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Abstract

A one-dimensional integrable lattice system of ODEs for plax functions
Qn(7) that exhibits dispersive phenomena in the phase is stuliedconsider
wave solutions of the local for®n(7) ~ qexp(i(kn+wr +c)), in which g, k,
andw modulate on long time and long space scdlese7 andx = en. Such
solutions arise from initial data of the for@n(0) = q(ne) exp(id(ne)/e), the
phase derivativey’ giving the local value of the phase differericeFormal as-
ymptotic analysis as — 0 yields a first-order system of PDEs fgrand ¢’ as
functions ofx andt. A certain finite subchain of the discrete system is solv-
able by an inverse spectral transform. We propose formulathé asymptotic
spectral data and use them to study the limiting behaviohefsblution in the
case of initial datdQn| < 1, which yield hyperbolic PDEs in the formal limit.
We show that the hyperbolic case is amenable to Lax-Levarrtwory. The
associated maximization problem in the spectral domaiolied by means of
a scalar Riemann-Hilbert problem for a special class of fiatall times before
breaking of the formal PDEs. Under certain assumptions gmpsotic behav-
iors, the phase and amplitude modulation of the discretesysis shown to be
governed by the formal PDEs. Modulation equations afteakirg time are not
studied. Full details of the WKB theory and numerical resalte left to a future
exposition.(©) 1999 John Wiley & Sons, Inc.

1 Introduction

1.1 Background

The semiclassical limit of the linear Schrodinger equatbguantum mechan-
ics is supposed to represent one step toward a refinemenrg ofabsical approx-
imation. This consists of inserting a fast-oscillating amsinto the Schrddin-
ger equation and studying the resulting evolution of the laoge and phase as
Planck’s constant tends to zero:

et = = hat VU, w(xt) = A(x,t)exp<—w> .

€

This conventional analysis may be a good intuitive pointrafyeinto this article,
in which we undertake a study of a semiclassical continuumit lof a discrete,
nonlinear Schrodinger system of ordinary differential &gpns. The system is
completely integrable and solvable by an inverse spectaasform, and its steady
oscillating solutions are subject to a relation betweequesncy and wave number,
or a “dispersion relation.” We study the limiting behavidrtioe system in relation
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to its formal limit. The background and tools of analysis described in this
subsection.

Singular limits of integrable dispersive systems solvaieinverse spectral
methods were first understood in a rigorous analytical mabpe.ax and Lev-
ermore [8] in their study of the Korteweg—de Vries (KdV) etioa as a singular
perturbation of the inviscous Burgers equation,

U + Ul + €%Uyex = 0.

They studied its solutions by analyzing the asymptoticeofssociated spectral
and inverse spectral transforms. They found that, for retiges of initial data,
Burgers’equation, before the breaking time of its solutgoverns the limit of the
solutions of the KdV equation astends to zero. After this breaking time, the solu-
tions develop oscillations emanating from the breakingpof Burgers’ equation
with wavelength on the order af. At this time, there arise systems of partial
differential equations in Riemann-invariant form thatdése the slow-scale mod-
ulation of these waves. A fundamental object in the analigsthe solution of a
quadratic variational minimization problem in the specttamain parameterized
by the variablesc andt. This variational problem arises from the asymptotics of
the inverse spectral transform. The minimizer is posed asitique solution to a
Riemann-Hilbert problem and solved by complex-analytioathods. In [8], the
problem was solved for negative initial datg, 0) that decays sufficiently rapidly
as|x| tends to infinity and that has a unique local minimum. Latenakides ex-
tended the methods to include positive decaying initiahdaith a unique local
maximum [13] and periodic initial data [14].

Similar analysis has since been applied to numerous siniguigs of nonlinear
dynamical systems: Jin, Levermore, and D. McLaughlin [d§igd the behavior of
dispersive waves in the semiclassical limit of the defamgisionlinear Schrédinger
(NLS) equation; Ercolani, Jin, Levermore, and McEvoy [&ftied the dispersion-
free limit of the NLS and mKdV hierarchies; Deift and K. Mclghlin [3] carried
over the procedures to a continuum limit of a discrete systetheir work on the
Toda lattice. Essential to the procedure is the compleggmbility of the system
and an explicit solution by means of inverse spectral the&gually important
is a knowledge of the asymptotic distribution of eigenvalaad behavior of the
associated spectral data. Typically, the formally lingtiRDE or system of PDEs
describes the limiting behavior of the integrable systemt# the breaking time
of these formal equations; thereafter, modulation equoatior the evolution of
locally wavelike solutions arise. These are the modulatiqumations that have been
derived previously by the method of averaged conservadias by Whitham [15]
and developed extensively by Flaschka, Forest, and D. Mgilau[6] for the KdV
equation. Their derivation in the context of singular lisngnd the passing from
the formal limit to these more complicated equations is uiatten, for example,
in [8] and [3] and also in [11], in which Tian and Ye study thiarisition in the
semiclassical limit of the defocusing NLS equation.
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The present study concerns a semiclassical continuum difrain integrable
discrete version of the defocusing NLS equation (see emudfi.1) below) with
boundary conditionfQo| = |Qn| = 1. The system is solvable by an inverse spectral
transform. A fundamental dichotomy in the nature of theaystits spectral data,
and its continuum limit arises. Whe@,| <1 forn=1,...,N—1, the eigenvalues
are unitary complex numbers and the associated normingasussare real and the
formal continuum limit is a hyperbolic system of two real POfer the modulus
and phase. WhejQ,| > 1, the eigenvalues and norming constants are unrestricted
and the formal PDEs are elliptic. The restriction of the adpa, which is a conse-
guence of the unitarity of the spectral problem, is cruc@hlior interpreting the
WKB theory to arrive at an understanding of their asympgotind for subjecting
the inverse transform to the procedure of Lax and Leverm8rech is typical of
these tractable problems. Also typical is that the formhifhyiting equations are
well-posed and are seen to describe the limit of the invepsetsal solution and
thus can be analyzed to reveal information about the singjoi& until the break-
down time of their solution. In this paper, we study the sdasical limit in the
case thatQp| < 1 only before breaking of the formal PDEs. Full details of the
WKB analysis and numerical studies of the asymptotics ofsghexcctral transform
are left to a later exposition of these issues in their owhtrig

In the case thgQ,| > 1, the spectral problem is not unitary and its asymptotics
are not understood, the singular limit is not amenable totlteery of Lax and
Levermore, and the formally limiting system of PDEs is eiGprather than hy-
perbolic. This case is to be compared with the non-selftatgakharov-Shabat
spectral problem studied by Bronski [2], who discusses th€BVdilemma and
presents numerical results on the distribution of eiger@alin the complex plane
in the light of asymptotic bounds obtained by Deift, Ven@sdand Zhou [4].

1.2 TheDiscrete NLS Chain

We will consider a finite subchain of the following versiontbé discrete defo-
cusing nonlinear Schrodinger equation (DNLS):

(1.1) iQn+Qni1—2Qn+Qn1— |Qn/2(Qn 1+ Qny1) =0, nez,

in which Qn(7) are complex functions of time and Q, denotesdQ,/dr. We
prescribe initial data by fixing two real-valued functiogs> 0 and ¢ of a real
variablex and, for each (small) positive value gfputting

1.2 Qn(0) = atre)exp( Lo(ne) )

The DNLS system (1.1) with these intial data will be denotgdsb. We will
introduce the finite subchain shortly, but first we study ttspersive properties of
the system in general and provide a mathematical motivdtommposing such

1D here stands for “discrete,” not “defocusing.”
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initial data, which result in the semiclassical limit wheneoallowse to tend to
Zero.
This DNLS system admits solutions of the form

Qn(7) = gexp(i(kn+wTt+c)),

in which the modulugy, the phase difference (or discrete wave numierhe
frequencyw, and the phase shiftare constants. These solutions are subject to the
dispersion relation

(1.3) w—2(1—0?) cosk+2=0.
More generally, if one inserts the form

Qn(7) = an(7)exp(i(kn+w7+C))

into the system, where thg, are real-valued anll, w, andc are constants, the
following relations result:

(1.4) wOn — (1= %) (Gn_1 + Gny1) COSK+ 20, = 0,
Gn+ (1— 93) (G421 — On—1) Sink = 0.

If the g, are not all equal, then these equations do not have a salutiowever,
the second equation indicates that, if tievary only very little with the index,
then they are approximately constant in time, and so thediiysation, the disper-
sion relation, is then approximately valid for an apprelgabme interval. Indeed,
if the g, are initially all equal, then they are constant in time anel dispersion
relation (1.3) is exactly valid for all time. Therefore, givinitial values ofy, that
vary appreciably only over large variationsrinone may then reasonably inquire
about the long-time modulation of the valuesggfand the local phase difference
k. One may attempt to describe solutions in which the diffeesq,. 1 — g, are at
the order of some small parameteas follows: Letqg®(x,t) and¢®(x,t) be real-
valued functions that are asymptotic to differentiabld-kedued functionsg(x,t)
and¢(x,t) ase tends to zero, and put

(1.5) Qn(7) =q°(en,eT) exp(igf(sn,sr)) .

One may think ofQ,(7) as evolving complex-valued functions defined on a lattice
with a spacing ofAx = ¢ between sites. Given a fixed integgrand a fixed time
70, then for integers sufficiently close tag and timesr sufficiently close tor,

this function is approximated by

Qn(7) = qoexp(i(kn+wt+cC)),

in whichqo = of (eng,e70), k= ¢%(eno, £70), andw = ¢¢ (eng,£79). One may there-
fore reasonably expect the existence of solutions with sigenatotic form (1.5) in
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which
(1.6) ¢* (%) ~ (1) +eda(Xt) +%ha(x t) + -+,
(1.7) oF (%,t) ~ q(x,t) +eon (X,t) +e2qp(x,t) + -+ .

The initial data (1.2) for the systeras have indeed the asymptotic form of (1.5)—
(1.7) atT = 0; the coefficient functiong; andq; for i > 1 are taken to be zero at
timet = 0. We expect the solutions ef to have the proposed asymptotic form as
long as the derivatives of the functiogsegyx, ande; remain finite.

One can formally insert (1.5), (1.6), and (1.7) into the DNd&yStem and pass
to the slow time variablé = e7. As expected, this asymptotic ansatz is formally
consistent, and from the leading term one obtains

(1.8) p—2(1—g?)cospy+2=0,
G+ (1-— qZ) (ZQXSin(¢x) + qébxxcoq(bx)) =0.

The first of these equations is the continuum analogue of iggesion relation
(1.3). Differentiating it with respect toyields a first-order autonomous quasilinear
system of partial differential equations for the phasevdérie ¢’ = d¢/dx andq:

o1 +2(1— ) #ysin(¢') + 4qaxcog¢') =0,
G + (1 - 6?) (20xsin(¢’) + ggjcog¢')) = 0.

This system is hyperbolic whenewgk 1 and elliptic wheneveq > 1. In the case
that it is hyperbolic, a pair of Riemann invariants is givgn b

(1.9)

(1.10) a = 2arcsinq) — ¢’, [ =2r —2arcsinq) — ¢'.

In terms of thesej and¢’ are recovered by

(1.12) q:cos(ﬁ;a>, qb’:ﬂ—ﬁJFTa.

The system (1.9) of PDEs in Riemann-invariant form is

(1.12) ay = f(a, B)ax, B = (8, 0)pBx,

in which the functionf is defined by

f(u,y) =sin(u) — sin<“42ﬂ/> .

In this article, we study the hyperbolic case subject to lbauy conditions that
give rise to a decoupled finite subchain, which we describxé ne
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1.3 The Finite Subchain

One observes that, @o(0) andQn(0) in equation (1.1) are taken to be unitary
complex numbers, theQo(7) andQy(7) are independent of their neighbors:

Qo(7) = Qo(0)e 27, Qn(r) =Qn(0)e 7.
Thus, the evolution of the quantiti€3, forn=1,...,N— 1 becomes decoupled
from the rest of the chain, resulting in a systeniNot 1 ordinary differential equa-
tions. This finite system was shown to be integrable by Veg&slk [12], who also
presented a solution by inverse spectral formulae. Thergpdieeory is presented
in Section 2, with the details provided in the appendix.

In accordance with these boundary conditions on the dsagtems ., we
restrict the functiong) and ¢ of x to the interval[0, 1] and putq equal to 1 at the
endpoints. The value @f(0) is notimportant, since it only contributes to a constant
phase shift in the solutions of the systems Accordingly, it only contributes a
constant to the solutiop of the formal system of PDEs fay and ¢. We thus
prescribeq and¢ such that

q:[0,1 — 0,1, 0<q(x)<1forxe(0,1), q(0)=q(l) =1,
$:10,1 =R, ¢(0)=0.

The following observations about the Riemann invariargs flollow: a/(x) < 3(x),
equality holding only ak = 0 andx = 1, and ifg has a nonzerg-derivative at one
of the endpoints, then boil and 8 have infinite slope there. The two functions
form a non-self-intersecting closed curveRA. See Figure 2.1.

1.4 Overview

The central question in this study asks about the capacighioh the formally
limiting PDEs govern the slow-time and long-lattice modiala of the amplitude
and phase difference of the discrete systems. The strasegy investigate the
asymptotic behavior of the moduly, whereen tends to a fixed value of ase
tends to zero. The formula for these quantities in terms @fghectral data makes
this limit amenable to the theory of Lax and Levermore. Fas thie need as-
ymptotic descriptions of the spectral density and normiogstant in the inverse
spectral transform. These are presented in Section 2. \We at the problem
of maximizing a quadratic functional over positive funcisoof the spectral vari-
able subordinate to the spectral density. Parameters srfuhctional arex and
t and the spectral data arising from the functigist) and ¢'(-,t). The solu-
tion, the Lax-Levermore maximizer, is presented as theusngplution of a scalar
Riemann-Hilbert problem on the unit circle, which is the p#l domain in this
study. In the time interval in which the formal PDEs have aigoh, this maxi-
mizer is characterized by an interval in the spectral doroainvhich it does not
attain either of its constraints. One finds that the endpahthis interval are equal
to the functions(x,t) and3(x,t) given by equations (1.10) (compare [3]). In this
manner, the Riemann-Hilbert problem provides a way of itiwgrthe asymptotic
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spectral transform. We find that, when the spectral dataakentto be the asymp-
totic form of the data for the discrete systemsthese endpoints evolve according
to the Riemann-invariant form of the formal PDEs. This iradés that the formal
PDEs do indeed govern the limiting slow amplitude and phasdutation of the
solutions of the discrete systems.

1.5 Remarkson Continuum Limits

The semiclassical continuum limit proposed in this artisléo be contrasted
with a different sort of continuum limit, which results foatty in the continuous
defocusing NLS equation for a complex functiBxt):

0P 0°P )
(1.13) 5 T 52 —2PIPP=0.

The ansatz for an asymptotic expansion of a solution of th&é ®Nystem (1.1)
that leads to this result is

(1.14) Qn(7) ~ EP(HE,EZT) +€2P1(n€,€27') 4+

and initial data that are expected to produce solutions sitth asymptotics may
be prescribed by fixing a complex functiéof x and putting

Qn(o) = EP(HE) .
One may see that this is reasonable by discretizing-tragiable in the NLS equa-
tion, writing

0P

= + E—lz(P(nz—H—s) —2P(ne) +P(ne —¢))

— |P(ne)2(P(ne+¢) +P(ne —¢)) = 0 (¢),
and then multiplying through by® and passing to a fast time scale-=t/<2,

ia(sP)
or

+ (eP(ne +¢) — 2eP(ne) +eP(ne —¢))
— |eP(ne)[2(eP(ne +€) +eP(ne —¢)) = o (¢*)

so that the quantitie®, (1) = eP(ne,e?7) approximately satisfy the DNLS system.
Observe also that such a discretization of the NLS equatmudwnot resolve the
spatial oscillations if initial data of the form

Q0 = a0gexp( Lo
were taken for some fixed functiogsand¢ of x.

The crucial difference between this ansatz and the semici&ne is the be-
havior of the phase difference between sites and the timadrcy of oscillation as
the lattice spacingx = ¢ tends to zero. This can be seen most clearly by comparing
the local wavelike behavior of the two asymptotic forms dfiion: According to
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the ansatz (1.5), solutions are, to leading order, ilocally asymptotic to a steady
oscillation of constant amplitude

Qn(7) ~qgexp(i(kn+wr+c))+o (), €—0,

subject to the dispersion relation (1.3). The valueg ahdk (and therefore also
w) modulate on a long time scale, and this modulation is whatféhmal PDEs
are supposed to describe. In contrast, the ansatz (1.14gaieading-order local
phase asymptotics that are constant and+ and a modulus that is asymptotic to
a multiple ofe,

Qn(7) ~ eqexplic) + o (¢?), £—0,
in which the oscillations take place only on long space ang lime scales. The
NLS equation is supposed to describe the slow modulatiorh@fmiodulus of
Qn(7)/e and the phase itself, not the phase difference between sites

One also observes that the ansatz (1.14) is inconsistemthigtboundary con-
ditions |Qo| = |Qn| = 1, which give rise to the finite chain.

The limit from a finite chain to a finite real interval proposedhis article might
perhaps be used to approximate the semiclassical contitinuitnof an infinite
lattice for which the moduljQ,| approach 1 af| tends to infinity. For example,
one may take * q(x) to be a Gaussian-type function highly localizec at %

2 The Spectral Transform and Its Asymptotics

In this section, we present the spectral method of [12] fer fihite DNLS
system in the case of subunitary data and propose its leadingclassical asymp-
totics. We leave the details of the derivation of the direntl #nverse spectral
transforms to the appendix. The results in the followindionetrely heavily on the
material presented there.

2.1 The Spectral Transform

Let {Qn(7)} be a solution to the finite DNLS system wii@Qn(7)| < 1 for 0 <
n < N. Without loss of generality, one may tak®(0) = 1 andQn(0) = £ with
|¢€| = 1. Letzbe an arbitrary complex parameter, and define the matrices

uner) =, Zar TS

One forms the so-called transfer matrix

51/2 0
T(Z,T): 0 571/2 UNUN,]_”'U]_,

in which ¢%/2 is a square root of and considers its trace

N
I =trT(z7) =2 N[(Z-2),
(2 =tT(z7)=¢22 k|1( %)
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which is constant in time. The squared rodis= zﬁ are the eigenvalues, or
“squared eigenvalues,” in the spectral transform. Theyletinct. LettingF (z,7)
denote the upper left entry &f(z,7), consider the residued(r) of F(z,7)/72J(2)
as a function of?:

F(z7) N Hy(7)
2 sz; (Z -G

These are the associated “norming constants” in the speécrsform. (There
is no such object as the reflection coefficient here.) One baw shat the set of
“unsquared eigenvalueg; is equal to the set of values ofor which the following
boundary value problem for the discrete evolution of a caxglolumn vectody,
has a solution:

0
Uny1 =Unplh; Uo= [i} Unt1 = [0]

This formulation will be useful in studying the asymptotiafsthe distribution of
eigenvalues.

The inverse spectral transform reconstru@gr) from the eigenvalues and
norming constants. It turns out, in the case of subunitatyegof Q, (for 0 <
n < N), that the eigenvalues are unitary and the norming corsstae real and
positive. PuttingMk = Hk(0), one can define the “tau-functions,” which take on a
special form in this subunitary case:

An:%%‘!;lsv\:{(exp[—i(gk—gk1)T]i€5|€3’|<i—Cj , 1<n<N,

i#]

A, = W exp—i(C— ¢t i —Cil, 1<n<N,
se%‘il;lsgk xp—i (Ck Cx )T]ieis;érjljes‘g Gj

andAg = Ag = 1, whereS\ denotes the set of all ordersubsets of the set of
integers{1,...,N}. In terms of these, th@, and their moduli are reconstructed by
the formulae

nAn

(2.1) Qn=e27(-1) Ao n=1..N-1,
n
2.2) 1—|Qn|2:%, n=1, . N-1.
n
In addition, it turns out that

MG —¢l
K2k
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and, denotingF (%, 0)| by G, the expressions for the tau-functions may be rewrit-
ten as

(2.4) Bn = %ﬂekexp[—i@k—cklm [ 16-¢l™

seP kes i€s, |¢s
(2.5) An= % [ ¢ Grexpl—i(G— ¢l ] 16—¢I
seP kes i€s, j¢s

Subsequently, we will be concerned mostly with the quastiti

Grexp—i(Ck — G 7]
rather than th&\k. One observes that, since the eigenval(ieare unitary, these

remain positive for all time. It is this property, which heldnly in the subunitary
case, that makes the formula (2.2) amenable to the theorgpofhd Levermore.

2.2 The Asymptotic Spectral Data
Prescription of the Formulae

In the construction of the continuum limit in Sections 1.21&h3, we pre-
scribed initial data for the DNLS systeras by fixing g(x) and¢(x) and putting
Qn(0) = q(ne) exp(%¢(ns)). Much of the asymptotic analysis, however, is more
convenient using the functiorgx) and3(x) where(a, 3) are related tqq, ¢’) by
the transformation (1.10).

We will place the following restrictions on the initial daiéx) and3(x): First,
B(x) > a(x) for 0 < x < 1 with equality at the endpoints; this is guaranteed by
equation (1.10) or (1.11). We assume, in addition, thattains a local minimum
at exactly one poink; in [0, 1] and thatg attains a local maximum at exactly one
pointxy in [0, 1]. Denoting these extreme valuesdayin = «(X1) andBmax= 5(X2),
we assume in addition th@hax — amin < 27. Thus we may fix a numbaerg such
that 1o < amin < Omax < po+ 2m. Furthermore, for any value qf, there exists
at most one integem such thatamin < @+ 2mr < Bmax  If such m exists, then
there are exactly two values wht which either or 3 assumes the valye+ 2mr.
We call these values “turning points” and denote thenmxbgu) andx, (). See
Figure 2.1.

We need descriptions of the asymptotic distribution of tigemvalues« and
behavior of the corresponding norming expondaisase tends to zero. Thus we
propose a spectral denspyand an asymptotic norming exponentboth functions
of an angular variable. By this we mean that if #u1, 2] denotes the number of
eigenvalues located in the interah, 112], then

1 rm2
#elua, pia] ~ g/ p(p)du, €—0,
p

and, givenu, and an eigenvalugy_ for each of the systems. with associated
norming constant§y_, we have

elog Gy, — = (py) if pue — py @ase — 0.
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FIGURE 2.1. Riemann invariants and turning points. TagXx) is in
black and|sin((x + ¢'(x))/2)| in gray for various values of.. Here
q is a parabola an@d’(x) = 6sin(2x+.2). Bottom: «(x) + 27m and
B(x) 4+ 2rm for various integersn in black and the values qgf used
above in gray. These data do not satisfy the property@hat— amin <
2m. For example, there are two turning points fo+ 0 but four turning
points fory = 2.

The reason for expecting the existence of a functiowith this property will be
evident from the analysis of the asymptotics of the tautions A, in Section 3.
The following paragraph gives the proposed prescriptionpfandz ' = dz /du; a
brief asymptotic motivation follows it.
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We first define a functio® of a complex numbez and real parametersand A
by puttingy = (x+ \)/2 and

X +z

(2.6) P(k,\;2) = = e z—n)i2"

P is defined on the complex plane with a cut freffito €*. For pointsz= €* on
the unit circle,P assumes the form

cos(*3")
[cog (334) —cof (243%)] V%
and we choose the sign of the square root by taking the dembonito be positive

for values ofy in (k,A). (Notice that the quantity under the square root sign is
positive in this interval.) We now define

P(/ﬁ,)\;ei“) =

(1) .
2.7) o0 =5 | X;: P(a(x),B(x);6# )dx,
i X- (1) 1 .
2.8) =g | [ [ |Plal.si)ax

for pu € (amin, Bmax), and sep(u) = 0 andz () = O for p € [po, o+ 2]\ (atmin,
Bmax). SinceP(a(x), 3(x);e*) is real-valued forx € [x_(u),X+(1)] and purely
imaginary otherwise, these formulae definendz ' as real-valued functions sup-
ported on the intervekymin, Smax]. We will denote their domain bl

| = [po, po+ 2.

In the asymptotic analysis of the inverse spectral transfar is ’ that will be
needed and nat itself.

Derivation of the Formulae

We now give a highly abridged account of the derivation of #sgmptotic
formulae? Recall that the set of valueg is equal to the set of values affor
which the following boundary value problem has a solution:

0
29) s =Unthi o= F|. tua=| ],
where thdJ, for initial data in the systern. are given by
B z qne) exp(—Lo(ne))
" |a(ne)exp(Lo(ne)) z? '

2The WKB and numerical analyses of the spectral data are teghém appear in a future paper.
One can also refer to [10].
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To make the asymptotics of this problem amenable to WKB aimlyone first
makes a change of coordinates that eliminates the occerrehd/c in U, by
putting these fast spatial oscillations into the solutiecter:

ut )" — [eXp(M)uﬁ exp(_igb(ng))uﬁ} T U

2¢ 2¢
In these new coordinates, the matritgsare replaced by
cn sn
- 267 (€7
210 Un(z) = sn ihn
( ) n( ) [qne'% Z_lele]

in which ¢ = (¢(ne +¢) — ¢p(ne)) /e anda, = q(ne). The leading order im of
Un involves thex-derivative ¢’ rather thans itself. (This is favorable since’ is
a quantity that naturally appears as one of the functionsenfarmal system of
PDEs.) Since we are only interested in leading-order aisalyge simplify the
problem and use only the(1) part ofU,. Denoting this leading order by, we
haveVh(z) =V (ne,z), where

(2® i@/
(2.11) V(x;2) :[ ze ax)e 2 ]

¢’ ')
qxe'z zle' 7z

and we consider the approximate problem
o S o z o 0
Unt1 = Vntn; 7)0:[1]1 UN+1:|:O:|'

Denoting the eigenvalues ¥f(x,z) by A*(x,z) and corresponding eigenvectors
by p*(x,z), we make the crude formal ansatz

(2.12) Un ~ exp(%&(ne)) Bt (ne) +exp<:—:&(ns)> B (ne),

whereS; andS_ are functions of that are to be determined. Lettirg? c2n]T

represent the vectak, with respect to the bas{gs™ (ne) }, the WKB analysis leads
to the following asymptotics for the ratic}/c2:

ct 1 /X At(y,2)
C—%Nexp<g/ IogA_(y’Z)dy , ¢—0.

Since we have established that the spectrum of the systemdocated on the
unit circle, we may put = €. Puttinge = (a + 3)/2, the eigenvalues™®(x,e€")
are in this case given by

(2.13)
AE(x, €M) =sin (@ —~ 17> + [co§ (M) —co¢ (@ - 77>]

NI
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One sees that the ratja* (x,€")]/[\~ (x,€7)] is unitary if x € (x_(2n),x.(21))
and positive ifx ¢ (x_(2n),X;(2n)). This gives rise to “oscillatory” and “expo-
nential” x-regions separated by the turning points: Between thertgrpoints, the
increment of logct /c2) is imaginary, and outside this interval it is real. This lead
one to consider the boundary value problem (2.9) as a conditn the increment
of arg(ct/c2) (mod 2r) over thex-interval [0,1]. The asymptotic characterization
of the eigenvalueg = g% thus becomes

(210 o _ 12
(2.14) }/x+ " 2arctan[cosz( 72 =) — o8 (e dx~ 27k.
€ Jx_(2m) sin(%—nk)

Replacingk with n, differentiating with respect tg, changing to the variable =
2n, and scaling, one obtains the formula (2.7) for the asyngpspectral density
of (squared) eigenvalueg = z2 with [Z™ p(u)du = 1.

The formula for the derivative ' of the asymptotic norming exponent is gotten
by integrating the same integrand over the exponentiabregit present, there
is no argument based on asymptotics that suggests this farm’f Instead, it
is obtained through a formal analogy with results from ogr@blems in asymp-
totic spectral analysis in which the spectral density aredasymptotic norming
exponent are known to be symbolically related; in particutlais is true for the
Schrédinger operator (see [8]) and the eigenvalue probterthé Toda lattice (see
[3]). Both p andz’ display several properties inherited from the propertfeth®
spectral data of the discrete systems. In addition, numlezaiculations and some
rigorous results have helped to confirm their validity. Téhase not included in this
article. In particular, the following has been established

PROPOSITION2.1 Let[a,b] be an oscillatory interval for data(ex) and ¢(x) and
spectral value z, and put# [a/e] andn = |b/e]. LetU, represent the vector
Up in elgenvector{ﬁn} coordinates for the matrix transformatiddy,, and let the
matrix Uy, represent;, with respect to the bas€g; } in the domain and By, ,}
in the range so thati,, 1 = Unl, becomes

0n+l - Unﬂn .

Letl, = [c} ci] be fixed. Then

ol o

Remarkson the WKB Analysis

A couple of comments comparing the present WKB analysisabdahBronski
[2] might be useful to the reader. Bronski considers the skxssical scaling of the
(continuous) non-self-adjoint Zakharov-Shabat eigare/groblem

dy+ (1), e—0.

icTy, = M(X, \)T.



SEMICLASSICAL LIMIT OF NLS CHAIN 15

First, a remark on the leading-order results. Bronski useshsatz
B =e 0N/ L ept 4

and finds that its formal validity necessarily implies th&tx, \) is an eigenvector
of M(x, \)—in other words, that is, to leading order, an eigenvectorf Con-
sider, however, the ansatz (2.12) for our discrete problesading-order analysis
produces

S:(x2) = /X log \* (y, 2)dy.

Thus, if one ofA* or A\~ is larger in magnitude than the other, then the WKB
analysis proposes that, to leading ordg(z) is indeed an eigenvector ¥f(ns, z).
However, if \* and A\~ are complex conjugates, as in the oscillataryegions

in our problem, then this is not the case. Indeed, the fadtttieratio of the
eigenvector coordinates df is a unitary oscillating scalar function afis the key

to the derivation of the spectral density.

Regarding higher-order results, the difficulty in our déter problem is the
messy dependence of the matrithson neighboring lattice sites: Recall thatis
only the leading order; in the exact problem, the matriceguactions ofx = ne,
have local expansions i In fact, the author has studied higher-order WKB-type
expansions in the vicinity of a turning point and has come ug wo formally
valid asymptotics, much less been able to perform matchétgden regions.

3 Asymptotics of the Inverse Spectral Transform

We now describe the formal details of the construction oflthe-Levermore
maximization problem associated with the asymptotics efrttoduli |Qn(7)| in
the continuum limit. Lety| denote the largest integer not greater thiawe wish
to understand the behavior /.|| as a function ok ase — 0. From formula
(2.2), we find that

log(1 - |Qn[?) = l0gAn;1 — 210gAn + l0gAn_1

1
=5 (£2l0gAni1 — 2:%10gAn + £%10gDn-1) ,
which suggests that the quantﬁ?logALx/ﬂ should have a limit, and if this limit
is well enough behaved, we may be able to calculate

d2
. ) oy
i'LnO|09(1— Q<) %) = 32 Im e*10gA )

In the original theory of Lax and Levermore for the dispensitee limit of the
Korteweg—de Vries equation [8], the quantity analogouszﬂogAp(/8 | is shown
to be convex irx, and one can infer weak convergence of the quantity anatogou
to log(1 — |Q|x/e ). The analysis there, in fact, indicates strong convergeémce
the solution of Burgers’ equation for as long as it exists amgle-valued func-
tion. This will be the goal in our analysis, too, although ur @iscrete case, we
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have no such convexity property to guarantee weak conveegéfte will proceed
below with the formal mathematics nonetheless. In the Riemtdilbert problem

of Section 4, which arises from this formula f(@,| alone, we will see how the
convergence oboth the modulus and phase derivative to the solution of the for-
mal system of PDEs follows from a study of the solution of fRismann-Hilbert
problem. Such is also the case in the continuum limit of theaTlattice [3].

We now use the expression (2.4) fay and pass to a slow time scdle- e7:

An(é)ZSG%DSerXP{—i(Ck—Ql)E] 1 l6-¢l™

i€s, |¢s

= Se%exp{;z [6 > (clog Ge—i(G— ¢ Mt) —ezieazjgslog|<i - ql] }

kes
1
= %exp<—zqs>,
o e

as=ey (elog Gk —i(Gk—¢ ) —<* 5 loglG — ¢

kes jes I¢gs

in which

andS) is the set of all orden-subsets of1,...,N}.
Observing that each term of the sum giviAg is positive and lettingn ; =
maxcg{Qs}, we write the inequalities

1, N 1,
eXp(?Qn) SAI’IS <n> exp(?Qn):

N
Q. <e?loghn < £2log <n> +ap,

whence

and notice that lim_ye?log (';') = 0. This reduces the problem of finding limg
ezlogAWEJ to finding the limiting behavior oa[z[;(/gJ for any value of € [0, 1] that
is fixed as= — 0. This is really the crux of the argument that Lax and Leveeno
used to reduce the asymptotic behavior of an analogousutatién for the KdV
equation to a minimization problem.

Following the standard procedure, we next replace the eyadtral data by its
leading-order asymptotics proposed by the WKB analysis:

QSNEZZ(Ck.t)—EZ z log|Gi — ¢jl,

kes IS

where the time-dependent asymptotic norming exponenffiseteby

(3.1) £ (¢ =z () —i(¢—-¢ M.
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Putting¢ = €#, we can represents as an integral with respect to a singular spec-
tral measure on the intervél

~/ (w.t)ey o(p— pud

kes
//loglé“ € Y (u—pi)d(y —7j)dudy.
jesigs
Now,
B2 p2 N B2
/625(u—u1)du§/ ezé(u—m)dMN/ p(p)du, €—0,
M1 IES H1 =1 M1

for any subintervalu1, i2] of | (recall thatN = [1/¢]), and if for eachs s. C
{1,...,N} is chosen such thas.| = |x/<] for some fixedk € [0, 1], then

/Zé,u pj)dp~x, €—0.

J€S:

This suggests the next step (again, [3, 8] are prototypdsghas to replace the
spectral measuresy jcs0(p — p1j)dp with measures)(p)du wherey belongs to
the seta of measurable functions defined bsuch that

0<y<p and /w(u)duzx
|

(compare [3]) and to seak, which maximizes the quantity

Q (ixt) = / (s (11) + 2t Sin(p2) oo (p2) g

//Iog|é“ &7)(p— ) (1) (w)dydp,

which one may express in the compact form

3.2) Q () =(z (\1),9) = (2 (p—1)¥),
where the quadratic functional is defined by
(33 (2 )1 / log|e” — &7[u(7)dy

and(v1,12) means|, ¥1(u)v2(1)du. Sincer is a negative definite quadratic func-
tional, @ is strictly concave, and since the seis convex in the linear space of all
functions onl, ¢ can attain its maximal value at only one functiorain

The Euler-Lagrange equation associated to (3.2), sulgebietconstraint
(lu’)dlu’ =X s

(3.4) £ (uT)+2 (20 —p)(n) =1,
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the left-hand side being the variational gradiéat of ¢ atv andl being any real
constant. A functionp in 2 partitionsl into four sets]o, I1, I2, andl3 such that

p(p) =0 = p€lo
V() =0, puélo, = pel
V() =p(p), pélo, =pel
0<9(p) <p(p) = p€ls,

and it is elementary to show thgtmaximizesq in a if and only if there exists a
numberl such that

0Q (¥) <l only(a.e.)
0Q (¥)>1 only(a.e.)
0Q (¥)=1 onlz(a.e.).

4 The Riemann-Hilbert Problem

Differentiating the Euler-Lagrange equation (3.4) witlspect to the spectral
parametey:, one obtains

sin(x—7)
2 1-cogp—7)

and, by setting) = 2/ — p, this becomes
(4.1) £ (u,t) + (s ) () = 0,

wheres is the Hilbert transform on the unit circle.

Thus we have a scalar Riemann-Hilbert problemzﬁdn which (4.1) must be
satisfied orlz and is subject to the two constraints

(4.2) —p(p) < P(p) < p(p) forallpel,
(4.3) / D(y)dy = 2x—1.
|

z' (1, t)+F’V (2¢(y) — p(v))dy =0,

Continuing to follow Lax and Levermore, we impose upq?)nhe ansatz that
I3 is an interval(k,\) C [amin, Bma Whose endpoints depend enandt, with
complementd = (JpUJ; UJ) C | whered; = (amin, k] andJp = [A, Bmax) such
that

(s D) () = =2z (ut) for e (x,A)
(4.4) ( ):i () forpedr
D) = £p(n) forped,.

The choice of thet sign is left undetermined at this point. Observe that Io,
JU =I11Uly, and (A k) = l3. Sincep =0 on Jo by its definition,s) = 0 on
Jo also. The strategy to construct such a functibiis to exploit the fact that if
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H is a holomorphic function defined on the open unit disk arid a complex-
valuedLP function on the interval with p > 1 such thath(x) = lim,_1 H(re'#)
and ImH (0) = 0, then Imh = # (Reh). H is to be constructed such that

Imh(p) = —2z/(u,t) for e (k,N)
(4.5) Reh(u) = +p(u) forped
Reh(u) = +p(u) forped.

One can write down such a function with the aid of an auxili@ryction ofz with
parameters and\: Puttingy = (k+ \)/2, define

gx —z

(4.6) R(k,\;z) = (Z—an)(z— )"

Ris defined on the complex plane minus a cut frdtnto €*. The restriction of
this function to the unit circle is

- sin(<5*)
4.7) R(k,\; €H) = i forpel,
[sir? (352) —sin® (23%)]
which is purely imaginary whenever < p < A and real for values of: in J.
We choose the sign of the square root by taking values of therdmator of

R(x,\,€") to lie on the negative imaginary axis. Using the theory of Brus-
son kernel, one can write down the functidrthat we seek:

H(2) = R(k, )\;2) 1{ /:I:p /{AéW)@zz)y
[ dtmeen($22)er)

The function ofzin braces has the property that the limiting values of it$ paat
asztends to the unit circle are

(4.8)

Lo R(k, N €")  for p e (k,\)
+p(p)R(k, \; €H) forped
+p(p)R(k, \; €M) forpeds.

Upon multiplying byR(x, A;2) 72, one sees that the properties (4.5hdfold. One
can now take the proposed solutigrof the Riemann-Hilbert problem (4.4) to be
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equal to Réx:
(4.9)
)
— RellmH(re'“)
R(k, ;@) { /ip Rk, A; é”)%‘”
1, o dsin(p—7)
- PV [ e RN e
for u e (k,\),
+p(u) forped.

Its Hilbert transform is
(4.10)
(2 ) (1)

= ImIimlH(rei“)
——Z "(u, T) forpe (k,N\),

1 R(k,\;€")” {PV—/:l:p /f)\e”)Mdv

_ 1—_00_8(51—7))
isin(u—
+27r/,~; i = (1 ORMA ew)l—cos(,u—y) dfy}

forped.

Values ofx and A must now be determined so that the constraints (4.2) andl (4.3
are satisfied.

We propose values efand\ and a choice of plus or minus sign appliegptm
the expression for the functian and show that the result gives the maximizer we
seek. For a fixed value ¢fleta(-,t) andj3(-,t) be data whose asymptotic spectral
transform gives rise to the densityand the asymptotic norming exponent,t),
if such data exist. Recall that, because of (1.a0%,t) < 5(x,t) with equality only
atx =0 andx = 1. Given values of the parameterandt in the Riemann-Hilbert
problem, we define values af and A in the solution by puttings = a(x,t) and
A = B(x,t). We then choose the sign applieda the intervalJ; for i = 1,2 to be
positive (respectively, negative)xf> x; (respectivelyx < x):

(4.11) ping if x> x, —pind ifx<X.

We will often suppress thiedependence and referdd-,t) as« and tos(-,t) asg.

Let us consider the expression in braces in formulae (48)4110). Recalling
the definitions ofy, z’, andR, we see that this is a double integral over the shaded
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region inyy-space, illustrated in Figure 4.1. Using the sigrpgiroposed above
and reversing the order of integration, the expressiorsttieform

Zi_ﬂ[/OX_/:]P.V./Cy%P(a(y),ﬁ(y):é“’)

<Rla(9,500:¢) 20—ty

whereC, is the portion of they-interval | contained in the shaded region of inte-
gration. One observes th@ is the portion ofl on which the integrand is real.
Thus the principal value as a function @fs the Hilbert transform of

ReP(a(y), 4(y);€")R(a(x), 5(x);€")
and is thus equal to

ImP(a(y), B(y): €")R(ax(x), B(x); €").
The integration with respect §dfor a fixed value of. now takes place over the non-
shaded region in Figure 4.1. Multiplying bR(a/(x),3(x);€#)~1, the proposed

solution+ to the Riemann-Hilbert problem &x,t) for values ofy in the spectral
interval [aemin, Smax] NOW takes the simple form

@i =g | [ - [] Reptatn ey

Indeed, one can check (with the aid of Figure 4.1) that thislil not only in the
interval (a(x), 5(x)) but also in the intervald; andJ, on which it coincides with
eitherp(u) or —p(u) according to the proposed stipulation. The Hilbert trarmsfo
of this proposed solution is

~ 1 x 1 .
@1 o=y | [ [ mPlaten. s dy.
This is also valid in the entire spectral interval.

THEOREM4.1 Assume that functions(x,t) and 3(x,t) exist as defined i(4.11)
with o possessing a unique minimum angossessing a unique maximum for some
open time interval. Let be the solution of the Riemann-Hilbert problem posed at
point x at time t. Then, for times in this interval, the follog statements hold:

(i) For e (a(xt),B(x1)), —p(p) <9(p) < p(p).
(i) fiv(y)dy=2x-1
(iii) . = @ maximizesy .
(iv) a(xt) andj3(x,t) evolve according to the differential equations

at:f(a,ﬁ)ax, ﬂt:f(ﬂla)5X|

f(u,vy) =sin(u) — sin(lH2—7> .

in which
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x0 1 0 x0 1

FIGURE 4.1. Real (gray) and imaginary (white) regions for the func-
tion P(a(y), 5(y), €*)R(a(x), B(x),€*) in various scenarios. The lower
function isa(y) and the upper ig(y). a(xo) and3(Xo) are the proposed

values ofx and X in the solutiom) of the Riemann-Hilbert problem at
X = Xo.

PROOF (i) It is evident from formula (4.12) for) and the definition op

that this constraint is satisfied.
(i) To compute f, ¢ (r)dy, one uses formula (4.12) and reverses the order of

integration:

[dn= [~ [] [ 3t omieduay
|

aly

The inner integral can be done by contour integration, aedébBult is 1 for
any value ofy. Integrating with respect tpthen gives — 1.

(i) Recalling that the derivative of the variational gradt 6¢ of the quadratic
functionalq is equal to

d

gl =z (1, t) 47 (o ) (1)
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and using the formulae far’ (2.8) ands (1/7) (4.13), we find that

Goia b= [ mP(ay),a;e)ay

du
(x_ () may be replaced by, (1) sinceP is real-valued inx_ (i), x; (u)].)
One can check that IP(«(y), 5(y); €") is positive if u € (amin, a(y)) and
negative ifu € (5(y), Bmax). Using these facts (and the aid of Figure 4.1),
one can verify that

ng (1) <0 if (x<xgandu < a(x)) or (x> x andy > (X)),

dp
%&1 () >0 if (x>xgandyu < a(x)) or (x < xg andp > B(X)),
%&1( )=0 ifa(x) <p<B(X).

We may infer from this the existence of a real numbsuch that, for values
of 1 in the support op,

6Q (p) <1 if ghu(p) = —p(p) Orp €1y,

oQ (p) =1 if Yu(p) = p(p) or p € Iz,

6Q (p) =1 if —p(p) <u(p) <p(p)orp € ((x),5(x)).
As already mentioned at the end of Section 3, this proves/thiatthe unique
maximizer ofq .

(iv) The constraints (4.2) and (4.3) impose relations betweand A. First, the
constraint that-p(u) < ¥ (u) < p(u) implies thaty(x) < o, and this gives

/:I:p( )R(éV)ZS;?r(?X(X?)d +PV/ ='(t) (é”)%dy:&
2

By using the definition (4.7) dR, this condition becomes
F(r, A\ xt)=0,

whereF (whose dependence ans actually trivial) is defined by

(4.14)

) ) sin(x —7)
e e e ey

dy

)\_f/ Sm(X_’Y)
O R ) et (e

d.
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Second, we require th@ﬁr w)dp =2x—1. Thus we compute this integral:

; )
z/ip(u)du
|
—i—/:R(e'“ { /p (@ 1'5?(52‘(# 7)7) dy
o e
Z/p(u)du—/ip(v %/:R 1%‘1#%
_/:;I (1, R )PV / R(é") 1%@@.

The inner integrals in the second and third summands of dsiselxpression
are identical except that is contained in different domains. They can be
computed using the theory of the Poisson kernel. ObserfiagR(0) = 1,
we obtain R&(e*)~1 — 1 for the integral, which, by the properties f is
equal toR(€#)~1 — 1 for u € 1 and—1 for u € (k,\). The expression thus
simplifies to

01/; p)dp = /:tp e'7d7+/—z DRE)dy

By setting
_ sin(%5%)
GlrAx Y = [ £p(7) ey e e AL
(4.15) ! ‘ol (; 1)
sin
+ —z' dy—2x+1,
w0 ) s e
a second condition on and\ becomes
G(k,\,x1) =0.

One expects the conditio’s = 0 andG = 0 generically to determine
and \ as functions ofx andt. One may compare these conditions and the
subsequent analysis with the results of Deift and McLaugRlj for the Toda
lattice. Differentiating, one obtains

F. Fx||kx &t F R .
o allnga)-o
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or, equivalently, solving fod(x,\)/d(x,t) and observing thak, = 0 and
GX = _2|

Fx Kt| -1 Gy —R\|| O R
M M| F.Gy—FG, |-G. Fi||-2 G|~
We are interested in the relations betwegrandx; and between\, and \;:
(4.16) [kx, kit] ~ [2F\,RGy — Gy,
(4.17) Ao At ~ [—2F;, —RGy, + GiF.].

One now needs relations betweé&n and F, and betweerG, andF,.
These are as follows:

sin ()\;2/{> G, = sir? (A%‘r“) F.,
(4.18)

sin (ﬂ;z)\> G, = sir? (R%:\) Fy.

To prove these relations, one first observes that the corntinsa

. A—K (A=K
sir? <T>F$sm< 5 >G

have integrands that are zerorafwhen the minus sign is taken) andat
(when the plus sign is taken). Thus the differentiation cancarried out
inside the integration signs in the formulae FoandG. The calculations are
long but finally yield, say fod/dx,

()l

1. /[ A—& 1 A—K
—Zsm<T> F+§cos< > >G.

On the other hand, the product rule yields
0 [ . A—K (A=K
5 [Sln2 (—4 > F —sin (—2 > G] =

. A—K 1. /=& . (A=K 1 A—K
S|n2< 2 >Fﬁ—zsm<7>F—sm<T>GK+§cos< 5 >G.

Setting the two results equal to each other, the proposetiaelbetween
G, andF; is obtained. The calculations involvirg, andF, are essentially
identical.

We next calculatdy andG;. The dependence & andG ont is linear.
Thet-coefficient ofF is

1 /A 2icoqy)sin(x —7)
4.19 =—
“9 A3 Rt se e )

dr.
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By extending the differential being integrated to a mergohar differential
on the complex plane minus a square root branch cut #6no €* (along
the unit circle), one can obtain the integral by residue hed contour in-
tegration. The differential is the pullback to the unit &rof the complex
differential

2(Z+1)(€X +2) dz

2l(z—er)(z—eMV2
Under the change of variables= w1, it takes the form

2i(14+w?)(exw+1)

W2[(1—wer)(1—wer)]/2 =
The residues at= 0 andz = o turn out to be
Res_o = +4ie X cod (A%f) , Res_. = +4ie'X cod (A ; /{> .

The relative sign of the two residues can be determined byattethat
must be real. The absolute sign can be determined by comgjdtie case
wheny = in the original integral expression (4.19) f&r Keeping in mind
that the integration is only frord” to €* along the inside of the branch cut
and multiplying by the factor o% appearing in (4.19), we obtain

Ri= ~2(2ni) (~4i(e¥ + e ) o <A%4ﬂ> B 8C°S<AZR> cos (A;ﬁ> |

A similar calculation works fofG;, and the result is that

N o x—y -
Gtzl/ |c08(7)sm( 2 ) 1/2d7:4sin<)‘+'i> sir? <>\ H>‘
w e Ts? (337) —sir? (23%) ? 4
Going back to the ratios (4.16) and (4.17) and using theiogist(4.18),
one finds that

[Fix, Kit] ~ [25in<)\;’€> ,—Sir? (A%‘fﬁ) Ft—sin<)\;'£> Gt] ,
Ao At] ~ [25in<H;A> ,—si? (H;)\> H—sin(ﬁg)\> Gt] ,

and, using the values obtained fgrand G;, one calculates that the ratios
kt/kx and i/ A\ are indeed equal td(x, ) and f (A, k), respectively.

O

Observe that the conditiorts(«, 5,%,t) = 0 andG(«, 3,x,t) = 0 determine the
solution a(x,t), B(x,t) of the hyperbolic equations (1.12). Thus the solution of
the Riemann-Hilbert problem—in particular, the endpoioitghe intervals in its
presentation—essentially provides an inverse of the agyinspectral transform,
determininga(x,t) and 3(x,t) in terms of p(u) and = (u,t). After the point of
breaking of the hyperbolic equations, one or botlv@nd s may be multivalued,



SEMICLASSICAL LIMIT OF NLS CHAIN 27

and the discrete system may exhibit chaotic behavior (wawttswavelength on
the order of the lattice spacing). At that point, the preséumdy concludes.

5 Summary and Remarks

We have prescribed functiomgx) and¢’(x) that, by construction, describe the
local limiting modulus and phase difference for initial @ah the DNLS system
as the lattice spacing tends to zero. We have proposed astyonfuirms p(u)
and z'(u) for the spectral data in the inverse spectral transformHerdiscrete
vector evolution problenti,.; = Uy, in the limit ase tends to zero. We have
also given explicit formulae for the asymptotic form of tlee-dependent spec-
tral data p(u), =’(p,t)) for the solutions of the DNLS systeras. By means of
the Riemann-Hilbert problem arising from the asymptotialgsis of the inverse
spectral formula fofQp| in the discrete systems, we have shown that, for a time in-
terval in which there exist functiortgx, t) and¢’(x,t) giving rise to the asymptotic
spectral data(u) andz’(u,t), these functions are solutions of the slow-time-scale
PDEs (1.9) that come out of the formal asymptotic analyste®tontinuum limit.
This was accomplished by two results (Theorem 4.1): FinstMalues ok and A
as functions ok andt that cause the proposed form (4.9) to be a solution to the
Riemann-Hilbert problem are equal to the functiarig,t) and3(xt) that give rise
to the spectral data (1), = '(u,t)) according to formulae (2.7) and (2.8). In those
formulae,« and are related tq and¢’ by equations (1.10), which define the Rie-
mann invariants of the formal PDEs. Second, values ahd )\ that do solve the
Riemann-Hilbert problem must satisfy(x, \,x,t) = 0 andG(x, \,x,t) =0, F and
G defined by equations (4.14) and (4.15), and therefore, dwisrg must evolve
according to the Riemann-invariant form (1.11) of the forRPREs. Assuming that
suchqgand¢’ are the true limit of the slowly varying modulus and phaséedénce
of the discrete systems as the lattice spacing tends to wera@onclude that the
formal PDEs do indeed describe their space-time modulatitms limit.

Appendix: The Direct and Inverse Discrete Spectral Transforms

In this appendix, we make the change of dependent vari@ple> Q,e 27,
which converts the DNLS system (1.1) to the system

(A1) iQn+ (1—|Qn/®)(Qn-1+Qni1) =0, neZ.

which we will denote by (DNLS. Using initial data with Qp(0)| = |Qn(0)| = 1,
we see thaQo(7) andQn(7) remain constant in time, and we may taBg0) = 1
andQn(0) = & with || = 1 without losing generality.

Remark. The ansatz (1.14) is formally inconsistent with the DNkstem, where-
as the ansatz (1.5) is consistent with both the DNLS and the®Blystems. This
is to be expected since the change of variable is made in sihdifiae-scale oscil-
lations. Using the ansatz (1.5) in the DNLsystem (which differs from the DNLS
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system only by the lack of the 2Q, term) only changes the dispersion relations:
Equations (1.3), (1.4), and (1.8) become, respectively,

w—2(1—g?)cosk =0,
w0 — (1= 03)(Gn-1+ Ons1) COSk =0,
¢ —2(1—f) cosgx =0,
whereas the first equation in the system (1.9)faremains unaltered.
The infinite DNLS system is a special case of more general discrete systems
considered by Ablowitz and Ladik [1], in which the authoradied systems of
differential equations using the language of matrices.h&t tontext, the present

system is expressed as follows: lzdte an arbitrary complex number, and define
the matrices

(A2)  Un(z7)= [an) Q”T(I)],

v i [ 2=Qua(m)Qu(r)  —Z1Qna(r) +2Qn(7)] .
03 w0l MURT FTe e |
then the system (1.1) is equivalent to the matrix evolutigstesn
(A.4) Un = Bny1Un — UnBy

for any fixed value oz In addition, (A.4) is the compatibility condition for the
following associated discrete-space and continuous-¢vodution prescription for
a two-dimensional complex vectd(z 7):

(A-5) UnJrl = UnUn ’
(A6) .Un - BnUn .

In [9], Miller et al. studied the spatially twist-periodicbfowitz-Ladik equa-
tions. A twist period ofN means thaQQ,.n = Qn{ for some unitary complex
numberé. The finite system obtained by requiring ti@¢ andQy be unitary, say
Qo =1 andQy = &, can evidently be extended to an infinite system with spatial

twist periodN. An important object in the theory is the “twist-periodianisfer
matrix”

0 ¢z
in which £1/2 may be either square root ¢f It is simple to show that the time
evolution equation foll is the commutation relation

(A.7) T=BT-TB,
by using (A.4) and the fact that

_|gt ofg |t 0
o[y a5 &)

T(zT)= F? 0 ]UNUNl'-'Ul,



SEMICLASSICAL LIMIT OF NLS CHAIN 29

Equation (A.7) shows that the tradéz) of T(z7) is constant in time, and there-
fore its roots as a function afare also constant in timeIn the inverse spectral
reconstruction of Vekslerchik, the upper left enfirjz; t) of the transfer matrix and
the quotient(z 7)/J(z) are central. One finds thdthas the form

J2)=tT(zT)=¢2Z

One then shows that

(A.8) -7 _
in which

A9) _p z V\/Lexp[ G H7]

Ck '

{Wk} are constant in time witly} ;W = 1, and

Z\/\&exp[ (Ck— G ) 7.

The formulae for reconstructing the soluti@a(t) from the data are as followss:
One first defines the quantities

N

(A.10) wj = kzlvvkg—i expl—i(C— ¢ M)l
and the so-called tau-functions

i wo -t Wne1
(A.11) An=det| : - 1|,

win o wo

i w1 -+ wp
(A.12) Ap=det| : . |,

worn e wi

andAg =1, and, in terms of these, one has

(A.13) Qn:(—l)”%, n=1,..N-1,
n

(A.14) 1o jQuf? = B0 o1 N1
n

3Vekslerchik [12] showed that this finite system is Hamiltomiand exhibited a Poisson bracket
andN first integrals of the flow that are in involution.
4Concise derivations were presented in [12]; details carbed in [10].
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The data{\W} may be multiplied by a common factor, and the formulae are not
changed. In fact, one can define the time-dependent qusntiti

(A.15) Wk (t) = Wieexp—i (¢ — ¢ 7],

and it turns out thaf N ;Wi (7) = W/(o0;7) = exp(2Im [ Q1 (7' )d7’).

We now study the case in which the ddt@,} forn=1,...,N — 1 are subuni-
tary (that is,|Qn| < 1). One observes, first of all, that the DNLf®ow preserves
subunitarity. Two consequences of such data which we wiilldish are that the
eigenvaluegy are unitary and the norming constaiisare positive. These results
will be crucial for characterizing the asymptotic behawbthe quantitieg\, in the
continuum limit. To begin, we appeal to an observation mad&iiler et al. [9]
that the spatial evolution of the vectdk(z) given by (A.5) can be understood as
the solution of a genuine eigenvalue problem. Assuming|®gt# 1, one makes
the change of variables

n-1
(A.16) Uh(2) =[] /1 |Qnl*Wn(2),
k=1

considers the first row of the linear system

~ (1) (1)

z Q Wn _ /1 2 Wnt1
[Qn Z—l:| [ Wr(12) ] — 1 |Ql’l‘ |: W(Z)l :|
n+

and the second row of the inverted system

— = (1) (1)
z1! —Qn Wner | 5| Wn
[—Qn z ] W2 | TV e ]
n+1
and sees that (A.5) is equivalent to
(A.17) NW(z) = 2W(z),

where the infinite matrix\ is defined by

— \/:I-__|Qn‘2A —Qn }
19 =SS e

W is the concatenation of the vectofg into a single vector, which is in general
infinite; andA is the shift operatoﬂwg') = Wg'jrl fori=1,2. The effect of impos-

ing unitary boundary condition®y = 1 andQy = £ is that both of the quantities
v/1—1Qo|? and /1 — |Qn/|? become zero and a\2x 2N block A within the infi-

nite matrix A becomes decoupled. By setting= /1 —|Qn|? and takingN = 4
as an illustration, the truncated eigenvalue problem

AW = 2w
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assumes the form

i 0 — 61 ap 1 -W(ll) 1 -W:(Ll) 1
1 0 0 we w?
0 0 Q&
a 0 0
(A.19) b _ _z
0 0 —Qs|as
a QZ 0 0 : :
0 0 —¢| |wd g
I 3 |Qs 0 | [y W |

We have introduced this point of view because of the follguiiseful connection
between the two formulations (A.5) and (A.17) of the spdirear problem:

LEMMA A.1 The set of roots of(Z) is equal to the set of eigenvalues of A.

PROOF. One observes first that if,, satisfies (A.5) fom=0,...,N andy is
not in the kernel obJy, then, forn=1,...,N, W, satisfies (A.19). First, since

z 1
Uo= [1 zl} :

Uy is a multiple of[z1]". Then, looking at the second row of the linear system
(A.19), one finds thati; is also proportional tdz 1]T. The change of variables
(A.16) then applies for ¥ n < N —1. Now looking at the penultimate row, one

finds thatwy and thereforely must be proportional t@—g_z]T, that is,

(A.20) UNDUN_l---Ul[ﬂ 0 [_ﬂ

Seeing thaly = [g z§1] , this means that

0
(A.21) UN+1DUN“'U1[HZ[O},
or, equivalently, that

since the rows ofJy are proportional. This is then equivalent to the condition

(A.22) tr ({ i] [¢z7Y] UN_l---U1> —0.
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Finally,
ieen-[E A5 8]l Ao 8w
which shows that the left side of (A.22) is sim@¥/2J(z2). O

We will use this lemma in Theorem A.3 to show that the root3(af are unitary
and distinct for subunitary daf@,}. In addition, in handling the continuum limit,
it will be crucial to know that the quantitie@\k} are real and positive. It is easy to
show that they are real, but to see that they are positivere=gmore understanding
of the functionF (2) in the transfer matrix. We first present some information
concerning the structure of the transfer maffigz, 0). Since we are now dealing
with the spatial problem at timte= 0, it will be convenient to denof&(z 0) simply
by T(z) andF(z0) by F(z). Parts (i) and (ii) hold assuming only th@p andQy
are unitary; in part (iii), it is essential th&®,| be less than 1 fon=1,...,N—1.

LEMMA A.2 (i) T(2) has the form

[F(Z) ﬂf(z)}
Z'F(2 F(2

whereF () = F(Z'1).

(i) F(2) is a Laurent polynomial in z that is either even or odd and vehiarst
and last terms aré/22N and ¢1/2Q,z N+2.

(i) All roots of F are in the interior of the unit disk. Given therwoin (i), this
means that the winding number of F as z traverses the uniedsequal to
N.

PrROOF. The proof is by induction on the matrices

Tk(2) = [502 é] Un---Uk.

The transfer matrixXT (z) is T1(z), and the lemma is just the following induction
hypothesis wittk = 1:

(i) Tk(2) has the form[z_lzlké:()z) Zﬁik((zz))].

(i) F(z) is a Laurent polynomial iz that is either even or odd and whose first
and last terms argt/2N-k+1 and¢l/2Qz (N-k+1)+2,
(liix) The winding number oFy asz traverses the unit circle is equalb— k+ 1.
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First, we calculate

We see that the hypothesis holds foe= N. Next, assuming the hypothesis for
somek such thatN > k > 1, we will prove it withk replaced byk— 1). Using (i),
one can write ouTy_1 = TUk_1:

_[ R A@][ 2z Qa

@ =, By B lors 35
:[sz(z)ﬂQ“AF“k(z) Q-1R(@) +A(2) ]
F(2) + Q1@ 7 'Qe1iR(@ + 2 R(2)|

By inspection, (1) and (ik—1) hold with
Fe1(2) = zR(2) +2Qc1F(2).-

To prove that the winding number(F1) of 1 is equal toN — (k— 1) + 1, we
observe thatF(z)| = |F(z)| wheneverzis on the unit circle and tha@Q_1| < 1.
An application of Rouche’s theorem then yield&r_1) = w(zk) = w(F) +1=
N—k+2. U

THEOREMA.3 Given subunitary datdQp} forn=1,...,N—1,

(i) The roots{z} of J(z) are unitary and distinct.
(i) The quantitieWk} are positive.

ProOF. (i) Referring to the formulation (A.19) for any fixed eigexiue z,
we observe tha; O [z1]". Itis evident, then, from formulation (A.5) tha
and thereforav, is uniquely determined up to a scalar multiple, and theeefor
the eigenspace & (recall thatA is the decoupledN x N block of A) for the
eigenvaluez is one-dimensional. In [9], the authors also comptité and
the adjointAT of A:

ALl |:an—1A1 Qn—1:| AT [a_n—lAl Q_n—l]
—Qn an |’ —Qn anh |’
When the datdQn} are subunitary, the quantities are real and thua—1 =
AT, and we conclude that the eigenvaluesApfvhich are shown in Lemma
A.1to be equal to the roots dfz), are unitary. In addition, seeing now thfat
is diagonalizable and that for a given eigenvatua unique one-dimensional
eigenspace is determined by (A.19), we concludeAltasN distinct eigen-
values so that the roots dfz) are indeed distinct.
(ii) First, by the definition of provided by equations (A.8) and (A.9), one has

i F@ (Z-7)
M_ZIETZ]kF(z)JrIf(z) 2z
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wherez is a square root ofy, and, using L'Hépital’s rule and the fact that
F'(2) = —z 2F’(2), one finds that

(A.23) W = 2F (2)

aF (20 -3 'F(z)

In addition, wheneve is unitary, F(z) = F(z) and ﬁ’(z) = F/(z), so any
unitary numberz is a root ofJ = F +F if and only if F(z) = —F(2), or
wheneverF (z) is purely imaginary. Therefore, using (A.23), we find that

L Im@E(2)) (2F (20 (o F(@
(A.24) Ve = TR _Im<—iF(zk)>_|m<lsz(Zk)>'

which is a real quantity equal to the angular derivativé-ads a function of
arg(z) atz= z.

To see that the quantitie@\} are in fact positive, we use part (iii) of
Lemma A.2 and the result (A.24) to deduce that the numbemafdithaf ()
crosses the imaginary axis in the positive angular diraciise traverses the
unit circle is at least®. It must cross transversally sing¢ * cannot be zero.
Since each crossing accounts for a roal(@j of which there are exactlyN,
we conclude that there are onliNZrossing pointg, for each of whichAk
iS positive.

O

By using the multilinearity of the determinant and then ingt\\ in place of
Wiexp —i(Ck — ¢ H)7], we get

An: :
(K. k) CE;l\Mq . Cankn
0 1—
n Gy o
= \Mq : :
(Ke,....kn) I= le:—l Clgn
1
1 1
n n J Ckl Ckn
= Wi Ck_- : :
(kaye-os I<n)JI:I1 JJEIl J ¢ Cl?n
1
n
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. g&l CI%H Ck_ll Ck_nl
I LA P S P
= kl<z<kn BWK D(cgl — G I]:!(ch — ;)
= kl<z<kn Bwkj r! |G — i -

At time 7, one then has

(A.25) Bo= Y [ Wk exmi(Gq — G 7l 16k — Gl

ki<-<kn]=1 i<]
Similarly,
. <|(21\A4<1 e Ck;%
An = ; R
(K-, kn) CI?—ZVW(:L . Ck_an\d(n
1
0 1-
. Ckl Ckn n
T Zm I_L%lij L
Lyeees = C”*l CO
k kn
A 1 1 2
= G W TSk — ki I*-
k1<z<knJI:!~ . J II:! J

The time-dependent form is

(A.26) o= % i "Wy ©XP1—1 (G, — G DT[] 16k — Gig -

ki<--<kn J= 1<)

We now go a step further and recall that

F(2) _ p2"2%60F(2) 2y W

J(z N 22— ()’
( ) |—| (22 . Ck) K=1 ( Ck)

k=1
from which we find that )

w— & E2F (@)

M (¢ — k)
K £k
Knowing from Theorem A.3 that these quantities are posiiiviellows that
|F (z)

W= M ¢ — <kl
KAk
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Inserting this expression into formulae (A.25) and (A.28)4, andA,, one arrives
at the expressions

(A27)  Dn= %H|F<zk>|exp[—i<<k—<k‘l>ﬂ [ 16-al™

kes jes,igs
(A28) A= % 1‘|ck—le<zk>|exp[—i<<k—<k—1>r] M 1G-¢lI™
se§) kes jes i¢gs

whereS\ denotes the set of all ordersubsets of the set of integefs,...,N}.
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