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Bose-Einstein condensates of exciton-polaritons are described by a Schrödinger system of two
equations. Nonlinearity due to exciton interactions gives rise to a frequency band of dark soliton
solutions, which are found analytically for the lossless zero-velocity case. The soliton’s far-field value
varies from zero to infinity as the operating frequency varies across the band. For positive detuning
(photon frequency higher than exciton frequency), the exciton wavefunction becomes discontinuous
when the operating frequency exceeds the exciton frequency. This phenomenon lies outside the
parameter regime of validity of the Gross-Pitaevskii (GP) model. Within its regime of validity, we
give a derivation of a single-mode GP model from the initial Schrödinger system and compare the
continuous polariton solitons and GP solitons using the healing length notion.

I. INTRODUCTION

Exciton-polaritons are matter-light quasiparticles that
arise from the coupling between excitons and photon
modes in a semiconductor microcavity and can form
Bose-Einstein condensates (BEC) at relatively high tem-
peratures [1–4]. Polariton condensates are sustained by
laser pumping of photons in a two-dimensional quantum
well. In a mean-field approximation, their wavefunc-
tions produce a rich variety of localised quantum states
in the micrometer scale: dark solitons [5–9], bright soli-
tons [5, 10–12], vortices [13, 14]. Solitons in polaritonic
condensates have potential for applications in ultrafast
information processing [15] due to picosecond response
times and strong nonlinearities [10, 11].

In this work, we report a frequency band of dark po-
lariton solitons whose exciton wave function develops a
discontinuity as the frequency is increased beyond the
exciton frequency (Fig. 1). At the point of discontinuity,
the photon field vanishes while the exciton field experi-
ences a half-cycle phase jump.

We investigate a one-dimensional condensate of polari-
tons in a strongly-coupled exciton and photon system.
Our derivation depends crucially on the use of the classic
model that retains separate wave functions for the ex-
citons and the photon modes. Exciton interactions are
modelled by a nonlinear term, while photons are disper-
sive. Neglecting both pumping and losses (which are due
to radiation and thermalization) and thus focusing on the
synergy of exciton interaction (nonlinearity) and photon
dispersion allows us to produce analytical formulae for
polariton solitons. Conservative solitonic structures of
half-light and half-matter have been considered in the
literature [16].

The solitons we derive apply for a short time after
the pumping is removed and the losses have not seri-
ously manifested themselves or the solitons lie outside
the pump spot. For example, in Refs. [6, 9] quasi-one-
dimensional structures are observed outside the pump
spots. In a different realization, polariton condensates
can be created at two pump spots [17] and localised struc-

tures can be sustained in the region between the two
spots where there is no pumping.

II. POLARITON SOLITONS

We consider a one-dimensional semiconductor micro-
cavity in which a photon field ψC(x, t) interacts with an
exciton field ψX(x, t). One dimensional or nearly one
dimensional polariton structures have been observed in
[6, 9, 17] and [18] (radial fields). The pair (ψX , ψC) is a
polariton field and is modeled by the system [1, 19–21]

i∂tψX =
(
ωX − iκX + g|ψX |2

)
ψX + γψC (1a)

i∂tψC =
(
ωC − iκC − 1

2∂xx
)
ψC + γψX . (1b)

The coupling constant is half the Rabi frequency γ =
ΩR/2; ωX is the frequency of a free exciton, ωC is the
photon frequency at zero wavenumber; and κX and κC
are the exciton and photon attenuation rates. All these
are normalized to a reference frequency γ0. One could
set γ0 = γ, however, we prefer to keep γ as an ex-
plicit parameter. The spatial variable x is normalized
to `0 =

√
~/(γ0mC) , where mC is the effective pho-

ton mass. The wavefunctions φX , φC are normalised to√
N0/`0, whereN0 is a reference number of particles. The

nonlinearity parameter g is normalised to N0/(`
2
0γ0). We

consider only the case g > 0 in this paper. Eqs. (1) are
valid outside the pump spots, at regions that have been
the focus of interesting experimental observations [6, 17].

We seek stationary harmonic polariton fields

ψX(x, t) = φX(x)e−iωt

ψC(x, t) = φC(x)e−iωt
(2)

for the lossless equations (κX = κC = 0), with operating
frequency ω. This assumption is reasonable since exper-
imental results [6] show that the rate of attenuation is
slow enough to allow for the formation of solitons. Let-
ting

$X = ω − ωX , $C = ω − ωC , (3)
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FIG. 1: Dark polariton soliton envelopes (φX(x), φC(x)) for
exciton frequency ωX = 0 and photon frequency ωC = 1,
which gives a threshold frequency ωLP ≈ −0.618 for the onset
of the soliton, a transition frequency ωX = 0 at which φX

becomes discontinuous, and a blowup frequency ωC = 1 at
which the far-field values of φX and φC become unbounded
as shown in Fig. 3 (right). These graphs demonstrate the in-
creasing soliton amplitude as ω increases through four values.
When ω < ωX , φX is continuous, and when ω > ωX , φX is
discontinuous. The values of φX and φC are related by (4b).

and inserting (2) into (1) yields

− 1
2φ
′′
C −$CφC + γφX = 0 , (4a)

φC = 1
γ

(
$X − gφ2X

)
φX . (4b)

Multiplying Eq. (4a) by φ′C and Eq. (4b) by γφ′X and
adding the two integrates the system (4) exactly. The
cubic algebraic relation (4b) allows one to eliminate φC
in favor of φX to obtain a first-order ODE for φX(x). It
is then convenient to use the scaled exciton density

ζ(x) := g φX(x)2 (5)

which eliminates g from the equation and results in

1
2ζ
′2 =

4 ζQ(ζ)

(3ζ −$X)2
, (6)

whereQ(ζ) = −$C

[
ζ3 − 1

2 (3ζ∞ +$X)ζ2 + ζ∞$Xζ +K
]
,

K is an arbitrary real constant of integration, and

ζ∞ = $X −
γ2

$C
(7)

corresponds to the nonzero equilibrium solution of (4).
Eq. (6) has the structure of an energy equation of a
conservative system and admits a rich set of solitons and
periodic structures. In this work, we focus on continuous
and discontinuous dark solitons for g > 0.

For a dark soliton ζ(x) to exist, the cubic polynomial
Q(ζ) must have a double root that serves as the soliton’s
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FIG. 2: The cubic relation (4b) giving the photon field en-
velope value φC vs. the exciton field envelope value φX .
Left. The pair (φX(x), φC(x)) travels continuously along the
graph of the monotonic cubic between its far-field values as
x increases from −∞ to ∞. Right. The pair jumps dis-
continuously between the points (−φ0, 0) and (+φ0, 0), with

φ0 =
√
$X/g . The transition from continuous to discontinu-

ous φX occurs when ω = ωX . Graphs of the fields φC(x) and
φX(x) are shown in Fig. 1. The singularity of the ODE (6)
occurs at the critical points ±φ1.

far-field value. The value of the constant of integration
K that provides such a nonzero double root equals

K = − γ6

2$3
C

(η − 1)2, (8)

where η is a convenient dimensionless parameter

η =
(ω − ωX)(ω − ωC)

γ2
=
$X$C

γ2
. (9)

We calculate the double root to be equal to ζ∞, given
in (7). The fact that this is also the value of the far-
field justifies the notation. As x is varied, ζ(x) varies
continuously down to its minimal value (nadir) ζ = 0,
which is a simple root of the potential in (6). We may
assume that the nadir occurs at x = 0.

The soliton field (φX(x), φC(x)) traces the graph of
the cubic relation (4b) as x increases. Fig. 2 shows the
graph of this relation for the two cases ω < ωX and ω >
ωX . The equilibrium points (φX , φC)−∞ and (φX , φC)∞
correspond to the calculated value ζ∞.

The parameter η is convenient for expressing the soli-
ton nonlinear dispersion relation at zero wavenumber,
that relates the soliton amplitude ζ∞ to the operating
frequency ω, which is encapsulated in η and $C ,

ζ∞ = $X
η − 1

η
=

γ2

$C
(η − 1). (10)

We restrict our attention to $C < 0, which also implies
η < 1, given the fact that ζ∞ > 0. Under these condi-
tions, one can show that Q(ζ) > 0, a necessary condition
for Eq. (6) to have real solutions.

A dark soliton appears at η = 1 (ζ∞ = 0) correspond-
ing to a threshold frequency ωLP. This constitutes the
linear limit of the soliton that emerges as the frequency
increases; it is thus no surprise that the frequency ωLP co-
incides with the lower endpoint of the well-known lower
band (ωLP, ωX) of homogeneous linear (g = 0) polari-
tons of the form (φX , φC)ei(kx−ωt), with φX and φC con-
stant [13]. As the frequency is increased from its thresh-
old, the value of η decreases and the amplitude of the
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FIG. 3: The threshold frequency ωLP marks the onset of a
dark polariton soliton, and the photon frequency ωC is the
blowup frequency, at which the far-field amplitude of the soli-
ton becomes unbounded. Left. (ωC < ωX). As the operating
frequency ω traverses the soliton band (ωLP, ωC), the far-field
amplitude of the exciton field φX goes from 0 to ∞ accord-
ing to (7). The nadir (low point) is zero. Right. (ωX < ωC)
The free exciton frequency ωX is the transition frequency from
continuous to discontinuous solitons. The nadir of the discon-
tinuous soliton is pushed upwards to the value $X .

soliton increases until it blows up at the photon frequency
ωC (η = 0, ζ∞ = ∞). Fig. 3 displays the far-field and
nadir values of the soliton vs. the frequency in the band
from threshold to blowup, in the cases of negative detun-
ing and positive detuning.

In the case of positive detuning, ωX < ωC , (i.e.
$C < $X), the frequency ωX lies within the soliton
frequency band (ωLP, ωC), constituting a transition fre-
quency above which the soliton field φX becomes discon-
tinuous. The obstructing singularity ζ = $X/3 becomes
positive, breaking into the soliton range [0, ζ∞). The
nadir of the soliton is pushed upward from ζ = 0 to the
value ζ = $X , which is now positive, leading to a jump
of the exciton field between the values ±φ0 = ±

√
$X/g.

Fig. 2 traces the path of the pair (φX(x), φC(x)) along
the graph of the relation (4b) both for negative detun-
ing and positive detuning. The system equations (4) re-
main valid, as the jump in φX is balanced by a jump
in φ′′C . Physically, the photon field φC which mediates the
coupling between neighboring excitons through the term
γφC in (1a), vanishes when ζ takes the special value $X

(corresponding to φ0 =
√
$X/g in Fig. 2b). The van-

ishing of the photon field turns off the coupling between
neighboring excitons thus making the jump permissible.
The formulae (7) and (10) for the far-field value ζ∞ re-
main the same.

Fig. 1 presents four instances of the soliton profile that
show the progress towards the discontinuity (top) and the
progress past the discontinuity of the exciton field (bot-
tom). The photon field remains continuous. Its second
derivative has a discontinuity at x = 0, as discussed ear-
lier, but this is not visible in the figure. Notice the mono-
tonic increase of the far-field amplitude as the frequency
ω increases.

III. HEALING LENGTH AND COMPARISON
WITH GROSS-PITAEVSKII EQUATION

It is interesting to visualize the mechanism of the for-
mation of the discontinuity of the exciton field φX(x) by
following the slope of this field at x = 0, as one lowers
the dimensionless parameter η from its value η = 1 at
which the dark soliton is born. In order to calculate this
slope, we express |φ′X(0)| in terms of ζ and ζ ′ from the
relation ζ = gφ2X . We then insert the value for ζ ′ from
the differential equation (6) and, finally, set ζ = 0. We
obtain

[φ′X(0)]
2

=
γ2(η − 1)2

g η2
. (11)

For positive detuning and as ω ↗ ωX , the parameter
η ↘ 0 and thus, the slope φ′X(0) tends to infinity, while
φX remains finite. The jump discontinuity of the exciton
envelope profile sets on as η becomes negative.

Adopting the slope of the profile at the origin x = 0
as an indicator of the scale of the slope of the profile we
define the healing length of a exciton field profile by

ξX = 2

∣∣∣∣φX(x = ±∞)

φ′X(0)

∣∣∣∣ , (12)

with a similar equation for the photon field. From the
field envelope Eq. (4a), and the far-field Eq. (10), we ob-
tain φC(∞)/φX(∞) = γ/$C and φ′C(0)/φ′X(0) = $X/γ.
Thus, the healing lengths ξC and ξX are related by

ξ2C =
ξ2X
η2
. (13)

Combining Eqs. (10), (11) and ζ∞ = gφ2∞, we obtain for
the continuous soliton the healing lengths

ξ2X =
4η2

$C(η − 1)
, ξ2C =

4

$C(η − 1)
. (14)

When ωC < ωX , near the blow-up frequency $C =
0 (η = 0) the healing length of the excitons approaches
zero, while the photon healing length diverges to infinity.
At the same time the far-field value goes to infinity. At
the transition frequency $X = 0 (η = 0) (obtained only
for positive detuning) ξX goes to zero linearly in η which
one can view as a precursor to the discontinuity. The
photon healing length converges to ξ2C = 4/(ωC − ωX).
Fig. 1 exemplifies these observations.

In the region near the value η = 1, at which the con-
tinuous soliton begins its life, the exciton and the photon
fields are nearly proportional to each other and ξC ≈ ξX .
The photon field is described well by a Gross-Pitaevskii
(GP) model that is derived as a simplification of the two-
equation model (4). We solve Eq. (4b) for φX as a power
series in φC up to the third degree term and we insert
this value of φX into Eq. (4a). There seems to be no
analogous way to derive a GP equation for the exciton
field. The GP model derived for the photon field is

1
2φ
′′ − ε$C φ− g̃φ3 = 0. (15)
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The notation φ is a convenient abbreviation of the more
descriptive notation φGP,C. The parameter ε > 0 mea-
sures the deviation from the linear problem and equals

ε =
1− η
η

, (16)

while g̃ = ($C

$X
)2g.

Multiply by 2φ′ and integrate to obtain

1
2φ
′2 − ε$C φ

2 − 1
2 g̃φ

4 = E0 (17)

where E0 is a constant of integration. Like Eq. (6), this
has the structure of a conservative system. The left side
can be considered as the sum of a kinetic and a potential
energy. It produces the GP approximation of the photon
profile of the soliton we are investigating. The potential
has two equal maxima at ±φ∞ where

φ2∞ = −ε$C

g̃
. (18)

These are the far-field values (φ′ = 0) for soliton solutions
obtained from Eq. (17) at the peak of the potential

E0 = −ε$Cφ
2
∞ − 1

2 g̃φ
4
∞ = −1

2
ε$Cφ

2
∞. (19)

We obtain from Eq. (17) φ′(0)2 = 2E0 = −ε$Cφ
2
∞.

Taking, as before, the slope |φ′(0)| as an indicator of the
slope of the profile, the healing length for the photons is

(ξGP
C )2 =

4φ(±∞)2

φ′(0)2
=

4φ2∞
φ′(0)2

=
4η

$C(η − 1)
. (20)

The photon healing length for the approximate equation
(GP) underestimates the healing length derived for the
full system in (14) by a factor of η. The two agree at the
linear limit η = 1.

IV. SOLITON AS A PHOTON FIELD IN A
POTENTIAL WELL

Returning to the system involving both the photon and
the exciton fields, one can write Eqs. (4) as a Schrödinger
equation for the photon field envelope φC ,

− 1
2φ
′′
C + V (x)φC = $CφC , (21)

in which the effective potential V (x) depends on the ex-
citon field:

V (x) =
γ2

$X − gφX(x)2
. (22)

For the dark soliton derived above, V (x) exhibits a
single symmetric well with far-field value V∞ = $C < 0,
as shown in Fig. 4. For the continuous soliton, V has a
minimal value of Vmin = γ2/$X . For the discontinuous
soliton, the well becomes infinitely deep at the point of
discontinuity.

-4 -2 0 2 4

-4

-2

0
x

V (x)

Vmin = �2/$X

V1 = $C

! = �0.3

-4 -2 2 4

-4

-2

0 x

V (x)

V1 = $C

! = 0.3

FIG. 4: The effective potential well V (x) that confines the
photon field of an exciton-polariton soliton. Left. When the
exciton field is continuous (ω < ωX), V (x) has a finite min-
imal value. Right. When the exciton field is discontinuous
(ω > ωX), V (x) is unbounded at the point of discontinuity
x = 0. (ωX = 0, ωC = 1, and ωLP ≈ −0.618, as in Fig. 1.)

In an experimental setup, one expects that losses will
allow some photons to be trapped by the potential well
(22) in the form of bound states at discrete energy levels
which lie below $C . As long as a small enough fraction
of the energy of the photon field of the coherent polari-
ton structure is transferred into lower energy states, the
exciton field φX(x) and therefore also the potential V (x)
will not be significantly altered and can be considered a
fixed potential.

This scenario is consistent with experimental obser-
vations [17], in which a polariton field is sustained by
continuously injecting photons at two pump spots, one
on each side of the potential well. A fraction of the po-
lariton population descends to lower energy states of the
well.

V. CONCLUSIONS

We have presented a detailed study of dark solitons
in polariton condensates, which result as solutions of a
system of equations for strongly coupled excitons and
photons. We have analytically identified soliton solutions
for the lossless system. One type of black soliton studied
is of the standard type where the fields vanish at the
soliton center. This corresponds to complete depletion of
the condensate at that point. Furthermore, we reported
a discontinuous soliton where the exciton field exhibits
a jump at the soliton center, so the exciton density does
not vanish. We have shown that the two types of solitons
can be unified in one brach, since the discontinuity in the
exciton density smoothly increases from zero.

Polariton condensates emerge as a fertile ground for
solitonic structures. Our results provide an understand-
ing of these structures. Furthermore, they can be used as
a basis for a perturbation theory that will include non-
conservative features, in particular, sources and losses.
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