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Abstract – We obtain convergent power-series representations for Bloch waves and their complex disper-
sion relation in an infinite periodic array of micro-resonators, which exhibits artificial bulk magnetism. The
small parameter η of expansion is the ratio of period to wavelength, and the high conductivity is inversely
proportional to η. The coefficient fields are solutions to an infinite sequence of period-cell problems.1

I. INTRODUCTION

Periodic arrays of micro-resonators consisting of metal shells or rings were introduced by Pendry, et. al., [6] for
the purpose of creating bulk magnetism at desired frequencies. When the period of the array is small compared to
the observable modulation of the fields, the key element in the creation of magnetism is high conductivity in the
resonators. Even if the component materials are magnetically neutral, the balance of small cell-to-wavelength ratio η
and high conductivity produces a magnetic flux through the rings at the microscopic level, thus creating magnetic
dipoles, and the effect is the emergence of bulk magnetic activity. Rigorous two-scale analysis has been carried out
for a 2D model by Kohn and Shipman [5] and for a 3D model by Bouchitté and Schweizer [1].

An analysis of the limit of vanishing η, often called the quasi-static limit when the operating frequency is nonzero,
begins with a formal power series expansion of the electromagnetic fields, which are assumed to depend on a
macroscopic variable x and a microscopic variable y ∝ x/η,

u(x) = u0(x,y) + ηu1(x,y) + η2u2(x,y) + · · · .

Typically, the first term or two suffice for the calculation of the bulk properties of a sample of the homogenized
medium, and rigorous analysis utilizes the theory of two-scale convergence. The effects on the fields due to bound-
aries or interfaces between the sample and another medium are more subtle and can be large compared to η. Thus
one does not normally expect the power series to converge for nonzero values of η or even to be an asymptotic
expansion for fields in the medium. But if one considers an infinite periodically micro-structured medium without
boundaries and assumes that the field has the form of a Bloch wave, it turns out that the power series do converge
within some radius η < R > 0. Thus one has a representation for fields near but not at the quasi-static limit, which is
valuable for the investigation of the properties of the metamaterial in its own right, and in particular the contribution
of higher-order multipoles to its bulk characteristics. A demonstration of the convergence for a two-dimensional
array of micro-resonators is the objective of this paper.

The approach is to expand the waves and their dispersion relation in power series in η and obtain an infinite
sequence of unit-cell problems coupling the coefficients of the field and the dispersion relation. One must then prove
that this infinite sequence has a solution and that the power series converge, for sufficiently small but nonzero η,
to the Bloch waves and their dispersion relation for structures near, but not at, the homogenization limit. The
convergence is shown by obtaining recursive bounds on the fields and then using a system of coupled generating
functions to prove that the sequence is bounded by a geometric series. Convergent series solutions have been
obtained recently by Fortes, Lipton, and Shipman [4, 3] for high-contrast photonic and plasmonic crystals and
earlier by Bruno [2] in a static problem of high-contrast conductivity.

II. MATHEMATICAL MODEL AND FORMAL POWER SERIES

Following [5], we model a 2D micro-resonator array by periodically dispersed cylindrical shells whose cross
section in the x-plane consists of copies, scaled by the period d, of the boundary ∂P of a region P in the unit cube
Q=[0, 1]2, with complement P c =Q\P (see Figure). In order to focus attention on the role of high conductivity in
the resonators, we set ε=1 and µ=1 in the host material and consider magnetically polarized fields. The harmonic
Maxwell equations reduce to the following system for the out-of-plane component h(x) of the magnetic field and
the in-plane electric field E(x), in which k̂ is the out-of-plane normal vector, and [h] is the interior-to-exterior jump
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 of h across the shells:

∇·∇h+ (ω
c )2h = 0, E = c

iω k̂ ×∇h,
[h] := he − hi = −σE ·t = −j, E ·t continuous across d(∂P + (m,n)), m, n ∈ Z.

(1)

Here, σ is a complex conductivity, accounting for conduction and capacitance in the resonators, and j is the complex
magnitude of the current flowing around the resonator. We assume a Bloch-wave form of h, namely, that h is a plane
wave distorted periodically by the micro-geometry,

h(x) = eikκ·xu(x/d), |κ| = 1,
u(y) has period cell Q=[0, 1]2.

Using this ansatz in the system (1) with the definitions

η = kd, x = d·y,
σ−1 = d

Lb (L a fixed length and b a constant with Im b ≥ 0),

P

y1

y2

1

1

Q

t

n

n
P c

yields a system for the periodic factor u. The small-η analysis, including solution of the formal sequence of cell
problems and obtention of bounds on the coefficient fields, is most conveniently approached through the weak for-
mulation of the system (1), which is reduced, by virtue of the Bloch-wave form, to a problem in the unit cell Q.
This formulation is posed in the Hilbert space H1

per(P
c)⊕H1(P ), consisting of pairs of functions v = (ve, vi) with

square-integrable value and gradient, in which the first component has support in P c and satisfies periodic condi-
tions on the boundary ∂Q of Q, the second has support in P , and the jump [v] = ve−vi across ∂P is unrestricted.
One seeks a pair of functions u = (ue, ui) ∈ H1

per(P
c)⊕H1(P ) such that

(Lk)2
∫

Q

[
∇u·∇v̄ + iηκ·(u∇v̄ − v̄∇u) + η2uv̄

]
dA− η2

(
L
ω

c

)2
∫

Q

uv̄ ds− iη2L
ω

c

∫
∂P

b[u][v̄]ds = 0 (2)

for all test functions v ∈ H1
per(P

c)⊕H1(P ). We begin by fixing the frequency ω and the direction vector κ of the
wave and formally expanding the field u and the wavenumber k in powers of η. It is also convenient to define the
rescaled frequency ξ and rescaled coefficients ψm and δm of the field and square wavenumber:

u = u0 + ηu1 + η2u2 + . . . , um = imψm,

k2 = k2
0 + ηk2

1 + η2k2
2 + . . . , L2k2

m = imδm, ξ = Lω
c .

Inserting these expansions into (2) yields an infinite system for the coefficients:
m∑

`=0

δ

∫̀
Q

[
(∇ψm−` + κψm−1−`)·∇v̄ − (κ·∇ψm−1−` + ψm−2−`)v̄

]
+ ξ2

∫
Q

ψm−2v̄ + iξ

∫
∂P

b[ψm−2][v̄] = 0 (3)

for all v ∈ H1
per(P

c)⊕H1(P ).

III. SOLUTION OF THE SEQUENCE OF CELL PROBLEMS

The sequence of cell problems (3) can be solved inductively for all of the coefficients ψm and δm, and one must
solve for them in a specific order. The problem for the fields ψm in each of the domains P and P c is of Neumann
type, with data coming from the current at order m− 2. Thus solvability is subject to the condition of the Fredholm
alternative. It is precisely this condition in P c that determines the coefficients δm. The solvability condition in P
can be satisfied through the stipulation of the free constant that is added to each field coefficient in P .

The first two equations (m = 0, 1) as well as the solvability condition for ψ2 should be treated separately, as they
establish the leading order of the fields, the current, and the dispersion relation. From this information, one also
obtains the effective values of ε and µ for the homogenized medium as η → 0.

1. Solving for ψ0 and the leading-order current. Equation (3) for m = 0 is

δ0

∫
Q

∇ψ0 ·∇v̄ = 0 ∀v ∈ H1
per(P

c)⊕H1(P ). (4)
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 This amounts to two decoupled homogeneous Neumann problems for ψ0 in P c and in P :

∇·∇ψ0 = 0 in P and P c, ∇ψ0 ·n = 0 on ∂P .

Thus ψ0 is constant in each of the regions P c and P , but there is yet no relation between its values in the two regions.
We will normalize ψ0 to unity in P c, and set ψ0 equal to a yet undetermined complex constant γ0 in P ,

ψ0 = 1 in P c, ψ0 = γ0 in P, j0 = γ0 − 1 = leading-order current around ∂P .

2. Solving for ψ1, the corrector function. Equation (3) for m = 1 is

δ0

∫
Q

(∇ψ1 + κψ0)·∇v̄ = 0 ∀v ∈ H1
per(P

c)⊕H1(P ). (5)

The δ1-term is absent because ∇ψ0 = 0. In strong form, this equation is a decoupled pair of inhomogeneous
Neumann problems for ψ1, namely,

∇·∇ψ1 = 0 in P c, ∇ψ1 ·n = −κ·n on ∂Pe, ψ1 is periodic on ∂Q,
∇·∇ψ1 = 0 in P, ∇ψ1 ·n = −γ0κ·n on ∂Pi,

in which ∂Pe denotes ∂P from the side of P c and ∂Pi denotes ∂P from the side of P . In P c, we normalize ψ1 to
mean zero, and, in P , we decompose ψ1 into its mean-zero part plus a constant,

in P c :
∫

P c

ψ1 = 0,

in P : ψ1 = γ0ψ∗ + γ1 , ψ∗ = −κ·y +
1
|P |

∫
P

κ·y,

where γ1 is a constant to be determined and |P | denotes the area of P .

3. Leading order of the dispersion relation. The equation for ψ2 is

δ0

∫
Q

[(∇ψ2 + κψ1)·∇v̄ − (κ·∇ψ1 + ψ0)v̄] + ξ2
∫

Q

ψ0v̄ + iξ

∫
∂P

b[ψ0][v̄] = 0 (6)

for all v ∈ H1
per(P

c)⊕H1(P ). The δ2-term is absent because∇ψ0 =0, and the term δ1
∫

Q
(∇ψ1+κψ0)·∇v̄ vanishes

because of equation (5). This equation is a pair of Neumann problems, coupled through the boundary current j0.
There are two solvability conditions, which yield a system of two equations for δ0 and γ0. The first is obtained by
putting v = 1 inQ (so that [v] = 0), and the second is obtained by putting v = 0 in P c and v = 1 in P (so [v]=−1):

−δ0
∫

P c

(κ·∇ψ1 + ψ0) + ξ2
∫

Q

ψ0 = 0 , ξ2
∫

P

ψ0 − iξ

∫
∂P

b[ψ0] = 0 , (7)

where we have used the fact that
∫

P
(κ·∇ψ1 +ψ0) = 0 by taking in (5) v=κ·y in P and v=0 in P c. Using ψ0 =γ0

in P and [ψ0] = 1−γ0, and assuming ξ 6= 0, the latter equation gives

γ0 =
ib|∂P |

ξ|P |+ ib|∂P |
, (8)

as long as the denominator does not vanish. Thus we have solved for the leading order value of the current j0 =
γ0 − 1. Substituting this expression for γ0 in the first equation of (7) yields

δ0

∫
P c

(κ·∇ψ1 + 1) = ξ2
ξ|P ||P c|+ ib|∂P |
ξ|P |+ ib|∂P |

. (dispersion relation) (9)

This is the dispersion relation for the homogenized medium relating wavevector to frequency.
One can show that the constant multiplying δ0 is always nonzero. It is in fact equal to the reciprocal of the

effective dielectric coefficient ε∗ for the homogenized micro-resonator array, while the factor multiplying ξ2 on the
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 right is the frequency-dependent effective magnetic coefficient µ∗ as derived in [5] (see equations (4.9, 4.11, 4.18,
4.19)). Thus we have recovered the limiting dispersion relation δ0 = ξ2µ∗ε∗, or k2

0 = (ω/c)2µ∗ε∗, as the cell size
tends to zero. Observe that, if b has a small real part, then µ∗ becomes large at a real frequency; this is the magnetic
dipole resonance of the metamaterial, with moment directed out of the plane.

4. Solving for ψ2 in P c and P . This is possible now that we have imposed the solvability conditions ((8,9)
or 7). Setting v=0 in P in (6) yields a Neumann problem for ψ2 in P c that is forced by the current j0, and one has
the freedom to take the mean of ψ2 to vanish in P c, that is,

∫
P c ψ2 = 0. In P , let ψ̂2 be the mean-zero solution of

the following modification of (6) with v=0 in P c, in which ψ1 is replaced by its mean-zero part γ0ψ∗:

δ0

∫
P

[
(∇ψ̂2 + κ(γ0ψ∗))·∇v̄ − (κ·∇(γ0ψ∗) + ψ0)v̄

]
+ ξ2

∫
P

ψ0v̄ − iξ

∫
∂P

b[ψ0]v̄ = 0. (10)

By definition of ψ∗, one has
∫

P
(∇γ1ψ∗ + κγ1)·∇v̄ = 0, and by adding this to (10) one finds that equation (6) is

satisfied if we substitute ψ̂2 + γ1ψ∗ for ψ2. Thus we obtain

ψ2 = ψ̂2 + γ1ψ∗ + γ2 and
∫

P

(ψ̂2 + γ1ψ∗) = 0,

in which γ2 is a constant to be determined.

5. Solving inductively for ψm and δm. At the mth stage, one solves for δm−2 and γm−2 through the solvability
conditions for ψm, then one solves for the field ψm in P c and for ψ̂2 in P , such that

in P c :
∫

P c

ψm = 0,

in P : ψm = ψ̂m + γm−1ψ∗ + γm with
∫

P

(ψ̂m + γm−1ψ∗) = 0.

This is accomplished inductively for all m> 2, as follows. By putting v = 1 in Q in (3), we obtain a solvability
condition for ψm that contains the as yet undetermined constants δm−2 and γm−2,

δm−2︸ ︷︷ ︸
∫

P c

(κ·∇ψ1 + 1) +
m−3∑
`=0

δ`

(∫
P c

κ·∇ψm−1−` +
∫

P

κ·∇ψ̂m−1−`

)
− ξ2 γm−2︸ ︷︷ ︸ |P | = 0. (11)

In simplifying this expression, we have used the mean values of the fields and the definition of ψ∗. Again, the
δm-term is absent because ∇ψ0 = 0, and the term δm−1

∫
Q

(∇ψ1 +κψ0)·∇v̄ vanishes because of equation (5). The
other solvability condition is obtained by putting v = 0 in P c and v = 1 in P ,

γm−2︸ ︷︷ ︸ (
ξ2|P |+ iξb|∂P |

)
= iξb

∫
∂P

(
ψm−2|P c − (ψ̂m−2 + γm−3ψ∗)|P

)
+

m−3∑
`=0

δ`

∫
P

κ·∇ψ̂m−1−` . (12)

As long as ξ2|P |+ iξb|∂P | 6= 0, one may solve for γm−2 and substitute the result into (11) to obtain both δm−2 and
γm−2 in terms of known fields and constants. Finally, from (3), one can solve for ψm in P c (vi = 0) and ψ̂m in P
(ve =0) by replacing ψm−1 with its mean-zero part ψ̂m−1+γm−2ψ∗. The sum over ` in (3) can be taken to run from
0 to m−2 by virtue of (4) and (5), and therefore ψm and ψ̂m are obtained in terms of known fields and constants.

IV. CONVERGENCE OF THE SERIES

To prove that the series converge for η < R for someR > 0, we must prove that the coefficients are exponentially
bounded. It will then follow from (2,3) that the series satisfy the Maxwell system. From equations (3,11,12), we
obtain an infinite sequence of coupled inequalities for the coefficients δm and γm and the H1 norms of the fields
ψm in P c and ψ̂m in P . Denote

p̄m := ‖ψm‖H1(P c), p̂m := ‖ψ̂m‖H1(P ).

We use crude constants Ki below for this short communication. They can be refined considerably and depend on
P , b, and ξ, and certain of them are large when δ0 or ξ2|P |+ iξb|∂P | is small. For m ≥ 2,
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 p̄m ≤ K1

(
p̄m−1 + p̄m−2 + p̂m−2 + |γm−2|+ |γm−3|+

∑m−2
`=1 |δ`|(p̄m−` + p̄m−1−` + p̄m−2−`)

)
,

p̂m ≤ K2

(
p̄m−2 + p̂m−1 + p̂m−2 + |γm−2|+ |γm−3|+

+
∑m−2

`=1 |δ`|(p̂m−` + p̂m−1−` + p̂m−2−` + |γm−1−`|+ |γm−2−`|+ |γm−3−`|)
)
,

|γm−1| ≤ K3

(
p̄m−1 + p̂m−1 + |γm−2|+

∑m−2
`=0 |δ`|p̂m−`

)
,

|δm−1| ≤ K4

(
|γm−1|+

∑m−2
`=0 |δ`|(p̄m−` + p̂m−`)

)
.

(13)

Now identify ām with p̄m, âm with p̂m, cm with |γm−1|, and dm with |δm−1|; put ā0 = p̄0, ā1 = p̄1, â0 = â1 =
c0 = d0 = 0, c1 = |γ0|, and d1 = |δ0|; set all values to zero for m < 0; and define ām, âm, cm, and dm for m ≥ 2
through the recursion obtained by replacing inequality with equality in (13) (and shifting indices),

ām = K1

(
ām−1 + ām−2 + âm−2 + cm−1 + cm−2 +

∑m−1
`=2 d`(ām+1−` + ām−` + ām−1−`)

)
,

âm = K2

(
ām−2 + âm−1 + âm−2 + cm−1 + cm−2 +

+
∑m−1

`=2 d`(âm+1−` + âm−` + âm−1−` + cm+1−` + cm−` + cm−1−`)
)
,

cm = K3

(
ām−1 + âm−1 + cm−1 +

∑m−1
`=1 d`âm+1−`

)
,

dm = K4

(
cm +

∑m−1
`=1 d`(ām+1−` + âm+1−`)

)
.

(14)

Since the values of p̄m, etc., coincide with those of ām, etc., form = 0, 1, we have p̄m≤ ām, etc., for allm and thus,
to prove an exponential bound p̄m, p̂m, |γm|, |δm| ≤ CJm for some C and J , it is sufficient to prove such a bound
on the sequences (ām, âm, cm, dm). Define generating functions for the sequences (ām, âm, cm, dm)m≥1 through

f̄(z) =
∑∞

`=0 ā`+1z
`, f̂(z) =

∑∞
`=0 â`+1z

`, g(z) =
∑∞

`=0 c`+1z
`, h(z) =

∑∞
`=0 d`+1z

`.

The recursive system (14) with the given initial values is equivalent to setting F̄ = F̂ =G=H=0 in the relations

F̄ = −(f̄ − ā1) +K1

(
zf̄ + z(ā0 + zf̄) + z2f̂ + (z + z2)g + (h− d1)(f̄ − ā1) +

+ z(h− d1)f̄ + z(h− d1)(zf̄ + ā0)
)
,

F̂ = −(f̂ − â1) +K2

(
(z + z2)f̂ + z2f̄ + (z + z2)g + (h− d1)(f̂ − â1) +

+ (z + z2)(h− d1)f̂ + (h− d1)(g − c1) + (z + z2)(h− d1)g
)
,

G = −(g − c1) +K3

(
z(f̄ + f̂ + g) + h(f̂ − â1)

)
,

H = −(h− d1) +K4

(
g − c1 + h(f̄ − ā1 + f̂ − â1)

)
,

in which F̄ , F̂ , G, and H are functions of the five variables f̄ , f̂ , g, h, and z. One can verify that, at the point
(f̄ , f̂ , g, h, z)=(ā1, â1, c1, d1, 0), we have (F̄ , F̂ , G,H)=(0, 0, 0, 0) and that the Jacobian matrix of (F̄ , F̂ , G,H)
with respect to (f̄ , f̂ , g, h) at z = 0 is

∂(F̄ , F̂ , G,H)

∂(f̄ , f̂ , g, h)

∣∣∣∣∣
z=0

=


−1 +K1(h− d1) 0 0 f̄ − ā1

0 −1 +K2(h− d1) K2(h− d1) K2(g − c1)
0 K3h −1 K3(f̂ − â1)

K4h K4h K4 −1 +K4(f̄ − ā1 + f̂ − â1)

 .
The determinant of this matrix at (f̄ , f̂ , g, h) = (ā1, â1, c1, d1) is equal to 1. By the implicit function theorem for
real-analytic functions, there exist real-analytic functions f̄(z), f̂(z), g(z), and h(z), defined in an open interval
about z = 0, such that

(f̄(0), f̂(0), g(0), h(0))=(ā1, â1, c1, d1),

X(f̄(z), f̂(z), g(z), h(z), z)=0 for X = F̄ , F̂ , G,H.
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 These functions admit convergent power series representations within some radius |z|<R>0 and satisfy the same
functional relations as the formal power series do, namely those that are equivalent to the recursive system (14)
with the given initial conditions. This means that the Taylor coefficients of the functions (f̄(z), f̂(z), g(z), h(z))
are equal to the solution (ām, âm, cm, dm) of the recursion. We conclude that these sequences are exponentially
bounded,

ām, âm, cm, dm ≤ CJm

for some positive numbers C and J . The numbers (p̄m, p̂m, |γm|, |δm|) are therefore also bounded by CJm.

V. DISCUSSION

The availability of convergent power series for Bloch waves is a step toward a better practical understanding of
metamaterials. The convergence places higher multipoles of the unit cell into a framework that elucidates their role
in creating bulk properties of the composite, not only in the quasi-static limit, but also for structures for which the
ratio of the period to the wavelength is small but not infinitesimal. The use of generating functions for proving
convergence appears to be applicable to Bloch waves in very general infinite periodic metamaterials.

In order to be able to utilize a power series for the quantitative approximation of fields, one needs an estimate on
its radius of convergence. This is a difficult problem, which requires analysis beyond the straightforward application
of generating functions and the implicit function theorem. For periodic arrays of plasmonic inclusions [4], a lower
bound for the radius of convergence was obtained by using fine properties of the Catalan sequence. The technique
does not seem to be extensible to general problems, and the bound obtained is not optimal; thus new ideas are
needed.

A challenging goal would be to compute the radius of convergence. In 1890, Hermann Schwarz [7] obtained
power-series solutions for the problem

∆u+ λp(x)u = 0

in a bounded domain with p(x) > 0 and given Dirichlet boundary data, with λ as the expansion parameter. He
showed that the radius of convergence was equal to the first Dirichlet eigenvalue of the problem. Proving the radius
of convergence is facilitated by the fact that the coefficient fields of his series are positive. For Bloch fields in
periodic high-contrast composites, the fields are by no means positive; in fact they oscillate in sign, as they represent
higher-order multipoles. The lower bound obtained using the Catalan numbers is far from optimal because it was
based on field bounds coming from Sobolev stability estimates. We ask the question: What is the analog of the first
eigenvalue that Schwarz found; in other words, what phenomenon in the unit cell of our metamaterial characterizes
the breakdown of convergence of the power-series solution?
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