ω0, we obtain∫
Ω0

|∇xue|2 dA(x) ≤ c

∫
Ω0e

|∇xue|2 dA(x),(5.24) ∫
Ω0

|ue|2 dA(x) ≤ c

∫
Ω0e

(|ue|2 + η2|∇xue|2) dA(x).(5.25)

The result trivially extends to Ω because the edges of the slab Σ± do not intersect
the resonators. The extension of ui is handled identically in Ω0 and then extended to
a function in H1(Ω) by a harmonic function in Ω \ Ω0 whose trace coincides with ũi

on Σ±. The extension to Ω can be taken to be in H1
κ(Ω) if ũi ∈ H1

κ(Ω0).
Lemma 5.4. Let f ∈ (V η)∗ be defined as in (5.10). There exists a constant C

such that ‖f‖(V η)∗ < C for all η ∈ Υ.
Proof. Let u = ue ⊕ ui ∈ V η be given, and let ũe be the extension of ue provided

by part 2 of Lemma 5.3. Then

|f(u)| = |f(ue)| = |f(ũe)| ≤ ‖f‖H1(Ω)∗‖ũe‖H1(Ω)

≤ c‖f‖H1(Ω)∗‖ue‖H1(Ωη
e ) ≤ c‖f‖H1(Ω)∗‖u‖V η ,

(5.26)

which implies that

(5.27) ‖f‖(V η)∗ ≤ c‖f‖H1(Ω)∗ .

The forms we have defined give rise to bounded operators Bη
ω and Cη from V η

into itself such that

bηω(u, v) = (Bη
ωu, v)V η ,(5.28)

cη(u, v) = (Cηu, v)V η ,(5.29)

where (·, ·)V η is the usual inner product in V η. Let f̃ denote that element of V η such

that (f̃ , ·)V η = f . The scattering Problem 5.1 now takes the form

(5.30) aηω(u, v) = f(v) for all v ∈ V η, or Bη
ωu− ω2Cηu = f̃ .
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We now prove that the scattering Problem 5.1 has a solution. We refer to Bonnet-
Bendhia and Starling [3, Theorem 3.1], where this is shown for a similar problem of
scattering by a slab.

Proof of Theorem 5.2. Since bηω is coercive, Bη
ω is a bijection with a bounded

inverse, and since μ ∈ L∞(Ω), Cη is compact. Therefore a Fredholm alternative is
applicable: The scattering problem (5.30) has a solution u if and only if (f̃ , v) = 0 for
all v ∈ Null(Bη

ω − ω2Cη)†, or equivalently
(5.31)
f(v) = 0 for all v ∈ V η such that aηω(w, v) = 0 for all w ∈ V η (solvability condition).

Now any function v satisfying the adjoint eigenvalue condition aηω(w, v) = 0 for all
w ∈ V η satisfies, in particular,

(5.32) aηω(v, v) = 0,

and, since the imaginary part of aηω is nonpositive, we find that

(5.33) T−(v) = 0.

Therefore the trace of v on Γ− possesses only decaying Fourier harmonics, exterior to
the slab:

(5.34) v(x) =
∑

m:iνm<0

γ±
mei((m+κ)x2+νm|x1|) exterior to the slab,

whereas f is defined through integration against the trace of the incident field, which
possesses only a propagating harmonic. Thus we obtain

(5.35) f(v) = −2iνm̄

∫
Γ−

ei((m̄+κ)x2+νm̄x1)

( ∑
m:iνm<0

γ̄−
mei(−(m+κ)x2+νmx1)

)
dx2 = 0;

i.e., the solvability condition (5.31) is valid. Thus, by the Fredholm alternative, there
exists a solution hη

ω to

(5.36) aηω(hη
ω, v) = f(v) for all v ∈ V η.

Since we do not have a priori bounds on the solutions hη, we scale for the time
being the magnetic and electric fields by a number mη ∈ [0, 1],

mη = min{1, ‖hη‖−1
L2 },(5.37)

uη(x) = mηhη(x),(5.38)

F η(x) = mηEη(x),(5.39)

such that the uη are solutions of the scattering problem with a scaled incident wave
and are bounded in the L2 norm uniformly in η:

aηω(uη, v) = mηf(v) for all v ∈ V η,(5.40)

F η =
1

iω
(εη)−1∇⊥uη,(5.41)

‖uη‖L2 ≤ 1.(5.42)
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After proving the two-scale convergence of the uη to a solution of the homogenized
equations (4.17), we will conclude that the hη are in fact uniformly bounded in V η

(at the end of the proof of Theorem 5.6). This result uses the fact that the scattering
problem for the homogeneous slab has a unique solution. It will be shown that this
always holds true in the case that μη is real, in particular, in the typical case of
nonmagnetic materials μη = μ0.

The next lemma establishes the existence of two-scale limits4 of subsequences of
uη and ∇uη whose y-dependence reflects the discontinuities at the surfaces of the
microresonators. No other feature of the weak-form Problem 5.1 is used here. The
symbol “⇀⇀” means “two-scale converges to.” We denote the characteristic function
of G extended periodically to R

2 by χi(y) and set χe(y) = 1 − χi(y).
Lemma 5.5 (two-scale limits). Every subsequence of Υ admits a subsequence Υ′

and functions u0
e(x) ∈ H1

κ(Ω), u0
i (x) ∈ H1

κ(Ω0), u
1
e(x, y) ∈ L2(Ω;H1

#(Q\D)/R), and

u1
i (x, y) ∈ L2(Ω0;H

1
#(Q)/R) such that, in Ω,

(5.43)

uη(x) ⇀⇀ χe(y)u
0
e(x) + χi(y)u

0
i (x)

∇uη(x) ⇀⇀ χe(y)[∇u0
e(x) + ∇yu

1
e(x, y)] + χi(y)[∇u0

i (x) + ∇yu
1
i (x, y)]

}
, η ∈ Υ′.

Proof. With v = uη in (5.40), we obtain

(5.44) b(uη, uη) = mηf(uη) + ω2c(uη, uη).

Then, by using the coerciveness of bηω, the boundedness of μ, and part 2 of Lemma 5.3,
we obtain the estimate

δ‖uη‖2
V η ≤ Re b(uη, uη) ≤ |f(uη)| + ω2

∫
Ω

Reμη|uη|2 dA(x)(5.45)

≤ C‖u‖V η + ω2μ+‖uη‖2
L2 ≤ (C + ω2μ+)‖uη‖V η ,

from which it follows that

(5.46) ‖uη‖V η ≤ (C + ω2μ+)/δ .

We now have that uη and ∇uη (defined for points off ∂Ωη
i ) are bounded sequences

in L2(Ω), and therefore, by Theorem 1.2 of Allaire [1], there exist functions u0 ∈
L2(Ω ×Q) and ξ0 ∈ L2(Ω ×Q)2 and a subsequence Υ′ ⊂ Υ such that

(5.47) uη(x) ⇀⇀ u0(x, y) and ∇uη(x) ⇀⇀ ξ0(x, y), η ∈ Υ′.

The behavior of these functions is well known to be trivial in the region Ω\Ω0 outside
the slab, where they have no y-dependence, and u0, which we denote by u0

e in this
region, is of class H1 there.

Let Ψ ∈ C∞
0 (Ω0;C

∞
# (R2))2, with Ψ(x, y) ·n = 0 for y ∈ ∂G, be given. Upon

integration by parts, the latter condition eliminates integrals over ∂Ωη
i which would

otherwise arise due to the discontinuity in uη on the interfaces of the resonators:

(5.48)

∫
Ω

∇uη(x) ·Ψ(x, x/η)dx+

∫
Ω

uη(x)

(
∇x ·Ψ(x, x/η)+

1

η
∇y ·Ψ(x, x/η)

)
dx = 0.

4A sequence uη(x) two-scale converges to u0(x, y) (uη ⇀⇀ u0) in Ω if
limη→0

∫
Ω uη(x)φ(x, x/η) dA(x) =

∫
Ω

∫
Q u0(x, y)φ(x, y) dA(y) dA(x) for all smooth functions

φ(x, y) in Ω × R
2, periodic in y.
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By multiplying this equality by η and using the two-scale convergence of uη and ∇uη,
the limit for η ∈ Υ′ gives

(5.49)

∫
Ω

∫
Q
u0(x, y)∇y ·Ψ(x, y) dy dx = 0.

Let ψ ∈ C∞
0 (Ω0) be given, and use a separable function φ(x)Φ(y), with Φ(y) ·n = 0

on ∂G, in place of Ψ(x, y) in (5.49) to obtain

(5.50)

∫
Ω

φ(x)

∫
Q
u0(x, y)∇ ·Φ(y) dy dx = 0,

from which we obtain

(5.51)

∫
Q
u0(x, y)∇y ·Φ(y) dy = 0

for each such Φ(y). It follows from this and the connectedness of G and G∗ that
u0(x, y) is independent of y in each of these domains. Therefore, for x ∈ Ω0,

u0(x, y) = χe(y)u
0
e(x) + χi(y)u

0
i (x),(5.52)

uη
e (x) ⇀⇀ χe(y)u

0
e(x),(5.53)

uη
i (x) ⇀⇀ χi(y)u

0
i (x).(5.54)

To prove that u0
e(x) ∈ H1(Ω0), we must prove that there is a constant such that, for

each smooth function Θ(x) with compact support in Ω0,

(5.55)

∣∣∣∣∫
Ω0

u0
e(x)∇ ·Θ(x) dx

∣∣∣∣ ≤ const ‖Θ‖L2(Ω0)2 .

By Lemma 2.10 of [1], we can further impose upon Ψ (in addition to Ψ(x, y) ·n = 0
on ∂G) the three properties: (i) ∇y ·Ψ(x, y) = 0, (ii)

∫
G∗ Ψ(x, y) dy = Θ(x), and

(iii) ‖Ψ‖L2(Ω0×G∗)2 ≤ c‖Θ‖L2(Ω0)2 . On one hand, we obtain

∫
Ω0

∇uη
e (x) ·Ψ(x, x/η)dx =

∫
Ω0

uη
e (x)∇x ·Ψ(x, x/η)dx −→

∫
Ω0

∫
G∗

u0
e(x)∇x ·Ψ(x, y)dydx

(5.56)

=

∫
Ω0

u0
e(x)∇ ·

∫
G∗

Ψ(x, y)dydx =

∫
Ω0

u0
e(x)∇ ·Θ(x)dx, η ∈ Υ′.

On the other hand,

(5.57)

∫
Ω0

∇uη
e (x) ·Ψ(x, x/η)dx −→

∫
Ω0

∫
G∗

ξ0(x, y) ·Ψ(x, y)dydx, η ∈ Υ′,

so that

(5.58)

∫
Ω0

u0
e(x)∇ ·Θ(x)dx =

∫
Ω0

∫
G∗

ξ0(x, y) ·Ψ(x, y)dydx, η ∈ Υ′,

and the inequality∣∣∣∣∫
Ω0

∫
G∗

ξ0(x, y) ·Ψ(x, y)dydx

∣∣∣∣ ≤ ‖ξ0‖L2(Ω0×G∗)2‖Ψ‖L2(Ω0×G∗)2

≤ c‖ξ0‖L2(Ω0×G∗)2‖Θ‖L2(Ω0)2

(5.59)
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demonstrates that ∇u0
e acts as a bounded linear functional on L2(Ω0)

2 so that u0
e ∈

H1(Ω0). An analogous argument proves that u0
i ∈ H1(Ω0). One can see that u0

e

and u0
i are in H1

κ(Ω0) by applying the arguments above to an extension of Ω0 into a
neighborhood of x2 = 2π with uη extended pseudoperiodically into this region.

To obtain the functions u1
e(x, y) and u1

i (x, y) in Ω0, we use limη→0

∫
Ω0

∇uη
e (x) ·

Ψ(x, x/η)dx =
∫
Ω0

∫
G∗ ∇u0

e(x) ·Ψ(x, y)dydx to obtain
∫
Ω0

∫
G∗ (ξ0(x, y) − ∇u0

e(x)) ·
Ψ(x, y)dydx = 0, which implies, as before, that

(5.60)

∫
G∗

(
ξ0(x, y) −∇u0

e(x)
)
·Φ(y)dydx = 0

for all Φ(y) ∈ H1
#(Q)2, with ∇ ·Φ = 0 and Φ ·n = 0 on ∂G, from which we infer the

existence of a function u1
e(x, y) ∈ L2(Ω0;H

1
#(G∗)) such that

(5.61) ξ0(x, y) = ∇u0
e(x) + ∇yu

1
e(x, y), y ∈ G∗.

In an analogous manner, one establishes the existence of u1
i (x, y) ∈ L2(Ω0;H

1
#(G))

such that

(5.62) ξ0(x, y) = ∇u0
i (x) + ∇yu

1
i (x, y), y ∈ G.

To prove that u0
e ∈ H1(Ω), we must prove that the traces of u0

e from the right and
the left of the slab boundaries Σ± are equal. By Lemma 5.3, the functions uη

e can be
extended to functions ũη ∈ H1(Ω) in such a way that ‖ũη‖H1(Ω) < C. We may then
extract a subsequence that weakly converges in H1(Ω), and, by Proposition 1.14(i)
of [1], this subsequence two-scale converges to its weak limit, which must evidently
be equal to u0

e .
The key to obtaining two-scale convergence of the hη to a solution of the scattering

problem for a homogeneous slab is the uniqueness of this solution. The weak form
of this problem is given by (5.67). If Im(μ∗(x)) > 0, then uniqueness is guaranteed.
As noted in section 1.3, (1.13), Im(μ∗(x)) is indeed positive provided that μη(x, y) is
pointwise real and positive. Theorems 5.6, 5.7, and 5.8 require as implicit assumptions
that Im(μ∗(x)) > 0 or, more generally, that (5.67) admits a unique solution.

Theorem 5.6 (variational problem for the two-scale limit). The two-scale lim-
iting functions h0

e(x), h0
i (x), h1

e(x, y), and h1
i (x, y) satisfy the following variational

problem:

∫
Ω

∫
G∗

(
ε(x, y)−1[∇⊥h0

e(x) + ∇⊥
y h1

e(x, y)]
)
· [∇⊥v̄e

0(x) + ∇⊥
y v̄e

1(x, y)]dA(y)dA(x)

(5.63)

+

∫
Ω

∫
G

(
ε(x, y)−1[∇⊥h0

i (x) + ∇⊥
y h1

i (x, y)]
)
· [∇⊥v̄i

0(x) + ∇⊥
y v̄i

1(x, y)]dA(y)dA(x)

− ω2

∫
Ω

[∫
G∗

μ(x, y)dA(y)

]
h0

e(x)v̄e
0(x)dA(x) − ω2

∫
Ω

[∫
G

μ(x, y)dA(y)

]
h0

i (x)v̄i
0(x)dA(x)

− iω

∫
Ω

[∫
∂G

σ(x, y)−1ds(y)

]
(h0

e(x) − h0
i (x))(v̄e

0(x) − v̄i
0(x))dA(x)

= −2iνm̄ε−1
0

∫
Γ−

ei((m̄+κ)x2+νm̄x1)v̄e dx2

for all v0
e (x), v0

i (x) ∈ H1
κ(Ω) and v1

e (x, y) ∈ L2(Ω0;H
1
#(Q\D))⊕L2(Ω\Ω0), v

1
i (x, y) ∈

L2(Ω0;H
1
#(G)).
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This problem is equivalent to the system

h0
i (x) = m(x)h0

e(x),(5.64)

∇⊥
y h1(x, y) = χe(y)Pe(x, y)∇⊥h0

e(x) + χi(y)Pi(x, y)∇⊥h0
i (x),(5.65)

E0(x, y) =
1

iω
ε(x, y)−1

[
∇h0(x) + ∇⊥

y h1(x, y)
]
,(5.66) ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Eav(x) =
1

iω
ε∗(x)−1∇⊥h0

e(x),∫
Ω

[
iωEav(x) · ∇⊥v̄(x) − ω2μ∗(x)h0

e(x)v̄(x)
]
dA(x)

= −2iνm̄ε−1
0

∫
Γ−

ei((m̄+κ)x2+νm̄x1)v̄ dx2 for all v ∈ H1(Ω),

(5.67)

in which the average E field Eav is defined as

(5.68) Eav(x) :=

∫
Q
E0(x, y) dA(y).

Proof. Let Υ′ be a subsequence of Υ such that mη converges, say, to m0 ∈ [0, 1].
We use test functions of the form

v(x) = χe(x/η)
[
v0
e (x) + ηv1

e (x, x/η)
]
+ χi(x/η)

[
v0
i (x) + ηv1

i (x, x/η)
]

= v0(x) + ηv1(x, x/η)
(5.69)

that are smooth off the boundary of the resonators in the weak-form Problem 5.1:∫
Ω

[
ε(x, x/η)−1∇⊥uη(x) ·

(
∇⊥v̄0(x) + ∇⊥

y v̄1(x, x/η) + η∇⊥
x v̄1(x, x/η)

)]
dA(5.70)

− ω2

∫
Ω

μ(x, x/η)uη(x)
(
v̄0(x) + ηv̄1(x, x/η)

)
dA

− iω

∫
∂Ωη

i

ησ−1(x, x/η) (uη
e (x) − uη

i (x))
(
v̄e

0(x) − v̄i
0(x) + η(v̄e

1(x, x/η) − v̄i
1(x, x/η))

)
ds

= −2iνm̄

∫
Γ−

ei((m̄+κ)x2+νm̄x1)
(
v̄e

0(x) + ηv̄e
1(x, x/η)

)
dx2.

The following analysis uses the two-scale convergence results of [1]; we refer in
particular to the proof of Theorem 2.3 of that work. Consider first the first term of
(5.70). By assumption, χe,i(y)ε(x, y)

−1 ∈ C[Ω0;L
∞
# (R)2]4, and therefore we also have

ζe(x, y) := χe(y)(ε(x, y)
−1)†

(
∇⊥v̄e

0(x) + ∇⊥
y v̄e

1(x, x/η)
)
∈ C[Ω0;L

∞
# (R)2]2,

ζi(x, y) := χi(y)(ε(x, y)
−1)†

(
∇⊥v̄i

0(x) + ∇⊥
y v̄i

1(x, x/η)
)
∈ C[Ω0;L

∞
# (R)2]2,

ξ(x, y) = (ε(x, y)−1)†
(
∇⊥v̄e

0(x) + ∇⊥
y v̄e

1(x, x/η)
)
∈ C[Ω \ Ω0;L

∞
# (R)2]2.

(5.71)

This implies that the fields ζe,i and ξ strongly two-scale converge in their respective
domains.5 As ∇⊥uη two-scale converges in Ω0, Theorem 1.8 of [1]6 justifies passing

5Strong two-scale convergence of wη(x) to w0(x, y) means that wη two-scale converges to w0 and
that

∫
|wη(x)|2dx converges to

∫∫
|w0(x, y)|2dxdy.

6Essentially, strong two-scale convergence of uη(x) to u0(x, y) and (weak) two-scale convergence
of vη(x) to v0(x, y) imply weak convergence of uη(x)vη(x) to

∫
Q u0(x, y)v0(x, y)dA(y).
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to the two-scale limit in (5.70) in the entire domain Ω. A similar argument applies to
the second term in (5.70).

One deals with the limit of the interface term by applying the theory of two-
scale convergence on periodic interfaces. We refer the reader to [2, 12] for results
on this subject. Proposition 2.6 of [2] applied to the extensions of uη

e and uη
i from

Lemma 5.3 guarantee the two-scale convergence of the traces of these functions to
u0

e(x) and u0
i (x).7 If σ0(x, y) is taken to be continuous, then by extending it to a

continuous function on Ω̄×∂G and incorporating it into the test function, we see that
σ−1(x, x/η)(uη

e (x)−uη
i (x)), defined on ∂Ωη

i , two-scale converges to σ−1(x, y)(u0
e(x)−

u0
i (x)).

The limit for η ∈ Υ′ yields the two-scale weak-form PDE system for the two-scale
limits u0

e , u
0
i , u

1
e , and u1

i :

∫
Ω

∫
G∗

[
ε(x, y)−1

(
∇⊥u0

e(x) + ∇⊥
y u1

e(x, y)
)
·
(
∇⊥v̄e

0(x) + ∇⊥
y v̄e

1(x, y)
)]

dy dx

+

∫
Ω

∫
G

[
ε(x, y)−1

(
∇⊥u0

i (x) + ∇⊥
y u1

i (x, y)
)
·
(
∇⊥v̄i

0(x) + ∇⊥
y v̄i

1(x, y)
)]

dy dx

− ω2

∫
Ω

u0
e(x)v̄e

0(x)

∫
G∗

μ(x, y) dy dx− ω2

∫
Ω

u0
i (x)v̄i

0(x)

∫
G

μ(x, y) dy dx

− iω

∫
Ω

(
u0

e(x) − u0
i (x)

) (
v̄e

0(x) − v̄i
0(x)

) ∫
∂G

σ−1(x, y) dy dx

= −2iνm̄

∫
Γ−

ei((m̄+κ)x2+νm̄x1)v̄e
0(x) dx2

for all v̄e
0, v̄i

0 ∈ H1(Ω), v1
e ∈ L2(Ω;H1

#(G∗)), v1
i ∈ L2(Ω;H1

#(G)).

(5.72)

Next we pull the two-scale variational problem apart to reveal the equations for
the average fields and the cell problem for the corrector function. In Ω0, we first put
v0 = 0 and obtain∫

Ω

∫
G∗

[
ε(x, y)−1

(
∇⊥u0

e(x) + ∇⊥
y u1

e(x, y)
)
· ∇⊥

y v̄e
1(x, y)

]
dy dx(5.73)

+

∫
Ω

∫
G

[
ε(x, y)−1

(
∇⊥u0

i (x) + ∇⊥
y u1

i (x, y)
)
· ∇⊥

y v̄i
1(x, y)

]
dy dx = 0

for all v1
e ∈ L2(Ω;H1

#(G∗)), v1
i ∈ L2(Ω;H1

#(G)).

By using separable test functions v1
e (x, y) �→ φ(x)v1

e (y) and v1
i (x, y) �→ φ(x)v1

i (y), we
obtain the cell problem for each x:∫

G∗

[
ε(x, y)−1

(
∇⊥u0

e(x) + ∇⊥
y u1

e(x, y)
)
· ∇⊥

y v̄e
1(y)
]
dy(5.74)

+

∫
G

[
ε(x, y)−1

(
∇⊥u0

i (x) + ∇⊥
y u1

i (x, y)
)
· ∇⊥

y v̄i
1(y)
]
dy = 0

for all v1
e ∈ H1

#(G∗), v1
i ∈ H1

#(G).

7A sequence wη(x) ∈ L2(∂Ωη
i ) with η

∫
∂Ω

η
i
|wη(x)|2 ds(x) < C two-scale converges to w0(x, y) ∈

L2(Ω × ∂G) if limη→0 η
∫
∂Ω

η
i
wη(x)φ(x, x/η) ds(x) =

∫
Ω

∫
∂G w0(x, y)φ(x, y) ds(y) dA(x) for all con-

tinuous φ(x, y) defined on Ω̄ × ∂G.
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By using this together with the definitions (4.22)–(4.23) of the corrector matrices Pe

and Pi, we obtain (5.65). In addition to v0 = 0, let us also set v1
e = 0 and v1

i (y) = ξ · y
to obtain

(5.75)

∫
G

ε(x, y)−1
(
∇⊥u0

i (x) + ∇⊥
y u0

i (x, y)
)
· k× ξ dy.

It follows from this and (5.66) (taken as the definition of E0(x, y)) that

(5.76)

∫
G

E0(x, y) dA(y) = 0.

Now let v0
i (y) be arbitrary, and set v0

e = 0 and v1 = 0. The gradient term vanishes
by (5.75), and we obtain

−ω2

∫
Ω

[∫
G

μ(x, y) dy

]
u0

i (x)v̄i
0(x) dx(5.77)

+ iω

∫
Ω

[∫
∂G

σ(x, y)−1 dy

] (
u0

e(x) − u0
i (x)

)
v̄i

0(x) dx = 0,

or

(5.78) u0
i (x) =

ρ̂(x)

ρ̂(x) − iωμ̂(x)
u0

e(x),

which, by definition (4.11) of m, is (5.64). Now set v1
i = 0, and let v0

i and v0
e be

arbitrary to obtain∫
Ω

[∫
Q
ε(x, y)−1

(
∇u0(x) + ∇⊥

y u1(x, y)
)
dy

]
· ∇⊥v̄0(x) dx(5.79)

− ω2

∫
Ω

[∫
Q
μ(x, y)M(x, y) dy

]
u0

e(x)v̄0(x) dx = f(v0).

This together with the definition (5.68) of Eav(x) and (5.76) gives

(5.80) Eav(x) =

∫
G∗

E0(x, y) dA(y),

and by using the definition (4.25) of ε∗(x) and the definition (4.18) of μ∗(x), we obtain
(5.67). We observe that (5.66)–(5.67) constitute the weak form of the homogenized
system (4.17). One also confirms that (5.64)–(5.65) together with the definitions of
ε∗ and μ∗ imply the two-scale weak-form system (5.72).

Now we must prove that ‖hη‖L2 < C for all η ∈ Υ′ so that uη can be replaced
by hη in the entire proof. To do this, we first prove the strong two-scale convergence
of uη(x) to u0(x, y) in Ω0, the strong convergence in Ω \ Ω0 being standard (see
footnote 5). By Lemma 5.3, the extensions ũη

e of the restrictions of uη to Ωη
e are

bounded in H1(Ω0), and therefore we can restrict Υ′ to a subsequence that converges
strongly to a function w(x) in L2(Ω0). By Theorem 1.14(a) of [1], we can restrict Υ′

further so that ũη
e (x) also two-scale converges to a function in L2(Ω0), namely, u0

e(x).
These two facts imply the weak L2 convergence of ũη

e (x) to both w(x) and u0
e(x), from

which we obtain

(5.81) lim
η→0

∫
Ω0

(ũη
e (x))2 dA(x) =

[∫
Ω0

u0
e(x)

]2
.
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In a similar manner, we obtain

(5.82) lim
η→0

∫
Ω0

(ũη
i (x))2 dA(x) =

[∫
Ω0

u0
i (x)

]2
.

Now that we have the strong two-scale convergence of ũη
e (x) to u0

e(x) and ũη
i (x)

to u0
i (x) as well as the two-scale convergence of ũη

e (x)χe(x/η) to u0
e(x)χe(y) and

ũη
i (x)χi(x/η) to u0

i (x)χi(y), we apply Theorem 1.8 of [1] (see footnote 6) to obtain

lim
η→0

∫
Ω0

(uη(x))
2
dA(x) = lim

η→0

∫
Ω0

(ũη
e (x))

2
χe(x/η) dA(x) + lim

η→0

∫
Ω0

(ũη
i (x))

2
χi(x/η) dA(x)

(5.83)

=

∫
Ω0

(u0
e(x))2

∫
Q
χe(y) dA(y) dA(x) +

∫
Ω0

(u0
i (x))2

∫
Q
χi(y) dA(y) dA(x)

=

∫
Ω0

∫
Q

(u0
e(x, y))

2 dA(y) dA(x).

By the definition of mη, if m0 < 1, then ‖uη‖L2(Ω) = 1 for η sufficiently small, and,
by the strong two-scale convergence of uη to u0, we obtain

(5.84) ‖u0‖L2(Ω×Q) = 1 (m0 < 1).

Thus u0
e �= 0 because of the relation (5.78). In addition, u0

e solves the homogenized
system (4.17) with forcing m0f . If, in fact, this solution is unique, we conclude
that m0 �= 0. We will show momentarily that it is unique at least in the case that
Im(μ∗(x)) > 0. We therefore obtain

(5.85) hη = (mη)−1uη ⇀⇀ (m0)−1u0 =: h0,

obtaining a uniform L2 bound on hη. All of the results in this proof are therefore valid
if we replace all occurrences of u with h. Because of the uniqueness of the solution
to the two-scale variational problem, we conclude that the convergences obtained in
this proof hold for the entire sequence Υ.

Finally, we explain why the solution to the homogenized system (5.67) is unique
if Im(μ∗(x)) > 0. The argument is standard, so we will be brief. By setting the
right-hand side of the second equation in (5.67) to zero and using v = h0

e as a test
function, we obtain

(5.86)

∫
Ω

[
ε∗(x)−1∇⊥h0

e(x) · ∇⊥ h̄e
0
(x) − ω2μ∗(x)|h0

e(x)|2
]
dA(x) = 0.

By its definition (4.25), Im ε∗(x) > 0 also, and it follows that h0
e(x) = 0.

Theorem 5.7. The sequence hη(x) converges strongly in the spaces V η to its
two-scale limit h0(x, y) + ηh1(x, y) in the sense that

(5.87) lim
η→0

‖hη(x) − h0(x, x/η)‖L2(Ω) = 0

and

(5.88) lim
η→0

‖∇hη(x) −∇xh
0(x, x/η) −∇yh

1(x, x/η)‖L2(Ω) = 0.
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Proof. The first limit follows from the strong two-scale convergence of hη(x)
to h0(x, y) (5.83) and Theorem 1.8 of [1]. To prove the second limit, we write the
expansion

(5.89) b
(
hη(x) − h0(x, y) − ηu1(x, y), hη(x) − h0(x, y) − ηh1(x, y)

)
= b (hη(x), hη(x)) − b

(
hη(x), h0(x, y) − ηh1(x, y)

)
− b
(
h0(x, y) − ηh1(x, y), hη(x)

)
+ b
(
h0(x, y) − ηu1(x, y), h0(x, y) − ηh1(x, y)

)
.

The first term on the right-hand side is equal to ω2c (hη(x), hη(x))+f (hη(x)), which,
by the strong two-scale convergence of hη(x) to h0(x, y), tends to

(5.90) ω2

∫
Ω

μ∗(x)
(
h0

e(x)
)2

dA(x) + f
(
h0

e(x)
)
.

By using the admissibility of h0 + ηh1 as a test function for two-scale convergence
together with Theorem 1.8 of [1] and its analogue for two-scale convergence on hyper-
surfaces, we can pass to the two-scale limit in each of the other three terms, which is
(plus or minus depending on the sign in (5.89))

∫
Ω

∫
Q
ε(x, y)−1

[
∇⊥
x h0(x, y) + ∇⊥

y h1(x, y)
]
·
[
∇⊥
x h0(x, y) + ∇⊥

y h1(x, y)
]
dA(y) dA(x)

− iω

∫
Ω

[∫
∂G

σ(x, y)−1 ds(y)

] ∣∣h0
e(x) − h0

i (x)
∣∣2 dA(x).

(5.91)

By Theorem 5.6 and the definition of μ∗, this is equal to (5.90), and we find that the
right-hand side of (5.89) tends to zero with η. By the coercivity of b (5.12), the limit
(5.88) now follows.

Theorem 5.8. The reflection and transmission coefficients for the problems of
scattering by the microstructured slabs (Problem 5.1) converge to those of the problem
of scattering by the homogenized slab ( (5.67)).

Proof. This follows from the convergence of the Fourier coefficients of the propa-
gating harmonics of the solutions hη to those of the solution h0

e :

(5.92) lim
η→0

∫
Γ±

hη(x)e−i(m+κ)x2 dx2 =

∫
Γ±

h0
e(x)e−i(m+κ)x2 dx2,

which is valid because of the strong convergence of the solutions and their gradients
outside the slab.
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[10] D. Felbacq and G. Bouchitté, Negative refraction in periodic and random photonic crystals,
New J. Phys., 7 (2005), 159.

[11] S. Guenneau and F. Zolla, Homogenization of 3D finite chiral photonic crystals, Phys. B:
Condens. Matter, 394 (2007), pp. 145–147.

[12] M. Neuss-Radu, Some extensions of two-scale convergence, C. R. Acad. Sci. Paris Sér. I Math.,
322 (1996), pp. 899–904.

[13] S. O’Brien and J. B. Pendry, Magnetic activity at infrared frequencies in structured metallic
photonic crystal, J. Phys.: Condens. Matter, 14 (2002), pp. 6383–6394.

[14] S. O’Brien and J. B. Pendry, Photonic band-gap effects and magnetic activity in dielectric
composites, J. Phys.: Condens. Matter, 14 (2002), pp. 4035–4044.

[15] J. B. Pendry, A chiral route to negative refraction, Science, 306 (2004), pp. 1353–1355.
[16] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Low frequency plasmons

in thin-wire structures, J. Phys.: Condens. Matter, 10 (1998), pp. 4785–4809.
[17] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors

and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47 (1999), pp.
2075–2084.

[18] J. B. Pendry, Negative refraction, Contemp. Phys., 45 (2004), pp. 191–202.
[19] S. A. Ramakrishna, Physics of negative refractive index materials, Rep. Progr. Phys., 68

(2005), pp. 449–521.
[20] D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D.

Joannopoulos, 3D metallo-dielectric photonic crystals with strong capacitive coupling
between metallic islands, Phys. Rev. Lett., 80 (1998), pp. 2829–2832.

[21] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite
medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84
(2000), pp. 4184–4187.

[22] D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Determination of effective per-
mittivity and permeability of metamaterials from reflection and transmission coefficients,
Phys. Rev. B, 65 (2002), 195104.

[23] C. M. Soukoulis, M. Kafesaki, and E. N. Economou, Negative-index materials: New fron-
tiers in optics, Advanced Materials, 18 (2006), pp. 1941–1952.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


