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WKB ANALYSIS IN THE SEMICLASSICAL LIMIT OF
A DISCRETE NLS SYSTEM

STEPHEN P. SHIPMAN*

Abstract. The linear spectral problem associated with the inverse solution of a
finite discrete nonlinear Schrédinger chain is studied in the semiclassical limit. The
discrete spectral problem is a recursion relation for a vector quantity, with boundary
conditions, depending on initial data and a spectral parameter. WKB analysis is per-
formed and then interpreted for the case that the quantities in the chain are less than
one in modulus. In this case, the spectrum lies on the unit circle and an asymptotic
density is obtained. The density is supported by known facts about the discrete spec-
tra, numerical results, and rigorous results concerning the asymptotics of the solution of
the spectral boundary-value problem. In addition, the norming constants in the spectral
transform are positive in this special case, and a proposed asymptotic norming exponent
is corroborated by numerical data.

1. Introduction. This article examines the spectral transform as-
sociated with an inverse solution of a finite defocusing discrete nonlinear
Schrédinger (DNLS) system of ordinary differential equations in the semi-
classical limit. The problem possesses a dichotomy of behavior depending
on initial data characterized by the unitarity or non-unitarity of the linear
spectral problem. Formal, rigorous, and numerical results lead to an un-
derstanding of the asymptotics of the unitary case. The non-unitary case
is not addressed and is as yet not understood. In the unitary case, the
spectrum of eigenvalues lies on the unit circle of the complex plane, and in
the semiclassical limit, the dimension of the linear problem is unbounded
and we seek an asymptotic density of eigenvalues. Naive WKB analysis
leads to a candidate for this density, which is then confirmed by numerical
calculations, comparison with properties of the spectrum of the discrete
problem, and rigorous asymptotics of the unitary eigenvalue problem. In
addition, the proposed density has been applied successfully in [S] to the
study of the semiclassical limit of the solution of the DNLS system. In
the WKB analysis, the discrete index in the system of ODEs approaches
a continuous variable and the typical intervals of “oscillatory” and “expo-
nential” behavior of the solution arise. The density, as usual, involves an
integral over an oscillatory interval. A candidate for the asymptotics of
the associated norming constant has been proposed in [S] in light of anal-
ysis there of the semiclassical limit of the inverse spectral solution. The
candidate, as is typical in such asymptotic problems, involves an integral
over the exponential intervals for a special class of data, and it was chosen
to provide the correct results in that analysis. It is not understood how
it may arise directly from asymptotic analysis. In this article, however, it
is corroborated by numerical results and by comparison with properties of
the norming constant for the discrete system.
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Previous work on continuum limits of discrete systems solvable by in-
verse methods and the asymptotic (WKB) analysis of the associated linear
spectral problem includes the analysis by Deift and McLaughlin [DM] of a
continuum limit of the Toda lattice. Using candidates arising from formal
WKB analysis, they rigorously established the asymptotics of the solu-
tions and the spectral density and norming constants. These results were
preceded by rigorous results by Geronimo and Smith [GS] on asymptotic
solutions to second-order recursion relations. Costin [C] has made rigorous
the WKB results for finite-order recursion relations. Akin to the WKB
analysis in this article but for the non-unitary case is the non-self-adjoint
Zakharov-Shabat eigenvalue problem in the semiclassical limit studied by
Bronski [B].

2. The spectral problem. The defocusing discrete nonlinear
Schrédinger (DNLS) system

ZQn + Qn—l - 2Qn + Qn+1 - |Qn|2(Qn—1 + Qn+1) =0

is transformed under the change of dependent variable @, — Qre~
the system

2it into

(1) lQn + (]- - |Qn|2)(Qn—1 + Qn-{—l) =0.
If one puts
(2) |Qo(0)| = [@n(0)] =1

into (1), then Qo and @y are constant in time and a finite subchain becomes
detached from the rest of the chain. One then has a finite system of ordinary
differential equations for @)1 ...Qn—1. This system is solvable by an inverse
spectral method [V].

In the semiclassical limit of the finite system, one considers initial data
of the form

®) 2.0 = gne)exp (Lot

in which ¢ and ¢ are fixed functions on the real unit interval such that
g(0) =¢(1) =1 and € = 1/N, and considers the limiting behavior of the
modulus and phase as € tends to zero. As we will see, the WKB analysis
lends itself to a meaningful interpretation with regard to the asymptotic
distribution of eigenvalues in this special case. However, if the condition
|@Qn| <1 is violated, there is no satisfactory interpretation (so far). The
reason for this is that the spectrum, in the case |@,| <1, is constrained to
the unit circle of the complex plane, whereas otherwise such a constraint
is not known.

We now discuss the eigenvalue problem associated with the inverse
spectral solution for the finite discrete system (1, 2). Let {Q,})_, be
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given such that |Qo| = |@n| = 1 and normalized such that Qo =1. Denote
@n by &

£=Qn, [£=1
Let z be an arbitrary complex parameter, and define the matrices
7 Q
Un(z) = _ni )
Qn 2

and the resulting “transfer matrices”

To(z) = [’52 g

0 & Un(2)...Un(2).

The eigenvalues in the spectral transform are the roots of the trace of T
as a function of z. We denote

J(z) = tr T1(2).
Let F(z) denote the upper left entry of T7(z). The coefficients in the

partial-fraction decomposition of F/J are the norming constants in the
spectral transform. One shows that

N
J(z) = &227N I_I(z2 —2}) (eigenvalues zy),
k=1

N
F W
J((j)) =22 I; ﬁ (norming constants Wy,).
In fact, the roots of J are equal to the eigenvalues of the following
boundary-value problem for the discrete evolution of a complex vector u,
in C2:

@ ) =V wl) = [7], uva = o]

The following proposition lists a number of facts about the spectral
problem. We use the notation f(z) := f(z~!). Proofs are omitted.

PROPOSTION 1. Facts on the spectral problem
1. On the spectrum:

(a) There are 2N eigenvalues, counting multiplicities.

(b) The eigenvalues exist in plus-minus pairs.

(c) If z is an eigenvalue, then so is z71.

(d) If the values of Q. are all real, then the eigenvalues exist in

conjugate pairs.
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(e) If {Qn}1_o has spectrum {+z}I¥_,, then, for any real con-
stant x, {Qne"™}_, has spectrum {£zpe=X/2}N .
() If1Qn| <1 forn=1,...,N-1, then |zx|=1 for k=1,...,N
and the eigenvalues are distinct.
2. On the norming constants:

N
(@ & Wi=1.

(b) IfZ,;l = z; then W, = Wy.
(c) If |Qn| < 1 forn=1,...,N—1, then the norming constants
Wy are real and positive and

_ Gi = |F(z)|

Wi =
[T |z — 23]
k' #k

(I@nl <1).

(d) If the Q, are all real and 2y = Zi, then Wy = Wy. In
particular, if |Qn| <1 forn=1,...,N—1, then Wy = Wy >
0 and Gy = Gy,.

(e) Using the notation in (2e), if {Qn}1_ has norming constants
{Wi} and 2z = zve X2 then Wiy = W.

(f) If |Qn| <1 forn=1,...,N—1 and the G}, are all equal, then
the Q,, have the property that Qn_, = £Qn.

3. The asymptotics of the spectral transform. We consider the
eigenvalue condition in the semiclassical limit. The dependence on the
spectral parameter will usually be suppressed. Let continuous functions g
and ¢ be given such that g has two continuous derivatives and ¢ has three
continuous derivatives and

q:[0,1] —=1[0,1], 0<gq(z) <1 for ze€(0,1);
¢ [07 1] - R, ¢(0) =0;

and put Qn, =q(ne) exp(£d(ne)). The eigenvalue condition is (4), in which

U, z g(ne) exp (—éqﬁ(ne))

q(ne) exp (L¢(ne)) 2zt

To make the problem amenable to WKB analysis, we can remove the large
exponent from U,, by means of the change of coordinates

. p(ne)
Ul e e ,al
_ n| _ n|.
u, = 2 - i¢(n€) .2 )
un e’ 2 un
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then the vectors w1, = [ @} @2 ]’ satisfy

i dn ¥n
il il 2 Ly
5 Unti | _ g7 | Un U = ze In€
(5) o | =Un| 5|, Un= B E
Un+1 Up qne—z—" z—le—zT"

in which ¢, = w and g, = g(ne). Let At be the eigenvalues

- +
of U, and p;: corresponding eigenvectors, and set 6,, = arg i—’: Then the
following expansions are valid:

U, = U'(ne) where U'(z) = Ux)+elU,(z)+ O(e2),
©) M = AF(ne) where AT(x) AE(@) + edi(z) + O(e2),

6, = 0°(ne) where 6°(x) = O(x)+ el (x) + O(2),

pr = Eie(ne) where jEE(ch) = Ei($)+6pi+0(62)

So the underscore signifies functions of the continuous variable z. 2 (2)
and p*¢(z) are the eigenvalues and eigenvectors of U ‘(z), and 0°(z) =

>\+‘(w)
A (2)

arg . One sees that

(7) U(z) = o ]

and, for unitary spectral values z = e,

(8) A% = cos (77 + ﬁ) \/q% — sin® (77 + %)
(9)  AF(,e™) = cos (n + @) + \/q(rfc)2 — sin® (n + @) .

3.1. WKB anaylsis. We begin the asymptotic analysis with a naive
WKB approach to determine the leading-order behavior of the vector

[ al a2 ] We consider the approximate problem for vectors v,, given by

Va4l = Q(’I’LG) Van

and perform leading-order WKB analysis on the components of v,, with
respect to the basis of eigenvectors Ei (ne) using the ansatz

1) vo=exp (£84(00)) p*ne) + exp (£5-(n0)) (00
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in which S} and S_ are functions of z that are to be determined. We write
Vp+1 in two ways: On one hand,

Vpt1 = Zexp ( (S+(ne) + €S%(ne)) + O(e )) jE(n(:‘+ €)
= Zexp ( S ( ne)) exp (S4(ne)) (1 + O(e)) p*(ne + €).

On the other hand, from the evolution of v,,,

Vo4l = Z AE (ne) exp (%Si (ne)) Ei (ne)
(11) -
= Zexp ( Sy ne)) A (ne) (Ei(ne +e) + 6(6)) :

Comparing the two representations of v,,41, one obtains the formal result

SL(e) = g (@), or Su(o) = [ “log(1*(y) d

Let us consider the implications of this result in the case that 0 <
g(z) <1 for 0<z <1. By Statement (2c) of Proposition 1, this condition
constrains the spectrum to the unit circle. Thus, let us put z = €. The
ratio of the WKB components of v,, with respect to an eigenvector basis,
which will be relevant in proposing the spectral density, is

exp (194 (z,e™)) [1 /”” AT (y,e'm)
R(z,n) = P\ ) —exp |2 [ tog 2 ) |
O e (b (,em) ~ P e B A em

We make some observations about the values of Ai and this ratio: Ai
are either both real with the same sign or complex conjugates of each
other. For a given value of 7, z-regions with these different properties
are separated from each other by “turning points” z, for which ¢?(z,) =

n? (n + %) In an z-interval in which A*(z) are both real, we find

that R(z,n) is a real-valued function of z (plus a complex constant), and
in an z-interval in which A (z) are complex conjugate, R(z,7) is a unitary
complex function of z (plus complex a constant). Thus the interval [0, 1] is
divided into “exponential” and “oscillatory” intervals separated by turning
points, which depend on the value of 7. For generic values of 7, the z-values

0 and 1 are endpoints of exponential regions.

3.2. The spectral density. We now use the formal WKB result to
propose an asymptotic distribution of eigenvalues. Letting [ ¢}, ¢2 | rep-
resent the vector 11, with respect to the basis {Ei}, the boundary-value
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1
problem (4) sets conditions on the quantities arg < ) atn=1andn = N.
Since we know that the eigenvalues are unitary, the problem is to specify
those values of z, as z traverses the unit circle, for which the total increment

1
of arg (%) is equal to arg ( ) —arg ( ) + 27k for some integer k. We
CN-1

1
already have the leading order behavior of arg (—g) it is constant in an

At (z)
A™ (=)
Thus the total increment from n=1ton=N(orz=0toz=1),to

exponential region and equal to % J " arg & dz in an oscillatory region.

leading order, is = fo arg < )\ ( ) dz where the integrand is zero when z is in

an exponential region. The asymptotic condition for eigenvalues z = e
is then

1 +
! / arg 2 @2) 40 ork (e = 0).
0

Using the expression (9) for the eigenvalues AT (x;e), one computes

+
arg 2(:e™) and finds that this condition becomes
A7 (z;em)

U(n) ~ ek (e —0),

where the asymptotic spectral distribution ¥ is defined by

\/ sin” (n + —¢'§z)) — q(z)?
cos (77 + —¢'§z))

To determine the limiting density of eigenvalues, we see that the number of

eigenvalues in a 7-interval on which ¥ is monotonic is given asymptotically

by 1/e times the absolute value of the increment of ¥ over that interval.
Thus we obtain the density

p(n) == [¥'(n)|

dzx.

1 1
¥(n) = — / arctan Re
0

™

(12) l sin (77+ @)

1
/Re /IS
e e (22 - e

This means that, for any subinterval [1;,72] of [0, 27],

n2

1
#[m1,me] ~ —/ pm) dn (e —0),
€ m
where “#” indicates the number of eigenvalues in the given interval.
One can confirm that the asymptotic analogs of the spectral properties
in Part 2 of Proposition 1 do hold for this proposed density:
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Asymptotic analogs of Proposition 1, Part 1.

a. The number of eigenvalues should be asymptotically equal to 2/e.
This is the statement that

/:r p(n) dn = 2.

When ¢'(z) is taken to be constant, this is easily verified. In this
case, ¥(n) is increasing (resp. decreasing) when sin(n + %I) is
positive (resp. negative), and one finds that its total variation is
2.

b. The asymptotic analog of the plus-minus parity is that p(n) =
p(n + ).

d. The @, being real corresponds to ¢(z) = 0. In this case, p(—n) =
p(n), which is the analog of conjugate parity of eigenvalues. Be-
cause of (b), there is then a four-fold spectral symmetry.

e. Multiplying the @, all by ei"X is asymptotically analogous to
adding the constant x to ¢'(z). This does indeed shift the pro-
posed density function by —x/2, as it should.

3.3. The asymptotic norming exponent. It can be shown that

the norming constants have the following asymptotic behavior in the semi-
classical limit:

liH(l]ElOg Gr, =I(ns) if oz, — €™ as e—0,
€—>

where J is a function defined on the support of the asymptotic spectral
density and is determined by ¢ and ¢. In the case that these data give
rise to exactly two turning points for values of 7 in the support of the
asymptotic density, a candidate for the asymptotic norming exponent J(7)
has been proposed in [S]. One shows that the turning-point condition

q(z)? — sin? (77 + @) -0

is equivalent to

2n = a(x) + 2kn or 2np=B(z)+ 2kr for some k

where

(13)

2arcsin(q(z)) — ¢' (),
B(z) = 27— 2arcsin(q(z)) — ¢'(z).

a(z)

and S(z) > a(z), with equality only at 0 and 1.

dJ
(14) an

The proposed form of the derivative of J is

: ¢’ (x)
z_(n) 1 sin | +
/ / ( 2 )
0 z4.(n)

Re
Y- (n+ 252) + aGor

dx,
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which is defined in the support of the spectral density. The + sign is
chosen as illustrated in Example 2 of Section 4. One can compare with this
formula the asymptotic analogs of the properties of the norming constants
in Part 3 of Proposition 1.

Asymptotic analogs of Proposition 1, Part 2.

d. The @, being real corresponds to ¢(z) = 0. The symmetry of the
norming constant about the angle m/2 corresponds the the anti-
symmetry of dJ/dn, which is confirmed in the proposed formula.

e. Multiplying the @, all by €™ is asymptotically analogous to
adding the constant x to ¢'(x), thus shifting the proposed asymp-
totic norming exponent by —x/2.

f. The property Qn_n = £Q, corresponds to the symmetry of ¢ and
¢' about = 1/2, and one shows that the candidate for dJ/dny is
zero in this case. This corresponds to the converse of item (3f).

A natural candidate for J(n) may be derived heuristically as follows:

N N
1 ; 1 ; 1 L,
~10g [ P(e)] ~ — 1og ] [Un(e)] ~ - log T | max| Ak (e™)

n=0 n=0

N
1 )
~ = E log max |\ (ei)|

n=0

1
~/ logmax |\t (z, e™)|dz =? I(n).
0

One finds, indeed, that this integral coincides numerically with a limiting
upper envelope of the functions + log |F(e‘")|. However, + log|F(e)| =
% log G, from = 0 to § = 7, has N—1 spikes emanating downward from
this upper envelope, and the N points (7, % log Gi) lie at various places

along these spikes. This is illustrated in Example 9. Thus, % log G, is not
given by fol log max |A\E (z, ¢)|dz. Recall that 38 Wy = 1 and

G

[T |2k =zl
k'#k

Wy =

So +1og Gk < % kék log |23 — 22,| for each k. If one calculates numerically
the asymptotic form of the right-hand side,

1 4 . -,
¥ 2 loglsh, —zbl~ [ logle - jp)ar’ (N = o0)
K #kn

if 2y — € as N — oo,

one finds that it also coincides with the limiting upper envelope of
+ log |F(e™)] (even for values outside the support of p).
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4. Numerical results. The numerical calculations in Examples 1
and 2 compare the proposed asymptotic spectral density p(n) and norming
exponent J(n) defined in (12) and (14) with actual spectral data for various
choices of ¢q, ¢, and N.

5. Asymptotics of the transfer matrix. In this section, we take a
rigorous approach to determining the asymptotic behavior of the transfer
matrix over an oscillatory region and over an exponential region and estab-
lish some asymptotics of the solution to the linear problem. Let [a, b] be an
oscillatory or exponential interval for data ¢(x) and ¢(z) and spectral value
e whose distance from any turning point is bounded from below. Define
n = [a/€] and @ = |b/e], and let [cL, 2]t represent the vector ii,(e) in
the eigenvector basis {p:(e)} for U, (e™).

THEOREM 2. Given the notation above,

1. Let [a,b] be an oscillatory interval. Then, for each sufficiently
small € > 0, there exists a solution [ ck 2 ]t such that, if ne €
[a,b], then

Cl 1 ne )\+ (y)
no— - 2P gy + A(ne) + o(e, ne),
arg R /a arg W) Yy (ne) + o(e, ne)

(A*(ne) + 04 (€,ne)) exp (% /am A* (y)dy) ;

1,2
c,)

in which A(x) and AT (z) are continuous functions depending on
q and ¢ and the choice of eigenvectors and

Q(eam)a Q:I:(€7 .23) = O(]-) (6 - 0)7
uniformly in x.

2. Let [a, b] be an exponential interval, and suppose that 0 < X,, < A}.
Then, for each sufficiently small € > 0, there exists a solution

[l & ]t such that, if ne € [a,b], then

ch = (B0 + alenes (1 [ 4 way)
@ =oengen (1 [ at o),

in which B is determined by q and ¢ and the choice of eigenvectors
and depends continuously on its arguments and

er2(6z) = o(1) (e —0),

uniformly in x.
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0.2

0.6 0.8 1

F@)

0.4

Turning points

\\

0.2

Asymptotic spectral density

Example 1. This is an example
in which ¢' is not constant so that
the spectral density has no sym-
metries. The value of the density
changes abruptly at the values of 1
that separate regions with two turn-
ing points from those with four. The
approximate density for 1/e = 750
was obtained using 10 eigenvalues
per density point. Two observations
about the n-interval with four turn-
ing points: The three points where
the upper and lower envelopes for
the irregularly placed values of the
approximate density come together
coincide with the graph of the pro-
posed asymptotic density. Using
more eigenvalues per density point
decreased the deviation from the
asymptotic density.
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@

0.8

/2 and B(z)/2: turning points

<

%
K
0 0z o4 o5

()
08

1

dJ/dn and diff. quot. of log(Gy,)/N for N = 16.

02 -

0.1

0.5

0.3

0.1

-0.5

o pi/2 pi

Example 2. J' is symmetric about 7 /2—
1/4. This is because, if q and ¢ are sym-
metric about ¢ = 1/2, then J' is sym-
metric about n = /2, and the shifting
up of ¢' by 1/2 produces the shift to the
left of the spectral data by half of that.
The bottom graph above illustrates sev-
eral things: The lower string of circles
shows the values of 3 log |F(e™)| (black
line) evaluated at the eigenvalues ny, for
N = 16. Such data are difficult to obtain
for large values of N because of the sensi-
tivity of F' to changes in 1 on the spikes.
For very large values of N, however, an
upper envelope for % log F(e®) can still
be calculated, and the limiting values
of this envelope as N — oo is repre-
sented by the grey curve. Also coinciding
with the grey curve are the two asymp-
totic quantities discussed in Subsec-
tion 3.3—f01 log max |A\*(z,e™)|dz and
JJ log|e?™ — e |p(n')dn'.  The up-
per string of circles are the quantites
> w i log|zi — 23| plotted against 7.
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5.1. Preliminaries. Let U, be the matrix taking [cl 2 ]t to

[chiyr 2 ]t. Then U, = M,A, where A, = diag(A\},\;) and M,
is the change-of-basis matrix from {p},p;} to {p,},{,P,;;1}- Assuming
three continuous derivatives of ¢ and two of ¢, and using the expansions (6),
one computes that M,, = I +e€R,, where the entries rflj of R,, have the prop-
erty that, for some differentiable functions r® of z, |r¥y — r*(ne)| = O(e)
uniformly in z € [a,b]. This means that r¥ = r¢(ne) for some functions
r¥€ of x such that r¥¢(z) = r¥(z) + O(e) as € — 0 uniformly in z. We will

study the asymptotic behavior of the transfer matrix T taking [ ¢, ¢} ]

to [C%Jrl C%+1 ]5
T := [[ Un = J] (I + €Rn)An.

The multiplication is ordered, factors with a lower index being to the right
of factors with a higher index. We will study the case in which [a,b] is
contained in an oscillatory z-region and the case in which it is contained in
an exponential region. We begin the analysis by bringing this expression
for T into a form in which its structure and limiting behavior is more
transparent. Expanding in powers of €, T takes the form

L
T¢ = Z Ty
£=0

where L = —n+ 1 and

T, = Y, (ﬁ AH>RW f[ Ay

n<ni<...<ne<n \n=ng+1 n=ng+1

---Rn2< H An>Rm ﬁAn

n=ni+1 n=n

n
and Ty := ][] An. One can bring out a factor on the right, common to
n=n

each Ty, by using the following formula recursively: For any i < n' < j,

A+

j n! ril A VI
—m! n
I a)re (18] =] e A
A A ;
n=n'+1 n=i 'r%} H }\—1 r?ﬁ n=i
n=n'4+1""

Setting first (¢,n', 7) equal to (ng_1 +1,n4,7), then (ny_2+1,n¢ 1,7), and
so on up to (n,n1,7), we arrive at the following expression for T:
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n
T, = > Rp,co-RuRoy | ] Ans
n<ni<...<ng<n n=n
in which
n
)\+
oz I M
R A
Rn’ — -~ n=n'+1
21 An 22
o I 3% o
n=n'4+1""
Using the notation
Pﬁ = E an ° Rn1 )

n<ni<...<ng<n

we can write
n
T, =P, [] Ax
n=n

to obtain the form

L n

T =Y P | [] An

=0 n=n

One computes the products Rm .- -Rnl (the sums are over n):

R, R, =
nz - oo+ +
11,.11 12,.21 A 11,.12 A 12,.22 A
TnyTny T TnaTny 11 ’%3 TnoTny I1 = t T,y ~
ni4+1"" ni4+1"" no4+1""
r21pl1 ﬁ >\_5+T22r21 ﬁ An r22p22 4 21,12 AF ’
n2' ni At nz2’ ny AT na' n1 na' 1 =
na+1"" ni4+1"" ni4+1""
and the first column of R, R, R,, is
ng — ne  y— n3g y—
11,11 .11 12,.21 .11 A 11,12 .21 A 12,.22 .21 A
Tng ”'n27'n1 + Tng T‘ng”‘nl H )\7-: + Tn;;rnzrnl H # + rng,"ng T‘nl H ﬁ
-~ ng-tl n nl+1 n n1+1 "7
p21 11,11 ﬁ /\%_anzrmrn a A%+T22T22T21 n %+T21T12T21 ﬁ /\% ﬁ AT_:
ng’' ng n1n3+1An ng ' ng' ni 2+1>‘n ng' ng n1n1+1>"’1 ng’' ng n1n1+1A"n3+1)‘”

Inductively, we find that R,,---R,, includes the terms rL!---rLl and
r22--.r22 in the upper left and lower right entries, respectively. The rest
mh Ay

of the terms all contain factors that are products of the form I—[n:n,l &
In the first column, A;; always appears in the numerator, and in the second
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column, A} always appears in the numerator. We find then that P, has
the form

11 11
Trg " Ty 0
P, = n<ni<...<ne<m

22 22
0 E Ir’ng . T’nl

(15) n<ni<..<n,<m

(2¢1—1)terms  2‘!terms
+

n<ni<...<ng<m 2¢-1 terms (261 —1) terms

(Py is the identity matrix) where the “terms” are as described above.
By induction on £, one can prove the following Lemma on the struc-

A~

ture of the first column of R, --- R, and a similar lemma for the second

A

column. Rm -+ Ry, is assumed to be in simplified form in the sense that

AF Ay
factors of the form T2 2 are removed.

LEMMA 3. on the first column of Rm Rnl

1. The first entry contains the term ril ---ril and 2°='—1 terms with

ma —
factors of the form ] :—1 for my,mg € {ny,...,ne} (not the
n=mi1+1""
empty product). These factors have the following properties:

(a) For any n, the factor i—_"; occurs with multiplicity at most 1.

(b) For one factor, ma = ny.

2. The second entry contains 2t~ terms with factors of the form
ma

IT i—:: for mi,ma € {n1,...,ng, 7} (not the empty product).
n=mi1+1""
These factors have the following properties:
e

(a) For any n, the factor & occurs with multiplicity at most 1.
(b) For one factor, ma = .

5.2. Oscillatory region. Let us now consider the case in which [a, ]
is contained in an oscillatory region. The goal is to show that, as € tends to
zero, the transfer matrix is asymptotic to a diagonal matrix that depends
only on ¢ and ¢, times []'_ A,. The task is to show that, by letting €

tend to zero, one can bring the expansion Zf:o €' Py into any vicinity of
a fixed diagonal matrix. Whereas Py is just the identity matrix, it is not
obvious that the e!-term

n

+
11 12 An
7’”1 7’”1 H IE
eP =€ n=n1+ ,
— | .21 An 22
n<ni<m | T I1 N L
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for example, is tending to a diagonal form. One expects the diagonal
entries to converge to the integrals f; r¥(z)dz if the functions ¢ and ¢ are
sufficiently smooth. One can apply a naive formal argument to the other
entries by replacing the product in, say, the (1,2)-entry by its asymptotic
form exp (i [ 6(2')dz') and replacing the sum by an integral:

i )\"r b 1 b
e Y 11 = /fm(w)exp i—/ 6(z")dz' | dz.
n a € €T

n<ni<n n=ni+1

This formal limit does indeed tend to zero; however, converting what is
essentially a Riemann sum into an integral is not so simple because of the
fast oscillations in the integrand. Indeed, the period of the oscillations is
at the order of the mesh size €.

A similar but more complicated situation occurs in the higher-order
terms in the expansion of T¢. In an oscillatory region, the “terms” in
expression (15) for Py are, for some index h, of the form

Nhy1 \E
(10 R R A |
n=nnp+1 """

where nj,41 may be equal to @ and ny_; may be equal to n, the asterisk (¥)

represents any superscript from the set {11,12,21,22}, and u is a product
of expressions that do not depend on np and are of the form Hzlin,l %
and are therefore unitary.

Again, one expects the quantities €’ > ré ...l to con-

nny<...<ng<m
verge to an f-fold integral over the region a < z; < --- < ¢y < b. Each
of the other terms is oscillating in at least one of the variables n;, and,
extending the technique discussed above for the case when £ = 1, one can
show that each of these terms converges to zero.

Now, the number of these terms grows exponentially with £, and, as
€ decreases, the degree L of the expansion of T in € increases. One can
solve these problems with the observation that the number of terms in a
sum over n<ny <...<ny <7 is less than (}) (recall that e=1/N), and,
upon multiplying by €, one can bound the whole expansion containing the
“terms” of T by a quantity that tends to zero as € — 0. The details are
in the proof of Proposition 5.

In formulating the lemma, the interval [a,b] must be bounded away
from any turning point so that the functions r%(z) are bounded and the
function e(*) is bounded away from the real axis. We make the following
definitions:

e Let the number ¢ be such that |1 — exp(if(z))| > o for z € [a, b].
e If ¢" is continuous on [a, b], then % is bounded on [a, b], so there
exists a number & such that |8(x2) — 8(x1)| < k|za — 21| for all

Z1,T2 € [a,b].
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e The difference quotients 22+9—2(#) converge to ¢ (x) uniformly
on [a,b] provided that ¢ is continuous. This implies the existence
of a number 7 such that |6, — 8(ne)| < 7€ whenever ne € [a, b].

e One can verify that the functions r% (z) have continuous derivatives
on [a,b], and this implies the existence of a number # such that
|1 (z2) — r¥(z1)| < Blwy — m1] for z1, 22 € [a,b].

e The existence of a number v such that, for 4,5 € {1,2}, |r¥/ —
r¥(ne)| < ve has already been discussed.

e The continuity of the functions % (z) and the previous bullet imply
the existence of a number « such that, for z,ne € [a,b], [r¥ (z)| <
a and [r¥] <o

e Define S;(a,b) = f: rii(z) dz, for i=1, 2.

The first lemma obtains estimates on the oscillating terms in Py. One
must understand why the sum over n < n; < --- < ny <7 of any one of
these terms, multiplied by €, tends to zero. Let Y denote a general one of
these quantities:

Mh41 A:I:

4 * * * n
T:=¢ E Trg T " Ty (1) H =
n<ni<...<ny<m n=np+1 """

LEMMA 4. Let [a,b] be an oscillatory interval with posz’tive distance
from the set of turning points, and let o > 0 be given. Then € > 0 can be
chosen sufficiently small such that whenever 0 < € < €, |T| < Q (e 1), for
any quantity of the type Y.

Proof. Denote by 8(x) either arg (A Ez%) or arg (i;gﬁ)

i
the corresponding quantity arg (A—;) Rewrite T as

—

), and by 6,

nhy1—1 Thi1
=t Z T Trp Tny () [ € Z , €XP Z o0 | |-

n<ny<...<np <...<ng <N nhznh_1+1 n=np+1
A%

The circumflex marks a removed factor or variable. Since |r},, ---#); -

i—
ri (u)| < a~! and there are no more than (,,) < (JX_—I;, terms in the
outer sum, we see that

al-1 Nht1—1 Th+1
T x i 0 .
( ) | |< (f 1).n§n1<...213;:§...<m§ﬁ ¢ Z r"h exp (Z Z n)
np=np—-1+1 n=np+1
Let us study a single quantity of the type

nht1—1 Th+1
Q:=¢ Z . €xXp ( Z 0 >

nh=np-1+1 n=np+1
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Let g be given such that 0 < ¢ < £ and §® < £|b — z.| for all turning
points x*{gand assume that 0 < € < §%. Let M be a positive number such
that M—2 < e < M~ < p%. The following procedure applies to any one
of these quantities Q). First, if (npy1—np_1—1)e < M4, then it is clear
that |Q| <aM . Otherwise, if (npy1—np_1—1)e > M~*, then we divide
the interval [(np—1 + 1)€,np41€) into disjoint subintervals [emy—_1,emy),
k=1,..,K where mg = np_1 + 1 and mg = np41, such that, if we set
My =my —mp_q for k=1,...,K, then M~* < Mye < 2M~*. The first
part of this inequality implies K < M*. In summary, the conditions are

M=% <e< M~ < 58,
M~ < Mype < 2M ™4,
K < M*.

Now break Q) into a sum
K
(18) Q=€) O,
k=1

in which
mr—1 Th41
Qp := E Ty, XD | @ E 0,.]|.
Mh=Mk—1 n=np+1

If we define v, =ry, exp (i Y24 | 6y), then we can rewrite Q, as

mp—1 mi
QO = Z rflhexp ) Z 0,
NE=Mr—1 n=np+1

and compare it with the “constant frequency and amplitude” quantity

mkfl

Q= Z r’fnk expli(my — np)0(mye)].

Mp=Mkg—1

First, for any n, such that my_1 < np < my,

exp (z i Hn) = exp[i(my — np)0(mre)] exp (z Z’C (6n —Q(mke))>

n=np+1
and, from the definitions of k and 7,
|6, — 8(mge)| < Myex + er

whenever my_1 < np < my, SO we get the bound

mp

Z (0r — B(mye))

n=np+1

< My (Myek + €1).
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Thus, using only Mye < 2M~* and M~% < €, we get

exp (z i 6n> — expli(my — np)8(mye)] | < My(Mypek + 1)

n=np+1

(19)
<4kM~3 +2rM~4

for mg_1 < np < myg. Second, by the definition of 3,

(20) Ik —rk | < MyeB + 26y < 2B8M~* +2yM 6

mg

whenever my_; < np < my. Putting (19) and (20) together, we find that
whenever my_1 < np < myg,

Tk exp (z Z 0j> — ¥ expli(mi — np)8(mye)]| < CM~—3

n=np+1

for some constant C' depending only on the functions ¢ and ¢. Using the
same two inequalities as for the bound (19) and the fact that there are My
elements in the sums Qj and Q, this estimate implies

(21) |, — Qx| < 2CM.

To bound the quantities Qj, we write

My,
O =1k, Z exp(inf(mye)),

n=1
whence
. exp(iMyb(mpe) —1| 4
22 Ol < -
(22) ] < o | = tmee) =1 | ~ %o

where o is as defined above. Combining (21) and (22) with our assumption
that M > 2 yields

(23) Q] < C" M.
Going back to (18) and using that eK < M2, we get
o <cMt

where the constant C' depends only on ¢ and ¢. Then going back to (17),
we finally obtain the result

{—1

CM <

o
X< 7= -1
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The Lemma follows by taking

1
0= min{%, 5,2_%|b — m*|% : Z, a turning point}
and € = pS. u|

PROPOSTION 5. Let [a,b] be an oscillatory interval with positive dis-
tance from the set of turning points, and let o > 0 be given. Then there
erists € > 0 sufficiently small such that whenever 0 < € < €,

n
eSi(ab) 4 11 012 T AF 0
TE = n=n
0! S2(ab) 4 g2 0 ﬁ A=

n
n=n
for some complex numbers 0¥ such that |0"| < ¢ fori,j =1,2.

REMARK. The convergence of the left-hand factor to a diagonal form
as € tends to zero is not uniform as a or b nears a turning point. However,
it is uniform over all z-intervals whose distance from any turning point is
bounded below by some positive number. Notice that S;;(a,b) depend on
the choice of eigenvectors.

Part (1) of Theorem 2 can be deduced from Proposition 5, though the
details are not presented here.

Proof. Consider first € times the diagonal matrix in expression (15)
for P;. The quantitiese’ Y-, ., _ . < 7h, -~ -7}, are essentially Riemann
sums for the integrals

[ [ rta i doy-de
Re

in which the integration is over the subregion R, of [0, 1]¢ described by the
inequalities @ < z1 < ... < gy < b. These integrals are in fact equal to

1 b b - 1 b £
ﬁ/ / E“(wl)...tm(xl) dxl“‘dwf = ﬁ / E”(x) dx

1
= (Sifa,1)"
The sum over all £ should then converge to e%(®b)  This can be made

rigorous, but the details are omitted.

Regarding the second summand of /P, in equation (15), we see that
any one of its entries contains no more that 2¢~! terms of the type Y, and
so by Lemma 4, given g > 0, the sum over all these terms can be made to
be less in modulus than @% for each £ by taking e sufficiently small,
and thus, in the sum over all £, this second summand contributes less than
oexp(2a) in modulus to any entry of the matrix Ef:o et p,. a
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5.3. Exponential region. We now turn to an exponential region
[a, b]. Let us suppose, for the sake of the argument, that 0 < A~ (z) < AT (z)
on this interval. Referring to the form of P, computed on page 15, we
observe that each entry of its second column consists of terms containing a

factor of the form []. which are summed overn < n; < ... <ny <7,

n=ng A+ )
and one expects these to converge to zero as € — 0 since 2z 2 < 1. The first

column contains a sum over n < n; < ... < ng <7 of terms of the form
[t 2

T but np41 is never equal to n except in the term containing

the product 7% which has [["_, 2= as a factor. This suggests that,

although both entries of the first column diverge as € — 0, the upper left
entry will dominate. This can be proved rigorously as long as the interval
[a, b] is bounded away from any turning point. Suppose that, for some fixed
value of s with 0 < s < 1,

nﬂ

A (z)
At (@)

<s for z€]la,b],

and let a, 3, 7, and S;(a, b), be defined as before (o, 3, and v depend on s).
The following proposition makes precise what is meant by the dominance
of the (1,1)-entry of T°.

PROPOSTION 6. Let [a,b] be an exponential interval with positive dis-
tance from the set of turning points, and assume that 0 <\~ (x) < AT (z)
for every x in [a,b]. Then, for any o > 0, € > 0 can be chosen sufficiently
small such that

e — eSl(a,b)+ 011 012 ﬁ A-i—
n
021 022

whenever 0 < € < €', for certain numbers g;; with modulus less than o.

Proof is omitted.

REMARK. The convergence of the left-hand matrix as € tends to zero
is not uniform as a or b nears a turning point since a suitable value of s
approaches 1 near a turning point. However, it is uniform over all expo-
nential z-intervals whose distance from any turning point is bounded below
by some positive number.

Part (2) of Theorem 2 follows from Proposition 6.
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