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Abstract – We investigate Fano-type anomalous transmission of energy of plane waves across lossless slab
scatterers with periodic structure in the presence of non-robust guided modes. Our approach is based on
rigorous analytic perturbation of the scattering problem near a guided mode and applies to very general
structures, continuous and discrete.

I. INTRODUCTION

Resonances with sharp peaks and dips have been observed in the graphs of the frequency dependence of the
transmission of energy of plane waves through periodic slab structures. [3, 8, 10, 13]. These anomalies have
been connected to isolated real points on the complex dispersion relation D(κ, ω) = 0 that relates the frequency
ω of a sourceless field to its Bloch wave vector κ along the slab [8, 10]. The real point of the dispersion relation
corresponds to a true guided mode in the slab, that is, one that decays exponentially away from the slab. Because
the point is isolated, the mode is non-robust with respect to perturbations of κ, ω, or the physical or geometric
parameters of the structure. This feature gives rise to sharp transmission anomalies near the frequency of the
guided mode, as shown in Figs. 1 and 2.

The anomalies observed resemble those investigated by U. Fano [4] in the context of quantum mechanics,
in which an embedded eigenvalue is “dissolved” into the continuous spectrum upon perturbation of the system,
resulting in resonant dynamical behavior. The shape that he derived for the resonance involves two parameters
and turns out to be a special case of a more general shape derived rigorously for the graph of energy transmission
through photonic crystal slabs with a symmetry assumption on the slab geometry [11]. Typically, symmetry gives
rise to standing guided waves (κ=0), as discussed in [2, 12], and only standing waves were analyzed in [11]. In the
present work, we compute anomalies near traveling guided modes (κ 6= 0). The frequency of a non-robust guided
mode is an embedded eigenvalue for a fixed value of κ. The dissolution of the eigenvalue into the continuous
spectrum corresponds to the destruction of the guided mode when κ is perturbed. We demonstrate the results
through two examples, the scattering of polarized EM fields by a lossless dielectric structure and the scattering of
waves in a two-dimensional lattice by a one-dimensional periodic lattice attached along a line.

II. ANALYTIC CONNECTION OF SCATTERING STATES AND GUIDED MODES

In [11], we reformulate the Maxwell equations in a photonic crystal slab (Fig. 2) at fixed frequency ω and Bloch
wavenumber κ (the latter necessarily parallel to the slab) as a boundary-integral equation (see [6, 7], for example).
The equation

A(κ, ω)ψ = φ (1)

relates two fields φ and ψ defined on the interface between the scatterer material (taken to be homogeneous
and isotropic) and the ambient medium. The field ψ on the interface contains information that is necessary and
sufficient for the calculation of the EM field in the whole space; the calculation consists of the evaluation of an
integral. Similarly, the field φ contains information for the calculation of the incident field. Solving the above
equation for ψ is equivalent to calculating the field in the photonic crystal and in the ambient medium established
as a result of the source field φ. We call ψ the total field to distinguish it from the scattered field, which is the
difference between the total and incident fields in the ambient medium; clearly, a scattered field is required to
satisfy a radiation condition. The integral operator A is of second-kind Fredholm type with index zero, thus, it
either has a bounded inverse or it has a nullspace of finite dimension and a range of the same codimension.

The integral operator A is parametrized by ω and κ. When either of these takes a nonreal value, a field ψ,
bounded on the interface, may produce an unbounded and hence unphysical field in space due to growth of the
exponential eiκx or eiωt. Such fields are not only mathematically but also physically useful and form the foundation



of the so-called leaky modes. A (generalized) guided mode is a nonzero solution of the sourceless equation

A(κ, ω)ψ = 0. (2)

The pairs (κ, ω) for which such a solution exists satisfy a dispersion relation D(κ, ω) = 0. For pairs (κ, ω) such
that κ is real and D(κ, ω) = 0, we must have Imω ≤ 0 [8, 10]. In the case that Imω = 0, a solution to (2)
represents an EM field that decays exponentially with distance from the scatterer and therefore represents a true
guided mode. We shall work with a simple eigenvalue branch `(κ, ω) of A(κ, ω), for which we necessarily have
that `(κ, ω) = 0 implies D(κ, ω) = 0.

The framework we have described explicitly for the Maxwell equations arises for very general dielectric and
metal structures (not necessarily with homogeneous components) and for other continuous and discrete problems
of scattering by a slab; the methods of arriving at the formulation vary from problem to problem. For waves in an
n-dimensional uniform lattice scattered by a (n−1)-dimensional periodic lattice (Fig. 1), the problem is reduced
to a finite-dimensional one, and A is a matrix.

For the purpose of investigating anomalous scattering behavior near a guided mode, we let (κ0, ω0) be a real
pair that satisfies `(κ0, ω0) = 0 and use as an incident source field the plane wave

φinc(x, z) = `(κ, ω)eiκxeiηz (incident from the left), (3)

where x is the multi-variable in the directions parallel to the slab and z is the single variable perpendicular to the
slab (x and z may be discrete or continuous). The number η depends on κ, ω, and the structure itself. We shall
work in the regime of only one propagating diffractive order, that is, one Fourier harmonic in the periodic variable
x that carries energy in the z-direction. In this case, the reflected and transmitted fields (at far field) are simple:

φrefl(x, z) = a(κ, ω)eiκxe−iηz (reflected on the left), (4)
φtrans(x, z) = b(κ, ω)eiκxeiηz (transmitted on the right). (5)

It can be shown that the coefficients a(κ, ω) and b(κ, ω) are analytic functions of (κ, ω) near (κ0, ω0) [8, 11]. At
pairs (κ, ω) that satisfy `(κ, ω) = 0, the the right-hand side of (1) is zero, and the solution is a guided mode. Thus
we obtain an analytic connection between scattering states and generalized guided modes near the true guided
mode at (κ0, ω0).

III. ANALYSIS OF TRANSMISSION NEAR A GUIDED MODE FREQUENCY

The analysis of the resonant transmission shape near a guided mode is based on the analysis of the three analytic
functions `(κ, ω), a(κ, ω), and b(κ, ω) near the real parameters (κ0, ω0) of a guided mode. The mode condition
`(κ0, ω0) = 0, together with that of conservation of energy, namely |`|2 = |a|2 + |b|2 for real values of κ and ω,
implies that (κ0, ω0) is a root of the three analytic functions `, a, and b simultaneously:

`(κ0, ω0) = 0, a(κ0, ω0) = 0, b(κ0, ω0) = 0, at (κ0, ω0) ∈ R2. (6)

The perturbation analysis of `, a, and b near this common real root relies principally on the following two condi-
tions, which we have already mentioned:

|`(κ, ω)|2 = |a(κ, ω)|2 + |b(κ, ω)|2 for real κ and ω, (7)
if `(κ, ω) = 0 for κ ∈ R, then Imω ≤ 0. (8)

The following conditions are assumed because they hold generically:

∂`

∂ω
(κ0, ω0) 6= 0,

∂a

∂ω
(κ0, ω0) 6= 0,

∂b

∂ω
(κ0, ω0) 6= 0. (9)

The Weierstraß preparation theorem for analytic functions of several variables [5] then provides the following
forms (with $ = ω − ω0 and κ̃ = κ− κ0):

`(κ, ω) = eiθ1
[
$ + `1κ̃+ `2κ̃

2 +O(κ̃3)
]

[1 +O(|κ̃|+ |$|)] , (10)

a(κ, ω) = eiθ2
[
$ + r1κ̃+ r2κ̃

2 +O(κ̃3)
]

[r0 +O(|κ̃|+ |$|)] , (11)

b(κ, ω) = eiθ3
[
$ + t1κ̃+ t2κ̃

2 +O(κ̃3)
]

[t0 +O(|κ̃|+ |$|)] . (12)



The function ` has been normalized so that the constant in the second factor is equal to 1. All factors in these forms
are analytic, and the numbers r0 and t0 are real and positive.

Consequences of (8) are that `1 is real and Im `2 ≥ 0:

r0 > 0, t0 > 0, `1 ∈ R, Im `2 ≥ 0. (13)

Using the forms (10,11,12), we can examine various terms in the expansion of the equation of conservation of
energy (7) for real values of κ and ω. Computation of |`|2 yields

`¯̀=
[
$2 + `21κ̃

2 + 2`1$κ̃+ 2Re `2$κ̃2 + 2`1Re `2κ̃3+

+ (2`1Re `3 + |`2|2)κ̃4 + ...
]

[1 +O(|κ̃|+ |$|)] , (14)

and computation of |a|2 and |b|2 yield analogous expressions. In the case that `1 6= 0, three terms of the expansion
of |`|2 = |a|2 + |b|2 are determined in terms of the coefficients expressed explicitly in the forms (10,11,12). In
the case that `1 = 0, some of these terms become trivial and others become relevant. We analyze these two cases
separately.

A. Case 1: `1 6= 0
The three terms in the expansion of (7) that give information about the coefficients in the forms (10,11,12) are

$2 term: 1 = r20 + t20,

κ̃2 term: `21 = r20 |r1|2 + t20 |t1|2,
$κ̃ term: `1 = r20 Re r1 + t20 Re t1.

(15)

Because of the convexity of the function x 7→ x2, the $2-term and the $κ̃-term imply that

`21 ≤ r20 (Re r1)2 + t20 (Re t1)2, (16)

with equality if and only if Re r1 = Re t1, and the κ̃2-term is expanded to

`21 = r20 (Re r1)2 + t20 (Re t1)2 + r20 (Im r1)2 + t20 (Im t1)2. (17)

From conditions (16) and (17) together, we infer that

Im r1 = Im t1 = 0 and r1 = t1 = `1. (18)

We thus obtain useful expressions for the zero-sets of `, a, and b near the guided mode pair (κ0, ω0):

`(κ, ω) = 0 ⇐⇒ ω = ω0 − `1(κ− κ0)− `2(κ− κ0)2 − . . . , (19)
a(κ, ω) = 0 ⇐⇒ ω = ω0 − `1(κ− κ0)− r2(κ− κ0)2 − . . . , (`1 ∈ R) (20)
b(κ, ω) = 0 ⇐⇒ ω = ω0 − `1(κ− κ0)− t2(κ− κ0)2 − . . . . (21)

We observe that, if all coefficients rn and tn vanish, then the curve a(κ, ω) = 0 (resp. b(κ, ω) = 0), for real values
of κ, describes real frequencies ω for which transmission T is equal to 100% (resp. 0%). We do know that `1 is
real, so that these curves lie at most a distanceO((κ−κ0)2) from the real ω-axis, and one can deduce that the real
parts of the frequencies on these curves correspond to peaks and dips of the transmission, which do not necessarily
reach exactly 100% or 0%.

These results allow us to make two important observations about the shape of the transmission resonance as a
function of frequency. Both of these are illustrated on the graphs in Fig. 1.

1. For κ 6= κ0, either both the peak and dip of T as a function of ω lie to the left of the frequency ω0 or both
lie to the right of ω0. On which side they lie depends on the sign of `1 and κ− κ0.

2. The order in which the peak and dip in T occur on the real ω-axis is the same for κ < κ0 as it is for κ > κ0

(assuming r2 6= t2). This is because the coefficients of the linear terms in (20) and (21) are equal. If r2 < t2,
then the peak comes to the right of the dip, and if t2 < r2, then the peak comes to the left of the dip.



The transmission coefficient (square root of transmitted energy) as a function of real κ and ω is

T (κ, ω) =
∣∣∣∣b(κ, ω)
`(κ, ω)

∣∣∣∣ = t0
|$ + `1κ̃+ t2κ̃

2 + · · · |
|$ + `1κ̃+ `2κ̃2 + · · · |

|1 + η1$ + η2κ̃+ · · · |

≈ t0
∣∣∣∣$ + `1κ̃+ t2κ̃

2

$ + `1κ̃+ `2κ̃2

∣∣∣∣ (1 + Re η1$ + Re η2 κ̃) near (κ0, ω0). (22)

The coefficients have the following significance:

1. `1 is the rate at which the anomaly in ω moves past the guided-mode frequency ω0 as a function of κ.

2. lim
κ̃,$→0

T (κ, ω) = t0. In particular, T (κ, ω) is continuous at the guided mode pair (κ0, ω0).

3. ∂
∂ωT (κ0, ω) |ω0 = t0Re (η1). This relates Re η1 to the slope of the non-resonant transmission at κ = κ0.

4. ∂
∂κT (κ, ω0) |κ0 = t0Re

(
t2−`2
`1

+ η2

)
.

5. The coefficients t2 and `2 control the spreading of the peak and dip of the anomaly as κ is perturbed from κ0.

Fig. 1. Plane waves in the uniform 2D lattice are incident upon the coupled periodic 1D lattice from the left and are transmitted
to the right. The square root of the percentage of transmitted energy as a function of frequency ω is shown for several values
of the Bloch wave vector κ near the parameters (κ0, ω0) = (0.06167, 0.979167) of a guided mode. The exact calculation and
the theoretical formula are practically identical.

B. Case 2: `1 = 0
This case occurs when the dispersion relation `(κ, ω) = 0, solved for ω, is symmetric in the variable κ about

κ0. In particular, this occurs at resonant frequencies for κ0 = 0 if the structure has symmetry about a line or plane
perpendicular to the plane of the scatterer [2, 11, 12, 13], as is the case in Fig. 2.

From the second relation in (15), we observe that `1 = 0 implies r1 = 0 and t1 = 0 also, and we find that the
following three terms in the expansion give information about the coefficients:

$2 term: 1 = r20 + t20,

$κ̃2 term: Re `2 = r20 Re r2 + t20 Re t2,
κ̃4 term: |`2|2 = r20 |r2|2 + t20 |t2|2.

(23)

Because `1 = 0, the expansions (19,20,21) reduce to

`(κ, ω) = 0 ⇐⇒ ω = ω0 − `2(κ− κ0)2 − . . . , (24)
a(κ, ω) = 0 ⇐⇒ ω = ω0 − r2(κ− κ0)2 − . . . , (25)
b(κ, ω) = 0 ⇐⇒ ω = ω0 − t2(κ− κ0)2 − . . . . (26)

The second of the relations (23) tells us that the curve `(κ, ω) lies between the curves a(κ, ω)=0 and b(κ, ω)=0.
In particular, if r2 and t2 are real and `2 is imaginary, then the transmission peak and dip move in opposite directions
away from the guided mode frequency ω0 as κ is perturbed from κ0.



In [11], we demonstrate that the following approximate expression for the transmission anomaly near (κ0, ω0)
matches numerical simulations for the scattering of E-polarized fields by a periodic lossless dielectric slab:

T 2(κ, ω) ≈ t20|$ + t2κ̃
2|2(1 + η $)2

r20|$ + r2κ̃2|2 + t20|$ + t2κ̃2|2(1 + η $)2
near (κ0, ω0). (27)

Here, the coefficients have the following significance:

1. lim
ω→ω0

T (κ0, ω) = t0 and lim
κ→κ0

T (κ, ω0) = t0

∣∣∣∣ t2`2
∣∣∣∣.

2. η =
1
t0r20

∂T

∂ω
(κ0, ω) |ω0 .

3. The coefficients t2 and r2 control the spreading of the peak and dip of the transmission anomaly as κ is
perturbed from κ0.
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Fig. 2. Transmission of E-polarized EM fields through a periodic array of infinitely tall lossless rods (ε = 12, µ = 1) as a
function of the reduced frequency ω, for various of values of the wave vector κ near the parameters (0, 0.669) of a guided
mode. The exact calculation and the theoretical formula are practically identical.

C. Relation to the Original Fano Shape
One of the classic examples of anomalous scattering behavior is observed in the excitation of the noble gases

near characteristic energies of the atom (the Auger states [9]). The anomalies exhibit a peak and a dip and are
called “Fano resonances” after the work of U. Fano [4], in which he derived a formula for this shape:

σ = const.
(q + f)2

1 + f2
, f =

ω − ωres

Γ/2
, (28)

where the parameters q and Γ control the locations of the peak and dip and f is the deviation of the frequency from
resonance normalized to a characteristic width Γ.

There is a connection between formula (27) and the Fano shape (28) that can be expressed in concrete terms.
Namely, the six real parameters in (27) (t0, η, and the real and imaginary parts of t2 and r2) can be reduced to two
if certain conditions are satisfied, resulting in the Fano shape. The conditions are (in addition to `1 = 0)

1. r2 and t2 are real (meaning that the extremal values of T are 0 and 1),

2. η = 0 (the background transmission is flat),

3. r20r2 + t20t2 = 0 (for small real κ̃, the dispersion relation given by (24) is purely imaginary).

The resonance (27), as a function of frequency ω, now reduces to the Fano shape (28) with

Γ = 2κ̄2
√

(rr0)2 + (tt0)2 and q = t/
√

(rr0)2 + (tt0)2 . (29)

The first condition is satisfied by the example in Fig. 2, while the second and third are not.



IV. PHASE ANOMALIES AND RESONANT AMPLITUDE ENHANCEMENT

The expansions (19,20,21) can be utilized also to yield a formula for the shape of the argument of the complex
transmission coefficient near the guided mode parameters (κ0, ω0),

phase of transmitted field = arg b(κ, ω)− arg `(κ, ω), (30)

which exhibits sharp spike as a function of ω for values of κ close to κ0. This quantity is closely related to the
effective density of states associated with transmission of incident waves through a periodic structure [1].

A phenomenon that is directly associated to the interaction of plane waves with guided modes is the resonant
amplitude enhancement of the scattered field inside the structure. The scattering problem is nearly singular for
small perturbations, so the solution in the scatterer is large compared to the incident field and resembles a guided
mode. We have established in [11] a leading-order result for the behavior of this enhancement as a function of κ:

amplitude enhancement ∼ const.
|κ|

(κ→ 0). (31)

One of the essential ingredients in the analysis is the fact that there is no resonant enhancement at κ=κ0. This fact
is tantamount to the fact that the scattering problem has a solution at the parameters of the guided mode, although
it is not unique [2]; in other words, the source field has no “resonant component” at normal incidence.
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