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Abstract. This article concerns the interaction between guided electromagnetic or acoustic modes of a
penetrable periodic planar waveguide and plane waves originating from sources exterior to the waveguide.
The interaction causes resonant enhancement of fields in the waveguide and anomalous transmission of
energy across it. A guided mode is an eigenfunction of a member of the family of operators in the Floquet-
Bloch decomposition of the periodic differential operator underlying the waveguide structure. The theory
of existence or nonexistence of modes in ideal lossless waveguides is founded on variational principles.
The mechanism for resonant scattering behavior is the dissolution of an embedded eigenvalue into the
continuous spectrum, which corresponds to the destruction of a guided mode of a waveguide, upon pertur-
bation of the wavevector or the material properties or geometry of the structure. Analytic perturbation of
functions that unify the guided modes and the extended scattering states gives rise to asymptotic formulas
for transmission anomalies.
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the Floquet transform.

2.1 Effects of periodicity: An illustrated tutorial from uniform slabs to spectrally embedded guided modes
2.2 Broader context: Time dynamics and the Floquet transform

3. Plane-wave scattering and guided modes
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in quantum mechanics that are associated with the names of Feshbach, Breit-Wigner, or Fano. The unifying idea is
that, when one perturbs a system that admits a bound state whose frequency is embedded in the continuous spectrum,
the eigenvalue dissolves as a result of the coupling of the bound state to the extended states corresponding to the
frequencies of the continuum. We give proofs of asymptotic formulas for transmission anomalies and analysis of
resonant amplitude enhancement.
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5.2 Transmission resonance in periodic slabs
5.3 Relation to Fano resonance
5.4 Structural perturbations and bifurcation of anomalies
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1 Overview
A planar structure acts both as a guide of electromagnetic or acoustic waves as well as a scatterer of waves that
originate from sources exterior to it. An open waveguide is one that is in contact with the ambient space; the effect
of this contact is twofold: (1) Fields produced by sources in the guide lose energy through radiation into the ambient
space; and (2) fields originating in the ambient space interact with the guided modes of the slab. This Chapter is
concerned with the latter, and, in particular, with resonant phenomena that result from this interaction.

Consider, for example, a periodically perforated film, an infinite wall of dielectric pillars, or the slab structure
in Fig. 1. If a field strikes the structure, the coherent scattering by the periodic geometry can result in enhanced
transmission or reflection of energy in narrow frequency intervals, causing the structure to act as a frequency-specific
filter. In many cases, the explanation for this anomalous transmission is understood to be the resonant interaction
between the incident field and the guided modes of the structure. There is a large body of literature dedicated to this
phenomenon; we shall discuss some of it later on.

The fundamental mechanism of resonance can be understood as follows. A waveguide (closed or open) possesses a
“dispersion relation” relating the frequency of a guided wave to its wavevector, which in the case of a slab waveguide is
two-dimensional. The ambient space has its own dispersion relation, and, there, the wavevector is three-dimensional.
This means that a two-dimensional wavevector parallel to the waveguide admits a discrete set of frequencies corre-
sponding to guided modes but a continuum of frequencies corresponding to plane waves in the ambient space because
of the additional spatial degree of freedom there. Resonance occurs when the frequency of a plane wave and the
component of its wavevector parallel to the slab lie close to the dispersion relation for the waveguide itself. This is an
expression of the idea of interaction between plane waves and guided modes.
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Figure 1: A slab waveguide that is doubly periodic in x = (x1,x2) and finite in z (sixteen periods are shown). It is in contact with
a homogeneous ambient space.
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The periodicity of the slab acts as a mechanism for this type of resonance. It causes incident plane waves to be
diffracted into a finite number outward-propagating plane waves (Rayleigh-Bloch scattering), which are accompanied
by slow surface waves that fall off exponentially with the distance from the slab (Rayleigh-Bloch surface waves).
Periodicity causes the frequencies for (real) wavevectors of guided modes to be complex because of “coupling” to the
Rayleigh-Bloch scattered waves. In physical terms, the mode is not truly guided but is “leaky”. When the imaginary
part of the frequency is very small, plane waves in the ambient medium that oscillate at the real part of the frequency
scatter resonantly in the slab. We will analyze in detail the situation in which the slab structure admits a true guided
mode (with real frequency) that is isolated in the sense that nearby frequencies of guided modes are leaky (with
complex frequency). The frequency of such a guided mode can be conceived as an eigenvalue that is embedded in the
continuous spectrum corresponding to a specific wavevector, and the dissolution of the eigenvalue upon perturbation
of the wavevector or structural parameters corresponds to the destruction of the guided mode. This gives rise to
anomalous transmission of plane-wave energy across the slab and resonant enhancement of the field in the structure.
Some of these anomalies are seen in Figs. 6,7,8,9 in Sec. 5.

Most of the analysis in the following sections is presented for the case of scalar waves in a penetrable and lossless
doubly periodic slab waveguide in three-dimensional space. The ideas and results are not specific to any particular
geometry, such as layers or gratings. Moreover, they extend to the Maxwell system and slabs fabricated from perfect
conductors or acoustically hard or soft components, as well as lattice models. The focus is on lossless materials,
although much of the analysis is extensible to lossy materials.

Let us set the notation for scalar waves. The periodic slab structure is defined through two material coefficients,
ε(x,z) and µ(x,z), where

x ∈ R2, z ∈ R,

that are doubly 2π-periodic in x between the parallel planes z = z− and z = z+ and constant in the homogeneous
ambient space outside the region between these planes. Both coefficients are positive measurable functions bounded
from below and above:

ε(x+2πn,z) = ε(x,z), n ∈ Z2,

µ(x+2πn,z) = µ(x,z), n ∈ Z2,

0 < ε− ≤ ε(x,z)≤ ε+ , 0 < µ− ≤ µ(x,z)≤ µ+ ,

ε(x,z) = ε0, µ(x,z) = µ0 if z≤ z− or z≥ z+.

The scalar wave equation in this open slab structure is

ε
∂ 2u
∂ t2 −∇·µ –1

∇u = 0. (1)

The assumption of harmonic time dependence

u(x,z; t) = u(x,z)e−iωt

results in the Helmholtz equation for the spatial factor u(x,z),

∇·µ –1
∇u+ω

2
ε u = 0. (2)

2 Scattering by a periodic slab
The purpose of this section is to expound the role that structural periodicity plays in the coupling of plane waves and
guided modes of an open slab waveguide, as this mechanism will be central to the analysis of resonance later on. We
then sketch how the problem of plane-wave scattering fits into the general context of time dynamics.

2.1 Effects of periodicity
We begin in a nontechnical way by examining the simplest time-harmonic solutions of the wave equation in the
presence of the slab. We shall progress from the simple case of scattering of plane waves by a slab with no genuine
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periodicity to scattering by a general lossless periodic slab in order to understand the concepts of Rayleigh-Bloch
diffraction, robust and nonrobust (embedded) guided modes, cutoff frequencies, and the interaction between extended
(scattering) states and guided modes.

Fig. 2A shows a two-dimensional cross-section of a homogeneous slab, invariant in the x-variables. A plane wave
winc with wavevector 〈κ,η〉, κ = 〈κ1,κ2〉, satisfying the wave equation (1) is traveling to the right at an angle of
arctan(|κ|/η) with the line perpendicular to the slab,

winc(x,z; t) = cos(κ · x+ηz−ωt),

|κ|2 +η2 = ε0µ0ω
2,

ω > 0, η > 0,

and strikes the slab from the left. Part of the energy is reflected back to the left and part is transmitted through to the
right.

The incident field winc is the real part of uinc(x,z)e−iωt = ei(κ·x+ηz)e−iωt , and the spatial part uinc satisfies the
Helmholtz equation (2). Dropping the time factor, we can write the total field as u(x,z) = eiκ·xφ(z), where

φ(z) =





eiηz +ae−iηz, z < z−,
ceiνz +de−iνz, z− < z < z+,
beiηz, z+ < z.

(3)

The common x-factor is necessary for continuity, and, in the slab,

|κ|2 +ν
2 = ε1µ1ω

2. (4)

The complex reflection and transmission coefficients a and b, as well as c and d, are determined by the interface
conditions at z = z− and z = z+,

u(x,z±−0) = u(x,z±+0),
µ

–1
0

∂

∂ z u(x,z−−0) = µ
–1
1

∂

∂ z u(x,z−+0),

µ
–1
1

∂

∂ z u(x,z+−0) = µ
–1
0

∂

∂ z u(x,z++0).

An analogous problem describes the scattering of a plane wave uinc(x,z) = ei(κ·x−ηz)e−iωt incident upon the slab from
the right.

For each of these solutions,
|κ|< ω

√
ε0µ0. (5)

This conical region in (κ,ω)-space is the light cone for the exterior medium (blue region in Fig. 2A), and for each pair
in this region, there is a two-parameter family of scattering states spanned by the solution with z-dependent factor (3)
and its counterpart with incident field from the right.

Assuming that ε0µ0 < ε1µ1, Fig. 2A depicts three regions in (κ,ω)-space,

0 < ω2ε0µ0−|κ|2 < ω2ε1µ1−|κ|2,
ω2ε0µ0−|κ|2 < 0 < ω2ε1µ1−|κ|2,
ω2ε0µ0−|κ|2 < ω2ε1µ1−|κ|2 < 0.

The first region parameterizes the scattering states. It is the (κ,ω)-region in which φ(z) is oscillatory inside and
outside the slab. In the third region, there are no scattering states because the pair (κ,ω) violates (5). In fact, φ(z) is
exponential inside and outside the slab, and there are therefore no solutions that are uniformly bounded in magnitude
over z ∈R, which we require for our Helmholtz fields (exponentially growing solutions do not play a direct role in the
spectral decomposition).
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Figure 2: A. A homogeneous 2D slab scatters a plane wave incident on the left. The arrows indicate the directions of the plane-
wave components of the total field. The (κ,ω) for all scattering states lies in the blue light cone for the exterior medium. Dispersion
relations (red) for guided modes lie between the interior and exterior light cones. The behavior of the z-factor in the separable fields
φ(z)eiκx is indicated by the inset graphs. B. By imposing an artificial period of 2π in a uniform slab, the extended and guided Bloch
(pseudo-periodic) states can be represented by their reduced wavenumber in the first Brillouin zone by shifting the wavenumber by
an integer.
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In the second region, there are no scattering states either. But, although φ(z) is exponential outside the slab, it is
still oscillatory inside. The requirement that a solution to the Helmholtz equation be bounded in magnitude leads to
solutions of the form

φ(z) =





eγz, z < z−,
ceiνz +de−iνz, z− < z < z+,
be−γz, z+ < z,

(6)

where γ > 0. The solution ei(κ·x−ωt)φ(z) is a guided mode of the slab, exponentially decaying as |z| → ∞ and propa-
gating along the slab in the direction of κ with phase velocity

vph = ω/|κ|. (7)

This velocity is less than that of waves in the ambient medium.
The condition that φ decay on both sides of the slab is satisfied only on certain relations between κ and ω that are

branches of the dispersion relation for guided modes. There is one branch for each nonnegative integer n, and one
computes that they are expressed in the form

LΘ(κ,ω)−2Φ(κ,ω) = nπ , n ∈ N, (8)

in which

L = z+− z−,

Θ = (ω2
ε1µ1−|κ|2)1/2,

α =
µ1

µ0

(|κ|2−ω2ε0µ0)
1/2

(ω2ε1µ1−|κ|2)1/2 ,

Φ = arctanα.

These relations define a sequence of functions Wn(κ) with domains D(Wn) = R\ [−κn,κn] and images (ωn,∞), such
that (8) is expressed as the union of the graphs

ω =Wn(κ), κ ∈D(Wn), n ∈ N.

These graphs are the branches of the dispersion relation for guided modes and are shown in red in Fig. 2A. One
can show that each function Wn is increasing, emanates tangentially from the light cone for the exterior medium at
(±κn,ωn), and is asymptotically tangent to the light cone for the interior medium as |κ| → ∞. The points (κn,ωn) are

(κn,ωn) =
nπ

L
√

ε1µ1− ε0µ0

(
√

ε0µ0,1).

Fig. 2A shows that, for each value of κ , there is a continuous spectrum of frequencies ω ∈ (|κ|/√ε0µ0,∞) that
admit scattering states and a finite number of guided mode frequencies given by Wn(κ) for all n such that κn < |κ|.
The frequency |κ|/√ε0µ0 on the light cone is the cutoff frequency for the slab structure and wavevector κ .

We must keep in mind that the solutions we have constructed are purely monochromatic fields with infinite energy
(but finite energy density), and, as such, are idealized fields that are not truly physically viable in isolation. The
incident fields in the scattering states are thought of as originating from sources infinitely far away from the slab, and
the guided modes are thought of as being excited by sources in or near the slab but infinitely far from an observer in the
slab. Integral superpositions of monochromatic fields form finite-energy solutions of the wave equation; this spectral
theory is discussed below.

In Fig. 3C we see a two-dimensional depiction of a slab with a genuine periodicity of 2π . Solutions of the
Helmholtz equation no longer have the separable form u(x,z) = u1(x)u2(z). But since the slab is periodic and the
incident field in the scattering problem exhibits only a phase difference of 2πκ · n between the points (x,z) and (x+
2πn,z), we may take the point of view that, when the incident field is scattered by the slab, an observer at (x+2πn,z)
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Figure 3: C. The periodicity of the slab causes an incident plane wave (brown) to be scattered into a finite number of directions.
The reflected diffractive orders are indicated in red and the transmitted in blue. Real dispersion relations split apart (cf. Fig. 2B) at
the crossing points (this diagram is qualitative and some of the branches are not drawn). The dotted curves indicate the real part of
the frequency that has become complex due to the periodicity. D. Because of the symmetry of the structure about the dotted line, the
frequency on the dispersion relation may be real for κ = 0. Such isolated real points on a complex dispersion relation correspond
to nonrobust guided slab modes.
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will experience a field that differs from that experienced by an observer at (x,z) only by a phase of 2πκ ·n. This means
that we are interested in pseudo-periodic, or quasi-periodic, solutions of the Helmholtz equation

u(x,z;κ) = eiκ·xũ(x,z;κ), (9)

in which ũ(x,z;κ) is periodic in x. Such a solution u is a Bloch wave with Bloch wavevector κ , Bloch factor eiκ·x, and
Floquet multiplier e2πiκ·n. The corresponding physical solution (with the (κ,ω)-dependence suppressed) is

Re (ũ(x,z)ei(κ·x−ωt)) = |ũ(x,z)|cos(θ(x,z)+κ · x−ωt) (10)

(θ(x,z) = arg ũ(x,z)), which is a wave that is distorted in a periodic fashion in the x-variables by the slab structure.
Now, the periodic factor in a Bloch wave can be written as a Fourier series in the variable x parallel to the slab,

with coefficients that depend on the transverse variable z,

ũ(x,z) = ∑
m∈Z2

φm(z)eim·x. (11)

Because u satisfies a homogeneous Helmholtz equation exterior to the slab, there, φm must have the form

φm(z) = c1
mφ

1
m(z)+ c2

mφ
2
m(z), (12)

in which φ 1,2 are independent solutions of the ordinary differential equation φ ′′m +η2
mφm = 0, where the numbers ηm

are defined through
η

2
m + |m+κ|2 = ω

2
ε0µ0. (13)

The functions φ±m are either oscillatory, linear, or exponential, depending on the numbers ηm. The Fourier components
of u are known as the spatial harmonics or the diffractive (or diffraction) orders associated with the periodic structure.
There are many references that expound these ideas, including C. Wilcox [90] and M. Nevière [63]. We distinguish
between the following classes of spatial harmonics, for fixed parameters (κ,ω):

m ∈Zp⇔ η2
m > 0, ηm > 0 (propagating),

m ∈Z`⇔ η2
m = 0, ηm = 0 (linear),

m ∈Ze⇔ η2
m < 0, −iηm > 0 (evanescent).

(14)

The first class Zp of oscillatory harmonics is finite, the class Z` of linear harmonics is generically empty but always
finite, and the class Ze of exponential harmonics is infinite. The latter harmonics are called evanescent because of the
requirement that the component that is exponentially growing as |z| → ∞ vanish.

The general bounded pseudo-periodic solution of the Helmholtz equation can be interpreted as the field resulting
from scattering of plane waves by the slab:

u(x,z) = ∑
m∈Zp

ainc
m eiηmzei(m+κ)·x + ∑

m∈Z2

ame−iηmzei(m+κ)·x (z < z−), (15)

u(x,z) = ∑
m∈Zp

binc
m e−iηmzei(m+κ)·x + ∑

m∈Z2

bmeiηmzei(m+κ)·x (z > z+). (16)

The sums over Zp represent traveling source waves incident upon the slab from the left and right, generalizing the
incident field to a sum of plane waves, each of whose Bloch wavevector differs from κ by an integer pair m ∈ Zp.
The sums over Z2 represent the reflected and transmitted fields. The scattered, or diffracted, field is the difference
u(x,z)− uinc(x,z), which is radiating. We say that a function u is radiating (or outgoing) if it is of the form (15,16)
with ainc

m = 0 and binc
m = 0 for all m ∈Zp.

Condition 1 (Radiation) A complex-valued function u defined on R3 is said to satisfy the radiation condition for the
slab for the real pair (κ,ω), with ω > 0, if there exist a real number z0 and complex coefficients {c±m}m∈Z2 in `2(Z2)
such that

u(x,z) = ∑
m∈Z2

c±me±iηmzei(m+κ)·x for ±z > z0.
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Because the Bloch form u(x,z) = eiκ·xũ(x,z), is equivalent to the form u(x,z) = ei(κ+m)·xũ(x,z) by the change of
periodic part ũ(x,z) 7→ ũ(x,z)e−im·x, one can always assume that κ lies in the first Brillouin zone,

B = [−1/2,1/2)2, (17)

shown in Fig. 3C for the two-dimensional case. It is then guaranteed that |κ +m| ≥ |κ| for all m ∈ Z2. This value of
κ is called the reduced wavevector for u.

The harmonic pseudo-periodic scattering problem is stated below. Proof that it has a solution that is typically
unique is achieved through a weak formulation of the problem, which we present later.

Problem 2 (Plane-wave scattering) Given ω > 0 and κ ∈ B, find a function u on R3 that is doubly 2π-pseudo-
periodic in x with Bloch wavevector κ and that satisfies the Helmholtz equation (2) and such that

u(x,z) = uinc(x,z)+usc(x,z),

in which
uinc(x,z) = ∑

m∈Zp

(ainc
m eiηmz +binc

m e−iηmz)ei(m+κ)·x

and usc satisfies the radiation Condition 1.

A guided mode is a nontrivial solution to Problem 2 such that ainc
m = binc

m = 0 for all m ∈Zp. As long as Z` = /0,
such solutions necessarily fall off exponentially with |z| because of the conservation of energy law for Helmholtz fields
with the expansions (15,16),

∑
m∈Zp

ηm(|ainc
m |2 + |binc

m |2) = ∑
m∈Zp

ηm(|am|2 + |bm|2).

This can be proved by integration by parts applied to the Helmholtz equation (2) multiplied by ū.
Because of the periodicity of the slab, all the spatial harmonics for a given wavevector κ ∈ B are coupled. They

cannot exist in isolation; rather, in each Helmholtz field, all harmonics are generally present. A distinctive structure
emerges from this observation: when a plane-wave source is scattered by a periodic slab, the energy of the scattered,
or diffracted, field that propagates away from the slab is split into a finite number of distinct plane waves traveling at
prescribed angles. These are known as Rayleigh-Bloch waves, and their angles αm, depicted in Fig. 3C are

αm = arcsin
|κ +m|
ω
√

ε0µ0

, m ∈Zp. (18)

The angles αm depend only on κ , ω , the exterior material coefficients ε0 and µ0, and the periodicity of the slab (which
we always normalize to 2π and therefore does not appear in the expression for αm), and not on any other attributes
of the structure. The evanescent diffractive orders do not carry energy away from the slab, but only along it. They
are known as slow Rayleigh-Bloch surface waves because they have a phase velocity that is less than the wave speed
of the ambient space. In the special case that ηm = 0 for some m ∈ Z2, the corresponding linear harmonic is exactly
grazing the slab; it carries no energy away from it yet is extended in the z-variable.

If a pair (κ,ω) admits no propagating harmonics, then no incident field in (15,16) is available and there is no
notion of scattering of plane waves originating from sources exterior to the slab. A nontrivial bounded pseudo-periodic
solution of the Helmholtz equation is, in this case, always a guided mode, assuming Z` = /0.

Because of the coupling of spatial harmonics due to the periodicity, we have seen that a pseudo-periodic solution
of the Helmholtz equation is typically composed of all harmonics with wavevectors κ +m. It can be ascribed a unique
Bloch wavevector κ in B, but, among the possible wavevectors κ +m, there is in general no preferred one. This is in
contrast to the case of the x-invariant slab we considered first, in which the periodicity is absent. It is instructive to
impose a periodicity artificially and view this case from the point of view of the Bloch theory to understand just how
the transition from flat to periodic takes place. This is illustrated in Fig. 2B, where all pairs (κ,ω) admitting scattering
or guided states are shifted in κ by an integer into B. Thus all Bloch states are represented by a pair (κ,ω) in B×R.
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By assigning a wavevector κ ∈ B to each state of the flat (nonperiodic) slab, we view it as having a Fourier
expansion in spatial harmonics for which all but one coefficient vanishes: indeed, by writing κ = κ̄ + m̄, with κ̄ ∈ B
and m̄ ∈ Z2, and φm̄(z) = φ(z), a solution of the form eiκ·xφ(z) can be written as

φm̄(z)e(m̄+κ̄)·x, κ̄ ∈ B. (19)

If the flat slab is perturbed periodically, we expect its Bloch states to be perturbed from their special form and typically
attain all spatial harmonics. For those guided modes corresponding to (κ,ω) in the white region below the light cone,
or below the cutoff frequency for κ ∈ B, all spatial harmonics are evanescent, and the guided mode should persist. We
call these guide modes robust. Guided mode frequencies above the cutoff frequency (the blue region of Fig. 2B) are
embedded in the continuous spectrum of scattering states. If we expect a typical state of the periodically perturbed slab
to have a full expansion in spatial harmonics, then a guided mode can typically no longer exist because of the presence
of propagating harmonics. The destruction of a guided mode under this perturbation of the structure corresponds to the
dissolution of an embedded eigenvalue into the continuous spectrum. Sharp transmission anomalies that emerge are
treated in a physical model by Fan and Joannopoulos [22], which takes into account a direct (nonresonant) transmission
process as well as an indirect (resonant) one mediated by the excitation of the guided mode.

The dissolution of the dispersion relations in the (κ,ω)-region of scattering states, as well as the typical splitting
of crossings of dispersion relations is depicted in Fig. 3C. In fact, the dispersion relation does not actually disappear,
but the frequency becomes complex. The dotted curves correspond to the real part of a generalized dispersion relation,
which we discuss in Sec. 4 and 5. Fields corresponding to points on the complex dispersion curve are generalized
guided modes. Generalized modes whose frequency ω has a small but nonzero imaginary part form the theoretical ba-
sis of leaky modes or quasi-guided modes. Discussions of the topic of leaky modes as well as methods for computation
of their dispersion relations can be found in [67, 85, 68, 32] and references therein.

Wave phenomena connected with periodicity of waveguide structures and applications are treated for a large class
of structures in the nice review paper [17] of Elachi.

Even for periodic slabs, embedded guided mode frequencies can exist. The two-dimensional structure in Fig. 3D,
for example, is symmetric about a horizontal line, and we can therefore seek states for κ = 0 that are symmetric
or antisymmetric about this line. In the (κ,ω)-region of one propagating harmonic, m = 0, this harmonic eiη0z is
constant in x and therefore absent in antisymmetric states, making them exponentially decaying as |z| →∞. Because a
perturbation of κ from 0 breaks the symmetry of the propagating harmonic, the guided mode is destroyed and ω takes
on a nonzero imaginary part. We refer to such a guided mode as nonrobust. The destruction of a guided mode, this
time due to a perturbation of κ , corresponds again to the dissolution of an embedded eigenvalue. The eigenvalue is
characterized by an isolated pair (κ,ω) on the complex dispersion relation at which ω and κ are real and is illustrated
in Fig. 3D. Isolated true guided modes are discussed in [67] and [85]. We deal with their mathematical existence in
Sec. 3.2.

It is the interaction between nonrobust guided slab modes and incoming plane waves that causes anomalous scat-
tering behavior, including transmission anomalies, and this is the subject of Sec. 5. The analysis involves an analytic
connection of generalized guided modes to scattering states and perturbation analysis in the vicinity of a nonrobust
true guided mode pair (κ0,ω0), where κ0 and ω0 are both real.

2.2 Broader context
Let us step back to the time-dependent wave equation (1) and consider its free solutions in R3 in the presence of the
slab. To place the wave equation into the proper functional-analytic setting, we should write it as a first-order system
by defining v = ∂u

∂ t :

∂

∂ t

[
u
v

]
=

[
0 I

ε –1∇ ·µ –1∇ 0

][
u
v

]
, (20)

which may be supplemented by initial data u(x,z;0) and v(x,z;0). The appropriate functional spaces are the Hilbert
spaces

H = L2(R3,C,εdV ),

K = L2(R3,C3,µ –1dV ),
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with inner products

(u,w)H =
∫

R3
ε uw̄dV,

(F,G)K =
∫

R3
µ

–1 F · ḠdV.

The symbol ∇ denotes the usual gradient operator in H (defined independently of the measure εdV ). It is a closed
operator, which takes values in K and whose domain is D(∇) = H1(R3) ⊂H , the Sobolev space of L2 functions
with weak L2 derivatives. Similarly, the symbol ∇· denotes the usual divergence operator in K , with values in H .
With respect to the inner products in H and K , one can verify that the adjoint of ∇ is ∇† =−(ε –1∇·)µ –1.

The operator matrix in (20), which we denote by A, has a natural domain,

A =

[
0 I

−∇†∇ 0

]
, D(A) = D(∇†

∇)⊕D(∇),

and, thus defined, is an anti-self-adjoint operator in the Hilbert space

D(∇)⊕H

with inner product ([
∇†∇ 0

0 1

][
u1
v1

]
,

[
u2
v2

])

H ⊕H

= (∇u1,∇u2)K +(v1,v2)H .

Let Eλ be the standard spectral resolution of the identity in H for the operator ∇†∇ (see [1], Ch. VI, for example).
This means that, for each λ ∈ R, Eλ is an orthogonal projection in H ; for each u ∈H , (Eλ u,u) is a nondecreasing
function of λ ; and

u =
∫

∞

0
dEλ u ∀u ∈H ,

∇
†
∇u =

∫
∞

0
λdEλ u ∀u ∈D(∇†∇).

(21)

These integrals of H -valued functions exist in the Lebesgue-Stieljes sense, and the lower limits are zero because the
positivity of ∇†∇ implies that Eλ = 0 if λ < 0.

Since A is anti-self-adjoint, it admits a spectral resolution of the identity in D(∇)⊕H with purely imaginary
spectrum. For the wave equation, it is convenient to split the resolution into two projection-valued functions F+

ω and
F−ω such that [

u
v

]
=
∫

∞

0
dF+

ω

[
u
v

]
+
∫

∞

0
dF−ω

[
u
v

]
,

A
[

u
v

]
=
∫

∞

0
iωdF+

ω

[
u
v

]
+
∫

∞

0
−iωdF−ω

[
u
v

]
.

(22)

In order to obtain F±ω in terms of Eλ , we write A in terms of Eλ ,

A
[

u
v

]
=
∫

∞

0

[
0 1
−λ 0

][
dEλ u
dEλ v

]
, (23)

and use the spectral resolution of the matrix in this expression,
[

1 0
0 1

]
= P+

ω +P−ω ,

[
0 1
−ω2 0

]
= iωP+

ω − iωP−ω ,

(24)

in which the projection matrices P± are orthogonal (self-adjoint) with respect to the natural inner product
([

λ 0
0 1

]
·, ·
)

11



(λ 6= 0) in C2. These projections are given by

P+
ω =

1
2

[
1 (iω)–1

iω 1

]
, P−ω =

1
2

[
1 −(iω)–1

−iω 1

]
.

By inserting (24) into (23), with λ = ω2 and ω ≥ 0, we deduce that the resolutions F±ω in (22) are given by

F±ω

[
u
v

]
=
∫

ω2

0
P±

ω ′

[
dEω ′2u
dEω ′2v

]
, (25)

or, equivalently,

dF±ω

[
u
v

]
= P±ω

[
dEω2u
dEω2v

]
. (26)

Because A is anti-self-adjoint, there exists a unique strongly continuous unitary group of operators in D(∇)⊕H ,
denoted by etA, whose generator is A (see Stone’s Theorem §VIII.4 of [74]). This means that

∂

∂ t etAw = AetAw

for w ∈D(A). The solution of the initial-value problem

∂

∂ t

[
u
v

]
= A

[
u
v

]
,

[
u(0)
v(0)

]
=

[
u0
v0

]
,

in terms of the resolution (22) of A is
[

u(t)
v(t)

]
= etA

[
u0
v0

]
=
∫

∞

0
eiωtdF+

ω

[
u0
v0

]
+
∫

∞

0
e−iωtdF−ω

[
u0
v0

]

(the dependence on (x,z) is suppressed in u(t)).
Let us understand this solution more concretely in terms of generalized eigenfunctions. Since F±ω are expressed in

terms of Eλ , we may focus our attention on ∇†∇ =−ε –1∇ ·µ –1∇. Suppose a pair (u,v)t ∈D(A) is expressed through
integral superpositions

u(x,z) =
∫

∞

0
w1(x,z;λ )dλ ,

v(x,z) =
∫

∞

0
w2(x,z;λ )dλ ,

in which wi satisfy the Helmholtz equation

−ε
–1

∇ ·µ –1
∇wi(x,z;λ ) = λwi(x,z;λ )

in R3 but do not necessarily have finite L2 norm. Then

∇
†
∇u(x,z) =

∫
∞

0
λw1(x,z;λ )dλ .

The decomposition of (w1,w2)
t according to P±ω for λ = ω2 (ω ≥ 0) is

[
w1
w2

]
=

[
u+

iωu+

]
+

[
u−
−iωu−

]
,

in which
u±(x,z;ω) = 1

2

(
w1(x,z;ω

2)± (iω)−1w2(x,z;ω
2)
)
.

In the time dynamics, this represents a decomposition into harmonic fields oscillating with the time factors eiωt and
e−iωt : [

u(x,z, t)
v(x,z, t)

]
=
∫

∞

0

(
eiωt
[

u+(x,z;ω)

iω u+(x,z;ω)

]
+ e−iωt

[
u−(x,z;ω)

−iω u−(x,z;ω)

])
d(ω2).

12



The functions wi(x,z;λ ) in the generalized eigenfunction expansions include scattering states and guided modes
for the slab, in other words, Helmholtz fields with the behavior (15,16). A rigorous development of a generalized
Fourier transform in terms of generalized eigenfunctions that concretely realizes the spectral resolution Eλ through
a unitary transformation is not given here. For specific related problems, the reader is referred to Theorem 4.1 of
Goldstein [27] for infinite cylindrical scatterers, Theorem 8.5 of Wilcox [90] for diffraction gratings, and Theorem 3
of Groves [29] for an obstacle in a closed waveguide.

The treatment of scattering and resonance in this Chapter will remain in the frequency domain, that is, we study
scattering of time-harmonic fields. The theory of scattering of general finite-energy disturbances for a diffraction
grating is treated rigorously in [90]; other references on scattering theory include Lax and Phillips [48], Barut [7],
Reed and Simon [75], and Newton [64].

The consideration of scattering of time-harmonic fields by a slab may begin with a field produced by a single
harmonic monopole source off the guide, in other words, a fundamental solution of the Helmholtz equation, in the
presence of the scatterer. One must determine from physical principles an appropriate radiation condition that makes
the solution unique. Typically, this condition is obtained by means of the principle of limiting absorption, by which
one begins with the unique finite-energy solution in a lossy ambient space and passes to the limit of vanishing loss
(see [16, 88]). For scalar waves and a bounded obstacle in space, the condition is known as the “Sommerfeld radiation
condition”,

lim
r→∞

r
(

∂u
∂ r − iku

)
= 0.

In the two-dimensional case, the factor of r is replaced by
√

r. For the Maxwell system, the same condition applies to
all components of the electromagnetic field, and the additional conditions of Silver-Müller on the orthogonality of E,
H, and the radial vector at the far field, are also satisfied [61, 62].

For unbounded scatterers, the Sommerfeld condition does not apply in general. This is because energy can be
radiated not only into free space but also along the scatterer in the form of guided modes, which are excited by the
evanescent waves emanating from the source. The contribution of the guided modes in addition to the scattering states
appears in the radiating fundamental solution, which can then be used to derive the correct radiation condition for
general sources. For the case of an impedance plane, the fundamental solution and radiation condition are treated
rigorously by Nosich; see equations 20 and 24 in [66]. Equation 2 in the same reference gives the radiation condition
for a closed waveguide, which is analogous to Condition 1. There is large body of literature on scattering by open
waveguides and resonators, including discussions of radiation conditions; see, for example, [65, 78, 87].

Because our slab structure is invariant under the action of the group 2πZ2 of transformations of R3 in the x-
variables, the operator

S = ∇
†
∇ =−ε

–1
∇ ·µ –1

∇ (27)

can be decomposed into components that act on pseudo-periodic functions. This is accomplished through the Floquet
transform, by which a function on R3 is expressed as an integral superposition of pseudo-periodic functions. It is
defined by

(Fu)(x,z;κ) = ∑
n∈Z2

u(x+2πn,z)e−2πiκ·n.

For each κ , Fu is doubly pseudo-periodic in x with fundamental domain W ×R, W = [0,2π)2, and Bloch wavevector
κ . It is also periodic in κ with fundamental domain equal to the first Brillouin zone B. The function u(x,z) is
reconstructed from its Floquet transform through

u(x,z) =
∫

B
(Fu)(x,z;κ)dκ.

The Floquet transform is unitary in L2,
∫

R3
|u(x,z)|2dV =

∫

W×R

∫

B
|(Fu)(x,z;κ)|2dAdV,

and it commutes with S in the sense that

(FSu)(x,z;κ) = Sκ((Fu)(x,z;κ)),
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where Sκ is essentially the restriction of S to pseudo-periodic functions and will be defined precisely in the next section.
The solutions to the scattering Problem 2 are generalized eigenfunctions of Sκ .

The family {Sκ}κ∈B provides an integral decomposition of S,

S =
∫ ⊕

B
Sκ dκ. (28)

Direct integrals of operators such as this one are treated in §XIII.16 of [73], and more on application of the Floquet
transform to waves in periodic structures can be found in [43] and references therein.

3 Plane-wave scattering and guided modes
Because of the decomposition (28), solutions of the Helmholtz equation are integral superpositions of pseudo-periodic
solutions, which we will investigate in the remainder of this Chapter. Specifically, we consider the problems of plane-
wave scattering and guided modes, which are the inhomogeneous and homogeneous (uinc = 0) versions of the same
Problem 2. The existence of a guided mode at (κ,ω) is equivalent to the nonuniqueness of solutions (for Z` = /0).

3.1 Spectrum for a periodic slab
We may restrict analysis to one period in R3 of the functions ε and µ , which is the strip

S = {(x,z) ∈ R3 : x ∈ (0,2π)2}. (29)

If ε or µ has a jump discontinuity along a surface Σ with normal vector n, the Helmholtz equation (2) must be
supplemented by matching conditions

u and µ
–1 ∂u

∂n are continuous on Σ. (30)

By passing to a weak form of the equation, ε and µ are only required to be measurable, u is only required to have weak
L2 derivatives, and the matching conditions and pseudo-periodicity are automatically imposed. For this, we introduce
the functional spaces2

H1
κ,loc(S ) = {u ∈ H1

loc(S ) : u(x1,2π,z) = e2πiκ2u(x1,0,z),u(2π,x2,z) = e2πiκ1u(0,x2,z)}, (31)

in which the boundary values of u are understood in the sense of the usual trace of H1 functions, and

H1
κ(S ) = H1

κ,loc(S )∩H1(S ). (32)

The pseudo-periodic scattering problem in weak form is as follows, where C∞
0,κ(S ) is the space of infinitely differen-

tiable functions with compact support in the closure of S and that satisfy the same pseudo-periodic condition as the
functions in H1

κ,loc(S ).

Problem 3 (Scattering, weak form 1) Find a function u ∈ H1
κ,loc(S ) such that

∫

S
(µ –1

∇u ·∇v̄−ω
2
ε uv̄)dV = 0 ∀v ∈C∞

0,κ(S )

and
u(x,z) = uinc(x,z)+usc(x,z),

where uinc is a sum of plane waves as in Problem 2 and usc satisfies the radiation Condition 1.

2H1
loc(S ) denotes the subspace of locally L2 functions on S with locally L2 weak gradients, and H1(S ) denotes the Hilbert space of functions

u ∈ H1
loc(S ) for which the norm ‖u‖H1 = (

∫
S (|u|2 + |∇u|2)) 1

2 is finite.
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It can be shown that this is equivalent to the strong form of the scattering Problem 2 if all functions involved are
smooth.

A useful functional-analytic framework for Problem 3 is the Hilbert space L2(S ,εdV ) of square-Lebesgue-
integrable complex-valued functions in the strip with inner product

b(u,v) =
∫

S
ε uv̄dV (33)

and the unbounded symmetric nonnegative quadratic form in L2(S ,εdV ), with form domain H1
κ(S ), defined by

a(u,v) :=
∫

S
µ

–1
∇u ·∇v̄ dV, u,v ∈ H1

κ(S ). (34)

This form is closed, and the associated positive operator Sκ is given by3

Sκ u =−ε
–1

∇ ·µ –1
∇u, u ∈D(Sκ)⊂ H1

κ(S ). (35)

Of course, there is a close relationship between the spectrum σ(Sκ) of Sκ and the harmonic Bloch states of the slab.
An eigenfunction of Sκ is a nontrivial function in H1

κ(S ) that satisfies the Helmholtz equation; it can be extended to a
pseudo-periodic solution in R3. By the general form (15,16), the coefficients of all propagating and linear harmonics
must vanish, and the field is therefore a guided mode. The continuous spectrum corresponds to scattering states.

The spectrum of Sκ is characterized in part by the min-max principle (see [73], Ch. XIII, or [89], for example).
The sequence {λ j(κ)}∞

j=1 defined by

λ j(κ) = sup
V j−1<L2(S )

inf
u ∈ (V j−1)⊥\{0}

u ∈ H1
κ (S )

a(u,u)
b(u,u)

, (36)

in which the supremum is taken over all ( j−1)-dimensional subspaces, is nondecreasing, and converges to the infimum
λ− of the essential spectrum of Sκ . If λn 6= λ−, then λn is the nth eigenvalue of Sκ , counting from the bottom and
including multiplicity. In fact, as we expect, we will see that λ− = |κ|2/(ε0µ0), λ1 > |κ|2/(ε+µ+), and there are only
finitely many eigenvalues below the essential spectrum.

Much of the analysis in sections 3.1 and 3.2 is adapted from the work of Bonnet-Bendhia and Starling [8]. We
include proofs for completeness and consistency within the present framework.

Theorem 4 (spectrum) The essential spectrum of Sκ , for κ ∈ B, consists of all λ = ω2, where ω is above the light
cone for the medium exterior to the slab; there are only finitely many eigenvalues below the essential spectrum.
Precisely,

1. σ(Sκ)⊂ [ |κ|
2

ε+µ+
,∞);

2. σess(Sκ) = [ |κ|
2

ε0µ0
,∞);

3. there are only finitely many eigenvalues λ j strictly less than |κ|
2

ε0µ0
.

Proof. 1. Each u ∈ H1
κ(S ) admits the Fourier series

u(x,z) = ∑
m∈Z2

um(z)ei(m+κ)·x, (37)

from which we obtain ∫

S
|u|2 = 4π

2
∫

R
∑

m∈Z2

|um(z)|2 dz,

∫

S
|∇xu|2 = 4π

2
∫

R
∑

m∈Z2

|m+κ|2|um(z)|2 dz.

3The operator −ε–1∇ · µ–1 : D(ε–1∇ · µ–1) ⊂ L2(S ,C3,µ–1dV ) → L2(S ,C,εdV ) is the adjoint of ∇0 : H1
0 (S ) ⊂ L2(S ,C,εdV ) →

L2(S ,C3,µ–1dV ), where H1
0 (S ) is the subspace of H1(S ) with vanishing trace on ∂S . ∇0 is the restriction to H1

0 (S ) of the usual weak
gradient operator ∇, and ∇· is the usual weak divergence operator.
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Since |m+κ| ≥ |κ| for m ∈ Z2 and κ ∈ B, we obtain

∫

S
µ

–1|∇u|2 ≥ µ
−1
+

∫

S
|∇xu|2 ≥ |κ|

2

ε+µ+

∫

S
ε|u|2.

In view of (36), part (1) follows.
2. Let ψ(z) be a smooth function on R with compact support that vanishes in [z−,z+]. If λ ≥ |κ|2/(ε0µ0), then

η2 = λε0µ0−|κ|2 ≥ 0, and one can verify that the functions

un(x,z) := n– 1
2 ψ(z/n)ei(ηz+κ·x), n ∈ N+,

are in D(Sκ) and are bounded from below in L2(S ,εdV ) uniformly in n and that

ε
–1

∇ ·µ –1
∇un +λun→ 0 as n→ ∞

in L2(S ,εdV ). Conversely, for λ ∈ σess(Sκ), Weyl’s criterion (Theorem 7.2 of [34]) provides a sequence un from
D(Sκ) such that, in L2(S ,εdV ), un has norm 1 and tends weakly to 0 and (Sκ −λ )un→ 0 strongly. These conditions
imply ∫

S
µ

–1|∇un|2 =
∫

S
ε ūnSκ un→ λ ,

∫

S \Ω
ε|un|2−

∫

S
ε|un|2→ 0,

as n→ ∞, where Ω is defined below (41, Fig. 4), and, as in part (1), we have

∫

S
µ

–1|∇un|2 ≥ µ
–1
0

∫

S \Ω
|∇xun|2 ≥ |κ|

2

ε0µ0

∫

S \Ω
ε|un|2.

We conclude that λ ≥ |κ|2/(ε0µ0).
3. We show below that λ j = λ̂ j for λ j < |κ|2/(ε0µ0), where the λ̂ j arise from an equivalent formulation of the

scattering problem in Ω and tend to infinity as n→ ∞.
The scattering Problem 3 can also be formulated in terms of the x-periodic part ũ of the field u(x,z) = ũ(x,z)eiκ·x.

The Helmholtz equation implies
(∇+ iκ) ·µ –1 (∇+ iκ) ũ+ω

2
ε ũ = 0, (38)

and its weak form is ∫

S
(µ –1 (∇+ iκ)ũ · (∇− iκ)v̄−ω

2
ε ũv̄)dV = 0 (39)

∀v ∈C∞
0,per(S ) (=C∞

0,κ(S ) with κ = 0), or, in expanded form,

∫

S
µ

–1
(
∇ũ ·∇v̄+ iκ · (ũ∇xv̄− v̄∇xũ)+ +(|κ|2−ω

2
εµ)ũv̄

)
dV = 0. (40)

The relevant quadratic form in H1
per(S ) is

aκ(u,v) =
∫

S
µ

–1
(
∇u ·∇v̄+ iκ · (u∇xv̄− v̄∇xu)+ |κ|2uv̄

)
dV.

An equally important formulation of the scattering problem for a fixed pair (κ,ω) is obtained by truncating the
strip S to a domain Ω finite length, outside of which ε = ε0 and µ = µ0 (Fig. 4),

Ω = {(x,z) ∈S : z− < z < z+}, (41)
Γ± = S ∩{(x,z±) : x ∈ R2},

Γ = Γ−∪Γ+.
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Figure 4: The domain Ω, comprising one truncated period of the functions ε and µ .

The normal vector n on Γ is taken to be directed out of Ω.
The radiation condition is enforced through a Dirichlet-to-Neumann operator T = T κ,ω that characterizes radiating

fields in the sense that, for pseudo-periodic Helmholtz fields u,

∂nu+Tu = 0 on Γ ⇐⇒ u is radiating. (42)

Technically, T : H 1
2 (Γ)→ H– 1

2 (Γ) acts on traces on Γ of functions in H1
κ(Ω) and is defined through the Fourier

transform as follows. For any f ∈ H 1
2 (Γ), let f̂m be the Fourier coefficients of e−iκ·x f ; this is a pair of numbers

f̂m = ( f̂−m , f̂+m ), one giving the mth pseudoperiodic Fourier component of f on Γ− and the other on Γ+,

f (x,z±) = ∑
m∈Z2

f̂±m ei(m+κ)·x. (43)

Then T is defined by
T : H

1
2 (Γ)→ H– 1

2 (Γ), (T̂ f )m =−iηm f̂m. (44)

The operator T has a nonnegative real part Tr and a nonpositive imaginary part Ti:

T = Tr + iTi, (45)

(T̂r f )m =

{
−iηm f̂m if m ∈Ze,
0 otherwise.

(46)

(T̂i f )m =

{
−ηm f̂m if m ∈Zp,
0 otherwise.

(47)

For each pair (κ,ω), define the sesquilinear forms in H1
κ(Ω) (we suppress the dependence on κ),

âω(u,v) =
∫

Ω

µ
–1

∇u ·∇v̄ +µ
–1
0

∫

Γ

(T ω u)v̄ ,

âω
r (u,v) =

∫

Ω

µ
–1

∇u ·∇v̄ +µ
–1
0

∫

Γ

(T ω
r u)v̄ ,

âω
i (u,v) = µ

–1
0

∫

Γ

(T ω
i u)v̄ ,

b̂(u,v) =
∫

Ω

ε uv̄ .

We have âω = âω
r + iâω

i . Define also the bounded conjugate-linear functional f ω
Γ

on H1
κ(Ω),

f ω
Γ (v) = µ

–1
0

∫

Γ

(∂n +T ω)uinc v̄ ∀v ∈ H1
κ(Ω).

The frequency dependence of T is exhibited because we will consider the problem for fixed κ , with ω2 playing the
role of an eigenvalue. Problem 3 is equivalent to the following one:
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Problem 5 (Scattering, weak form 2) Find a function u ∈ H1
κ(Ω) such that

âω(u,v)−ω
2b̂(u,v) = f ω

Γ (v) ∀v ∈ H1
κ(Ω). (48)

The equivalence of Problems 2, 3, and 5 is in the sense of the following Proposition, whose proof we leave to the
reader. The space H1

κ,loc(R3) consists of those functions in H1
loc(R3) that are pseudo-periodic with Bloch wavevector

κ .

Proposition 6 (Equivalence of problems) If u ∈ H1
κ,loc(R3) solves Problem 2, then u|S solves Problem 3 and u|Ω

solves Problem 5. If u ∈ H1
κ(Ω) solves Problem 5, then there exists a unique extension ũ ∈ H1

κ,loc(R3) of u that solves
Problem 2.

The scattering problem in the form of Problem 5 can be generalized to include harmonic pseudo-periodic source
fields originating from sources interior to and exterior to Ω; these sources are realized by generalizing the right-hand
side of (48) to an arbitrary element of the conjugate dual of H1

κ(Ω).
Now, a guided mode of the slab for the pair (κ,ω) (with Z` = /0) is the extension to R3 of a nontrivial solution to

Problem 5 in the absence of a source field, that is, a function u∈H1
κ(Ω) that satisfies the nonlinear eigenvalue problem

âω(u,v)−ω
2b̂(u,v) = 0 ∀v ∈ H1

κ(Ω). (49)

The form âω is not real if ω lies above the cutoff frequency, or if ω2 > |κ|2/(ε0µ0) because of the presence of
propagating spatial harmonics for the pair (κ,ω). Because âω

i is definite in sign, the condition (49) is equivalent to a
pair of conditions; this is straightforward to prove.

Proposition 7 (Real eigenvalues) If ω2 ∈ R, then a function u ∈ H1
κ(Ω) satisfies the homogeneous problem (49)

if and only if it satisfies the equation

âω
r (u,v)− iâω

i (u,v)−ω
2b̂(u,v) = 0 ∀v ∈ H1

κ(Ω) (50)

and if and only if it satisfies the pair

âω
r (u,v)−ω2b̂(u,v) = 0 ∀v ∈ H1

κ(Ω),

(û|Γ)m = 0 ∀m ∈Zp.
(51)

The solutions u of the first condition in (51) are of the form (15,16), in which the normal derivatives of all the
propagating harmonics vanish on Γ. The second condition requires that the propagating harmonics vanish altogether,
leaving only those that are linear or evanescent. In the case that all ηm are nonzero, the field u is exponentially confined
to the slab waveguide and is a true guided mode.

By means of the min-max principle applied to the real form âω
r , one obtains a sequence of frequencies {ω j} that

subsumes the frequencies of the guided modes. This is proved in the next theorem. We denote the set of square
frequencies of the guided modes by λ̂ j:

{(λ̂ j)
1
2 }N

j=1 : guided-mode frequencies,

in which N may be ∞. Because of Proposition 6, the values λ̂ j that lie below |κ|2/(ε0µ0) coincide with the eigenvalues
λ j:

λ̂ j = λ j for λ j < |κ|2/(ε0µ0).

Theorem 8 (Guided-mode frequencies) Given κ ∈B, the frequencies ω for which the equation âω
r (u, ·)−ω2b̂(u, ·)=

0 admits a nontrivial solution u ∈ H1
κ(Ω) are the elements of a nondecreasing sequence {ω j}∞

j=1 of positive numbers
that tends to ∞ and their additive inverses. The nonnegative frequencies for which the slab admits a guided mode with
Bloch wavevector κ is a subset of this family that includes all ω j less than |κ|/√ε0µ0.
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Proof. For a fixed value of ω > 0, the set of numbers α for which âω
r (u, ·)−α b̂(u, ·) = 0 admits a nontrivial solution

is a nondecreasing nonnegative sequence α j(ω). This is seen as follows. Since âω
r and b̂ are bounded forms in H1

κ(Ω),
there exist linear operators Aω

r and B from H1
κ(Ω) to itself defined through

(Aω
r u,v) = âω

r (u,v)+ b̂(u,v),
(Bu,v) = b̂(u,v).

The operator Aω
r is bijective with bounded inverse because âω

r + b̂ is coercive:

âω
r (u,u)+ b̂(u,u)≥ µ

−1
+

∫

Ω

|∇u|2 + ε−
∫

Ω

|u|2 ≥min{µ−1
+ ,ε−}‖u‖2

H1
κ (Ω)

.

The operator B is compact because of the compact embedding of H1
κ(Ω) into L2(Ω). Therefore the set of α that admit

a nontrivial solution to (Aω
r − (α +1)B)u = 0 is a sequence converging to infinity. That the α j must be positive is seen

through their construction by the min-max principle,

α j(ω) = sup
V j−1<L2(Ω)

inf
u ∈ (V j−1)⊥\{0}

u ∈ H1
κ (Ω)

âω
r (u,u)
b̂(u,u)

. (52)

One shows that each α j is a nonincreasing continuous function of ω (details can be found in the proof of Theorem 3.3
of [8]). Therefore, for each j = 1,2, . . . , there is exactly one number ω j ≥ 0 such that α j(ω j) = ω2

j , and the sequence
{ω j}∞

j=1 tends to infinity. These are the values of ω for which âω
r (u, ·)−ω2b̂(u, ·) = 0 admits a nontrivial solution.

By the characterization (49) of guided modes and Proposition 7, the set of guided mode frequencies {(λ̂ j)
1
2 }N

j=1

is a subset of {ω j}∞
j=1. If ω j < |κ|/

√
ε0µ0, then âω j = â

ω j
r , and, as (κ,ω j) admits only evanescent harmonics, ω j is a

guided-mode frequency.
The existence of guided modes is treated in the next subsection. What we can say at this point is that, because

the eigenvalues λ̂ j tend to infinity, their multiplicities must be finite. If a real pair (κ,ω) admits a guided mode,
then any solution to the scattering problem is not unique because the addition of a guided mode results in another
solution. For plane-wave sources there always exists a solution ([8]). This will turn out to be important in calculating
the leading-order resonant amplitude enhancement in Sec. 5.5.

Theorem 9 (Existence of scattered fields) Problem 5 has a solution, and the space of solutions is finite-dimensional.

Proof. Rewrite (48) in the following way:

âω(u,v)+ b̂(u,v)− (ω2 +1)b̂(u,v) = f ω
Γ (v). (53)

As in the proof of Theorem 8, we may define the linear operators Aω and Cω from H1
κ(Ω) into itself, as well as an

element f̃ ∈ H1
κ(Ω) through

(Aω u,v) = âω(u,v)+ b̂(u,v),
(Cω u,v) =−(ω2 +1)b̂(u,v),
( f̃ ,v) = f (v).

Now (53) takes the form
(Aω +Cω)u = f̃ . (54)

The operator Cω is compact, and Aω is bijective with a bounded inverse because âω + b̂ is coercive: As we have shown,

Re (âω(u,u)+ b̂(u,u))≥min{µ−1
+ ,ε−}‖u‖2

H1
κ (Ω)

.

By the Fredholm alternative, (54) has a solution if and only if ( f̃ ,v) = 0 for all v ∈ Null(Aω +Cω)†, that is, for all v
that satisfy

(w,(Aω +Cω)†v) = 0 ∀w ∈ H1
κ(Ω). (55)
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By using the relation
(w,(Aω +Cω)†v) = âω

r (w,v)+ iâω
i (w,v)−ω

2b̂(w,v),

(55) becomes
âω

r (v,w)− iâω
i (v,w)−ω

2b̂(v,w) = 0

for all w ∈ H1
κ(Ω). By Proposition 7, the propagating harmonics of such a function v vanish on Γ, and therefore, by

the definitions of f̃ and f ω
Γ

, ( f̃ ,v) vanishes.
The space of solutions is finite-dimensional because Aω is invertible and Cω is compact.

3.2 Guided modes
We turn to proving (mathematical) existence of isolated and embedded guided-mode frequencies, as well as the the
nonexistence of guided modes in certain structures for which ε(x,z)≤ ε0 and µ(x,z)≤ µ0. An example of the latter is
an infinite homogeneous ceramic matrix in which a “slab” is created by a doubly periodic array of air holes.

At the end of this section, we will indicate a variety of related results in the literature, especially on guided modes
on periodic surfaces and trapped modes in closed waveguides containing an obstacle.

3.2.1 Existence and nonexistence

The following Theorem is adapted from Theorems 4.3 and 4.4 of [8]. It guarantees the existence of guided modes
below the cutoff frequency for any κ ∈ B. If µ = µ0, the converse of part (1) is also true. Let N (κ) be the number of
eigenvalues λ j less than |κ|2/(ε0µ0).

Theorem 10 (Existence of guided modes)
1. If εµ > ε0µ0 on a set of positive measure and

∫

S

(
ε

ε0

− µ0

µ

)
dV ≥ 0, (56)

then, for all κ ∈ B\{0}, N (κ)≥ 1, that is, there exists a guided mode at a frequency below |κ|/√ε0µ0 .
2. Let K be an open set in S, and let {β j}∞

j=1 be the spectrum of the Dirichlet Laplacian in K (−∇2 with u = 0
on ∂K). If κ ∈ B \ {0} and ε > ε∗, µ > µ∗ on K, with ε∗µ∗ > β j

ε0µ0

|κ|2 , then N (κ) ≥ j, that is, there are at least j
independent guided modes with Bloch wavevector κ and frequency below |κ|/√ε0µ0 .

Proof. We adapt the arguments of [8].
1. Set H0 = max{|z−|, |z+|}, and define, for H > H0,

uH(x,z) =





1 if |z|< H,
2H−|z|

H if H < |z|< 2H,
0 if |z|> 2H,

on S . By the assumption that εµ > ε0µ0 on a set of positive measure, there exists a real-valued test function w ∈
C∞

0,per(S ) with support in |z|< H0 such that

∫

S

(
µ0

µ
− ε

ε0

)
wdV < 0. (57)

From the definition of aκ , if u is real-valued,

aκ(u,u) =
∫

µ
–1[|∇u|2 + |κ|2|u|2].

Let α be an arbitrary real number, and define

wH
α = uH +αw, (58)
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which is real-valued on S . Thus

aκ(wH
α ,w

H
α )∫

ε(wH
α )

2 −
|κ|2
ε0µ0

=
1∫

ε(wH
α )

2

[
8π2

µ0H
+α

2
∫

µ
–1|∇w|2+ +

|κ|2
µ0

∫ (
µ0

µ
− ε

ε0

)
(1+2αw+α

2w2)

]
.

In the case of strict inequality in (56), this expression is negative for α = 0 and sufficiently large H. In the case of
equality, the expression is negative for sufficiently small nonzero α and sufficiently large H.

2. If u ∈ H1
κ(S ) has support in the closure of K, then

∫
µ –1|∇u|2∫

ε|u|2 ≤ 1
ε∗µ∗

∫
K |∇u|2∫
K |u|2

.

Since each function u∈H1
0 (K) is extensible to a function in H1

κ(Ω), this inequality, together with the min-max principle
for {λ j} and {β j} imply

λ j(κ)≤
1

ε∗µ∗
β j.

As long as ε∗µ∗ > β j
ε0µ0

|κ|2 , we obtain λ j(κ)≤ |κ|2
ε0µ0

.

Theorem 11 states that there are continuous dispersion relations for robust guided modes. The condition εµ ≥ ε0µ0

can be eliminated if µ = µ0.

Theorem 11 (Dispersion relations)
1. The eigenvalues λ j(κ) are continuous functions of κ ∈ B.
2. If εµ ≥ ε0µ0, then, for each unit vector κ̂ ∈ R2, the functions λ j(sκ̂)− s2

ε0µ0
are nonincreasing in s for sκ̂ ∈ B,

and therefore N (sκ̂) is nondecreasing.

Proof. The proof follows [8]. For part (1), assume that
∫
S |u|2 = 1, and, for arbitrary κ1 and κ2 in B, consider the

difference
aκ1(u,u)−aκ2(u,u) = 2(κ1−κ

2) ·
∫

S
µ

–1Im ū∇xudV ++(|κ1|2−|κ2|2)
∫

S
µ

–1|u|2 dV,

which yields

|aκ1(u,u)−aκ2(u,u)| ≤ |κ1−κ
2| 2

µ−

[(∫
S |∇xu|2

) 1
2 +max(|κ1|, |κ2|)

]
. (59)

In order to replace the L2-norm of ∇xu with an expression involving aκ2 , we use Young’s inequality

|2Im (κ ·∇u)ū| ≤ 1
2 |∇xu|2 +2|κ|2|u|2

to obtain the coercivity estimate

aκ(u,u)+ |κ|2
∫

S
µ

–1|u|2 ≥
∫

S
µ

–1(|∂zu|2 + 1
2 |∇xu|2).

Using this in the estimate (59) yields

aκ1(u,u)≤ aκ2(u,u)+ |κ1−κ
2| 2

µ−

[(
2µ+(aκ2(u,u)+ |κ

2|2
µ− )

) 1
2
+max(|κ1|, |κ2|)

]
.

This implies the inequality

λ j(κ
1)≤ λ j(κ

2)+ |κ1−κ
2| 2

µ−

[(
2µ+(λ j(κ

2)+ |κ
2|2

µ− )
) 1

2
+max(|κ1|, |κ2|)

]
.

Using this and its analog with κ1 and κ2 interchanged, we obtain

limsup
κ2→κ1

λ j(κ
2)≤ λ j(κ

1)≤ liminf
κ2→κ1

λ j(κ
2),
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which implies continuity of λ j at κ1.

To prove part (2), assume again that
∫
S |u|2 = 1 and observe that, since λ j ≤ |κ|2

ε0µ0
for κ ∈ B,

λ j(κ)−
|κ|2
ε0µ0

= supinfmin
(

aκ (u,u)−|κ|2ε–1
0 µ–1

0
∫

ε|u|2dV∫
ε|u|2dV ,0

)
. (60)

One computes that

aκ(u,u)−
|κ|2
ε0µ0

∫

S
ε|u|2dV = a|κ|2 +b ·κ + c,

where
a =

∫

S
µ

–1(1− εµ

ε0µ0
)|u|2 dV ≤ 0,

c =
∫

S
µ

–1|∇u|2 ≥ 0,

and this implies that
min

(
aκ(u,u)−|κ|2ε –1

0 µ –1
0

∫
ε|u|2dV ,0

)
,

with κ = sκ̂ is nonincreasing as a function of s as long as sκ̂ ∈ B. This, in turn, implies that

λ j(sκ̂)− s2

ε0µ0

(61)

is nonincreasing.
As we have discussed, real dispersion relations for guided modes in a (κ,ω) region of R3 that admits at least one

propagating spatial harmonic typically do not exist. Instead, the imaginary part of the frequency corresponding to κ

vanishes only for isolated real values of κ , giving rise to isolated real pairs in (κ,ω)-space that admit guided modes.
At these isolated pairs, the frequency, wavevector, and structure are in such a relation that all propagating harmonics
of the solutions u of the first equation in (51) vanish, that is, the second condition in (51) is satisfied. This situation
occurs, for example, if the the structure has symmetry about a plane transverse to the waveguide and κ1 = 0 or κ2 = 0;
this is treated in [82].

Theorem 12 (Embedded eigenvalues)
If κ = (0,κ2) (resp. κ = (κ1,0)) is in the interior of B, then there exist functions ε(x,z) and µ(x,z) that are symmetric
about the x2z-plane (resp. the x1z-plane) that admit a guided-mode frequency above the cutoff frequency |κ|/√ε0µ0 .

Proof. We give a sketch of the proof. If ε(x) and µ(x) are symmetric about the x2z-plane and κ = (0,κ2), then the
symmetric part H1 sym

κ (Ω) and antisymmetric part H1 ant
κ (Ω) of H1

κ(Ω) with respect to the x2z-plane are orthogonal with
respect to âω and b̂ω . Thus a function that is antisymmetric about the x2z-plane and satisfies âω(u,v)−ω2b̂(u,v) = 0
for all v∈H1 ant

κ (Ω) also satisfies the equation for all v∈H1
κ(Ω). The frequencies of antisymmetric modes are therefore

a subset of a sequence {ω ant
j }∞

j=1 defined in analogy to the ω j in Theorem 8 by restricting the evaluation of the forms
in the Rayleigh quotient (52) to functions in H1 ant

κ (Ω). By making ε+ and/or µ+ large enough, at least one of the ω ant
j

can be adjusted so that
0 < ε0µ0(ω

ant
j )2−κ

2
2 < 1

and Z` = /0. In this regime, there is at least one propagating spatial harmonic and all of them have m = (0,m2).
Since all harmonics with κ1 = m1 = 0 are symmetric about the x2z-plane and the corresponding field that satisfies
âω

r (u,v)− (ω ant
j )2b̂(u,v) = 0 for all v ∈ H1

κ(Ω) is antisymmetric, the coefficients of these harmonics for u must vanish
and u is therefore a guided mode.

The existence of these antisymmetric guided modes with zero Bloch wavenumber in the variable of structural
symmetry can also be proved using a harmonic Lippmann-Schwinger equation [81]. Embedded eigenvalues at nonzero
wavenumber are constructed in the two-dimensional case for periodic slabs with metal inclusions [8], and analogous
results are obtained for a two-dimensional lattice model [70].
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Theorem 13 (Nonexistence of guided modes) Let ω and κ be real, and let one of the following conditions be satis-
fied:

1. In Ω, ε− < ε(x,z)≤ ε0 and µ− < µ(x,z)≤ µ0, and

L(ω2
ε0µ0−|κ|2)1/2 < π if Zp 6= /0; (62)

2. There is a real number z0 such that ε(x,z0 + z), ε(x,z0− z), µ(x,z0 + z), and µ(x,z0− z) are nondecreasing
functions of z for all x ∈ R2.

Then there exists no function u ∈ H1
κ(Ω) for which (49) holds. This means that the periodic slab structure admits

no guided modes at the pair (κ,ω).

Condition (62) imposes no restriction on the width of the slab if there are no propagating spatial harmonics for the
parameters ω , κ , ε0, and µ0. Otherwise, the restriction is interpreted as demanding that the width be less than half the
wavelength in the direction perpendicular to the slab of the spatial harmonic whose propagation direction is closest to
the normal (m = 0), and, in fact, less than half that of all propagating spatial harmonics. Thus the restriction becomes
more severe as the frequency increases. Whether this or some weaker restriction is necessary for the prohibition of
guided modes is an open question.
Proof. Following Shipman and Volkov [82], we take a different approach to making the form a(u,v) real. Instead of
eliminating its imaginary part, we restrict the form to a subspace X ⊂ H1

κ(Ω) on which the imaginary part vanishes,

u ∈ X ⇐⇒
∫

Γ±
u(x,z)e−i(m+κ)xdA = 0 ∀m /∈Ze.

In other words, the nonevanescent spatial harmonics must vanish on Γ− and Γ+, a condition we know must be satisfied
for guided modes. The form a is closed on its domain X , and a(u,u)≥ 0 for u ∈ X .

Suppose that u ∈ X satisfies
âω(u,v)−ω

2b̂(u,v) = 0 (63)

for all v∈ X . In order that u be extensible to a solution of the Helmholtz equation in the strip S , it must satisfy (63) for
all v ∈ H1

κ(Ω), or (49). (This amounts to a finite number of additional constraints, given by taking, say, v = zei(m+κ)x

and v = (L− z)ei(m+κ)x for each m 6∈Ze, and is equivalent to setting the nonevanescent spatial harmonics of ∂nu equal
to zero on Γ± when the normal derivative exists.)

Let us fix ω and κ and turn to the problem of finding the numbers γ for which there exists a nontrivial function
u ∈ X such that

âω(u,v)− γ b̂(u,v) = 0 ∀v ∈ X . (64)

These nonnegative numbers γ = γ
κ,ω
j (ε,µ) are given by the min-max expression (52), but with the infimum taken over

u ∈ X . For the special choice of material coefficients ε ≡ ε0 and µ ≡ µ0, when the slab ceases to exist, they can be
calculated explicitly.

Finding solutions to (64) with these constant coefficients amounts to solving

∆u+ γ ε0µ0 u = 0 (65)

in Ω with pseudo-periodic conditions on the planes parallel to the z-axis and appropriate boundary conditions on the
sides Γ±. As γ ε0µ0 is constant, it suffices to seek separable solutions

u(x,z) = ei(m+κ)xu1(z), (66)

where u1 is a combination of e±iνz with
|m+κ|2 +ν

2 = γε0µ0. (67)

For m ∈Zp∪Z`, u ∈ X requires that u1(0) = u1(L) = 0, so that

u(x,z) = ei(m+κ)x sin(νz), νL = π j, (68)
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where j ∈ N+. Thus, we have a set of eigenvalues γm j of (64) given by

γm j =
1

ε0µ0

(
|m+κ|2 +

(
π j
L

)2)
, m 6∈Ze, j ∈ N+.

For m ∈Ze, because of the term of âω containing the Dirichlet-to-Neumann map T ω , we have u′1(0) = αmu1(0) and
u′1(L) = −αmu1(L), with αm = −iηm > 0, and these conditions require that u1 be oscillatory, or ν2 > 0 in (67). But
η2

m < 0 in the equation |m+κ|2 +η2
m = ω2ε0µ0, and we infer that γ > ω2.

From this we see that the lowest eigenvalue γ
ω,κ
1 (ε0,µ0) is greater than ω2 if and only if either Zp ∪Z` = /0 or

Zp∪Z` 6= /0 and γ01 > ω2. This is equivalent to the condition

L(ω2
ε0µ0−|κ|2)1/2 < π if Zp∪Z` 6= /0. (69)

Now since 0 < ε(x,z) ≤ ε0 and 0 < µ(x,z)≤ µ0 in Ω, the quotient âω(u,u)/b̂(u,u) with coefficients (ε,µ) is greater
than or equal to the quotient with coefficients (ε0,µ0) so that

γ
κ,ω
1 (ε,µ)≥ γ

κ,ω
1 (ε0,µ0)> ω

2.

Thus (63) is never satisfied for all v ∈ X , and therefore neither is (49) satisfied for any u ∈H1
κ(Ω). Finally, we observe

that, if Zp = /0 and Z` 6= /0, then ω2ε0µ0−|κ|2 = 0, so (69) can be replaced by (62).
To prove the Theorem subject to condition (2), we follow Theorem 3.5 of [8]. It is convenient to take z− < z0 < z+

with z0 = 0. For pseudo-periodic u, we begin with the identity
∫

Ω

z ∂u
∂ z ∇·µ –1

∇ū +
∫

Ω

µ
–1

∇ū ·
(

∂u
∂ z ez + z ∂

∂ z ∇u
)
= µ

–1
0

∫

Γ

z ∂u
∂ z

∂ ū
∂n ,

(ez = 〈0,0,1〉) use the Helmholtz equation in the first term on the left, and add the complex conjugate of the equation
to obtain

−ω
2
∫

Ω

εz ∂

∂ z |u|2 +
∫

Ω

µ
–1
(
2
∣∣ ∂u

∂ z

∣∣2 + z ∂

∂ z |∇u|2) = 2µ
–1
0

∫

Γ

|z|
∣∣ ∂u

∂ z

∣∣2 .

Then use integration by parts in z on the two terms with the symbol z ∂

∂ z and replace
∫

µ –1|∇u|2 using

∫

Ω

(−µ
–1|∇u|2 +ω

2
ε|u|2) = µ

–1
0

∫

Γ

ūTru

to obtain ∫

Ω

[
2µ

–1
∣∣ ∂u

∂ z

∣∣2 +ω
2z|u|2 ∂ε

∂ z − z|∇u|2 ∂ µ–1

∂ z

]
++µ

–1
0

∫

Γ

ūTru

= µ
–1
0

∫

Γ

|z|
[
ω

2
µ0ε0|u|2 +

∣∣ ∂u
∂ z

∣∣2−|∇xu|2
]
. (70)

By condition (2) of the Theorem (with z0 = 0), z ∂ε

∂ z and −z ∂ µ–1

∂ z are nonnegative, so the left-hand side is nonnegative.
If we assume that u is a guided mode and write and u in its expansion in spatial harmonics, we see that the integral on
the right-hand side is a sum over m ∈Ze of terms that are multiples of

ω
2
µ0ε0 + |ηm|2−|m+κ|2. (71)

But for m ∈Ze, η2
m < 0, and by the definition of ηm, (71) vanishes. Therefore the right-hand side of (70) vanishes and

we conclude that u vanishes identically in Ω.
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3.2.2 Modes in related problems

It is worth mentioning a few problems in wave propagation that are closely related to guided modes in open slab
scatterers.

The problem of waves guided by periodically corrugated planar surfaces (diffraction gratings) is in many ways
no different from ours. There is no transmission of energy across the surface, but the concepts of Rayleigh-Bloch
scattering and the mathematical techniques for their analysis are essentially the same. Existence of scalar surface waves
is treated by Linton and McIver [51] using variational techniques, by Grikurov, et. al., [28] using the “augmented
scattering matrix”, as well as others [10, 36, 58, 69, 90]. Guided modes for the Maxwell equations in metal strip
gratings over a substrate, in which the strips or the space between the strips is very thin, are established by Ammari,
et. al. [2, 3].

One can consider a complementary structure to our slab system in which the ambient space is replaced by a
photonic crystal and the slab is replaced by a homogeneous material. In fact, one of the primary attractions of photonic
crystals is that they can be used to guide electromagnetic fields along paths carved out of the crystal at frequencies
whose propagation is prohibited in the bulk. Guided modes of planar defects in two-dimensional photonic crystals
are discussed by Ammari and Santosa [4], and the existence of modes in linear defects in three-dimensional photonic
crystals is proved by Kuchment and Ong [44].

There is a large body of literature concerning the closely related problem in which closed waveguides with an
obstacle placed inside admit trapped modes whose energy is concentrated at the obstacle. Much of this literature is
presented in the context of water or sound waves by Evans, Linton, McIver, Ursell, and others. Trapped modes for
water waves in a channel with a free surface were shown to exist by Ursell [86]. There, the governing equation is
the Laplace equation, which admits no propagating spatial harmonics in the channel. The method of matched spatial
harmonics and the residue calculus (see [60]) can be used to construct trapped acoustic (Helmholtz) modes [18, 20].
A variety of methods are demonstrated in [52]. Infinite sequences of trapped mode frequencies are treated in [50], and
results on the dependence of the number of trapped modes on the structure are given in [15, 38].

Of particular interest are trapped modes whose frequencies are embedded in the continuous spectrum for a waveg-
uide with an obstacle. Several techniques have been used to construct them, such as multipole expansions [9], varia-
tional formulations [19], generalized eigenfunction expansions [29], boundary integrals [57], construction of obstacles
from trial trapped-mode solutions [58], and mode-matching and residue calculus [21]. In the latter, one can observe
how the presence of a propagating spatial harmonic imposes an additional condition that is not present for trapped
modes at frequencies below the cutoff. This condition corresponds to the second condition in the characterization
(51).

4 Complex (κ,ω) and boundary-integral equations
Rigorous analysis of resonance near nonrobust guided modes requires a formulation of the scattering problem for
complex (κ,ω) and the complex dispersion relation for generalized guided modes. This is achieved by “reducing”
the problem to an auxiliary one that is posed on a bounded domain. The method we expound in this section is that of
boundary integrals.

Another approach, which we shall not expound, is to allow (κ,ω) to be complex in the weak formulation 5 and
thereby extend the resolvent of the operator Sκ . The poles in the closed lower half ω-plane (Im ω ≤ 0) of this extension
for real κ are the branches of the dispersion relation discussed in Sec. 2, on which a real value of ω corresponds to a
true guided mode (exponentially decaying in space). This approach is taken by Lenoir, et. al., for acoustic scattering
by a rigid bounded obstacle. The poles are in the open lower half plane, Im ω < 0, which expresses the fact that a
bounded scatterer can support no bound (exponentially localized) acoustic modes.

Regardless of the method of reduction, the resulting auxiliary problem is an equation

A(κ,ω)ψ(κ,ω) = φ(κ,ω),

in which A is an operator that is jointly analytic in (κ,ω) and acts in a suitable function space that is independent of
(κ,ω). The function φ is determined by the source field and the solution ψ contains data about the total field (source
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plus scattered) that is sufficient for reconstructing the total physical field in space. A generalized guided mode is
represented by a solution to the homogeneous equation

A(κ,ω)ψ(κ,ω) = 0,

and the locus of (κ,ω) pairs in C3 (or C2 in the two-dimensional case) for which a nontrivial solution exists is the
complex multi-branched dispersion relation.

If the open waveguide is constructed from homogeneous components with smooth interfaces, the auxiliary problem
is naturally formulated in terms of boundary integrals. The functions φ and ψ are traces of the source and total fields on
the interfaces, and the operator A is composed of layer potentials. For simplicity, we shall suppose that our structure
is composed of a homogeneous and isotropic medium occupying a region D̃ that is bounded in the z variable and
periodic in the x variables and that has a smooth boundary and outwardly directed normal vector n(r) for r ∈ ∂ D̃. Let
D = D̃∩S be one period of the structure, set Dc = S \ D̄, and denote by ∂D the part of the boundary of D̃ that lies
in S . Denote the dielectric and magnetic constants in D by ε1 and µ1 and those in the ambient medium by ε0 and µ0.

We will first describe the extension of the problems of scattering and guided modes to complex (κ,ω) and in-
troduce the outgoing pseudo-periodic Green function for the Helmholtz equation. The Green function underlies the
boundary-integral equations from which the auxiliary problem we described above is constructed. The associated
Calderón boundary-integral projectors allow for an elegant and organized approach.

4.1 Extension to complex frequency and wavevector
The extension to the complex domain is not only important for the mathematical analysis of resonant behavior at
real (κ,ω); the fields themselves for complex (κ,ω) have physical significance. As we have already understood,
true guided slab modes are nonzero pseudo-periodic solutions to the Helmholtz equation with real (κ,ω) that fall of
exponentially away from the slab. If we keep κ real but now allow the frequency ω of a generalized guided mode
to have a nonzero imaginary part, it turns out (Theorem 15) that this imaginary part must be negative. This means
that the mode decays in time but grows exponentially with distance away from the slab; this is made clear through the
analytic continuation of the spatial harmonics as we discuss presently. The physical interpretation of these modes as
leaky modes must be treated with care, and we refer the reader to the literature, for example [67, 85, 32]. If, on the
other hand, ω remains real while the κ of a generalized mode attains an imaginary part, the mode is a harmonic field
that is attenuated due to radiation losses as it travels along the slab; see [68] and the chapter by Tausch of this book.

In the definition (14) of the numbers ηm,

ηm =
[
ε0µ0ω

2− (m1 +κ1)
2− (m2 +κ2)

2] 1
2 ,

the choice of square root was made to give the correct radiation Condition 1. For each m ∈ Z2, the branch cut for
the square root can be taken to be the negative imaginary axis. When ω decreases through a real value at which ηm
vanishes, we say that the mth Rayleigh diffractive order is cut off, as this spatial harmonic passes from propagating to
evanescent. For ω just above the cutoff frequency, this harmonic is at a grazing angle with the slab and gives rise to an
anomaly in the transmission coefficient known as the Wood anomaly (see [85, 53], for example). In the regime of leaky
modes in which κ ∈ R2 and ω has a small imaginary part, ηm must jump from one branch of the square root function
to another as the real part of ω passes a cutoff value. We will not treat this important case but focus on anomalies
that are the result of nonrobust guided modes at real (κ,ω) at which all ηm are nonzero; this type of resonance is also
discussed in [85]. We will show how these anomalies generalize the Fano resonance derived originally in the context
of quantum mechanics.

If (κ,ω) ∈ R3 and Z` is empty, that is, for all m ∈ Z2,

ε0µ0ω
2−|m+κ|2 6= 0,

then the numbers ηm can be extended analytically in a complex neighborhood of (κ,ω) in C3. If ω attains a small
negative imaginary part, the outgoing propagating harmonics become exponentially growing as |z| → ∞ (recall that
we take Re ω > 0) and the incoming harmonics become decaying; the reverse occurs if ω attains a small positive
imaginary part. The evanescent harmonics remain evanescent under small perturbations of ω and κ . The radiation
Condition 1 extends in this neighborhood to a generalized outgoing condition.
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Condition 14 (Outgoing) A complex-valued function u defined on R3 is said to satisfy the generalized outgoing con-
dition for the slab for the complex pair (κ,ω), with Re ω > 0, if there exist a real number z0 and complex coefficients
{c±m}m∈Z2 in `2(Z2) such that

u(x,z) = ∑
m∈Z2

c±me±iηmzei(m+κ)·x for ±z > z0.

An analogous condition holds for the two-dimensional Helmholtz equation.
The outgoing condition is extended to electromagnetic fields by requiring that each component of the electric and

magnetic fields satisfy Condition 14. Additional constraints are imposed by the Maxwell system: the E and H fields
of each propagating harmonic are perpendicular to each other and to the propagation direction ([35] §7.1).

The outgoing pseudo-periodic Green function G(r) (r = (x,z)) for the Helmholtz equation in a homogeneous
medium with coefficients (ε0,µ0) is a function that satisfies the equation in R3 except on a two-dimensional periodic
array of source points (2πn,0), whose strengths differ by a phase determined by the Bloch wavevector κ:

(∇2 +ω
2
ε0µ0)G(r) =− ∑

n∈Z2

δ (x−2πn,z)eiκ·x.

Its representation in spatial Fourier harmonics is

G(r) =− 1
8π2 ∑

m∈Z2

1
iηm

eiηm|z|ei(m+κ)·x. (72)

For z 6= 0, the convergence is exponential in m and one can see that G satisfies the Helmholtz equation; G also satisfies
the outgoing Condition 14. A proof of the two-dimensional analog is given in [79]. The two-dimensional Green
function looks the same except that the sum is taken over Z and 8π2 is replaced by 4π .

The scattering Problem 2 can be generalized by means of the outgoing condition, as can the definition of a guided
mode. A generalized guide mode is a function that satisfies the Helmholtz equation as well as the outgoing condition.
This means that it exists in the absence of generalized source fields (uinc = 0). If Im κ = Im ω = 0, the propagating
harmonics necessarily vanish and the field falls off exponentially with distance from the slab. (Note that the outgoing
condition encompasses exponentially decaying fields.)

The following theorem from plays a crucial role in the analysis of resonant transmission anomalies in Sec. 5. It
asserts that generalized guided modes can exist only for Im ω ≤ 0. (We always take Re ω > 0.) We prove it here in
the case of the Helmholtz equation; it extends generally to other harmonic wave equations, continuous and discrete.

Theorem 15 (Generalized modes) Suppose that (κ,ω) is such that Z` = /0 and that u is pseudo-periodic with real
wavevector κ and satisfies the Helmholtz equation and the generalized outgoing Condition 14. Then Im ω ≤ 0. In
addition, u→ 0 as |z| → ∞ if and only if ω is real.

Proof. For this proof, let z0 =−z− = z+ > 0. The Helmholtz equation and integration by parts gives

0 =
∫

Ω

(
∇ ·µ –1

∇u+ω
2
εu
)

ū =
∫

Ω

(
−µ

–1|∇u|2 +ω
2
ε|u|2

)
+
∫

Γ

µ
–1
0 (∂nu)ū.

Using the outgoing condition, one computes that, for sufficiently large z0 > 0,
∫

Γ

µ
–1
0 (∂nu)ū =

4π2

µ0
∑

m∈Z2

iηm(|c−m |2 + |c+m |2)e−2Im ηm|z0|.

These equations yield

−Im (ω2)
∫

Ω

ε|u|2 = 4π2

µ0
∑

m∈Z2

Reηm (|c−m |2 + |c+m |2)e−2Im ηm|z0|. (73)

Let κ be real and ω be in a neighborhood of a point on the real axis for which all numbers ηm are analytic functions
of ω . If Im ω > 0 (with our convention that Re ω > 0), then Im ηm > 0 for all m ∈ Z2 and we obtain a contradition by
letting z0 tend to ∞. If Im ω = 0, then, for all m ∈Zp, ηm > 0 and thus c±m = 0. Therefore, u is exponentially decaying
as |z| → ∞. Conversely, if u→ 0 as |z| → ∞, then, because Im ω ≤ 0, all harmonics with m ∈ Zp are exponentially
growing in |z| and therefore c±m = 0 for all m ∈Zp. The rest of the terms decay exponentially; hence letting z0→ ∞ in
(73) shows that Im ω2 and therefore also Im ω vanishes.
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4.2 The Helmholtz equation
We seek a solution of the Helmholtz equation in R3 such that

∇2u+ω2α1u = f in D,
∇2u+ω2α0u = f in Dc,

(74)

in which αk = εkµk, k = 1,2, subject to the interface conditions

u(r−0n(r)) = u(r+0n(r)),
µ –1

1 ∂nu(r−0n(r)) = µ –1
0 ∂nu(r+0n(r))

}
r ∈ ∂D (75)

(the notation ±0 indicates limits as h→ 0±) and the pseudo-periodicity condition for wavevector κ . We may restrict
analysis to the strip S .

We will show how a solution u to the generalized scattering problem can be elegantly decomposed into source and
scattered fields in the interior of D and in the exterior of D separately,

u|D = uint = uint
so +uint

sc ,

u|Dc = uext = uext
so +uext

sc .

The scattered field should satisfy the homogeneous equation, and the source field is produced by the sources repre-
sented by f :

(∇2 +ω2α1)uint
so = f |D,

(∇2 +ω2α1)uint
sc = 0,

(∇2 +ω2α0)uext
so = f |Dc ,

(∇2 +ω2α0)uext
sc = 0,

so that the equations (74) are satisfied.
We will see that unique determination of u is generically guaranteed by the following additional conditions, which

complete the formulation of the physical problem.

1. uint
so is taken to be the restriction to D of the outgoing pseudo-periodic field U int

so in S satisfying

(∇2 +ω
2
α1)U int

so = f χD in S ,

where χD is the characteristic function of D. This field is given by

U int
so (r) =−

∫

D
G(r− r′) f (r′)dV.

2. uext
so is taken to be the restriction to Dc of a pseudo-periodic field U ext

so in S satisfying

(∇2 +ω
2
α0)U ext

so = f χDc in S .

Such a field U ext
so is not unique, as it could be modified by a field emanating from sources at infinity, such as a plane

wave U∞
so satisfying (∇2 +ω2α0)U∞

so = 0 in S .
3. uext

sc satisfies the generalized outgoing condition.
4. The interface conditions (75) must hold on ∂D.

The scattering problem can be reduced to integral equations on the boundary of D that involve the interface data of
the total field u as unknown variables and the interface data of the source fields uint

so and uext
so as the term of inhomogeneity.

The interface data of a field u consists of the limits of u and µ –1∂nu to ∂D, which are taken from the interior or exterior
of D. We refer to this data collectively as the interior or exterior trace of u.

ψint(r) =
[

uint(r)
µ –1

1 ∂nuint(r)

]
, ψext =

[
uext(r)

µ –1
0 ∂nuext(r)

]
,
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for r ∈ ∂D. The traces are naturally considered in the space H 1
2 (∂D)⊕H– 1

2 (∂D).
We shall omit the details of the proper function spaces for the fields and their traces as well as technical aspects of

the proofs and focus on the mathematical structure and how a boundary-integral formulation of the scattering problem
arises from it. A through rigorous treatment of the theory, including the ensuing theory of layer potentials for the
Helmholtz equation with applications to acoustic scattering is available in Costabel and Stephan [12] or Nédélec [62]
§3.1, as well as Colton and Kress [11], Kress [40], and many other works. The first two works make explicit reference
to the Calderón boundary-integral projectors, which we use below in the formulation of the auxiliary problem for
scattering by a slab. Our presentation essentially follows that presented for the two-dimensional case by Shipman and
Venakides [79].

The development of a boundary-integral formulation begins with the boundary-integral representations of Helmholtz
fields in D and in Dc. Let us first take ε and µ to be constant over all of R3, as if the structure were not present, but
retain the knowledge of the domain D. We will see how an arbitrary pair of functions (ξ ,η) on ∂D can be decomposed
uniquely into the sum of the boundary data of an interior Helmholtz field and the boundary data of an exterior outgoing
Helmholtz field, both with the same coefficients ε and µ .

If u satisfies (∇2 +ω2α)u = 0 with α = εµ in D, then u can be reconstructed from its boundary data on ∂D,
[

u(r)
µ –1∂nu(r)

]
, r ∈ ∂D, (76)

through

u(r)=
∫

∂D

[
−∂G(r− r′)

∂nr′
u(r′)+ +µG(r− r′)µ –1 ∂u

∂n
(r′)
]
dsr′ , r ∈ D. (77)

If u satisfies (∇2 +ω2α)u = 0 in Dc and the generalized outgoing condition, then

u(r)=
∫

∂D

[
∂G(r− r′)

∂nr′
u(r′)+ −µG(r− r′)µ –1 ∂u

∂n
(r′)
]
dsr′ , r ∈ Dc. (78)

Both equations are proved by using the divergence theorem (or Green’s identities) in the truncated period Ω of the slab
structure. The contributions from the sides of S that are parallel to the z-axis vanish because of the pseudo-periodicity
of u and G, and the contributions from the perpendicular sides Γ± vanish because of the outgoing condition satisfied
by both u and G.

These representations show one way in which u is generated by a combination of single- and double-layer poten-
tials. It is natural to extend these formulas to allow an arbitrary pair (ξ ,η) of functions on ∂D in place of the trace of
u and to define

uint(r)=
∫

∂D

[
−∂G(r− r′)

∂nr′
ξ (r′)+ +µG(r− r′)η(r′)

]
dsr′ , r ∈ D, (79)

uext(r)=
∫

∂D

[
∂G(r− r′)

∂nr′
ξ (r′)+ −µG(r− r′)η(r′)

]
dsr′ , r ∈ Dc. (80)

The function uint satisfies (∇2+ω2α)u= 0 in D, and the function uext satisfies the same equation in Dc plus the outgoing
condition because the Green function G does. Both fields have traces in H 1

2 (∂D)⊕H– 1
2 (∂D).

Taking the limits of u and ∂nu as r→ ∂D leads to the following representations. The analysis of the singularity in
the integral is subtle and is based on the Sokhotski-Plemelj formulas.

uint(r) = 1
2 ξ (r) +

∫

∂D

[
−∂G(r− r′)

∂nr′
ξ (r′)+µG(r− r′)η(r′)

]
dsr′ ,

µ
–1

∂nuint(r) = 1
2 η(r) +

∫

∂D

[
−µ

–1 ∂ 2G(r− r′)
∂nr∂nr′

ξ (r′)+
∂G(r− r′)

∂nr
η(r′)

]
dsr′ , (81)

uext(r) = 1
2 ξ (r) +

∫

∂D

[
∂G(r− r′)

∂nr′
ξ (r′)−µG(r− r′)η(r′)

]
dsr′ ,
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µ
–1

∂nuext(r) = 1
2 η(r) +

∫

∂D

[
µ

–1 ∂ 2G(r− r′)
∂nr∂nr′

ξ (r′)− ∂G(r− r′)
∂nr

η(r′)
]
dsr′ . (82)

These formulas are composed of four operators giving the values and normal derivatives on ∂D of the single- and
double-layer potentials,

(Sη)(r) =
∫

∂D
G(r− r′)η(r′)dsr′ ,

(Kξ )(r) =
∫

∂D

∂G(r− r′)
∂nr′

ξ (r′)dsr′ ,

(K′η)(r) =
∫

∂D

∂G(r− r′)
∂nr

ξ (r′)dsr′ ,

(T ξ )(r) =
∫

∂D

∂ 2G(r− r′)
∂nr∂nr′

ξ (r′)dsr′ .

The singular integrals, especially T , must be treated carefully (see [12]). These operators are such that the following
matrix operator A is bounded in H 1

2 (∂D)⊕H– 1
2 (∂D),

A =

[
K −µS

µ –1T −K′

]
.

Let I be the identity operator, and define the operators

Pint =
1
2 I−A, Pext =

1
2 I +A.

The equations (81) and (82) are expressed in terms of Pint and Pext as
[

uint

µ –1∂nuint

]
= Pint

[
ξ

η

]
,

[
uext

µ –1∂nuext

]
= Pext

[
ξ

η

]
.

Now, because of the integral representations (77) and (78), we also have
[

uint

µ –1∂nuint

]
= Pint

[
uint

µ –1∂nuint

]
,

[
uext

µ –1∂nuext

]
= Pext

[
uext

µ –1∂nuext

]
.

This shows that Pint and Pext are projection operators, and, by their definition, they are complementary. These are the
Calderón projectors for the Helmholtz equation in the doubly pseudo-periodic setting. They depend on the parameters
ω , κ , and α . In summary, we have

1. Pint +Pext = I,
2. P2

int = Pint and P2
ext = Pext,

3. The range of Pint is the subspace consisting of traces of free κ-pseudo-periodic Helmholtz fields in D.
4. The range of Pext is the subspace consisting of traces of free κ-pseudo-periodic Helmholtz fields in Dc that satisfy

the outgoing condition.

Let us return to the interior and exterior constants α1 = ε1µ1 and α0 = ε0µ0 and the scattering problem and put

ε̄ = 1
2 (ε0 + ε1), µ̄ = 1

2 (µ0 +µ1).

Consider the traces of all the fields involved:

ψ =

[
u

µ –1∂nu

]
,

φ int
so =

[
uint

so

µ –1
1 ∂nuint

so

]
, φ int

sc =

[
uint

sc

µ –1
1 ∂nuint

sc

]
,

φ ext
so =

[
uext

so

µ –1
0 ∂nuext

so

]
, φ ext

sc =

[
uext

sc

µ –1
0 ∂nuext

sc

]
.

(83)
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Because of the requirement of continuity of the boundary data,

ψ = φ int
so +φ int

sc ,

ψ = φ ext
so +φ ext

sc .
(84)

Recall that the interior scattered field uint
sc is a free pseudo-periodic Helmholtz field in D with constant α1 and that

the interior source field uint
so , by our definition, extends to a free outgoing Helmholtz field U int

so in Dc with the same
constant α1. This means that φ int

sc is in the nullspace of P1
ext and φ int

so is in the range (the superscript refers to the value
α1). Similarly, the exterior scattered field uext

sc is a free pseudo-periodic outgoing Helmholtz field in Dc with constant
α0 and the exterior source field uext

so extends to a free Helmholtz field in D also with α0; thus φ ext
sc is in the nullspace of

P0
int and φ ext

so is in the range. This all means that we can project the trace of the field we seek onto traces of the known
interior and exterior source fields that produce it:

P1
extψ = φ int

so ,

P0
intψ = φ ext

so .
(85)

For the problem of scattering of a plane wave uinc(x,z) = ei(m̄+κ)xeiηm̄z, the source traces are

φ
ext
so =

[
1

iµ –1
0 (m̄+κ,ηm̄) ·n

]
uinc(x,z), φ

int
so =

[
0
0

]
.

The Calderón projectors in the equations (85) have a second-order derivative of G in the integral kernel with
leading singularities differing by a multiplicative constant. To cause these to cancel in a linear combination, we can
multiply them by the matrices

Λk =

[
1 0
0 µk/µ̄

]
, (86)

for k = 0,1, to obtain
[Λ1P1

ext +Λ0P0
int]ψ = Λ1φ

int
so +Λ0φ

ext
so . (87)

With the notation

η(r) = µ
–1
1

∂uint

∂n
(r) = µ

–1
0

∂uext

∂n
(r), r ∈ ∂D,

the resulting system of boundary-integral equations for [u(r),η(r)]t is

u(r)+
∫

∂D

[
∂(G1−G0)(r− r′)

∂nr′
u(r′)+ − (µ1G1−µ0G0)(r− r′)η(r′)

]
dsr′ = uint

so (r)+uext
so (r), (88)

η(r)+ µ̄
–1

∫

∂D

[
∂ 2(G1−G0)(r− r′)

∂nr∂nr′
u(r′)+ − (µ1G1−µ0G0)(r− r′)η(r′)

]
dsr′ = µ̄

–1 ∂

∂n
(uint

so (r)+uext
so (r)). (89)

The system in which we are interested is the pair (85), for the trace of the scattered field is recovered from the
decomposition (84) and this or the total field is then used to determine the scattered field in D and Dc by means of
boundary-integral representation formulas (77,78). Any solution of the pair (85) is also a solution to the combina-
tion (87). What we must now determine is if a solution to the combination is also a solution of the pair. To ascertain
this, we observe that (87) is equivalent to

Λ1P1
extψ = Λ1φ int

so + f

Λ0P0
intψ = Λ0φ ext

so − f

}
for some f , (90)

or, alternatively,
P1

extψ = φ int
so +Λ

−1
1 f

P0
intψ = φ ext

so −Λ
−1
0 f

}
for some f . (91)
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Such a function pair f = [ f1, f2]
t is characterized by the property that Λ

−1
1 f is in the range of the projection P1

ext (because
φ int

so is) and Λ
−1
0 f is in the range of P0

int (because φ ext
so is), or, equivalently,

P1
intΛ
−1
1 f = 0, P0

extΛ
−1
0 f = 0. (92)

Now, one can calculate that the Calderón projectors for the reciprocal coefficients

ε
0 =

2ε1µ1

µ0 +µ1

, µ
0 =

µ0 +µ1

2
,

ε
1 =

2ε0µ0

µ0 +µ1

, µ
1 =

µ0 +µ1

2
,

(93)

are related to those of the original coefficients by conjugation by Λ0,1. In particular, if we distinguish the projectors
for the reciprocal coefficients by a bar,

P̄0
int = Λ1P1

intΛ
−1
1 (94)

is the interior Calderón projector for the coefficients (ε0,µ0) and

P̄1
ext = Λ0P0

extΛ
−1
0 (95)

is the exterior projector for the coefficients (ε1,µ1).
Then, because of (92), we obtain the pair

P̄0
int f = 0,

P̄1
ext f = 0.

(reciprocal system) (96)

A function f that satisfies this pair is simultaneously the trace of an exterior pseudo-periodic outgoing Helmholtz
field with constants (ε0,µ0) and the trace of an interior Helmholtz field with constants (ε1,µ1). If f 6= 0, this field
corresponds to a generalized guided mode of a reciprocal structure characterized by these new constants. Since

α0 = ε0µ0 = ε1µ1,
α1 = ε1µ1 = ε0µ0,

the mode satisfies the Helmholtz equation with the interior and exterior valus of α switched relative to those of the
original structure, but the multiplicative jump in the normal derivative is replaced by continuity because µ0 = µ1.

If no guided mode exists in the reciprocal structure, that is, if the pair (96) admits only the trivial solution, then
the combination (87) is equivalent to the pair (85). In other words, uniqueness of the solution of the reciprocal
scattering problem, in which the ambient medium is characterized by (ε0,µ0) and periodic structure are characterized
by (ε1,µ1), implies equivalence of the original scattering Problem 2 and the boundary integral equations (88,89).

The essential results can be summarized in the following theorem.

Theorem 16 If the (reciprocal) periodic structure with coefficients

ε = ε1, µ = µ1 in D,
ε = ε0, µ = µ0 in Dc,

defined in terms of given constants (ε1,µ1) and (ε0,µ0) by (93) does not admit a free pseudo-periodic outgoing
Helmholtz field in the absence of a source (a generalized guided mode), then the boundary-integral system (88,89)
is equivalent to the scattering Problem 2 in the (original) structure with

ε = ε1, µ = µ1 in D,
ε = ε0, µ = µ0 in Dc.

More specifically, with φ int
so and φ ext

so defined as in (83), the scattered field usc of the scattering problem with source fields
uint

so and uext
so is obtained by using the solution to (88,89),

[
u(r)
η(r)

]
=

[
u(r)

µ –1∂nu(r)

]
, r ∈ ∂D,

in the representation formulas (77) and (78).
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The reciprocal relations have the property that, if R is defined by

R(ε0,µ0;ε1,µ1) = (ε0,µ0;ε
1,µ1),

subject to the relations (93), then
R2(ε0,µ0;ε1,µ1) = (ε0

µ0
µ̄
, µ̄;ε1

µ1
µ̄
, µ̄)

and
R3 = R1;

and the image of R is those sets of coefficients for which µ0 = µ1.

4.3 Two-dimensional reduction
In its two-dimensional form, the Helmholtz equation describes a variety of harmonic waves, including acoustic waves
in structures that are invariant in one direction, water waves in certain regimes, and polarized electromagnetic waves.
If the periodicity of the slab degenerates to invariance in, say, the x2-direction and we assume that the electromagnetic
waves are also invariant in the x2-direction, then the Maxwell system decouples into two polarizations.

In the E-polarized case, the E field is directed out of the x1z-plane and H lies in the plane. If we denote by u this
out-of-plane component, then H = (iωµ)−1〈−uz,0,ux1〉. The Maxwell system implies the Helmholtz equation for u:

∇ ·µ –1
∇u+ω

2
εu = 0, (97)

which, considered in the distributional sense, implies continuity of u and µ –1∂nu at ∂D. The foregoing analysis of the
boundary-integral equations is valid in two dimensions if the Green functions are replaced with their two-dimensional
analogues.

In the H-polarized case, the H field is directed out of the x1z-plane and E lies in the plane. If u is this out-of-plane
component, then E =−(iωε)−1〈−uz,0,ux1〉. The equation in distributional form is

∇ · ε –1
∇u+ω

2
µu = 0, (98)

which implies continuity of u and ε –1∂nu at ∂D. In this case, the results on the boundary-integral formulation must be
modified by interchanging the roles of ε and µ .

Let us examine the case of nonmagnetic materials, or µ ≡ 1. In the E-polarized case, we wish to solve the scattering
problem with

ε = ε1, µ = 1 in D,
ε = ε0, µ = 1 in Dc.

The system of boundary-integral equations, with η = ∂nu continuous on ∂D, is

u(r)+
∫

∂D

[
∂(G1−G0)(r− r′)

∂nr′
u(r′) − (G1−G0)(r− r′)η(r′)

]
dsr′ = uint

so (r)+uext
so (r), (99)

η(r)+
∫

∂D

[
∂ 2(G1−G0)(r− r′)

∂nr∂nr′
u(r′) − (G1−G0)(r− r′)η(r′)

]
dsr′ =

∂

∂n
(uint

so (r)+uext
so (r)). (100)

The reciprocal problem of Theorem 16 for E-polarization has

ε = ε0, µ = 1 in D,
ε = ε1, µ = 1 in Dc.

In the H-polarized case, we wish to solve the scattering problem with the following replacement in the forgoing
analysis:

ε 7→ 1, µ 7→ ε1 in D,
ε 7→ 1, µ 7→ ε0 in Dc.
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The system of boundary-integral equations in the H-polarization case, with η = ε –1∂nu continuous on ∂D, is

u(r)+
∫

∂D

[
∂(G1−G0)(r− r′)

∂nr′
u(r′) − (ε1G1− ε0G0)(r− r′)η(r′)

]
dsr′ = uint

so (r)+uext
so (r), (101)

η(r)+ ε̄
–1

∫

∂D

[
∂ 2(G1−G0)(r− r′)

∂nr∂nr′
u(r′) − (ε1G1− ε0G0)(r− r′)η(r′)

]
dsr′ = ε̄

–1 ∂

∂n
(uint

so (r)+uext
so (r)). (102)

The reciprocal problem has
ε = ε0ε̄

–1, µ = ε̄ in D,
ε = ε1ε̄

–1, µ = ε̄ in Dc.

But Helmholtz fields in a structure with these coefficients coincide with fields in a structure with ε replaced with cε

and µ replaced with c−1µ , with c a constant. By taking c = ε̄ , the reciprocal problem is seen to be identical to that for
the E-polarized case.

In summary, we have obtained Theorem 4.4 of [79].

Theorem 17 If the (reciprocal) two-dimensional structure with dielectric constants

ε = ε1 in Dc, ε = ε0 in D,

and magnetic constant µ = 1 admits no nontrivial E-polarized field in the absence of a source, (generalized guided
mode) then the systems (99,100) and (101,102) are equivalent to the E-polarized and H-polarized scattering problems,
respectively, with µ = 1.

We have seen already that the condition in this theorem is satisfied when ω and κ are real, ε1 > ε0, µ = 1, and an
additional condition from Theorem 13 holds.

4.4 The harmonic Maxwell system
For the harmonic Maxwell system, rigorous treatment of the technical aspects of the boundary-integral operators can
be found, for example, in Müller [61] and [62], and the Calderón projectors are treated for bounded objects in R3 in
[62] §5.5.

The development of the boundary-integral equations and the reciprocal problem for the Maxwell system parallels
that of the Helmholtz equation. We present the framework, leaving the technical details to the references cited above.

We seek a pseudo-periodic solution of the harmonic Maxwell system in R3,

∇×H + iωε E = J1,
∇×E− iωµ H = J2,

subject to continuity of the tangential traces of E and H on ∂D. The sources J1 and J2 are electric and magnetic
currents. If we put

v =
[

H
E

]
, f =

[
J1
J2

]
,

L =

[
∇× iωε

−iωµ ∇×

]
, Lk =

[
∇× iωεk
−iωµk ∇×

]
,

for k = 1,2, the Maxwell system is written compactly as

Lv = f . (103)

A solution v can be decomposed into source and scattered fields in the interior of D and in the exterior of D,

v|D = vint = vint
so + vint

sc ,
v|Dc = vext = vext

so + vext
sc .

(104)
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The scattered field should satisfy the homogeneous Maxwell system,
{

L1vint
so = f |D

L1vint
sc = 0 =⇒ L1vint = f |D.

{
L0vext

so = f |Dc

L0vext
sc = 0 =⇒ L0vext = f |Dc .

The conditions that generically determine a unique solution v are the following:

1. vint
so is taken to be the restriction to D of the outgoing pseudo-periodic field V int

so satisfying

L1V int
so = f χD in S .

2. vext
so is taken to be the restriction to Dc of a field V ext

so satisfying

L0V ext
so = f χDc in S .

Such a field is not unique, as it could be modified by fields emanating from sources at infinity, such as plane waves V ∞
so

satisfying L0V ∞
so = 0 in S .

3. vext
sc satisfies the generalized outgoing condition.

4. The tangential traces of the fields vint and vext must match on ∂D.

The integral representation formulas for a Maxwell field [H,E]t involve the tangential traces of H and E, or the
electric current j and magnetic current m,

j(r) =−n(r)×H(r)
m(r) = n(r)×E(r)

(r ∈ ∂D). (105)

If [H,E]t is an outgoing pseudo-periodic Maxwell field in Dc with constant coefficients ε and µ ,

E(r) =−iωµ

∫

∂D
G(r− r′) j(r′)dS(r′) +

1
iωε

∇

∫

∂D
G(r− r′)div∂D j(r′)dS(r′) +∇×

∫

∂D
G(r− r′)m(r′)dS(r′),

H(r) =−iωε

∫

∂D
G(r− r′)m(r′)dS(r′) +

1
iωµ

∇

∫

∂D
G(r− r′)div∂Dm(r′)dS(r′) −∇×

∫

∂D
G(r− r′) j(r′)dS(r′),

(106)
and the integral representation for interior fields has an additional factor of −1 in each term of the right-hand sides
(see [5, 62]).

The boundary-integral formulation of the scattering problem involves the tangential traces [ j(r),m(r)]t of the
total field v = [H,E]t as unknown variables and the tangential traces of the source fields vint

so and vext
so in the term of

inhomogeneity,
q1(r) = µ1

µ̄
(−n×H int

so )+
µ0
µ̄
(−n×H ext

so ),

q2(r) = ε1
ε̄
(n×E int

so )+
ε0
ε̄
(n×E ext

so ).
(r ∈ ∂D)

The analogue of the system (88,89) is the pair

j(r)− 1
µ̄

∫

∂D
n(r)× [ j(r′)×∇(µ1G1−µ0G0)]dS(r′)− 1

iωµ̄

∫

∂D
[n(r)×m(r′)][ω2

ε1µ1G1−ω
2
ε0µ0G0]|dS(r′)+

− 1
iωµ̄

∫

∂D
n(r)× [(m(r′) ·∇)∇(G1−G0)]dS(r′) = q1(r), (107)

m(r)− 1
ε̄

∫

∂D
n(r)× [m(r′)×∇(ε1G1− ε0G0)]dS(r′)+

1
iωε̄

∫

∂D
[n(r)× j(r′)][ω2

ε1µ1G1−ω
2
ε0µ0G0]dS(r′)+

+
1

iωε̄

∫

∂D
n(r)× [( j(r′) ·∇)∇(G1−G0)]dS(r′) = q2(r), (108)

35



in which the functions G0 and G1 are evaluated at r− r′.
To derive these equations, we begin as before by letting ε and µ be constant over all of R3. We will see how

arbitrary pairs of tangential fields ( j,m) on ∂D can be decomposed uniquely into the sum of the tangential trace of an
interior Maxwell field and the tangential trace of an exterior outgoing Maxwell field, both with Bloch wavevector κ .
We shall omit the details of the proper functional spaces for the fields and their traces as well as technical aspects of
the proofs; the reader can find this material in [62], Ch. 5, as well as [5, 61]. Instead, we present the analogue of the
structure developed above for the Helmholz equation.

Define the boundary-integral operator

A

[
j

m

]
=

[
A
A′

][
j

m

]
, (109)

in which

A
[

j
m

]
(r) =

∫

∂D
n(r)× [ j(r′)×∇r′G(r− r′)]dS(r′)− 1

iωµ

∫

∂D
[n(r)×m(r′)]ω2

εµG(r− r′)dS(r′)+

− 1
iωµ

∫

∂D
n(r)× [(m(r′) ·∇r′)∇r′G(r− r′)]dS(r′),

A′
[

j
m

]
(r) =

∫

∂D
n(r)× [m(r′)×∇r′G(r− r′)]dS(r′)+

1
iωε

∫

∂D
[n(r)× j(r′)]ω2

εµG(r− r′)dS(r′)+

+
1

iωε

∫

∂D
n(r)× [( j(r′) ·∇r′)∇r′G(r− r′)]dS(r′).

Let I be the identity operator I [ j,m]t = [ j,m]t . The Calderón projectors for the Maxwell system are

Pint =
1
2I −A ; Pext =

1
2I +A . (110)

The following statements can be proved; the first is trivial, and the others are nontrivial and involve the represen-
tation formulas (106) and the Sokhotski-Plemelj formulas.

1. Pint +Pext = I ,
2. P2

int = Pint and P2
ext = Pext,

3. The range of Pint is the space of tangential traces
[
−n×H
n×E

]
of pseudo-periodic interior free Maxwell fields

[
H
E

]
.

4. The range of Pext is the space of tangential traces
[
−n×H
n×E

]
of pseudo-periodic exterior free Maxwell fields

[
H
E

]
that satisfy the outgoing condition.

Returning to the scattering problem with interior and exterior material constants (ε1,µ1) and (ε0,µ0), consider the
traces of all the fields involved:

ψ =

[
−n×H
n×E

]
,

φ int
so =

[
−n×H int

so

n×E int
so

]
, φ int

sc =

[
−n×H int

sc

n×E int
sc

]
,

φ ext
so =

[
−n×H ext

so

n×E ext
so

]
, φ ext

sc =

[
−n×H ext

sc

n×E ext
sc

]
.

(111)

Because of the requirement of continuity of the tangential electric and magnetic fields, we have

ψ = φ int
so +φ int

sc ,

ψ = φ ext
so +φ ext

sc .
(112)
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In analogy with the Helmholtz case, the interior scattered field vint
sc = [H int

sc ,E
int
sc ]

t satisfies the homogeneous Maxwell
system in D and the interior source field extends to a field in Dc that satisfies the homogeneous Maxwell system with
(ε1,µ1) and the outgoing condition. This means that φ int

sc is in the nullspace of P1
ext and φ int

so is in the range. Similarly,
the exterior scattered field vext

sc = [H ext
sc ,E

ext
sc ]

t satisfies the homogeneous Maxwell system in Dc and the interior source
field extends to a field in D that satisfies the homogeneous Maxwell system with (ε0,µ0); thus φ ext

sc is in the nullspace
of P0

int and φ ext
so is in the range. By projecting to the source fields, we obtain

P1
extψ = φ int

so ,

P0
intψ = φ ext

so .
(113)

For the problem of scattering of plane waves, the source traces are

φ
ext
so =

[
jinc

minc

]
, φ

int
so =

[
0
0

]

where φ ext
so is the tangential trace of a plane electromagnetic wave.

To cause the leading-order singularity in the Calderón projectors to cancel in a linear combination, we multiply
them by the matrices

Λk =

[
µk/µ̄ 0

0 εk/ε̄

]
,

for k = 0,1, [
Λ1P

1
ext +Λ0P

0
int

]
ψ = Λ1φ

int
so +Λ0φ

ext
so . (114)

This equation is the boundary-integral system (107,108) for j(r) and m(r).
We are interested in solving the pair (113); the solution of the scattering problem is obtained from ψ through the

decomposition (112) and the boundary-integral representation formulas (106). Any solution of the pair (113) is also a
solution to the combination (114), and we must determine if a solution to the combination of the equations is a solution
of the pair. As before, we find that (114) is equivalent to

P1
extψ = φ int

so +Λ
−1
1 f

P0
intψ = φ ext

so −Λ
−1
0 f

}
for some f . (115)

The reciprocal coefficients for the Maxwell system are

ε
0 = µ1

ε0 + ε1

µ0 +µ1

, µ
0 = ε1

µ0 +µ1

ε0 + ε1

in D,

ε
1 = µ0

ε0 + ε1

µ0 +µ1

, µ
1 = ε0

µ0 +µ1

ε0 + ε1

in Dc.

(116)

and one can check that
P̄0

int = Λ1P
1
intΛ
−1
1

is the interior Calderón projector for the constants (ε0,µ0) and that

P̄1
ext = Λ0P

0
extΛ
−1
0 (117)

is the exterior projector for the coefficients (ε1,µ1).
The pair (115) implies that P1

intΛ
−1
1 f = 0 and P0

extΛ
−1
0 f = 0, or

P̄0
int f = 0,

P̄1
ext f = 0.

(reciprocal system) (118)

A function f that satisfies this pair is simultaneously the trace of an exterior outgoing Maxwell field with constants
(ε0,µ0) and the trace of an interior Maxwell field with constants (ε1,µ1). The extension of this field to R3 is a
generalized guided mode of the reciprocal structure characterized by these new constants. Notice that

ε0µ0 = ε
1
µ

1, ε1µ1 = ε
0
µ

0. (119)
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As in the case of the Helmholtz equation, uniqueness of the solution of the reciprocal scattering problem implies
equivalence of the original scattering problem and the boundary integral equations (107,108). This result is summa-
rized in the following theorem.

Theorem 18 If the (reciprocal) structure with coefficients

ε = ε1, µ = µ1 in D,
ε = ε0, µ = µ0 in Dc,

defined in terms of given constants (ε1,µ1) and (ε0,µ0) by (116) does not admit a free Maxwell field in the absence
of a source (a generalized guided mode), then the boundary-integral system (107,108) is equivalent to the scattering
problem for the harmonic Maxwell system in the (original) structure with

ε = ε1, µ = µ1 in D,
ε = ε0, µ = µ0 in Dc.

More specifically, with φ int
so and φ ext

so defined as in (111), the scattered field vsc = [Hsc,Esc] with source fields vint
so = [H int

so ,E
int
so ]

and vext
so = [H ext

so ,E
ext
so ] is obtained by using the solution to (107,108),

[
j(r)

m(r)

]
=

[−n(r)×H(r)
n(r)×E(r)

]
, r ∈ ∂D (120)

in the representation formula (106) for r ∈ D and its analog for r ∈ Dc.

For the Maxwell system, the reciprocal relations (116) satisfy

R2 = I.

This means that every structure is the reciprocal of its own reciprocal.
Theorems 16 and 18 lead to a condition for the existence of guided modes in periodic slab structures. The fol-

lowing theorem can be strengthened somewhat by the condition R2(ε0,µ0,ε1,µ1) = (ε0,µ0,ε1,µ1), which holds for the
Helmholtz equation with µ0 = µ1 and for the Maxwell system. It is given in [79] for polarized electromagnetic fields
in two-dimensional nonmagnetic structures.

Theorem 19 (Existence of guided modes)
1. If the boundary-integral system (88,89) with zero source field, or equivalently,

(Λ1P1
ext +Λ0P0

int)ψ = 0 (121)

has a nontrivial solution, then the periodic structure with interior constants (ε1,µ1) and exterior constants (ε0,µ0) or
the reciprocal structure with constants given by the relations (93) admits a generalized guided mode of the Helmholtz
equation (at the frequency and wavevector appearing in the projectors).

2. If the boundary-integral system (107,108) with q1 = q2 = 0, or equivalently,

(Λ1P
1
ext +Λ0P

0
int)ψ = 0 (122)

has a nontrivial solution, then the periodic structure with interior constants (ε1,µ1) and exterior constants (ε0,µ0) or
the reciprocal structure with constants given by the relations (116) admits a generalized guided mode of the Maxwell
equation.
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5 Resonance
Let us recapitulate what we have learned about resonant interaction of guided modes with plane waves and make clear
the nature of the resonance that we wish to investigate.

We have seen that, if a slab admits a true guided mode at a real pair (κ0,ω0) in a (κ,ω)-regime for which at
least one spatial harmonic is propagating, the frequency ω0 of the guided mode is embedded in the spectrum of the
pseudo-periodic Helmholtz or Maxwell operator in S for the Bloch wavevector κ . Restricted to the strip, the guided
mode is a finite-energy eigenfunction. An embedded eigenvalue is typically nonrobust with respect to perturbation
of (real) κ from κ0 or perturbation of the geometry or material coefficients of the waveguide. The dissolution of the
embedded eigenvalue coincides with the frequency’s attaining an imaginary part as (κ,ω) remains on the complex
dispersion relation for generalized guided modes. As we have discussed, the corresponding generalized modes with
small imaginary part are leaky: they interact with the propagating spatial harmonics and therefore cannot persist as true
guided modes. This resonant interaction lies behind the phenomenon of transmission anomalies and the enhancement
of field intensity within the waveguide when the guide is illuminated by a plane wave. We will focus on perturbations
of κ .

Physically speaking, true guided modes are idealized entities. They exist in a mathematical sense, as exact solutions
to the Helmholtz or Maxwell equations in the absence of any external sources, oscillating with undiminished intensity
for all time in an infinite waveguide. Every physical structure, in contrast, is subject to thermal and radiation losses
due to material and fabrication limitations, and thus all guided modes in the laboratory or in nature must be initiated
and sustained by a source of energy.

It is often useful to take the point of view that resonance in physical systems is the result of the proximity of the
system to a idealized one that admits mathematically a guided mode or bound (finite-energy) state. The energy of the
idealized bound state is embedded within a continuous spectrum corresponding to extended states. As the system is
perturbed from the idealized one, the bound and extended states become coupled. The eigenvalue dissolves into the
continuous spectrum and the bound state is destroyed, that is, the perturbed system possesses no finite-energy state.
Instead, extended states near the bound-state frequency are sharply modified by the perturbation, and the perturbed
system exhibits behavior that we call resonant.

In the context of quantum mechanics, this type of resonance is often called Feshbach resonance. Let us briefly
discuss this setting. The autoionizing (Auger) states of the Helium atom provide the simplest example, which is treated
in detail by Reed and Simon in §XXII.6 [73]. The idealized system in this case is described by the Hamiltonian of
two uncoupled electrons in the presence of the (fixed) potential created by the positively charged Helium nucleus. The
energy associated with a bound state in which both electrons are excited (above the ground state) is an eigenvalue of
the idealized Hamiltonian that is embedded in the continuous spectrum corresponding to the extended states. When
this idealized Hamiltonian is perturbed through a Coulomb coupling between the electrons, the eigenvalue disappears,
and, instead of possessing a bound state, the physical system exhibits sharply modified states that are extended in the
variable of one of the electrons; in other words, one of the electrons breaks free from the atom, causing it to ionize.

This Coulomb interaction between the electrons gives rise to anomalies in the graph of absorption vs. energy of the
atom that are close to the energies of the idealized bound state of two excited electrons. An approximate formula for
the anomalies is derived in [73] by continuation of the resolvent of the perturbed operator into the lower half complex
energy plane. The graph of the function is the familiar Lorentzian, or Breit-Wigner, resonance shape

f (E) = const.
1

(E−Er)2 +(Γ/2)2 , (123)

in which Er is a resonant frequency. The width Γ of the resonance at half the maximum height is given by the Fermi
golden rule; a similar principle, as we shall show, arises for the double-spiked anomaly observed in the transmission
of classical waves across periodic slabs.

The term "Fano resonance" is commonly applied to this double-spiked anomaly, which is observed in many reso-
nant systems, including the Auger states of the noble gases (as Helium). The name originates from the work of Ugo
Fano [23], in which he derived a formula for the anomaly with a parameter q that controls the relative size of the peak
and dip as a function of energy,

fq(e) = const.
|q+ e|2
1+ e2 , (124)
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Figure 5: The Fano resonance (124), with q = 0, 1
2 ,1,2,∞, normalized to a maximum height of 1.

in which e represents the energy normalized to a characteristic width Γ of the anomaly,

e =
E−Eres

Γ/2
. (125)

As q ranges over real numbers from infinity to zero, the graph morphs from a Lorentzian 1/(1+ e2) to an inverted
Lorentzian e2/(1+ e2), as illustrated in Fig. 5.

Our discussions treat resonance as a phenomenon observed in the frequency domain. The coupling of a bound
state to extended states also has interesting and important implications for the time dynamics of the system. Soffer and
Weinstein [83] approach the time-dependent resonant theory in quantum systems by treating the perturbed Schrödinger
equation as a dynamical system under very general hypotheses. They demonstrate the Fermi golden rule for decay of
transient fields and derive intermediate- and long-time behavior of the coupled system. We will restrict our analysis to
the frequency domain.

5.1 Fano resonance
Fano’s model is the simplest one that describes the linear coupling of a bound state to extended states under a pertur-
bation of a system. One begins with a self-adjoint operator H0 that admits an eigenvalue corresponding to a bound
(finite-energy) state embedded within a continuous spectrum corresponding to extended states. As the operator is
modified by a self-adjoint perturbation W that couples the bound and extended states of H0, the eigenvalue dissolves
into the continuous spectrum. The operator H = H0 +W possesses no finite-energy state, and extended states with
energy near that of the bound state of H0 are sharply modified.

A careful discussion of the derivation and application of the Fano formula is provided by Rau [72], whose close
collaboration with Fano provides important insight into the subtleties of the physical context.

In C×L2(R), define the "unperturbed" self-adjoint operator H0 by its explicit spectral representation,

H0 :

[
a

b(E)

]
7→
[

E0 a
E b(E)

]
,

in which E0 is real. The domain of H0 is

D(H0) = {[a, b(E)]t : b(E), Eb(E)∈ L2(R)},

and its spectrum is σ(H0) =R. The vector [1,0]t is a proper eigenfunction with embedded eigenvalue E0, and the rest
of the spectrum is absolutely continuous. For Ê ∈ σ(H0), [0,δ (E− Ê)]t are generalized eigenfunctions.

Define the perturbation

W :

[
a

b(E)

]
7→
[

V0a+
∫

V ∗(E ′)b(E ′)dE ′

V (E)a+
∫

V1(E,E ′)b(E ′)dE ′

]
,
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in which V0 and V1 are real valued. If we assume that V and V1 satisfy

V (E)(E + i)−1 ∈ L2(R),
V1(E,E ′)(E ′+ i)−1 ∈ L2(R2),

then W is symmetric on D(H0) and, since W (H0 + i)−1 is of Hilbert-Schmidt class, W is compact relative to H0.
Therefore H0 +W is self-adjoint with domain D(H0 +W ) = D(H0) and the essential spectrum is unchanged,

σess(H0 +W ) = σess(H0) = R.

This is an instance of a Theorem of Weyl; see Corollary 2 in §XIII.4 of [73].
Consider the generalized eigenvalue problem

H
[

a
b(E)

]
= Ê

[
a

b(E)

]
,

which is equivalent to the following equations:

(Ê−E)b(E)−
∫

V1(E,E ′)b(E ′)dE ′ =V (E)a,
∫

V ∗(E ′)b(E ′)dE ′ = (Ê−E0−V0)a.
(126)

We allow b to be a distribution (which depends on Ê), with at most a δ -singularity at E = Ê,

b(E) = b̃(E)+ cδ (E− Ê),

in which c is a constant to be determined and b̃ is a function. Both c and b̃ depend on Ê. The system (126) becomes

(Ê−E)b̃(E)−
∫

V1(E,E ′)b̃(E ′)dE ′

= cV1(E, Ê)+aV (E),∫
V ∗(E ′)b̃(E ′)dE ′ = a(Ê−E0−V0)− cV ∗(Ê).

(127)

Fano’s calculation. Fano’s result in Sec. 2 of [23] is obtained if we set V1=0 (he also has V0=0). System (127)
reduces to

(Ê−E)b̃(E) = aV (E),∫
V ∗(E ′)b̃(E ′)dE ′+ cV ∗(Ê) = a(Ê−E0−V0).

For the solution, we obtain
[

a

b(E)

]
=




a

a
V (E)
Ê−E

+ cδ (E− Ê)


 , (128)

(the function V (E)/(Ê −E) is understood in the sense of distributions as a principal value) subject to the relation
between a and c,

cV ∗(Ê) = a(Ê− E̊(Ê)), (129)

in which the shifted resonant frequency E̊(Ê) is

E̊(Ê) = E0 +V0 +F(Ê),

F(Ê) = P.V.
∫ |V (E ′)|2

Ê−E ′
dE ′.

(130)
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For nonresonant Ê, it is enlightening to set c = C(Ê− E̊(Ê)) with C a fixed arbitrary constant independent of Ê and
write [

a

b(E)

]
= C




V ∗(Ê)

V ∗(Ê)
V (E)
Ê−E

+(Ê− E̊(Ê))δ (E− Ê)




if Ê 6= E̊(Ê). (131)

Then, as Ê− E̊(Ê) vanishes and V ∗(Ê) 6= 0 when Ê− E̊(Ê) = 0, the δ part of the generalized eigenfunction vanishes,
and we obtain [

a

b(E)

]
= a




1
V (E)
Ê−E


, Ê = E̊(Ê) and V (Ê) 6= 0.

When both Ê− E̊(Ê) = 0 and V ∗(Ê) = 0, the generalized eigenspace for Ê is two-dimensional:

[
a

b(E)

]
=




a

a
V (E)
Ê−E

+ cδ (E− Ê)




if Ê = E̊(Ê) and V (Ê) = 0.

Let us now assume, as Fano does, that V (E) 6= 0 for all E and fix a generalized eigenvector, that is, choose C in
(131). By defining the real-valued functions of real Ê

z(Ê) =
Ê− E̊(Ê)
|V (Ê)|2 (132)

and
∆(Ê) = arccot(−z(Ê)/π), (133)

an appropriately scaled eigenvector is written conveniently as

aÊ =
sin∆(Ê)
πV (Ê)

,

bÊ(E) =
sin∆(Ê)
πV (Ê)

V (E)
Ê−E

− cos∆(Ê)δ (E− Ê).

(134)

With this definition, [aÊ ,bÊ(E)]
t coincides with the generalized eigenvectors ±[0,δ (E− Ê)]t of H0 as Ê→±∞.

Fano considers the concrete situation in which the vector [1,0]t corresponds to a bound state ϕ(x) of H0 in R3,
exponentially decaying as |x| = r→ ∞ (x ∈ R3), and the generalized eigenfunctions correspond to extended states
ψE(x) of H0 that have oscillatory far-field behavior:

ψE(x)→ sin(k(E)r+α(E)), (r→ ∞).

Through a generalized Fourier transform, an arbitrary state represented by [a,b(E)]t can be expressed as a superposi-
tion of the bound state and the extended states:

[
a

b(E)

]
 aϕ(x)+

∫
b(E)ψE(x)dE. (135)

To determine the far-field behavior of the spatial state ΨÊ(x) corresponding to the generalized eigenfunction (134) of
the perturbed operator H = H0 +W , we must compute

ΨÊ(x)→
∫

bÊ(E)sin
(
k(E)r+α(E)

)
dE, (r→ ∞).
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In the limit as r→ ∞, the δ part of the integral contributes −cos∆(Ê)sin(k(Ê)r+α(Ê)) and the principal-value part
contributes−sin∆(Ê)cos(k(Ê)r+α(Ê)). In the case that k(Ê) = mÊ (space is homogeneous far from the origin), the
latter is shown as follows.

Let us assume V ∈ L2(R), and define

U(Ê) = P.V.
∫ V (E)

Ê−E
sin(mEr+α(E))dE,

f±(E) =V (E)e±iα(E);

then
U(Ê) =

1
2i

∫ 1
Ê−E

(
f+(E)eimEr− f−(E)e−imEr)dE.

Now go over to the Fourier variable and use the representation of the Hilbert transform there (e.g. [13] §2.3),

g(Ê) =− 1
πi

∫ 1
Ê−E

f (E)dE,

⇐⇒ Fg(ξ ) = sgn(ξ )F f (ξ ),

to obtain
FU(ξ ) =−π

2 sgn(ξ )
[
F f+(ξ−mr

2π
)−F f−(ξ+mr

2π
)
]
,

which tends to
−π

2

[
F f+(ξ−mr

2π
)+F f−(ξ+mr

2π
)
]

in L2(R) as r→ ∞. Thus, ∥∥∥−π

2

[
f+(Ê)eimÊr + f−(Ê)e−imÊr

]
−U(Ê)

∥∥∥→ 0

in L2(R) as r→ ∞, and the term in brackets is 2V (Ê)cos(mÊr+α(Ê)), as desired.
The result is that

ΨÊ(x)→−
[
sin∆(Ê)cos(k(Ê)r+α(Ê))+ cos∆(Ê)sin(k(Ê)r+α(Ê))

]
= −sin[k(Ê)r+α(Ê)+∆(Ê)] (r→ ∞).

As Ê traverses the real line, z(Ê) passes from −∞, through zero near the shifted resonance frequency E̊(Ê) (as-
suming this frequency is unique), to ∞. This means that ∆(Ê) runs from 0 to π as Ê traverses R, and therefore, the
spatial asymptotic behavior of ΨÊ is as −ψÊ for Ê large and negative and as ψÊ for Ê large and positive. Thus the
extended states are modified sharply near the resonant frequency but remain unaltered far from resonance.

Fano was interested more particularly in the way observable properties are modified by the resonance. Let T be a
linear functional represented by a smooth function in the spectral variable E so that T can be applied to generalized
eigenfunctions4. Evaluation at x ∈R3 described above is an example. We are interested in comparing the effect of the
perturbation W on the values that |T |2 takes on generalized eigenfunctions, that is, we wish to compare |T (ΨÊ)|2 to
|T (ψÊ)|2. By inserting the solution [aÊ ,bÊ(E)]

t (134) into the general Fourier integral (135) and defining

ΦÊ = ϕ +P.V.
∫ V (E)

Ê−E
ψE dE,

we find that T (ΨÊ) is related to T (ψÊ) through

T (ΨÊ) = sin∆(Ê)
T (ΦÊ)

πV (Ê)
− cos∆(Ê)T (ψÊ).

In terms of Fano’s reduced energy variable

e =−cot∆(Ê) =
Ê− E̊(Ê)
π|V (Ê)|2 =

Ê− E̊(Ê)
ΓÊ/2

,

4Fano [23] considers the conjugate-linear functional (ΨE |T |i), which is the “matrix element of a suitable transition operator T between an initial
state i and the state ΨE ”, and whose square modulus is “the probability of excitation of the stationary state ΨE .”
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the spectral width of the resonance
ΓÊ = 2π|V (Ê)|2,

and the shape parameter

q =
T (ΦÊ)

πV (Ê)T (ψÊ)
,

the ratio we seek is
|T (ΨÊ)|2
|T (ψÊ)|2

=
|q+ e|2
1+ e2 . (136)

The idea now is to use e instead of Ê a vicinity of the resonant frequency Ê∗ for which Ê∗ = E̊(Ê∗) and hold q
fixed. Such an approximation is justified if V (Ê)� 1 near Ê∗, allowing q and Γ to be approximated by their values
at Ê∗ for values of Ê with |Ê − Ê∗| on the order of a few times ΓÊ∗ . This is the situation in which the coupling of
continuum to bound states is weak near Ê∗ and the width Γ of the resonance is therefore narrow.

If one linearly interpolates of the graph of the Fano anomaly through the resonance, the result is flat, whereas
experimental data show a nonzero “background” slope. Fano treats this discrepancy for the Helium atom by fitting a
modified formula with a nonzero slope to the data. He also extends his treatment to systems with multiple continua or
multiple bound states. It has become common in the literature on resonance in classical and quantum systems to fit a
Fano formula to experimental data.

5.2 Transmission resonance
Examples of anomalous transmission of energy through slab structures and related resonant systems abound in the liter-
ature. Since the late 1990s, there has appeared a vast amount of literature on enhanced transmission of electromagnetic
waves through periodic structures, in particular, optical transmission of through metallic sheets with sub-wavelength
arrays of holes or dimples. In the case of metal structures, it is generally understood that the transmission is enhanced
or inhibited because of coupling of incident plane waves with the surface plasmons of the structure. In fact, there has
been quite a lively discussion and controversy surrounding the mechanism. We cannot adequately represent the scope
of the recent literature here, but we will presently indicate some of the basic issues and provide some references.

The theory that we present in this Chapter is a part of the story. While one does not expect the ensuing analysis
to extend to all cases of anomalous transmission, it is reasonable to expect that it can be adapted to those situations
in which one can identify an idealized (lossless) structure that is somehow close to the resonant one. One important
phenomenon that does not fall into the setting of the dissolution of an embedded eigenvalue is the Wood anomaly that
occurs at cutoff frequencies of the spatial harmonics; this phenomenon also plays a role in enhanced transmission, and
is treated mathematically in [53]. The peaks observed in the transmission of plane-wave energy across metal slabs
with thin slits or in Fabry-Perot resonance (the mirror effect of organized reflection from the walls of a slab) [41, 77]
are also not generally connected with guided modes.

We will analyze in detail the particular case of perturbation of the Bloch wavenumber in scalar (acoustic or po-
larized electromagnetic) waves in lossless two-dimensional slabs, which encompasses those composed of lossless
penetrable materials as well as perfect conductors and acoustically hard or soft surfaces. A numerical example is
shown in Fig. 6. If the source field is taken to be incident upon the slab from the left,

uinc(x,z) = ∑
m∈Zp

ainc
m eiηmzei(m+κ)·x,

with all binc
m = 0 in (16), the transmitted time-averaged energy flux of one period of the scattered field through a plane

parallel to the slab is given by

E trans = Im
∫

Γ+

µ
–1
0 ū∂nu = µ

–1
0 ∑

m∈Zp

ηm|bm|2.

The corresponding energy flux E inc for the incident field is obtained by using ainc
m in place of bm in the rightmost

expression, and we define

T 2 =
E trans

E inc
.
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Figure 6: Numerical computation of the transmitted energy T 2 as a function of reduced frequency ω , with κ = 0.02. The scatterer
is a single infinite 2π-periodic row of infinitely tall rods with radius π/2, ε1 = 10, and µ1 = 1. In the exterior medium, ε0 = µ0 = 1.
There are guided modes at the (κ,ω) pairs (0,∼ 0.5039) and (0,∼ 0.7452). In this frequency range, there is exactly one propagating
spatial harmonic.

The extension of the analysis of transmission resonance to doubly periodic structures and the full Maxwell system
as well as to perturbations of the geometry and material properties, including small losses, of the structure will certainly
lead to new interesting features and formulas. Several categories of transmission anomalies at normal incidence that
arise from the introduction of a channel after every six rows of an otherwise perfect square-lattice photonic crystal
slab are reported in [31], and it appears that the sharpest of them, which coincide with very high field amplitude
enhancement in the slab, are a result of the dissolution of a guided mode.

In [14], Ebbesen, et. al., reported the extraordinary transmission of light through metal sheets with a periodic array
of holes whose spacing is smaller than the wavelength of the incident light. Since then, there has been much literature
by many authors expounding the role of plasmons and the Wood anomaly in the theory of enhanced transmission,
[6, 25, 26, 30, 39, 42, 45, 46, 47, 54, 56, 59], and the role of evanescent fields [49]. Many investigations involve
coupled-mode analysis, in which the slab/ambient-space system is modeled by the prominent features of the waves it
supports: the incoming waves, the surface plasmon polaritons, and the modes of the holes in a metal sheet, [54, 67].
Electric circuit models have also been successfully used to compute transmission anomalies [59]. A review of literature
on this subject is given in [24].

Our analysis of transmission anomalies is based on an analytic connection of the scattering states of a slab to the
generalized guided modes and analytic perturbation about an isolated real point (κ0,ω0) on the complex dispersion
relation for generalized guided modes. This is accomplished through the auxiliary problem

A(κ,ω)ψ(κ,ω) = φ(κ,ω)

described at the beginning of Sec. 4. The operators A(κ,ω) act in a common Banach space H . In the case of
acoustic or electromagnetic scattering by a homogeneous periodic slab with a smooth boundary, the operator A is the
boundary-integral operator derived in Sec. 4.2 and 4.4,

A = Λ1P1
ext +Λ0P0

int.

It can be shown that this operator is of the form I +C, where C is compact. For the two-dimensional scalar case, this
is shown in [79]; the operator is posed in H = Hs(∂D)⊕Hs−1(∂D), where s is most naturally taken to be 1/2.
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The following exposition follows that of [80] and [71] for two-dimensional problems in which the scatterer is
periodic in one direction so that κ is scalar, and where the guided mode is simple. We shan’t treat the case of guided
modes of multiplicity greater than one, which are associated with multiple anomalies that emanate from the modes’
characteristic (κ,ω) pair.

Consider a nonrobust guided slab mode corresponding to the simple eigenvalue 0 of A(κ0,ω0). This means that
there is a neighborhood U ⊂ C2 of (κ0,ω0) and a simple closed curve C encircling the origin in the complex λ plane
such that, for all (κ,ω) ∈U , A(κ,ω) has a unique, simple eigenvalue ˜̀(κ,ω) contained in the region bounded by C
and that (κ,ω) = (κ0,ω0) is the unique point in U ∩R2 satisfying ˜̀(κ,ω) = 0. The relation

˜̀(κ,ω) = 0 (dispersion relation)

is a dispersion relation in U for generalized guided modes, and (κ0,ω0) represents an isolated point on the relation
corresponding to a true guided mode, which falls off exponentially with distance from the slab.

By projecting onto the eigenspace corresponding to ˜̀(κ,ω), one is able to split the source and scattered fields into
“resonant” and “nonresonant” components. Specifically, the spectral projection

P1(κ,ω) =
1

2πi

∮

C
(λ I−A(κ,ω))−1dλ ,

in which C is a sufficiently small circle about 0 in the complex λ -plane, is jointly analytic in (κ,ω) at (κ0,ω0) (i.e., in
a neighborhood U of (κ0,ω0)). P1 is a rank-one projection-valued function of (κ,ω) that commutes with A and whose
image is the eigenspace of A(κ,ω) with eigenvalue ˜̀(κ,ω). An analytic eigenvector ψ̂(κ,ω) is obtained by fixing an
eigenvector ψ̂0 of A(κ0,ω0) and setting

ψ̂(κ,ω) = P1(κ,ω)ψ̂0.

To see that ˜̀(κ,ω) is analytic, observe that

P1(κ0,ω0)ψ̂(κ,ω) = β (κ,ω)ψ̂0,

where β (κ0,ω0) = 1 and β (κ,ω) is analytic because ψ̂(κ,ω) is, and that

P1(κ0,ω0)A(κ,ω)ψ̂(κ,ω) = ˜̀(κ,ω)β (κ,ω)ψ̂0

is also analytic. Theory of spectral projections and analytic perturbation of eigenvalues can be found in many classic
references, including Ch. 7 §3 of Kato [37], §XII.2 of [73], §5.6 of Hille and Phillips [33], Ch. XI of Riesz and
Sz.-Nagy [76], as well as Steinberg [84].

The projection P1 together with its complement P2 = I−P1 form a partial spectral resolution of the identity on H :

I = P1 +P2,

A = ˜̀P1 +AP2.

Now write A as
A = ( ˜̀−1)P1 + Ã,

where Ã = P1 +AP2, and observe that Ã is analytic with analytic inverse in a neighborhood of (κ0,ω0) and commutes
with P1 and P2. One obtains the relation

AP2Ã−1P2 = P2. (137)

An analytic connection between scattering states and generalized guided modes is made as follows. Choose an
analytic vector φ(κ,ω) that represents a source field (such as the incident plane wave we take below) and split it into
its resonant and nonresonant parts

φ = P1φ +P2φ = αψ̂ +φ2.

The multiple α is analytic at (κ0,ω0). Indeed, since ψ̂ and αψ̂ are analytic, so are P1(κ0,ω0)ψ̂ = βψ̂(κ0,ω0) and
P1(κ0,ω0)αψ̂ = αβψ̂(κ0,ω0) and therefore also the functions α and αβ . Since β (κ0,ω0) = 1, α is analytic at
(κ0,ω0).
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For (κ,ω) near the dispersion relation ˜̀(κ,ω) = 0, the “resonant part” αψ̂ of the source field will induce a
proportionally high field, and we therefore normalized the source by a constant multiple (to be specified soon) `= c ˜̀
of the eigenvalue. The equation Aψ = `φ has a solution ψ(κ,ω) that is analytic at (κ0,ω0), namely

ψ = cαψ̂ + `Ã−1
φ2,

where we have used (137) and φ2 = P2φ2. This is seen clearly in the matrix form,

Aψ =

[ ˜̀ 0
0 AP2

][
cαψ̂

`Ã−1φ2

]
=

[
`αψ̂

`φ2

]
= `φ .

It is the analytic field ψ(κ,ω) that connects scattering states with guided modes. If ˜̀(κ,ω) = 0, ψ(κ,ω) represents
a generalized guided mode, and otherwise, it represents a scattering state.

Let us return to the concrete situation in which the source field φ represents the incident plane waves ei(κ·x+η0z).
In the case of the Helmholtz equation or the Maxwell system, the integral representation formulas (77,78) or (106),
together with the form (72) of the Green function, show that the coefficients of the propagating spatial harmonics of
the reflected and transmitted fields are analytic functions of (κ,ω) at (κ0,ω0). We shall consider the regime in which
there is exactly one propagating harmonic and therefore a single complex reflected coefficient a(κ,ω) and a single
transmitted coefficient b(κ,ω). Because of the conservation of energy relation |`|2 = |a|2 + |b|2 for real pairs (κ,ω),
we deduce the important condition that `, a, and b have a common root at (κ0,ω0). We continue to assume that
Re ω0 > 0, so that Im ω ≤ 0 whenever `(κ,ω) = 0 for real κ near κ0 (Theorem 15), as well as the generic condition
that ∂`/∂ω , ∂a/∂ω , and ∂b/∂ω do not vanish at (κ0,ω0). The analysis of transmission anomalies is based on the
following conditions alone:

`(κ0,ω0) = a(κ0,ω0) = b(κ0,ω0) = 0 with (κ0,ω0) ∈ R2,

|`(κ,ω)|2 = |a(κ,ω)|2 + |b(κ,ω)|2 ∀(κ,ω)∈ R2, (138)
`(κ,ω) = 0 with κ ∈ R =⇒ Im ω ≤ 0, (139)
∂`
∂ω
6= 0, ∂a

∂ω
6= 0, ∂b

∂ω
6= 0, at (κ0,ω0). (140)

The analytic perturbation theory of these three analytic functions about the true guided mode pair (κ0,ω0) is
facilitated by the Weierstraß Preparation Theorem ([55] §16), which, because of conditions (138) and (140) provides
the following forms in the variables ω̃ = ω−ω0 and κ̃ = κ−κ0:

`=
[
ω̃ + `1κ̃ + `2κ̃2 +O(|κ̃|3)

]
[1+O(|κ̃|+|ω̃|)],

a =
[
ω̃ + r1κ̃ + r2κ̃2 +O(|κ̃|3)

]
[r0eiθ1+O(|κ̃|+|ω̃|)],

b =
[
ω̃ + t1κ̃ + t2κ̃2 +O(|κ̃|3)

]
[t0eiθ2+O(|κ̃|+|ω̃|)].

(141)

All series are convergent for (κ̃, ω̃) in a neighborhood of (0,0). The constant c has been chosen so that the leading
coefficient in the second factor for ` is unity, and both r0 and t0 are positive. These forms guarantee an explicit analytic
dispersion relation `(κ,ω) = 0 near (κ0,ω0),

ω =W (κ) := ω0− `1(κ−κ0)− `2(κ−κ0)
2 + . . .

and similar explicit expressions for the zero sets of a and b.

Theorem 20 The following relations hold among the coefficients in the forms (141):
1. r0 > 0, t0 > 0, r2

0 + t2
0 = 1,

2. `1 = r1 = t1 ∈ R,
3. Im `2 ≥ 0,
4. `2 ∈ R ⇐⇒ r2 = t2 ∈ R ⇐⇒ `2 = r2 = t2 ∈ R.

If r2 and t2 are real and `2 is imaginary, then
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5. r2t2 =−|`2|2.

If `1 = 0, then

6. Re `2 = r2
0 Re r2 + t2

0 Re t2,
7. |`2|2 = r2

0 |r2|2 + t2
0 |t2|2.

Proof. The positivity of r0 and t0 is a consequence of the Weierstraß Preparation Theorem, and the third relation in (1.)
follows from (138). Because of condition (139), `1 must be real and Im `2 positive.

To prove (2.), let (κ̃, ω̃) tend to (0,0) along the set {(κ̃, ω̃) : ω̃ + `1κ̃ = 0} ⊂ R2. The forms (141) imply

|`|2 = O(κ̃4),
|a|2 = r2

0 (|Re r1− `1|2 + |Im r1|2)κ̃2 +O(|κ̃|3),
|b|2 = t2

0 (|Re t1− `1|2 + |Im t1|2)κ̃2 +O(|κ̃|3),
(κ̃, ω̃)→ (0,0), ω̃ + `1κ̃ = 0.

The balance of these powers in equation (138) implies `1 = r1 = t1.
Now assume that r2 and t2 are real and let (κ̃, ω̃) tend to (0,0) along the set {(κ̃, ω̃) : ω̃ + `1κ̃ + t2κ̃2 = 0} ⊂ R2

to obtain
|`|2 = (|Re `2− t2|2 + |Im `2|2)κ̃4 +O(|κ̃|5),
|a|2 = r2

0 (r2− t2)2κ4 +O(|κ̃|5),
|b|2 = O(κ̃6),

(κ̃, ω̃)→ (0,0), ω̃ + `1κ̃ + t2κ̃2 = 0,

and then along the set {(κ̃, ω̃) : ω̃ + `1κ̃ + r2κ̃2 = 0} ⊂ R2 to obtain

|`|2 = (|Re `2− r2|2 + |Im `2|2)κ̃4 +O(|κ̃|5),
|a|2 = O(κ̃6),
|b|2 = t2

0 (t2− r2)
2κ4 +O(|κ̃|5),

(κ̃, ω̃)→ (0,0), ω̃ + `1κ̃ + r2κ̃2 = 0,

Using (138) again, each of these asymptotic regimes yields a relation among the coefficients, and the sum of them
gives

(r2− t2)2 = (Re `2− r2)
2 +(Re `2− t2)2 +2|Im `2|2 (Im r2 = Im t2 = 0). (142)

If `2 is imaginary, this relation simplifies to (5.). If r2 = t2, then it implies `2 = r2 = t2, which proves part of (4.).
To complete the proof of (4.), assume that `2 ∈ R and let (κ̃, ω̃) tend to (0,0) along the set {(κ̃, ω̃) : ω̃ + `1κ̃ +

`2κ̃2 = 0} ⊂ R2 to obtain

|`|2 = O(κ̃6),
|a|2 = r2

0 (|Re r2− `2|2 + |Im r2|2)κ̃4 +O(|κ̃|5),
|b|2 = t2

0 (|Re t2− `2|2 + |Im t2|2)κ̃4 +O(|κ̃|5),
(κ̃, ω̃)→ (0,0), ω̃ + `1κ̃ + `2κ̃2 = 0.

It follows from balancing powers in (138) that `2 = r2 = t2.
To prove the last two relations, we compute |`|2, |a|2, and |b|2 using the forms (141):

` ¯̀=
[
ω̃

2 + `2
1κ̃

2 +2`1ω̃κ̃ +2Re `2ω̃κ̃
2 +2`1Re `2κ̃

3 +(2`1Re `3 + |`2|2)κ̃4 + . . .
]
[1+O(|κ̃|+ |ω̃|)],

aā =
[
ω̃

2 + |r1|2κ̃
2 +2r1ω̃κ̃ +2Re r2ω̃κ̃

2 +2r1Re r2κ̃
3 +(2r1Re r3 + |r2|2)κ̃4 + . . .

]
[r2

0 +O(|κ̃|+ |ω̃|)],
and there is a similar expression for |b|2. Provided `1 = 0, the κ̃4 and ω̃κ̃2 terms simplify to

κ̃4 term: |`2|2 = r2
0 |r2|2 + t2

0 |t2|2,
ω̃κ̃2 term: Re `2 = r2

0 Re r2 + t2
0 Re t2.
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The condition `1 = r1 = t1 leads to useful expressions for the zero sets of `, a, and b near (κ0,ω0):

`(κ,ω) = 0 ⇐⇒ ω = ω0− `1(κ−κ0)− `2(κ−κ0)
2− . . . ,

a(κ,ω) = 0 ⇐⇒ ω = ω0− `1(κ−κ0)− r2(κ−κ0)
2− . . . ,

b(κ,ω) = 0 ⇐⇒ ω = ω0− `1(κ−κ0)− t2(κ−κ0)
2− . . . .

(143)

The statement that the guided mode at (κ0,ω0) is nonrobust with respect to perturbations of κ is implied by the
generic inequality Im `2 > 0. While we are interested in calculating transmission anomalies near nonrobust guided
modes, the ensuing analysis does not exclude the case that `2 is real.

Figs. 7 and 8 show resonant anomalies in the transmission coefficient

T (κ,ω) =

∣∣∣∣
b(κ,ω)

`(κ,ω)

∣∣∣∣ , (144)

which is the square root of the time-averaged energy flux transmitted across one period the slab relative to that of the
incident wave.

Using the expansions (141), approximate formulas for `, a, and b give an analytic formula for T 2 to any desired
degree of accuracy. In order to capture the essential features of the anomaly, one must include the second-order terms
in (143). Assuming Im `2 > 0, the resulting approximation has an error of first order in κ , as stated in Theorem 21
below.

Four of the graphs in Figs. 7 and 8 exhibit peaks and dips that reach 100% and 0%. This occurs when all of the
coefficients rn and tn are real and the zero set of each of a(κ,ω) and b(κ,ω) in C2 intersects R2 in a curve (rather
than just a point) described by the real function given in (143). The zero set of a in R2 describes the frequency ω as
a function of κ at which 100% transmission is achieved, whereas the zero set of b describes the frequencies of 0%
transmission.

The graphs exhibit noteworthy features that are established rigorously by the expansions. Assuming the coefficients
of a and b are real, we observe the following:

1. For κ = κ0, the structure supports a guided mode at frequency ω0, yet there is no anomaly present in the graph
of T vs. ω .

2. As κ is perturbed from κ0, a guided mode is no longer supported, and a peak and a dip in the graph of T vs.
ω emanate from the frequency ω0 of the destroyed mode. To order O((κ − κ0)

2), both the peak and dip occur at
ω ≈ ω0− `1(κ −κ0). Thus, if `1 6= 0, the spike passes through ω0 at a speed of −`1 as κ passes through κ0 and for
each κ 6= κ0, both the peak and the dip are on the same side of ω0.

3. To order O((κ −κ0)
3), the frequencies of the peak and the dip differ from one another by (t2− r2)(κ −κ0)

2.
As long as r2 6= t2, this implies that they appear in the same order, regardless of whether they are to the left or to the
right of or straddling ω0.

We will show presently that T 2 can approximated to order O(|κ̃|+ ω̃2) by an expression involving seven real
parameters. For real (κ,ω),

|`(κ,ω)|=
[∣∣ω̃ + `1κ̃ + `2κ̃

2∣∣+O(|κ̃|3)
]
[1+ c1ω̃ + c2κ̃ +O(κ̃2 + ω̃

2)],

|a(κ,ω)|=
[
r0

∣∣ω̃ + `1κ̃ + r2κ̃
2∣∣+O(|κ̃|3)

]
[1+a1ω̃ +a2κ̃ +O(κ̃2 + ω̃

2)],

|b(κ,ω)|=
[
t0

∣∣ω̃ + `1κ̃ + t2κ̃
2∣∣+O(|κ̃|3)

]
[1+b1ω̃ +b2κ̃ +O(κ̃2 + ω̃

2)],

in which the coefficients of the second factors are real. The κ̃2-terms in the first factors have been retained because,
as we shall see, they are necessary for ensuring an error of O(|κ̃|) in the ratio, which is possible if we assume that
Im `2 6= 0.

Now, we have ∣∣∣a
b

∣∣∣= r0|ω̃ + `1κ̃ + r2κ̃2|+O(|κ̃|3)
t0|ω̃ + `1κ̃ + t2κ̃2|+O(|κ̃|3) (1+ζ ω̃ +O(|κ̃|+ ω̃

2)), (145)
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Figure 7: Transmission anomaly (T 2 vs. ω̃) using the approximate formulas in Theorem 21 with `1 = 0 and various values of the
parameters (t0, `1, t2,r2,ζ ).
A. (2– 1

2 ,0,1,−1,0); κ̃ = 0.0, 0.01, 0.02, 0.03.
B. (0.9,0,1.5,−2.5,3); κ̃ = 0.0, 0.02, 0.04, 0.06.
C. (0.6,0,−5,−2,−4); κ̃ = 0.0, 0.01, 0.02, 0.03.
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Figure 8: Transmission anomaly (T 2 vs. ω̃) using the approximate formulas in Theorem 21 with `1 6= 0 and various values of the
parameters (t0, `1, t2,r2,ζ ); κ̃ = −0.009, −0.006, −0.003, 0.0, 0.003, 0.006, 0.009.
D. (0.55,2,−7,7,−5)
E. (0.6,−2,5+4i,−5+4i,−8)
F. (0.7,0.5,−1−8i,1−2i,−90)
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where ζ = a1−b1 ∈ R, and by means of this ratio, T 2 expressed as

T 2 =
|b|2

|b|2 + |a|2 =
1

1+ |a/b|2 . (146)

More terms in both factors of the expansions of |b| and |a| would be needed in order to obtain an approximation of
order (κ̃2 + ω̃2).

The validity of Theorem 20 relies on the assumption that Im `2 6= 0, which, by part 4 of Theorem 20, is equivalent
to r2 6= t2 in the case that these are both real. The case that t2 = r2 = `2 ∈ R is a singular situation in which there is
nearly a real dispersion relation for guided modes in the presence of a propagating harmonic; the formula degenerates
and exhibits no anomaly. In this case, higher orders in the expansions of a, b, and ` should be taken, up to the first
coefficient of ` with a nonzero imaginary part, in order to capture the anomaly. A true real dispersion relation exists
in the highly degenerate case that all coefficients `n vanish, in which case the guided mode at (κ0,ω0) is in fact robust
with respect to perturbations of κ and no anomaly is present. This situation occurs, for example, if the structure is not
genuinely periodic, as illustrated in Fig. 2B.

As we have discussed, the coefficient `1 controls the position of the transmission anomaly as a function of κ̃ . If
`1 6= 0, it is the derivative of a sort of dispersion relation for leaky modes, giving the real part of the frequency as a
function of real κ .

The parameters in the formulas of the theorem have the following significance.

1. If `1 6= 0, then lim
(κ,ω)→(κ0,ω0)

T (κ,ω) = t0. Thus, T (κ,ω) is continuous at (κ0,ω0).

2. If `1 = 0, then lim
ω→ω0

T (κ0,ω) = t0 and

lim
κ→κ0

T (κ,ω0) =
t0|t2|

(t2
0 |t2|2 + r2

0 |r2|2) 1
2
. (147)

The different limits can be seen in Fig. 7.

3.
∂

∂ω
T (κ0,ω)|ω0 =−2ζ

r2
0 t2

0

(r2
0 + t2

0 )
2 .

It is also possible to derive an approximate formula for the phase of the transmitted field, which undergoes sharp
variation near the resonant pair (κ0,ω0).

Theorem 21 Given that `, a, and b have a common root at (κ0,ω0) ∈ R2; that their partial derivatives with respect
to ω do not vanish at (κ0,ω0); and that Im `2 6= 0 in the form (141), the following approximations hold.

T 2(κ,ω) =
1

1+D2
0
+O(|κ̃|+ ω̃

2)

=
E2

0

E2
0 +1

+O(|κ̃|+ ω̃
2)

=
t2

0 |ω̃ + `1κ̃ + t2κ̃2|2
|ω̃ + `1κ̃ + `2κ̃2|2 (1+ c1ω̃)2 +O(|κ̃|+ ω̃

2),

as (κ̃, ω̃)→ (0,0) in R2, where D0 and E0 are defined by

D0 =
r0|ω̃ + `1κ̃ + r2κ̃2|
t0|ω̃ + `1κ̃ + t2κ̃2| (1+ζ ω̃),

E0 =
t0|ω̃ + `1κ̃ + t2κ̃2|
r0|ω̃ + `1κ̃ + r2κ̃2| (1−ζ ω̃).
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Proof. The treatment of the asymptotics as (κ̃, ω̃)→ (0,0) is subtle. What allows obtention of the O(|κ|) part of the
estimate is the assumption that Im `2 6= 0. To prove the first approximation (the second and third are handled similarly),
let us define A and B to be the numerator and denominator of the first factor in (145) and C to be the second factor.
Their approximations that appear in D0 are

A0 = r0|ω̃ + `1κ̃ + r2κ̃2|, A = A0 +O(|κ̃|3),
B0 = t0|ω̃ + `1κ̃ + t2κ̃2|, B = B0 +O(|κ̃|3),
C0 = 1+ζ ω̃, C =C0 +O(|κ̃|+ ω̃2).

With these definitions, we have

T 2 =
B2

B2 +A2C2 ,

1
1+D2

0
=

B2
0

B2
0 +A2

0C2
0
.

(148)

The crucial inequality is the lower bound

A2
0 +B2

0 ≥ 1
4 (A0 +B0)

2 ≥ 1
4 min(t2

0 ,r
2
0 )(|ω̃ + `1κ̃ + r2κ̃

2|+ |ω̃ + `1κ̃ + t2κ̃
2|)2 ≥ m2

0κ̃
4, (149)

in which
m0 =

1
4 min(t0,r0) [|Re (r2− t2)|+ |Im r2|+ |Im t2|] .

By the assumption that Im `2 6= 0 and part (4) of Theorem 20, m0 is strictly positive.
In what follows, the symbol O(|κ̃|n) is used in place of any function that is “big-oh” of |κ̃|n as (κ̃, ω̃)→ (0,0),

that is any function that is bounded in magnitude by a constant multiple by |κ̃|n for sufficiently small (κ̃, ω̃).
Since C2

0 and C2 as well as their reciprocals are O(1), it follows that

A2
0 = (B2

0 +A2
0C2

0)O(1),

B0 +A0C2 = (A0 +B0)O(1) = (A2
0 +B2

0)
1
2 O(1),

A2
0 +B2

0 = (B2
0 +A2

0C2)O(1).

(150)

We compare the denominators in (148):

B2 +A2C2 = B2
0 +A2

0C2
0 +A2

0O(|κ̃|+ ω̃
2)+(B0 +A0C2) f1(κ̃)+ f2(κ̃), (151)

in which f1(κ̃) = O(|κ̃|3) and f2(κ̃) = O(κ̃6). The lower bound (149) gives

f1(κ̃) = O(|κ̃|3) = m0|(t2− r2)κ̃
2|O(|κ̃|) = (A2

0 +B2
0)

1
2 O(|κ̃|). (152)

This, together with the second and third equations in (150), gives

(B0 +A0C2) f1(κ̃) = (A2
0 +B2

0)O(|κ̃|) = (B2
0 +A2

0C2
0)O(|κ̃|). (153)

The term f2(κ̃) is estimated similarly:

f2(κ̃) = O(κ̃6) = m2
0|(t2− r2)κ̃

2|2O(κ̃2) = (A2
0 +B2

0)O(κ̃2) = (B2
0 +A2

0C2
0)O(κ̃2). (154)

This, together with (153) and the first equation in (150), give

B2 +A2C2 = (B2
0 +A2

0C2
0)(1+O(|κ̃|+ ω̃

2)). (155)

Next, we compare B2 and B2
0:

B2 = B2
0 +A0g2(κ̃)+g2(κ̃), (156)
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where g1(κ̃) = O(|κ̃|3) and g2(κ̃) = O(κ̃6). In a similar fashion, we obtain

A0g1(κ̃) = A0(A2
0 +B2

0)
1
2 O(|κ̃|) = (A2

0 +B2
0)O(|κ̃|) = (B2

0 +A2
0C2

0)O(|κ̃|), (157)

g2(κ̃) = (B2
0 +A2

0C2
0)O(|κ̃|2). (158)

This gives
B2 = B2

0 +(B2
0 +A2

0C2
0)O(|κ̃|) (159)

Finally, using (155) and (159), we obtain the result of the theorem:

(B2 +A2C2)−1B2 = (B2
0 +A2

0C2
0)
−1(1+O(|κ̃|+ ω̃

2))
[
B2

0 +(B2
0 +A2

0C2
0)O(|κ̃|)

]

=
[
(B2

0 +A2
0C2

0)
−1B2

0 +O(|κ̃|)
]
(1+O(|κ̃|+ ω̃

2)) = (B2
0 +A2

0C2
0)
−1B2

0 +O(|κ̃|+ ω̃
2).

5.3 Relation to Fano resonance
The approximations of T 2 given in Theorem 21 generalize the Fano resonance (124) when viewed as functions of ω̃ .
The seven real parameters reduce to two if the following conditions are satisfied (Fig. 7A):

1. `1 = 0 (the anomaly remains at about ω0);
2. r2 and t2 are real (the extremal values of the anomaly are 0 and 1);
3. Re `2 = 0 (the dispersion relation is purely imaginary up to order κ̃2);
4. ζ = 0 (the background transmission is flat).

Under these conditions, the connection between T 2 and the Fano resonance is made through

Γ = 2κ̃2Im `2,

q =
t2

Im `2
,

e =
ω̃

κ̃2 Im `2
.

(160)

The relation between the width of the resonance and the imaginary part of `2 should be compared with the formulation
of Fermi’s golden rule by Reed and Simon at the end of §12.6 of [73].

With only the first three conditions, there arises a description of the parameter Γ in terms of r2 and t2. The relations
(5) and (6) in Theorem 20 imply

t2 =±Im `2
r0

t0

,

r2 =∓Im `2
t0

r0

.

In particular, t2 and r2 are of opposite sign. This leads to

Γ = 2κ̃
2Im `2 = 2κ̃

2 t0

r0

|t2|= 2κ̃
2 r0

t0

|r2|.

5.4 Structural perturbations and bifurcation of anomalies
As Figs. 7 and 8 illustrate, if `1 6= 0, the entire anomaly (peak and dip) is always to one side of ω0 because it travels with
speed−`1 as a function of κ near κ0 and widens proportionally to κ̃2. But when `1 = 0, the peak and dip may straddle
the resonant frequency ω0. For symmetric structures with κ0 = 0, the dispersion relation (ω vs. κ) is necessarily even
in κ , and we obtain `1 = 0. In this case, the nonrobust mode at κ0 is a standing wave exponentially confined to the
slab. These two types of behavior can be connected through a variation of the structure where the guided mode pair
(κ0,ω0) is a function of a structural parameter γ . There are two scenarios.
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Figure 9: The bifurcation discussed in point (2) of Sec. 5.4. Top: At the critical value γ = γ0 for which there is a single guided
mode at (κ0(γ0),ω0(γ0)) = (0,∼ 0.977886), T is graphed as a function of κ for values of ω that run from ω0−0.001 to ω0−0.008
in increments of−0.001 as the colors run from blue to violet. Bottom: For a value of γ after bifurcation, the transmission is graphed
as a function of κ for several fixed values of ω greater than the guided mode frequency ω0(γ). The values of κ lie between the
guided mode wavenumbers ±κ0(γ).
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1. One can choose a parameter γ that controls the asymmetry of the slab, with γ = 0 corresponding to a symmetric
one. An example of this is a two-dimensional slab whose period consists of an elliptical rod that, for γ = 0, has the
z-axis (perpendicular to the slab) as one of its principle axes, and where γ is an angle of rotation of the rod. The
wavenumber κ0 of the guided mode is an odd function of γ , as is `1, which passes from negative to positive as γ passes
through zero.

2. One can define γ so that, for γ < 0 there are no guided mode pairs (κ0,ω0) in an open set U ⊂ R2 but that, for
γ = 0, there is a single pair that bifurcates into two for γ > 0. The simplest model for which such a bifurcation can
be constructed is a discrete one, in which the open waveguide is modeled by a one-dimensional lattice that is coupled
to a uniform two-dimensional lattice, where the masses and spring constants of the waveguide as well as the coupling
have period two. Any such structure is symmetric, so if the real pair (κ0,ω0) admits a guided mode, so does the pair
(−κ0,ω0). In [70], Ptitsyna uses one of the two coupling constants as the structural parameter γ and analyzes this type
of bifurcation in detail. The bifurcation is most clearly seen if the anomaly is graphed as function of κ for different
fixed values of ω; it is shown in Fig. 9.

5.5 Amplitude enhancement
When resonant scattering occurs due to a perturbation that results in the destruction of a guided mode, the transmission
anomalies that we have analyzed are accompanied by the phenomenon of enhancement of the field amplitude in the
waveguide.

We have seen that the transmission coefficient exhibits no anomaly as a function of real ω at the wavenumber of
the nonrobust guided mode κ = κ0, whereas a very sharp anomaly appears near the frequency of the guided mode
for arbitrarily small deviations κ̃ = κ − κ0. In numerical simulations of scattering of scalar plane waves by two-
dimensional periodic dielectric waveguides, we observe a corresponding phenomenon in the field in the waveguide:
There is no significant field amplitude enhancement near the guided mode frequency for fixed wavenumber κ = κ0,
whereas very high enhancement is observed for small nonzero κ̃ , for ω in the vicinity of the transmission anomaly.

Determination of the field amplitude enhancement as a function of κ involves a subtlety of the source field φ that
did not play a role in the derivation of the transmission anomaly, namely, that the resonant part in the decomposition
of the trace of a plane-wave source field vanishes at the guided-mode pair (κ0,ω0). This is seen as follows. Recall the
decomposition of the trace φ(κ,ω) of an analytic source field

φ(κ,ω) = α(κ,ω)ψ̂(κ,ω)+φ2(κ,ω). (161)

We have shown that the multiple α is analytic at (κ0,ω0). If φ is the trace of a plane-wave source field for the
Helmholtz equation,

uinc(x,z) = ei(m̄+κ)xeiηm̄z, (162)

with ηm̄ > 0 at (κ0,ω0), then φ(κ,ω) is analytic at (κ0,ω0). We will prove that α(κ0,ω0) = 0. Because of Theorem
9, there is a solution to the scattering problem at (κ0,ω0) (although a solution is not unique). Let ψ be the trace of a
solution, and let its partial spectral decomposition be

ψ = γψ̂ +ψ2, (163)

in which γ is a complex constant. Using the decompositions A = ˜̀P1 +AP2, (161), and (163) in the equation

A(κ0,ω0)ψ = φ(κ0,ω0),

we obtain
γ ˜̀(κ0,ω0)ψ̂ +A(κ0,ω0)ψ2 = α(κ0,ω0)ψ̂ +φ2(κ0,ω0).

Since ˜̀(κ0,ω0) = 0, we obtain α(κ0,ω0) = 0 and therefore an expansion

α(κ,ω) = α1κ̃ +α2ω̃ + . . . . (164)

The enhancement of the field amplitude should be manifest in the ratio
∣∣∣∣

ψ

`φ

∣∣∣∣=
|cαψ̂ + `Ã−1φ2|
|`αψ̂ + `φ2|

.
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Since the nonresonant component of ψ as well as the source are of order `, any meaningful enhancement may be
measured by the ratio

A =
|cα|
|`| =

|α|
| ˜̀| =

|α1κ̃ +α2ω̃|+O(κ̃2 + ω̃2)

|ω̃ + `1κ̃ + `2κ̃2|+O(|κ̃|3) (|c|+O(|κ̃|+ |ω̃|), (165)

as (κ,ω → 0).
The numerical observations we mentioned above, namely the absence of field enhancement at the wavenumber of

the guided mode and enhancement inversely proportional to κ̃ in the vicinity of the anomaly for small κ̃ 6= 0, are borne
out through analysis of A .

By setting κ̃ = 0 in (165), we obtain

A = |cα2|+O(|ω|), κ̃ = 0, ω̃ → 0,

which demonstrates the absence of field enhancement at κ̃ = 0. Assuming that Im `2 6= 0, for nonzero κ̃ , the denomi-
nator in (165) reaches its minimal value to order O(|κ̃|3) when ω̃ =−`1κ̃−Re `2κ̃2. Part 6 of Theorem 20 shows that,
if `1 = 0, this frequency is between the peak and the dip of the transmission coefficient. Under this relation between
ω̃ and κ̃ , (165) yields

A =
1
|κ̃|
|α1−α2`1|
|Im `2|

(|c|+O(|κ̃|), ω̃ + `1κ̃ +Re `2κ̃
2 = 0 , κ̃ → 0.

The leading order behavior of 1/|κ̃| is confirmed by numerical data in the two-dimensional Helmholtz case [80] and
for a two-dimensional lattice model [70].
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