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Abstract: The linear spectral problem associated with the inverse solution of a finite discrete nonlinear Schrodinger
chain is studied in the semiclassical limit. The discrete spectral problem is a recursion relation for a vector quantity,
with boundary conditions, depending on initial data and a spectral parameter. WKB analysis is performed and then
interpreted for the case that the quantities in the chain are less than one in modulus. In this case, the spectrum
lies on the unit circle and an asymptotic density is obtained. The density is supported by known facts about the
discrete spectra, numerical results, and rigorous results concerning the asymptotics of the solution of the spectral
boundary-value problem. In addition, the norming constants in the spectral transform are positive in this special

case, and a proposed asymptotic norming exponent is corroborated by numerical data.

1 Introduction

This article examines the spectral transform associated with an inverse solution of a finite defocusing
discrete nonlinear Schrodinger (DNLS) system of ordinary differential equations in the semiclassical
limit. The problem possesses a dichotomy of behavior depending on initial data characterized by
the unitarity or non-unitarity of the linear spectral problem. Formal, rigorous, and numerical
results lead to an understanding of the asymptotics of the unitary case. The non-unitary case is
not addressed and is as yet not understood. In the unitary case, the spectrum of eigenvalues lies
on the unit circle of the complex plane, and in the semiclassical limit, the dimension of the linear
problem is unbounded and we seek an asymptotic density of eigenvalues. Naive WKB analysis
leads to a candidate for this density, which is then confirmed by numerical calculations, comparison
with properties of the spectrum of the discrete problem, and rigorous asymptotics of the unitary
eigenvalue problem. In addition, the proposed density has been applied successfully in [S] to the
study of the semiclassical limit of the solution of the DNLS system. In the WKB analysis, the
discrete index in the system of ODEs approaches a continuous variable and the typical intervals
of “oscillatory” and “exponential” behavior of the solution arise. The density, as usual, involves
an integral over an oscillatory interval. A candidate for the asymptotics of the associated norming
constant has been proposed in [S] in light of analysis there of the semiclassical limit of the inverse
spectral solution. The candidate, as is typical in such asymptotic problems, involves an integral
over the exponential intervals for a special class of data, and it was chosen to provide the correct
results in that analysis. It is not understood how it may arise directly from asymptotic analysis.
In this article, however, it is corroborated by numerical results and by comparison with properties
of the norming constant for the discrete system.

Previous work on continuum limits of discrete systems solvable by inverse methods and the
asymptotic (WKB) analysis of the associated linear spectral problem includes, most notably, the
analysis by Deift and McLaughlin [DM] of a continuum limit of the Toda lattice. Using candidates
arising from formal WKB analysis, they rigorously established the asymptotics of the solutions and
the spectral density and norming constants. The analysis included turning-point analysis between
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oscillatory and exponential intervals and the matching of solutions. These results were preceded
by rigorous results by Geronimo and Smith [GS] on asymptotic solutions to second-order recursion
relations.

In the present problem, we deal with two coupled first-order recursion relations. Away from a
turning point, the recursion can be decoupled (diagonalized) by a change of variable at each site,
but only to leading order. At higher order, this decoupling is inherent and makes a study of the
asymptotics difficult. It is examined in detail in Section 5. There, rigorous asymptotics for a fixed
spectral value are obtained for oscillatory and exponential intervals away from any turning points.
At a turning point, the recursion relation is not diagonalizable, but assumes a triangular form.
Turning-point analysis remains unsolved, though a significant effort has been made to try to match
solutions in a diagonal setting to those in a triangular setting.

Akin to the WKB analysis in this article but for the non-unitary case is the non-self-adjoint
Zakharov-Shabat eigenvalue problem in the semiclassical limit studied by Bronski [B]. A word in
comparison with the results in this paper will be said later on.

2 The Spectral Problem

The (defocusing) discrete nonlinear Schrédinger (DNLS) system

iQn+ Qnot —2Qu + Quit — Q| (Qnot + Quir) =0

is transformed under the change of dependent variable @, — Q,e~%" into the system

iQn + (1= 1Qn]*) (@Qn=1 + Qus1) = 0. (1)

If one puts

[Qo(0) = [@n(0)| =1 (2)

into (1), then Qg and Qn are constant in time and a finite subchain becomes detached from the
rest of the chain. One then has a finite system of ordinary differential equations for @ ...QnN_1.
This system is solvable by an inverse spectral method [V].

In the semiclassical limit of the finite system, one considers initial data of the form

Qn(0) = q(ne) exp (Lé(ne)) (3)

in which ¢ and ¢ are fixed functions on the real unit interval such that ¢(0)=¢(1)=1and e = 1/N,
and considers the limiting behavior of the modulus and phase as ¢ tends to zero. As we will
see, the WKB analysis lends itself to a meaningful interpretation with regard to the asymptotic
distribution of eigenvalues in this special case. However, if the condition |@,| <1 is violated, there
is no satisfactory interpretation (so far). The reason for this is that the spectrum, in the case
|@,| <1, is constrained to the unit circle of the complex plane, whereas otherwise such a constraint
is not known.

We now discuss the eigenvalue problem associated with the inverse spectral solution for the
finite discrete system (1, 2). Let {Q,})_, be given such that |Qo| = |Qn| = 1 and normalized such
that Qo =1 (observe that multiplying all @),, by a common unitary number preserves solutions).
Denote @y by &:



§=Qn, [El=1

Let z be an arbitrary complex parameter, and define the matrices

Un(Z) — z Q?’L 7
Qn 27!
and the resulting “transfer matrices”
&0
Tn z U Un zZ).
(:) = [ N YO RIAS

The eigenvalues in the spectral transform are the roots of the trace of 77 as a function of z. We
denote

J(z) =tr Ty (2).

Let F'(z) denote the upper left entry of T} (z). The coefficients in the partial-fraction decomposition
of F'/J are the norming constants in the spectral transform. One shows that

l\J|>—-

N
H 22— 2, (eigenvalues zy)
k=1

(2) S
k .
= 22 Z (norming constants W)
(2) il G %)

The following Proposition lists a number of facts about the spectral problem. We use the

notation f(z) := f(z1).

Proposition 1 Facts on the spectral problem

1. On the transfer matrices:

F.(2) zF,(2) )
(a) T, (z) has the form ) yand F,_1(z) = 2F,(2) + 2Q -1 F,.(2).
2T, (z)  Fu(2)
(b) F,.(z) is a Laurent polynomial in z that is either even or odd and whose first and last
terms are €3N+ and €30, 2~ (N-n+1)+42

(€ 1) =5 T (2 - ).

(d) The roots of J are equal to the eigenvalues of the following boundary-value problem for
the discrete evolution of a complex vector u,, in C*:

z

W) = U@l wle) = ] wvno =[] )

(e) If |z| =1, then z is an eigenvalue if and only if F1(z) = F(z) is purely imaginary.

2. On the spectrum:



a) There are 2N eigenvalues, counting multiplicities.
(¢) g ; g multip

b) The eigenvalues exist in plus-minus pairs.

( 9 p p

(c) If z is an eigenvalue, then so is z71.

(d) If the values of Q,, are all real, then the eigenvalues exist in conjugate pairs.

(e) If {Qn}1_o has spectrum {Fzx 31|, then, for any real constant x, {Que"™}_, has
spectrum {Fzpe”X/2N

(f) If |Qn| < 1 forn=1,...,N—1, then |zx|=1 for k=1,..., N and the eigenvalues are
distinct.

3. On the norming constants:

N
(@) L Wi=1.

(b) Ifik_l = z; then W; = Wk

(c) If |Qn] < 1 forn =1,...,N—1, then the norming constants Wy, are real and positive
and

Gy = |F(z)|

W, = ————-.

[ REAEEA
k'

(1Qnl < 1)

(d) If the Q,, are all real and z = %y, then Wy = Wy. In particular, if |Q,| < 1 for
n=1,...,N=1, then Wy = Wy > 0 and G = G}.

(¢) Using the notation in (2¢), if {Q.}N_g has norming constants {Wy} and zjp = zpe~x/?,
then Wy = Wrp.

(f) If |Qn] <1 forn=1,..., N—1 and the Gy are all equal, then the Q, have the property
that QN—n = g@n

Proor. To prove (la) and (1b), we first calculate

0 3 3
Tn(z) = [50 é:% N(z) = [i; 552—1]

and see that the statements hold for n=N. Next, we write out T,,_1 = T,U,_1:

Toor(z) = F.(2) an(z) z Qn_1
z_an(z) Fn(z) Qno1 271

ZFn(Z)+ZQn—1Fn(Z) Qn—an(Z)‘I'FN(Z)

Fn(Z)+Qn—1Fn(Z) Z_lQn—an(Z)‘I’Z_an(Z)

9

and see that the statements in (1a) and (1b) hold for all relevant values of n. A
Statement (1c) is evident from the form of Fy = F and the fact that J = F + F.
The boundary-value problem (4) in (1d) is



or, equivalently,

Calculating

shows that the left side of (5) is f%J(Z)

To prove (1e), suppose that 2! =z and observe that J(2) = Fy(2) + Fi(z) = Fi(2) + Fi(z),
which is equal to 0 if and only if Re F'(2)=0.

Statements (2a) and (2b) follow from the form of .J in (1c). (2¢) holds because J = .J, and (2d)
holds because the coefficients of J are real whenever the @), are real.

To prove (2e) and (3e), let F(1)(2) be the upper left entry of the transfer matrix for the data
{Q,}, and let F()(z) be the corresponding function for the data {Q,e"X}. Defining

1
62(%+Z)X 0
An — 1 9
A n
0 e~ s+ )X
one computes
_ . - _
z Qne~ X . ze'2 Qn

A | AL = .
Qneznx Z_l Qn 2_16_25

The two transfer matrices are then related as follows:

FO(z)  2FQ)(z) ST 0 ﬂ z Qne~ X
TIFQ)(z) FO(z) 0 E3e7i5X | 21 |, eX 1
N i 1 X —
el X 0 55 0 N 26ty Qn
= oY LT NEED
0 e X 0 &2 n=1 | @, slemis
el 0 FW(w)  wkF®(w) e 0
0 €' w_lF(l)(w) F(l)(w) 0 e i



; X
2

in which w = ze'Z. Thus, F®)(z) = F()(2¢'7). (2¢) and (3e) follow from this fact.
(2f) is proved in the Appendix to [S].
(3a) is evident from the form of F" and J and the definition of Wi.
(3b) is a result of the following calculations:

N N
F(z) _ 2 Wi 5 Ck
J(2) — kz::z?—zz —c kz:;z?—zk_27
Fz) _ (F(z))/\ _ i Cr i —272Cy
J(2) J(2) — 27— 2 Pl 2
_ F(2) F(z) B N 22Hy — zk_zék'
J(z) J(2) = - 7z

(3¢c): That the W}, are real follows from (2f) and (3b). That they are positive is nontrivial and
is proved in the Appendix to [S]. Since they are positive, the relation between W} and Gy follows
from the definition of Wi.

(3d): Because of (2d), one can write

N N
F(z) 9 Wi 9 Dy,
—— =z =z —.
J(z) ;zz—zz ;ZQ—Z%
Since the coefficients of I’ and J are real,
N
F(z W
S Yy
J(Z) k=1 5= Zk
Conjugating once more,
N —
F
(2) _ 23 Wi
J(2) st 2% — z2

One concludes that Dy = W;.
(3f): The formulas for reconstructing the values of ),, from the spectral data are as follows (see

[V] or [S]):

A,
Qn_(—l)nA—n7 n:l7 7]\7—17
An—lAn—I—l
1 |Q. = o n=1 N -

in which, in the case that |Q,| < 1forn=1,...,N —1,



A, = Z HGk H |zi2—z]2|_17

565’711\7 k€s JEs,1¢s
A —2 2 21—1
A, = E sz G H |27 — 2|7,
565’711\7 k€s JES,i¢s

where SV denotes the set of all order-n subsets of the set of integers {1,...,N}. If Gy = G for
k=1,...,N, then the positive functions A, can be written as follows:

DI | E

SES,JLVJESJeS
N— § 2 21—-1
AN_n:G n H |ZZ _Z]| .
s€SN j€s, igs

To rewrite the complex functions A,,, we use the fact that & = (—1)N Hi\le zk_z, which follows from
the fact that the coefficient of the lowest-order term of .J(z) is equal to £71:

Ap=a" > TI=7 I1 122 =217

565’711\7 l€s JES,iés

ARSI | Eal | e

seSh Igs JEs,1és

= ()N S T T 12 -2

565’711\7 l€s JESs,iés

Using these expressions in the formula (for reconstructing {@,}, the proposed properties of these
data are verified. A

3 The Asymptotics of the Spectral Transform

We consider the eigenvalue condition in the semiclassical limit. The dependence on the spectral
parameter will usually be suppressed. Let continuous functions ¢ and ¢ be given such that ¢ has
two continuous derivatives and ¢ has three continuous derivatives and

(]3[0,1]—> [071]7
0<gq(z)<1 for ze€(0,1);
¢:10,1] = R,

and put @, =q(ne) exp(tp(ne)). The eigenvalue condition is (4), in which

: (ne) exp (—L(ne))

q(ne) exp (%qﬁ(ne)) 271



To make the problem amenable to WKB analysis, we can remove the large exponent from U, by
means of the change of coordinates

- d(ne)
1 —1 ~1
w — u, . € 2¢ U, .
n — 2 - . p(ne . 9
Uy el T2 u%

then the vectors u,, = [ al

~1 ~1
Uu - Uu
% %
n+1 n
in which
s Pn s Pn
. ze''2 Gne' 2
Un - " " (7)
q e—z—" -1, ,—tE
n

and 1, = dlnctd)=d(ne) 4nq ¢, = q(ne). Let AL be the eigenvalues of U, and p¥ corresponding

€

. + . . .
eigenvectors, and set 8, = arg i—’i Then the following expansions are valid:

n

U, =0(n) where ['(a) = Do) +ell,(x) + 0(e),

AE =2 (ne) where M (z) = AF(2) + A (2) 4+ O(2), (8)
6, =8(ne) where  8(x) = B(s)+ et (a) +O(}),

p?f = Bie(ne) where i ‘() = Bi(ac) + eBiE + 0(62).

So the underscore signifies functions of the continuous variable z. A*“(z) and p*¢(z) are the

At ()
AT(z)

One sees that

eigenvalues and eigenvectors of U (z), and 8°(z) = arg =

o) ic)

. ze' 2 q(z)e' 2
e N (9

g(z)e™ 2 zleT' 2

and, for unitary spectral values z = €',

+ ¥n . "
A = cos (77—|— 7) :l:\/q%—sm2 (774_%) , (10)




3.1 WKB anaylsis

We begin the asymptotic analysis with a naive WKB approach to determine the leading-order

behavior of the vector [ ul a2 ]t. We consider the approximate problem for vectors v, given by

Va4l = Q(ne)vn

and perform leading-order WKB analysis on the components of v,, with respect to the basis of
eigenvectors pT (ne) using the ansatz

v, = exp (1S4 (ne)) pT(ne) + exp (LS_(ne)) p~(ne) (12)

in which Sy and S_ are functions of 2 that are to be determined. We write v,4; in two ways: On
one hand,

Vot = exp

+ exp(

[ L

= exp (LS54 (ne)) exp (S (ne)) (14 0(e)) pT(ne+¢) +
+ exp (1S_(ne)) exp (S (ne)) (1+ O(e)) p~ (ne + €).

On the other hand, from the evolution of v,

Vit1 = AT(ne)exp (154 (ne)) pt(ne) +

= exp (154 (ne)) AT (ne) (B"'(ne +e) + 6(6)) +
+ exp (15_(ne)) A~ (ne) (B_(ne +e) + 6(6)) . (13)

Comparing the two representations of v, 1, one obtains the formal result

Sile) = loga: (@), or Su(o)= | “log (A% (y)) dy.

Let us consider the implications of this result in the case that 0 <g¢(z) <1 for 0 <2 <1. By
Statement (2c) of Proposition 1, this condition constrains the spectrum to the unit circle. Thus,
let us put z = €. The ratio of the WKB components of v,, with respect to an eigenvector basis,
which will be relevant in proposing the spectral density, is

lg n @ + n
eXp(; +($7€')) = exp |:1/ log/\ (yve')d
exp (L5 (z, e) <) By
We make some observations about the values of AT and this ratio. AT are either both real with

the same sign or complex conjugates of each other. For a given value of 7, z-regions with these
different properties are separated from each other by “turning points” z. for which ¢*(z.) =

sin? (77—|— M) In an z-interval in which A*(z) are both real, we find that R(z,7) is a real-

R(z,n) =

valued function of 2 (plus a complex constant), and in an z-interval in which A*(z) are complex



conjugate, R(z,n) is a unitary complex function of # (plus complex a constant). Thus the interval

[0,1] is divided into “exponential” and “oscillatory” intervals separated by turning points, which

depend on the value of 5. For generic values of 7, the z-values 0 and 1 are endpoints of exponential
regions. In summary,

/
¢*(z,) = sin? (77 + @) ) (turning point)
/
q*(z) > sin? (77 + @) ) (exponential region)
/
¢*(z) < sin? (77 + ¢ éx)) . (oscillatory region)

Observations

1.

The leading-order result is valid in any z-region in which the eigenvectors Bi(ac) are constant,
in particular, where ¢(z) and ¢'(z) are constant.

. This analysis does not make sense through a region containing a turning point. Q(x) is not

diagonalizable at a turning point, and the functions A* cannot be cannonically connected
through such a point.

. Consider equation (13) for the evolution of the WKB ansatz in an exponential interval in

which, say, AT (z) > A7(z) > 0. Typically, the vector quantity exp(%S+(ne))A+(ne)6(e) is
much larger than exp(1S_(n€))A™ (ne)p~(ne + €) and contains a component of p~(ne + €).
This indicates that the WKB result for the A™-component of v,, is invalid.

. The difficulty of higher-order asymptotic analysis is in the dependence of the matrices U, in

the exact spectral problem on adjacent sites. Their expansions in ¢ are complicated and will
be examined rigorously in Section 5.

The ansatz used by Bronski [B] for the the non-self-adjoint Zakharov-Shabat problem iev, =
M (z,\)v in the semiclassical limit is v = e=@N/¢(v0 4 ev? 4 .. ). Its formal validity
implies that vV is an eigenvector of M. In contrast to this, the ansatz chosen in our case
leads to an oscillatory ratio of eigenvector coordinates for the solution vector in an oscillatory
region, whereas in an exponential region, it indicates that the solution is asymptotic to the
eigenvector with the larger eigenvalue.

Higher-order WKB analysis

Let us use the refined ansatz

i, — exp (%S"’(ne) + Sg'(ne) + O(e)) p +exp (%S‘(ne) + S (ne) + O(e)) P,

and include the order-¢ change of basis:

pi = (14 e (ne) + O())pioy + (er? (ne) + O(*)) P41,
p, = (1+er®*(ne) + O(2))p,yq + (er(ne) + O(*))p}t, 4,

10



for some functions r* of z. Then, letting %, represent @, in eigenvector components, one has, for
some functions a* and b* of z,

iy = [A"’(ne) + ea™ (ne) b (ne) i+ O(e2).

b (ne) A7 (ne) + ea™ (ne)

Inserting the ansatz yields the two dominant balance equations

AT (ne) — eSTne) 4 ¢ (a"’(ne) — St (Sg’l(ne) + S"’”(ne))) + O(e?)
+ (eb_(ne) + 0(62)> exp [% (S~ (ne) — St(ne)) + (So_(ne) - Sg’(ne)) + O(e)] =0,

A (ne) — 57 4 ¢ (a_(ne) — ST (So_l(ne) + S_”(ne))) + 0(e?)
+ (eb"’(ne) + 0(62)> exp [% (S*(ne) — S~ (ne)) + (S(‘J"(ne) - So_(ne)) + O(e)] =0.

One observes that, if, for example, [AT| > |A7|, then, assuming |ST| > |S~|, one can solve for
ST, SS', ..., but not for S7, Sy, ..., so the WKB ansatz is formally inconsistent in the second
component. If [AT| =|A7|, then St and S~ can be found as in the crude analysis presented above,
but the ansatz is not consistent to higher orders.

3.2 The Spectral Density

We now use the formal WKB result to propose an asymptotic distribution of eigenvalues. Letting

[ cl 2 ] represent the vector u, with respect to the basis {Bi}7 the boundary-value problem (4)

n n
1
sets conditions on the quantities arg (2—3) at n =1and n = N. Since we know that the eigenvalues
are unitary, the problem is to specify those values of z, as z traverses the unit circle, for which
oy

1 1
the total increment of arg (C—Q) is equal to arg (iﬁv_l) —arg (i—;) + 27k for some integer k. We
n N—1 1

1
already have the leading order behavior of arg (2—3) it is constant in an exponential region and

n

+
equal to 1 " arg f_—g; dz in an oscillatory region. Thus the total increment from n =1ton =N

€
+
(or 2 =0 to 2 = 1), to leading order, is %fol arg %_Ei; dxz where the integrand is zero when z is in

an exponential region. The asymptotic condition for eigenvalues zj, = ¢’ is then

Lot Af
—/ arg %dw ~2rk (¢ —0).
0 A

€ (@, zk

Using the expression (11) for the eigenvalues A* (z; ), one computes arg ftg’i:; and finds that

this condition becomes

‘I’(Uk) ~ ek (6 — 0)7
where the asymptotic spectral distribution ¥ is defined by

\/sin2 (77_|_ ¢'gx)) — q(z)?

cos (77 + ¢'§x))

dz.

1 1
U(n) = —/ arctan Re
0

11



To determine the limiting density of eigenvalues, we see that the number of eigenvalues in a 7-
interval on which ¥ is monotonic is given asymptotically by 1/¢ times the absolute value of the
increment of W over that interval. One calculates that

sin (n—l—(b( ))

/ Re dx,
\/sm n+ 2 )—q(ﬂﬁ)2
from which we then obtain the density
1 1 sin (77 + ¢ ))
p(n) == — / Re dz|, 0<n<2rm. (14)
o "z
’ \/sm (n+¢2))—q( )?

This means that, for any subinterval [n, n2] of [0, 27],

#m,ma] ~ %/772 p(n)dn (e —0),

1

where “#” indicates the number of eigenvalues in the given interval.
One can confirm that the asymptotic analogs of the spectral properties in part 2 of Proposition 1
do hold for this proposed density:

Asymptotic analogs of Proposition 1, part 2

a. The number of eigenvalues should be asymptotically equal to 2/¢. This is the statement that

/027r p(n) dn =2.

When ¢'(z) is taken to be constant, this is easily verified. In this case, ¥(7) is increasing

(resp. decreasing) when sin(7 4+ %/) is positive (resp. negative), and one finds that its total
variation is 2. A graph of ¥ for which ¢ is a parabola and ¢ = 0 is shown in Figure 3.

b. The asymptotic analog of the plus-minus parity is that p(n) = p(n+ 7).

d. The @, being real corresponds to ¢(z) = 0. In this case, p(—n) = p(n), which is the analog of
conjugate parity of eigenvalues. Because of (b), there is then a four-fold spectral symmetry.

e. Multiplying the @, all by ¢™X is asymptotically analogous to adding the constant x to ¢'(z).
This does indeed shift the proposed density function by —x/2, as it should.

The case in which ¢ has a unique local minimum qmm and ¢’ is constant provides a simple
illustration. For those values of 5 for which |sin(n —|— )| > ¢min, such data uniquely determine
two turning points z_(n) and z4(7n), and if |sin(n+ )| < ¢min, then p(n)=0. This is illustrated
in Figure 1. Thus, when ¢ = 0, the spectrum is asymptotlcally confined to those values of 7 for
which |sin(n)| > ¢gmin and p has the additional symmetry p(7/2 — n)=p(n). The spectral intervals
are illustrated in Figure 2.

12



0 a_(n) ap(n) 1

Figure 1: Determination of z_(n) and x4 (n) when ¢ has a unique local minimum and ¢’ is constant.

One can obtain the asymptotic density py of squared eigenvalues e+ = 2% by putting po(p) =
2
2p(p/2) so that [;" pa(p)dp = 1:

dz|, 0<p <27, (15)

3.3 The Asymptotic Norming Exponent
It can be shown that the norming constants have the following asymptotic behavior in the semi-

classical limit:

lir%elog Gr. = J(n) if oz = e as €= 0,
e—

where J is a function defined on the support of the asymptotic spectral density and is determined
by g and ¢. In the case that these data give rise to exactly two turning points for values of 7 in the
support of the asymptotic density, a candidate for the asymptotic norming exponent &(p) = J(1/2)
corresponding to the squared eigenvalues has been proposed in [S]. Putting p = 27, one shows that

the turning-point condition
/
q(z)? — sin? (77 + AC)) gx)) =0
is equivalent to

p=a(z)+2kr or p=p(z)+2kr forsomek

where

13



S
|
o
A
|
=
[
|
0|2
I
g

— \Il(arcsin(qmin) - %/) =0

S e

Figure 2: The asymptotic spectral intervals when ¢ has a unique local minimum and ¢’ is constant.

Graph of Psi

0.4

0.2

o

Pi/2 Pi 3pi/2 2Pi

Figure 3: The distribution W of eigenvalues.
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o(e) = 2arcsin(g(x)) - ¢ (2),
B(z) = 27 — 2arcsin(q(z)) — ¢'(z).

One shows that f(z) > a(z), with equality only at 0 and 1. Graphs of these functions are shown
in Examples 8 and 9 of Section 4
The proposed form of the derivative of the asymptotic norming exponent in the variable p is

o ptd! ()
d 1 r_ 1 sin | ——s—
£y s )
K 0 T4 \/_ sin? (u-l—ﬁ’(l’)) +q(x)?
which is defined in the support of the spectral density. The =4 sign is chosen as illustrated in
Example 8 of Section 4. In the variable 7, it has the form
: ¢'(z)
z—(n) 1 sin |+ ——~
+ / + / Re )
0 z4(n) \/_ sin? (77_|_ @) +g¢(2)?

One can compare with this formula the asymptotic analogs of the properties of the norming con-
stants in part 3 of Proposition 1.

(16)

dx,

dx. (17)

o _
dn_

Asymptotic analogs of Proposition 1, part 3

d. The Q,, being real corresponds to ¢(z) = 0. The symmetry of the norming constant about
the angle 7 /2 corresponds the the antisymmetry of dJ/dn, which is confirmed in the proposed
formula.

e. Multiplying the @, all by ¢"X is asymptotically analogous to adding the constant x to ¢'(z),
thus shifting the proposed asymptotic norming exponent by —y/2.

f. The property Qn_, = £Q,, corresponds to the symmetry of ¢ and ¢’ about x = 1/2, and one
shows that the candidate for dJ/dn is zero in this case. This corresponds to the converse of
item (3f).

A natural candidate for J(n) may be derived heuristically as follows:

1 ' 1 X ' 1 X '
7 log [F(e")] ~ <= log [T10 ()] ~ + log T max |AE(e™)| ~

n=0 n=0

N 1
1 : :
~ WZIOgmaXMf(emﬂ N/o log max A (z, e)|dz =7 I(n).

n=0

One finds, indeed, that this integral coincides numerically with a limiting upper envelope of the
functions 4 log |F(e'")|. However, 47 log |F(e')], from 7 =0 to n =, has N —1 spikes emanating
downward from this upper envelope, and the N points (1, | F/(e"7*)|) lie at various places along these
spikes. This is illustrated in Example 9. Thus, %log Gt is not given by fol log max [A*(z, )| dx.
Recall that Zi\le Wi =1 and

15



G,

PRESEA
b £k

W, =

So ﬁ log Gy, < ﬁ 3" |27 — 27| for each k. If one calculates numerically the asymptotic form of the
Kk
right-hand side,

1 7T Z Z '
¥ 2 gkt — b~ [ gl - o)y’ (N o)
k'#ky
it ziy — € as N — oo,

one finds that it also coincides with the limiting upper envelope of F(e") (even for values outside
the support of p).

16



4 Numerical Results

The numerical calculations in this section compare the proposed asymptotic spectral density p(n)
and norming exponent J(n) defined in (14) and (17) with actual spectral data for various choices
of ¢, ¢, and N. The following points explain the methods and ideas.

1.

Because of the m-periodicity of the density (see (2b) of Proposition 1 and item (b) on page
12), the computations and plots are restricted to an n-interval of length =.

. The choices of ¢ and ¢ illustrate the symmetry and shifting properties of Proposition 1, (2d)

and (2e), and items (d) and (e) on page 12 and situations with various numbers of turning
points.

. Computing the eigenvalues: By (le) of Proposition 1, €7 is an eigenvalue if and only if

ReF(e') = 0. The roots of ReF(e™) as a function of 7 were found by the method of
bisection, and values of F'(€7) were computed using the recursion relation for F),(z) given in
(1a) of Proposition 1.

. The approximate densities of actual eigenvalues for 1/¢ = N were obtained by choosing a

number M <« N and, for each consecutive M41 eigenvalues, computing a density value equal
to the fraction of eigenvalues M/N in [0, 7] divided by the range of the M +1 values. This
density value is plotted against the mean of the M+1 values. (There are indeed N eigenvalues
in [0, 7] by statements (2a) and (2b) of Proposition 1.)

. The approximate cumulative distrubutions of eigenvalues in Example 1 were obtained by

plotting, for 1<k< N, k_]\l/Q against the kth eigenvalue.

. In any n-region for which there are two turning points, the proposed asymptotic density is

unambiguously confirmed. In regions with more than two turning points, the eigenvalues were
either difficult to compute or exhibited less regular behavior in their small-scale distribution.
The asymptotic formula, however, still appears to be confirmed.

. J(n), in the case that there are no more than two turning points, has been compared with

actual spectral data as follows: Eigenvalues e for various choices of ¢, ¢/, and N were ob-
tained, and then difference quotients of - log | F/(¢""*)| were compared with a plot of J’ (). In

the final example, graphs of 3 log [F(e")], fol max [\ (z, e)|dz, and [ |2 — 2| p(n')dn
are also shown.

17



qg(x) Density of Eigenvalues
1 1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0 0 3 .
0.5 1 Pi/2 Pi
Distribution of Eigenvalues
1 1
0.8 N =3 ) .8 =6 )
0.6 .6 /
0.4 .4 /
0.2 . .2 ’
0 - . 0 - .
Pi/2 P1 Pi/2 Pi
1 . 1 0
0.8 N = 10 y .8 =21 .'
0.6 / .6
0.4 / 4
0.2 ’ 2
0 - : . 0 : :
Pi/2 Pi Pi/2 Pi

Example 1. ¢(z) = 0 in this example, so the density function p(n), upper right, is
symmetric about n = 7/2 (see item (d) of page 12). The grey curve in the lower four
graphs is the integral of the asymptotic density. The approximate distribution of actual

eigenvalues (see item 5 on page 17), represented by dots, converges rapidly to it. There

are only two turning points for each value in the support of the density, which can be
visualized as illustrated in Figure 1.
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Example 2. In this example, ¢ has a unique
minimum and ¢(z) = 0. The data (), are there-
fore real and the spectrum is correspondingly
symmetric about n = /2. The turning points
can be demonstrated graphically as illustrated
in Figure 1.

This graph of the asymptotic density is the
proposed formula p(n). The actual eigenvalues
have been calculated for N = 1000 and the ap-
proximate density plotted with M = 10 (see
item 4). It is not reproduced here because it
would be indistinguishable from the graph of p.
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Example 3. Here, g is parabolic with a minimum of
0.25 at @ = 0.5, and ¢(z) = x. The asymptotic den-
sity p, above, is symmetric about the spectral value
n= 2 — 3 because of the constant value of ¢/(z) = 1
(see item (e) on page 12). For values of n such that

1

asin(0.25)—1 < n < m—asin(0.25)—3,

there is an (oscillatory) z-interval for which

q(x)? —sin® (n+ ¢ (2)/2) <0

and thus p(n) > 0. This is repeated with a period
of m. For other values of 1, p(n) = 0. The turning
points x_(n) and x4 (n) are illustrated to the left for
values of n between 0 and 7.

The graph above is a plot of the formula for p(n).
An approximate density obtained by finding actual
eigenvalues for N = 1000 coincides almost exactly
with this graph.
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Example 4. We have taken ¢(z) = 0 again
here so that the spectrum is symmetric about
n = 7/2. The turning points can be visualized
as demonstrated in Figure 1. The spikes in the
proposed asymptotic density function p(n) occur
at the transition from n-values with four turning
points to n-values with two turning points.

It turns out to be very difficult to detect
eigenvalues in the n-regions with four turning
points. Numerical calculations show that they
are grouped in pairs that are extremely far from
each other compared with the distance between
the two values in a pair. Thus the quick change
in the sign of ImF(e'") with respect to 1 can
go unnoticed in calculating the eigenvalues (see
item 3 on page 17). For N = 70, however,
all eigenvalues have been obtained and their
approximate density graphed to the right with
M = 4 eigenvalues used per density point. For
N = 200, the density plot (M = T eigenval-
ues used per point) suggests that all the eigen-
values inside the 2-turning-point n-region have
been obtained, as it coincides there with the pro-
posed asymptotic density. A resolution of this
difficulty with closely spaced pairs of eigenvalues
in the case of six turning points is presented in
the next example.
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Example 5. ¢ is taken to be constantly 0
again so that there is spectral symmetry about
n = w/2; thus only half a period is plotted.
Three eigenvalues per density point were used
for the approximate density (middle and bot-
tom, right).

If the eigenvalues are grouped in tight triplets
or alternating pairs and singles, then only one-
third of the eigenvalues may be detected by the
change of sign of ReF(¢") (see item 3 on page
(see item 3.2, page 12). This is what happens in
the region with six turning points in this exam-
ple. In the middle figure, the asymptotic density
seems to be confirmed nicely in the two-turning-
point region. The bottom figure shows the same
graph with vertical values scaled on the page by
a factor of three, and, in the six-turning-point
region, these values are quite close to the pro-
posed asymptotic values. Numerical plots of the
graph of Re F(e'") indicate that the eigenvalues
in this region occur in triplets and in alternat-
ing pairs and singles. The transition between
these microscopic behaviors occurs as one value
in a triplet gradually moves to the next triplet
as one moves along the n-axis. Looking at an
example of the graph of Re F(e) for N =200,
this transition is seen to contribute a few more
detectable changes in sign above a third of the
number of eigenvalues in the six-turning-point
region. This probably also explains the slightly
higher-than-expected values also in this exam-
ple (in the bottom graph near w/3). The val-
ues in a pair become closer together as 1 moves
away from the two-turning-point region toward
the end of the support of the asymptotic den-
sity and, of course, as N increases. Already
when N =70 and 1 < 0.68, values in a pair are
closer together than 10~7 whereas the distance
between pairs is around 1071,
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Example 6. This is an example in which ¢' is not con-
stant so that the spectral density has no symmetries.
The value of the density changes abruptly at the val-
ues of 1 that separate regions with two turning points
from those with four. The approximate density for
1/€ = 750 was obtained using 10 eigenvalues per den-
sity point. T'wo observations about the n-interval with
four turning points: The three points where the upper
and lower envelopes for the irregularly placed values of
the approximate density come together coincide with
the graph of the proposed asymptotic density. Using
more eigenvalues per density point decreased the de-
viation from the asymptotic density.
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Example 7. ¢(z) is taken to be zero in
this example, so J is symmetric about n =
7/2. The difference quotients of %log G
represented by circles, corroborate the pro-
posed formula forJ'. The error at the end-
points is probably due to the sensitivity of
|F(ei")| to changes in 7, as illustrated in
the final example. If q(z) is replaced by
the reflection of the graph of q(x) about
x = 1/2, then the norming exponent is re-
placed by its negative.

0.6

dJ/dn and diff. quot. of log(Gx)/N for N =70

0.3

24
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dJ/dn and diff. quot. of log(Gx)/N for N = 40
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a(z)/2 and B(z)/2: turning points

595 L i 2.25 3.25 4.25 5.25
)
)

Example 8. Another confirmation of J with no sym-
metries in 1. The (+) and (=) in the lower left figure
indicate the sign that is to be taken in the proposed
formula (17) for J.
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Example 9. 7’ is symmetric about n/2 — 1/4. This
is because, if ¢ and ¢ are symmetric about © = 1/2,
then J' is symmetric about n = 7 /2, and the shifting
up of ¢’ by 1/2 produces the shift to the left of the
spectral data by half of that. The bottom graph above
illustrates several things: The lower string of circles
shows the values of Gy, that is, + log |F(e')| (black
line) evaluated at the eigenvalues n, for N = 16.
Such data are difficult to obtain for large values of
N because of the sensitivity of I’ to changes in 7
on the spikes. For very large values of N, however,
an upper envelope for F(ei”) can still be calculated,
and the limiting values of this envelope as N — oo
is represented by the grey curve. Also coinciding
with the grey curve are the two asymptotic quantities
discussed in Subsection 3.3—[01 log max |\t (z, ) |dz
and [ log|e* — ¥ |p(n)dny'.  The upper string
of circles are the quantites Y |22 — 22| plotted
against ny.
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5 Asymptotics of the Transfer Matrix

In this section, we take a rigorous approach to determining the asymptotic behavior of the transfer
matrix over an oscillatory region and over an exponential region and establish some asymptotics
of the solution to the linear problem. Let [a,b] be an oscillatory or exponential interval for data
q(z) and ¢(z) and spectral value ¢ whose distance from any turning point is bounded from below.
Define n = [a/c] and @ = |b/e], and let [}, c2]' represent the vector 11, (e'”) in the eigenvector

basis {p(e)} for U,(e').
Theorem 2 Given the notation above,

1. Let [a,b] be an oscillatory interval. Then, for each ¢, there exists a solution [c}1 2 ]t such
that, if ne € [a,b], then

6711 1 ne A-l- y
arg 5 = z/ arg ;_Ey; dy + A(ne) + o(¢; ne),

n

1 ne
0711’2 = Ai (né) exp (—/ Ai (y)dy) + 0+ (67 n6)7
€ Ja

in which A(z) and AT (x) are continuous functions depending on q and ¢ and the choice of
eigenvectors and

o(e,z) =0(1) (e —0),

oetecs) =0 (e (1 [ 2 0an)) =0

2. Let [a,b] be an exponential interval, and suppose that 0 < A, < A}. Then, for each ¢, there

exists a solution [c}1 2 ]t such that, if ne € [a,b], then

uniformly in x.

1 ne

=By (1 [ 2t widy) + erteno)
€ a

¢ = pa(€, ne),

in which B is determined by q and ¢ and the choice of eigenvectors and depends continuously
on its arqguments and

patea)=o (e ( [(arwa)) o

uniformly in x.
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5.1 Preliminaries

Let U, be the matrix taking [c}1 0721 ]t to [C}H_l C?H_l ]t. Then U, = M,A, where A, =
diag(A},A;) and M, is the change-of-basis matrix from {p},p,} to {p,},;,p,;,}. Assuming
three continuous derivatives of ¢ and two of ¢, and using the expansions (8), one computes that
M,, = I+ €R,, where the entries r;/ of R, have the property that, for some differentiable functions
rl of z, |r;] — ri(ne)| = O(e) uniformly in @ € [a,b]. This means that ry = r’s(ne) for some
functions r/c of  such that r*(z) = r/(z) + O(e) as € — 0 uniformly in 2. We will study the

asymptotic behavior of the transfer matrix 7T taking [ 0711_ C%_] to [ C%-I—l c%_l_l ]:

|3

T = ﬁ U, = ﬁ (I +¢R,)A,.

The multiplication is ordered, factors with a lower index being to the right of factors with a higher
index. We will study the case in which [a, b] is contained in an oscillatory z-region and the case in
which it is contained in an exponential region. We begin the analysis by bringing this expression
for T into a form in which its structure and limiting behavior is more transparent. Expanding in
powers of ¢, T takes the form

L
T¢ = Z T,
=0

where L =7 — n+ 1 and

Ty = Z ﬁ A, an ﬁ An |- B, ( ﬁ An) Fn, (ﬁ An)

n<ny <...<ng<n \n=ng+1 n=ng1+1 n=n1+1

7
and Tp := J] A,. One can bring out a factor on the right, common to each T, by using the

n=n

following formula recursively: For any ¢ < n’ < j,

7 n’ 7‘711} 7‘711? H e J
—_ ! 7
0oa)m (T | o =
n=n'+1 n=t ri} H /\—7_Il_ r?ﬁ n=t
n=n/4+1""

Setting first (¢, 7', ) equal to (n¢—1 + 1, ne, @), then (ns_g + 1,n¢_1,7), and so on up to (n,ny,n),
we arrive at the following expression for Ty:

TZ = Z ]%ng T Bngénl H An7

n<n; <...<n¢<n n=n
in which
0
/\+
rit | z
> _ n=n’+1
Rn/ B 21 i An 22
ro I SF o
n=n'4+1""



Using the notation

Pg: 'Rn17

I
]
|

&

we can write

:PZﬁAn

to obtain the form

T = Z &p HA
=0

One computes the products ]A%m, -+-R,, (the sums are over n):

no _ n n +
11,11 12,.21 An 11,.12 pey 12,.22 AL
N N rNQ rnl —I_ rNQ rnl A+ rNQ rnl A— —I_ rNQ rnl H An
R R _ ni -|—1 n1-|—1 n2-|—1
naftng — w n + k
21,11 g 22 .21 g 22,22 4 21,12 A
rNQ rnl A_q]: —I_ rNQ rnl A+ ny ni 712 n1 H
no+17" n1+1 n1+1 An
and the first column of R, R,, R, is
11,1111 1 A 21 5 g 12,22, 21 5 Az
rng ng n1 —I_ rng 712 n1 A+ —I_ rng 712 n1 A+ —I_ rng no n1 A_q]:
no+1 ni1+1 ni1+1
21 1111 1 22,21 .11 i g 22,22 .21 i g 21,.12,.21 A oD
rng rNQ rnl H —I_ rng no n1 A+ —I_ rng no n1 A+ —I_ rng no n1 H A A_ﬁ:
n3—|—1 no+1 ni1+1 ni1+1 na+1
. 3 11 11 22 .
Inductively, we find that R, - - Rnl includes the terms r; ---r; and r;>-- n1 in the upper left

and lower right entries, respectively. The rest of the terms all contain factors that are products of
AE
the form H 2 2 5% In the first column, A7 always appears in the numerator, and in the second
1

column, A} always appears in the numerator. We find then that P, has the form

St :
PZ — n<ny <...<ng<n +
: > e
n<ng <...<ng§n
(271 —1) terms 21 terms
+ > (18)
n<n<..<ne<m | 2 terms (2671 1) terms

(P is the identity matrix) where the “terms” are as described above.

By induction on ¢, one can prove the following Lemma on the structure of the first column of
]A%m, . Rnl and a similar lemma for the second column. an . Rnl is assumed to be in simplified
form in the sense that factors of the form i—_i—; are removed.

n n
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Lemma 3 on the first column of ]A%m, SRR [

1. The first entry contains the term r''...rll and 2¢=1 — 1 terms with factors of the form

ne’ n1
m2 —
I i—’; for my,mg € {n1,...,n¢} (not the empty product). These factors have the fol-
n=mi+1""

lowing properties:

(a) For any n, the factor i—i occurs with multiplicity at most 1.

(b) For one factor, my = ny.

m2 —
2. The second entry contains 2=' terms with factors of the form ] i—’; for my,my €
n=mq1+1""
{n1,...,n0, 7} (not the empty product). These factors have the following properties:

(a) For any n, the factor i—i occurs with multiplicity at most 1.

(b) For one factor, my = 7.

5.2 Oscillatory Region

Let us now consider the case in which [a,b] is contained in an oscillatory region. The goal is to
show that, as ¢ tends to zero, the transfer matrix is asymptotic to a diagonal matrix that depends
only on ¢ and ¢, times [["_ A,. The task is to show that, by letting ¢ tend to zero, one can

bring the expansion Zé::o ‘P, into any vicinity of a fixed diagonal matrix. Whereas Py is just the
identity matrix, it is not obvious that the e'-term

11 12 T AL
An
rnl rnl _H IA;
eP =« E - n=n1+ ,
— 21 An 22
Esnlsn rnl H A_ﬁ: rnl
n=ni+1""

for example, is tending to a diagonal form. One expects the diagonal entries to converge to the
integrals ff r(z)dz if the functions ¢ and ¢ are sufficiently smooth. One can apply a naive formal
argument to the other entries by replacing the product in, say, the (1,2)-entry by its asymptotic
form exp (z% ff Q(x’)dw’) and replacing the sum by an integral:

n A—I— b 1 b
12 n 12 . Nt
€ r - — re(x)exp | 1- O(z")dz' ) dx.
> oIl [ e (it [ owir)
n<ni <n n=ni+1

This formal limit does indeed tend to zero; however, converting what is essentially a Riemann sum
into an integral is not so simple because of the fast oscillations in the integrand. Indeed, the period
of the oscillations is at the order of the mesh size €.

A similar but more complicated situation occurs in the higher-order terms in the expansion of
T¢. In an oscillatory region, the “terms” in expression (18) for P, are, for some index h, of the form

Nh41 Ai
IO | (19)
n=np+1 """

30



where np4q1 may be equal to @ and np_1 may be equal to n, the asterisk (*) represents any
superscript from the set {11,12,21,22}, and u is a product of expressions that do not depend

! +
on n; and are of the form HZZ’_n, i—" and are therefore unitary.
Again, one expects the quantities ¢ > Ty Ty, to converge to an l-fold integral over
n<ny <...<ng<n
the region a < 27 < --- < 2¢ < b. Each of the other terms is oscillating in at least one of the

variables nj, and, extending the technique discussed above for the case when ¢ = 1, one can show
that each of these terms converges to zero.

Now, the number of these terms grows exponentially with £, and, as € decreases, the degree L
of the expansion of T€ in ¢ increases. One can solve these problems with the observation that the
number of terms in a sum over n<ny <...<ny <M is less than (]27) (recall that e=1/N), and, upon
multiplying by €’, one can bound the whole expansion containing the “terms” of T by a quantity
that tends to zero as ¢ — 0. The details are in the proof of Proposition 5.

In formulating the lemma, the interval [a, b] must be bounded away from any turning point so
that the functions r*/(z) are bounded and the function e*4(*)
We make the following definitions:

is bounded away from the real axis.

e Let the number o be such that |1 — exp(if(z))| > o for x € [a,b].

d

If ¢" is continuous on [a, b], then % is bounded on [a, b], so there exists a number x such that

0(22) — (21)] < Klwy — 24
for all 21,25 € [a,b].

e The difference quotients w converge to ¢'(z) uniformly on [a, b] provided that ¢” is

continuous. This implies the existence of a number 7 such that

|6, — B(ne)| < Te
whenever ne € [a, b].

e One can verify that the functions r/(z) have continuous derivatives on [a, b], and this implies
the existence of a number 5 such that

| (w3) = v (21)] < Blag — 2y
for 1,29 € [a,b].

e The existence of a number + such that, for 7, j € {1, 2},

|y = (ne)| < ye
has already been discussed.

e The continuity of the functions fij($) and the previous bullet imply the existence of a number
« such that, for z, ne € [a, b],

Ir'i(z)] < @ and |r¥] < a.
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o Define

b .
Si(a,b):/ r'(z) de, for i=1, 2.

The first lemma obtains estimates on the oscillating terms in F;. One must understand why
the sum over n < ny < --- < ny < @ of any one of these terms, multiplied by ¢, tends to zero. Let
T denote a general one of these quantities:

Nh41 Ai

! * * * n
T = ¢ Z rnz...rnh..-rnl(u) H /\_:F
n<ny <...<ng<n n=np+1 """

Lemma 4 Let [a,b] be an oscillatory interval with positive distance from the set of turning points,
and let g > 0 be given. Then ¢ can be chosen sufficiently small such that whenever ¢ < €,

>~

(=)
(@)

ProoF. Denote by 8(z) either arg (y(x)) or arg ( ), and by @, the corresponding quantity

|>/

+
arg (i—%) Rewrite T as

np41—1 Nh41
_ A-1 * ok *
T=c¢ E N N A (O I E . €XD E 6,
n<ny <...<np<...<ne<n np=np_1+1 n=np+1
The circumflex marks a removed factor or variable. Since [r; ---7% ---r} (u)] < /=1 and there

are no more than (/_Vl) < (Jzﬂl) terms in the outer sum, we see that

0/_1 npy1—1 Nhtl
T < ——— max e E . €XD E 6. ]1|. (20)
(K — 1)' n<ny <..<np<...<ne<n = 1 ——l

Let us study a single quantity of the type

np41—1 Nh41
Q:=c¢ E , €xp E 0,
np=np—1+1 n=np+1

Let p be given such that 0 < p < l and p¢ < 1 50—z for all turning points z,, and assume

that 0 < € < 9%. Let M be a positive number such that M™% < e < M=% < 5. The following
procedure applies to any one of these quantities Q. First, if (nh+1 —np_y—1)e < M~ then it
is clear that |Q < aM~*. Otherwise, if (nj1;—np_1—1)e > M~ then we divide the interval
[(nh—1 4 1)€,npy1€) into disjoint subintervals [emy_q1,emy), k= 1,..., K where mg = np_1 + 1 and
mg = npiy, such that, if we set My, = my — my_y for k = 1,..., K, then M~* < Mye < 2M~1.
The first part of this inequality implies K < M*. In summary, the conditions are

- -6 _ -6
M 72 <e<M™™ <p”,
M™% < Mye < 2M ™4,

K < M*.
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Now break € into a sum

Q=e> O, (21)

k=1
in which
my—1 TNh41
Qp = E , €xp E 0,
Np=Mg—1 n=np+1
If we define rﬁh =y, exp (i Z’;J;;Lk_l_l 0,), then we can rewrite € as
mk—l
Q= E , €Xp E 0,
np=mMmpg_1 n=np+1

and compare it with the “constant frequency and amplitude” quantity

mk—l

Q= Z rk . expli(my — np)0(mye)].

np=mg_1

First, for any nj, such that my_1 < np < myg,

m

exp Z 0, | = expli(mg —np)8(mye)]exp | @ Z (0., — 8(mye))
n=np+1 n=np+1
and, from the definitions of k and T,
|0, — 8(mye)| < Myer + er
whenever my_1 < njp < mg, so we get the bound
mg
Z (0., — O(mye))| < Mp(Myer + €T).
n=np+1

Thus, using only Mye < 2M~* and M~ 5 < €, we get

exp Z b, | —expli(my — np)8(mre)]| < My (Myer + €1) < AKM™% 4+ 27 M~ (22)
n=np+1

for mp_1 < np < myg. Second, by the definition of 3,

Ik =1k | < Mype 426y < 2BM ™1 42y M6 (23)

m

whenever my_1 < n, < mg. Putting (22) and (23) together, we find that whenever my_; < n; <
mg,
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T, €XPp Z 6, | - rfn expi(my — np)0(mge)]| < CM~3

n=np+1

for some constant C' depending only on the functions ¢ and ¢. Using the same two inequalities as
for the bound (22) and the fact that there are My elements in the sums Q; and €y, this estimate
implies

1Qr — Q] < 2CM. (24)

To bound the quantities Qj, we write

Q= 1k

p(inf(mye)),

||M§

whence

1% < a

exp(iMpf(mpe)) — 1 4
exp(iQk(mke];) -1 ‘ < ‘s (25)

where o is as defined above. Combining (24) and (25) with our assumption that M > 2 yields
Qx| < C"M. (26)
Going back to (21) and using that eK < M™%, we get

Q< Mt

where the constant C' depends only on ¢ and ¢. Then going back to (20), we finally obtain the
result

< GzmyeM (za— 1!

The Lemma follows by taking
_ . Jo 1 2_l|b |1 turn it
=min< =, =,276|b — z.|¢ : 2, a turning poin
4 Y gp

and € =p%. A

Proposition 5 Let [a,b] be an oscillatory interval with positive distance from the set of turning
points, and let o > 0 be given. Then there exists € sufficiently small such that whenever € < ¢,

7
QQI 652((1,[)) +Q22 0 H A—
for some complex numbers o such that |0"| < o fori,j=1,2.
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Remark: The convergence of the left-hand factor to a diagonal form as € tends to zero is not uniform
as a or b nears a turning point. However, it is uniform over all z-intervals whose distance from
any turning point is bounded below by some positive number. Notice that S;;(a,b) depend on the
choice of eigenvectors.

Before proving this, we derive from it the leading-order asymptotic behavior of arg (C%_I_I/C%_H)

given the fixed value [ C}i C%_]t, which is the content of Theorem 2.

Sl (a,b) A

s
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3
Nap
_|_

G
=

ne

1 nete 1 n ne+te
- 0(z)de = - 0(z) do =
- /n 0(z) dx - nz::n/ne 0(z) dx

o~ | =

ﬁM|
3 3
llﬁ

(eQ(ne) + gﬁ’(ne) + 0(63))

# (ne)

(Q(ne)+e 5 )—l—O(e).

n

Il
|3

This gives the asymptotics

nete n 0/ (ne)

ne n=n

- Tt [ (00 - L) de v 000,

with which we can refine our result:

)

arg (C§+1) _ 1/;6#@(96) dz + arg (Z_i%_) n /ab [[m (r''(2) = r**(2)) + 8, (z) — —/(295) dz + o(1).

Cﬁ—l—l € ne
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Putting

o _ 1% Aty
argc—Zzz/ arg;_gy;dy,

n

one finds that

ot /W X0y, A) +o(1) (e—0)
arg —— = — ar €
g Cz € u g A_ (y) y ?
where A is a function of z depending on ¢, ¢, a, and the choice of eigenvectors. These four objects
being fixed, the o(1) part depends on b and €, and it is uniform in the endpoint b, as long as it is
bounded away from any turning point. Thus, given € and ne € [a, b], one can reapply this result
for the oscillatory interval [a, ne — €] and obtain

1 1 ne A—I—
arg Z—; = z/ arg ;_Ez; dy+ A(ne) +o(1) (¢ — 0),

the asymptotics being uniform throughout [a, b].
In addition, similar considerations imply that for some functions A* of z,

vt e (L[t @ar) 4o +o (e (1 [Tat i) oo

ProoF. We begin by considering ¢’ times the diagonal matrix in expression (18) for P. The
n<ny <..<ng<i Ty * " T, are essentially Riemann sums for the integrals

// Eii(xl)...ﬁii(w) dzq - -dxg
Re

in which the integration is over the subregion R, of [0, 1]¢ described by the inequalities a < z; <
... <2y < b. These integrals are in fact equal to

quantities €’ 3"

%//()() doy - doy = %(/fm) dw)f - L)

The sum over all £ should then converge to €% (*?  This can be made rigorous:

We define, for any ¢, the step functions s of z as follows: s'(z) = r where n is such that

ne < x < ne+ ¢. These functions, which are defined on the interval [ne, 7ie 4 ¢), converge to r' ()
uniformly on [a,b] as € — 0 as guaranteed by the constants v and . In addition, the functions
s'(x1) - -5 (x,), which are defined on the box [ne, e + )’ for £ = 1,..., L, are totally symmetric.
Then we write

£ 1% oo 7 7

€ E rnl---rnz_/ st(xy) - si(xe) day - - - day,

€ €
n<n1 <...<ng<n Re—E5

in which

R = {(acl, wnty) € [ne, e+ ) 1y < < xg},

Ej = {(xl, wey @) € RG 2 me < x; < 41 < ne+ € for some ¢ and some n}
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One can show that the volume of £ is less than ﬁ so that

(27)

/ si(zy) st (zg)day - - - day

4

Also,

/ si(xl) . -Si($g) dxq---dxp =
R

¢
1 nete nete )
1

nete £
= E(/ sz(x)dx) .

Notice that all of this makes sense for any positive integer £, not only those that are less than L+1:
indeed, the set I} is equal to Rj for all £ > L. Taking the sum over £ = 0,..., L and taking the
empty sum to be 1 since Fp is the identity matrix, we have

L
¥ I o
Ze Z Tny = T =

=0 Q§n1<...<ng§ﬁ

L

= Z/ si(zy) -5t () day - - - day
=0 E_EE

= Z/ si(xy) - -si(xg) day - - - day
=0 E_EE

nete s : :
= exp (/ sz(x)dx) —Z/ se(xy) - --st(xg) day - - day.
n (=07}

ne

The second term converges to zero because of the bounds (27), and the first term converges to
exp (f; ﬁ“(x)dw) = 500D as e = 0.
Regarding the second summand of ¢/P; in equation (18), we see that any one of its entries

contains no more that 2= terms of the type Y, and so by Lemma 4, given g > 0, the sum over
£—1

all these terms can be made to be less in modulus than @% for each £ by taking e sufficiently

small, and thus, in the sum over all ¢, this second summand contributes less than gexp(2«) in

modulus to any entry of the matrix Zf:o &p. A

5.3 Exponential Region

We now turn to an exponential region [a,b]. Let us suppose, for the sake of the argument, that
0 < A7 (x) < A*(z) on this interval. Referring to the form of P, computed on page 29, we observe

that each entry of its second column consists of terms containing a factor of the form Hf_n A—i,
=nyg An
which are summed over n < ny < ... < ny < 7, and one expects these to converge to zero as
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¢ — 0 since i—i < 1. The first column contains a sum over n < ny; < ... < ny < 7 of terms

of the form tht;h A—’ but np4q is never equal to @ except in the term containing the product

=t
rffl .- ffz, which has [])'_ ni’i as a factor. This suggests that, although both entries of the first
column diverge as ¢ — 0, the upper left entry will dominate. This can be proved rigorously as long
as the interval [a,b] is bounded away from any turning point. Suppose that, for some fixed value

of s with 0 < s < 1,
A (2)
At (z)
and let «, 8, v, and S;(a,b), be defined as before (a, 3, and v depend on s). The following

proposition makes precise what is meant by the dominance of the (1, 1)-entry of 7.

<s for 2z € [a,b],

Proposition 6 Let [a,b] be an exponential interval with positive distance from the set of turning
points, and assume that 0 < A\~ (z) < AT (z) for every x in [a,b]. Then, for any o0 > 0, € can be
chosen sufficiently small such that

Si(a,b) n
€
T +o1 012 H M

021 022 | n=n

whenever ¢ < ¢, for certain numbers p;; with modulus less than p.

Remark: the convergence of the left-hand matrix as € tends to zero is not uniform as a or b nears a
turning point since a suitable value of s approaches 1 near a turning point. However, it is uniform
over all exponential z-intervals whose distance from any turning point is bounded below by some
positive number.

Proor. Consider the matrix

As in the proof of Proposition 5,

L
E ¢ E 7‘711}7‘7111 — Silad) as € — 0.

=0 Q§n1<...<ng§ﬁ

Now consider the matrices

Each entry is a sum of no more than 2= quantities of the form

Nh41
— ! * Sl
=< e H v
n<ng <...<ny<n n=np, n
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for some h (np41 may be equal to @) where r is a product of quantities i—;} and is therefore less
than 1. T can be rewritten as

Nh41 -

_ ¢ § : * Ak * 2 : * I I n
T =€ rnl o 'rnh U rnz (r) rnh-l—l A_-I—
n<ng <..<np<...<n,<n Np—1 <Np<Nph41 n=np+1" "

The circumflex indicates the removal of a factor. An estimate can be obtained for the sum in
parentheses:

Nht1 A
* n Nh41—TNh S
E T‘nh | | A_-I_ <@ E s ht < 041 .
— S
Np—1<Np<Np41 n=np+1"" Np—1<np<Np41

NZ—I

Since the number of elements in the sum over n < ny < ... < iy, < ... < ny < 7 is less than L

we obtain the following estimate for Y:

<o (7)o e () i

Therefore, any entry of the matrix (28) is bounded by eoe(lf ) ((2;_);!1 and the sum over /=0,..., L
e

(recall that Fp is the identity matrix) is bounded by ea( 2 ) xp(2a). This proves that the matrix

1—s

L 1 0 T
(Z GZPZ) | =T 11 I3

£=0

i (asb)

S,
: 0
converges to [e 0 0] as € — 0, and the Proposition follows. A

Part (b) of Theorem 2 follows from Proposition 6.
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