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Resonant transmission near nonrobust periodic slab modes
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We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the elec-
tromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab
modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement
near the guided mode. The theory applies to structures in which losses are negligible and to very general
geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These
depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these
parameters between generalized scattering states and guided slab modes. The perturbation of three coincident
zeros—those of the dispersion relation for slab modes, the reflection constant, and the transmission
constant—is central to calculating transmission anomalies both for lossless dielectric materials and for perfect
metals.
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I. INTRODUCTION Our present work is motivated by a transmission anomaly
that we observed numerically in a periodic arrangement of
The phenomenon of resonant transmission and reﬂeCtiOﬂie|ectriC rodig] near the wave number and frequency of a

of electromagnetic energy by periodically structured films orbound slab mode, dbound state (Figs. 2, 3, and 5 The
slabs, at wavelengths on the order of or longer than the strugound state occurs at the lowest resonant frequency of the
tural periodicity, occurs in various types of materials, fromstructure. We characterize it as nonrobust because it disap-
dielectrics to metal§1-9]. It is known to be intimately con- pears under perturbation of the Bloch wave vector. This per-
nected with the waveguide resonances, or modes, of the pasrbation produces sharp downward and upward spikes in the
riodic structure and resonant enhancement of incident sourdeansmission coefficient viewed as a function of frequency;
fields in the presence of modes. In metal films, these resghe spikes emanate from the frequency of the bound state,
nances are surface plasmons; their connection to extraordiecoming less sharp as the perturbation grows. This work
nary transmission is a relatively recent discovityand has  (Sec. I) provides a simple theoretical formula for the trans-
sparked renewed interest in controlling these phenomen&ission coefficient as a function of the wave number and
which are recognized to hold promise in the design of pho_frequency near the bound state. The formula makes a sharp

tonic devices involving filters, lasers, and integrated opticgluantitative prediction of the anomaly with only the knowl-
[2-4,10 edge of four experimentalljor numerically determined val-

Various explanations have been offered for this connecy.e.s[Eq' (12) and Fig. 3. These values depend on the spe-
cific geometry and electromagnetic properties of the

tion. In th f surf lasmons in periodically struc-
o] e case of surface plasmons in periodically s UCiructure.

tured metal slabs, as gratings or films with holes, it is ob- The transmission anomaly is accompanied by significant

;erved _that the coupling.of_plasm_on_s on b.Oth sidefs.of th‘?esonant enhancement of plane-wave source fields at fre-
film facilitates the transmission of incident fielff3,5]; it is encies in the region of the spikég. 5), where resonant

a}lso argued .that the excited plasmons and the transmitt Ids appear in the body of the periodic structure. Our theory
field are two inherently related aspects of the phenomenon Qi 4, cegSec. 1) formulas for the measure of the field en-
resonant scattering by a periodic struct{6g See[11]fora .0 oment as a function of wave number and frequency near

survey of some of the literature. It. Is Iong. knoyvn that rans—pe hound state and is in good agreement with numerical
mission peaks are closely associated with high reflectivity o i5(Fig. 6). Again, the formulas contain parameters that
conditions at the interface of a solid dielectric slab with thedepend on the particular nature of the slab structure

_surrounding mediuntas aiy (e.g.,[lZ]). Structural periodic- The anomaly occurs because three zeros, namely those of
ity enhances these effects, and particularly pronounced resgy, oiqenvalue” describing the dispersion relation for slab

nant enhancement and sharp transmlssmn.peaks and d|p.s Wodes, a complex reflection amplitude, and a complex trans-
cur in the presence of structural defects in the “nde”y'”%ission amplitude, that are coincident at the bound state,

periodicity [8,9]. split apart continuously upon perturbation of the wave num-
ber. Our analysis relies on the fact that these functions de-

pend analytically on the wave number and frequency.
*Email address: shipman@math.Isu.edu An advantage of our approach is that it is independent of
"Email address: ven@math.duke.edu the specific geometry of the structure and independent of
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FIG. 1. Athree-dimensional two-phase periodic slab. The struc-
ture continues periodically in theandy directions.

Transmission (T)

whether the structure is a perfect meta which case the
phenomenon is mediated by plasmpos a lossless dielec-
tric. Indeed, the theory applies to a general class of periodi-
cally structured slabse.g., Figs. 1 and)2which display a
nonrobust bound state. These include lossless dielectrics as
well as metals for which the approximation by a perfect con-
ductor boundary condition is valid.

The resonance behavior we describeds related to the
Wood anomaly, which is known to coincide with certain
minima in transmission through metal filig]. The Wood
anomaly occurs at cutoff wave numbdm frequencieps of
the propagating FourigiBragg harmonics, where the com-
plex analyticity of the fundamental solution of the Maxwell
equations fails. FIG. 3. Upper: Numerical simulation, by boundary integral

In this work, we focus on calculations for two- equations, of transmission vs reduced frequency for electrically po-
dimensional structureghose that are constant in one spacelarized plane-wave source fields through a slab of vertical rods in
direction, as in Fig. Rand compare our theory with numeri- air (Fig. 2) for various values of the wave numbetin they direc-
cal results. In future communication, we will show how the tion. The dielectric contrast is 12, and the magnetic permeability is
analysis applies to three-dimensional structures, and we will. T is the square root of the proportion of the source energy that is
extend our present results to include anomalies due to petransmitted. Middle: A closer view of the top figure near the region
turbations in the geometry of the periodic structure, such agf anomalous transmission. Lower: Theoretical prediction of
surface and channel defects, which we investigated numergnomalies. In formula12), t,=0.739,t~1.6, r=-0.56, andy
cally in [9,13]. In principle, the theory is not restricted to =~ 18.69 were estimated from the numerical simulations.

Transmission (T)

Real frequency (w)

Y

C electromagnetics, but extends to similar phenomena in

M~ acoustics and elasticity.

Il. TRANSMISSION ANOMALIES

We discuss nonrobust bound slab modes and describe the
asymptotics of the dispersion relation and the scattering
problem near such a mode; then we derive the main result,
which is a theoretical prediction of the behavior of anoma-
lous transmission near a nonrobust m¢He. (12) and Fig.

3]. Details of the supporting mathematical theory are given
) in the Appendixes.
z . We work with the Maxwell equations at constaebm-
plex) frequenciesw. The fields we deal with are time-

FIG. 2. A two-dimensional periodic slab. The structure contin-independent and become full Maxwell solutions when mul-

ues constantly in the direction and periodically in thg direction.  tiplied by the exponential time-dependent fac&lt. The

y —_—
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periodic slab structures are of a homogeneous material cowone where all the exponentials decay except for those cor-
trasting from the ambient material exterior to the slab. Ouresponding tan=0 (one forz>0 and one forz<0), which
main analytic tool is a system of integral equations arisingare plane-wave propagating harmonics. This is the region
from the Maxwell equations and given in detail in Appendix where|x| < w <|x+m| for all integersm=+ 0.

B. They are written symbolically as A bound state is a fielgs that decays alg| — and has a
A= b tracea_/f on the material interface that satisfies the sourceless
equation
and given in full form in Eq(B3) for perfect metals and Egs.
(B4) for dielectrics. Heregh represents th&race (tangential Agp=0.

componentof the electric and magnetic source fields on the

interface between the material of the slab and the materiddy an argument that relies on conservation of energy, one
exterior to it within a period cell of the structure, and ~ May prove that bound states occur only at real frequencies
represents the trace of the external electric and magnet@nd wave numbers. Typically,rabustbound state occurs at
fields on the same interface. The external field is the sum of (k, @) pair for which Green’s functio for the Helmholtz

the source field and the scattered field. The bounded line@quation has no Fourier harmonics that propagate, iso
integral operator A=Aw, w) has an analytic dependence on thatG decays asz]— . This is the region outside the light
the Bloch wave vectok and the frequency in our (k, ®) cone for the exterior medium for values @&fin the first
region of interest. Throughou and « represent nondimen- Brilloui.n zone, |«| < 1/2._ In this case, real perturbati(_)ns;of
sionalized quantities, and tifieondimensionalizedperiod of ~ result in real perturbations of the value of for which a

the unit cell is taken to be2! bound state exists; in other words, there is a laeal dis-

We present our calculations in a two-dimensional reducersion relationn=W(«). At values of(x,w) that do admit
tion of the problem, that is, we assume that the slab structurBropagating harmonicgas in our casg bound slab modes
and electromagnetic fields are constant in thelirection are generally precluded because these harmonics carry en-
(Fig. 2). In this case, the Bloch wave vector has a componen€rdy away from the slab. Under certain symmetry conditions
only in they direction, which we denote by. The fields (typically at x=0), there exist states whose Fourier decom-
decouple into the two primary polarizations, and the harJosition contains none of the propagating harmoriite
monic Maxwell equations reduce to the scalar Helmholtzcorresponding constants, are zerg; the energy is therefore
equation for the field component directed out of ylzeolane, ~ bound to the slab. Upon a real perturbation«oin such a
in the x direction. The source and total field tradesandy)  bound state, the symmetry of the field is broken, causing the
on the slab interface represent the field value and its normdlound state to disappear. Frequencies\W(«) at which the
derivative. The integral equation #= ¢ reduces to Egs. sourceless equation#=0 is still solvable acquire nonzero
(B6). If the trace of the field is known, the full external field imaginary parts, i.e., the dispersion relation becomes com-
is calculated directly from Green’s identifB7) below, in  plex. Necessarily, the exponentg, of the propagating har-
which the outgoing Helmholtz Green’s functi¢B5) corre- ~ monics also acquire nonzero imaginary parts, and the corre-
sponds to the periodic structure of our problem. A field satsponding exponentials now have growthih Such a bound
isfies the outgoing condition if, for large values|af it has  state isnonrobust Nonrobust bound states correspond to ei-

an expansion in Fourier harmonics, genvalues embedded in the continuous spectrum of the
- Helmholtz operator for the entire structure; they are known
p= S crdM eyt to exist also in acoustic waveguidgs4].
= : ,

To summarize, the solutions of the sourceless problem
Ay=0 occur at values ok and w where the operator A has
for sufficiently large values df. The + and - signs refer to g zero eigenvalué=¢(x,w)=0. The relation¢(x,»)=0 or
z being large and positive arzlbeing large and negative, ,=W(«) when solved fom is the dispersion relation. When
respectively, thec,, are constants, ang,=[~euow’+(M  the full field corresponding to the sourceless tracdecays
+x)?]Y2# 0. €; and u, are the dielectric and magnetic con- gqway from the structuréas|z| — =), the field defines a strict
stants exterior to the slab. We will assume that they are botguided slab mode, a bound state. When that field fails to
equal to 1. In this theory, we are interested in real values ofiecay, the corresponding pdit, w=W(«)) is called areso-

«, and we assume that lies in the first Brillouin 20n€(|{<| nance.Bound states occur at real pairs, ») that satisfy the
<1/2). When o is real and|w|<|«|, which is the region gispersion relation; they are nonrobust when real perturba-
outside the light cone, all the exponentials decayzgs <.  tions of « turn them into resonances, that is, when
The region of interest for us is the region inside the light=\(«) acquires a nonzero imaginary part. Resonances cor-
respond to what are often referred to as leaky mades,

m=—oe

Uf L is the physical length of a period ceX, denotes a physical ©€-9-[8,12).
three-dimensional length vector, aficdenotes physical time, then e analyze nonrobust bound states that correspond to a
the nondimensionalized space and time variables(arg,z)=x  Simplezero eigenvalug (that is, having multiplicity 1 oc-
=(27/L)X and t=(2mc/L)T, wherec is the speed of light in a Curring atk=0 andw=w,>0. The imaginary part o for
vacuum. Iff is the frequency(cycles per timgandk is the wave ~ real values ofx cannot be positivas the corresponding
number (cycles per length then the nondimensionalized wave time-harmonic Maxwell field would be growing in timg9].
number and frequency atg|=kL and w=fL/c. Consequently the simplest form for a local solution of
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FIG. 4. The dispersion relatiofi=0 and the zero ses=0 and FIG. 5. Upper: A contour plot of the amplitude of the bound

b=0 of the reflection and transmission constants for real values oftate atk=0.0 andw=0.669. Lower: A resonant field produced by
k. The solid points represent numerically calculated values of frean incident plane wave at=0.12 andw=0.660. A cross section of
quency, plotted in the complex plane, for values ok ranging  one period of the structure of Fig. 2 is shown, with the boundary of
from 0.0 to about 0.20, wheré(x,w)=0, a(x,w)=0, andb(x, w) the rod indicated artificially by the black circle. Tlyeaxis is ver-
=0. The point in common is at=0, where the bound state occurs. tical, thez axis is horizontal, and theaxis is out of the page. White
indicates maximal amplitude, while black indicates zero amplitude.

{(k,w)=0, in whichw is expressible as a power series«n

is at the frequency satisfying(x,w)=0 that corresponds to
100% transmission, while the accompanying deep dip occurs
at the frequency satisfyindp(x,w)=0, which forces zero

where 7;, stands for higher-order terms.is real, and the transmission. These statements are, of course, true only up to
imaginary part of is nonpositive because the imaginary parthumerical resolution.

of  is not allowed to be positiveOur theory examines the ~ We have tested our results on the two-dimensional high-
case 0. This is forced, for examp|e1 by any symmetry thatCOﬂtraSt dielectric numerical example in FIgS 2-5. The struc-
requires the dispersion relation to be an even function of théure is an infinite row of rods of radius 1 standing parallel to

wave number, as is the case of the structure of Fig. 2. Thughex axis and separated periodically byt they direction,
as in Fig. 2. The interior dielectric coefficient is 12, the ex-
€(k,0) =0 = 0= wy+ K+ Tyo(x), (1) terior 1, and both magnetic coefficients are 1. We find nu-
nqnerically that there exists a bound guided mod€ rat «,
=0, w=wp=0.669. It is E-polarized, that is, the electric
field points in thex direction in Fig. 2. The eigenvalughas
multiplicity 1 in the vicinity of (0,wg), and€(0,wg)=0. The
guided mode is actually a standing wave that is supported by
the slab, ax=0 andw is real; it decays ag| —  (Fig. 5). In
a complex neighborhood of0,w,), the Green’s function
[Eqg. (B5)] for the Helmholtz equation possesses only one
€= (lyrgriot propagating harmoni¢ém=0) at (0,w,), and therefore the
h — 22 The int | tion i quel Iv- total field resulting from scattering of the sourc is in fact
where y=vw =" 1he Integral equation 1S Uniquely SOV= .45 cterized far away from the slab by a single reflection
able and the_fuII fle!d corresponding to its solution Sat'Sf'esamplitudea and a single transmission amplitue as de-
the asymptotic relation scribed above. A$¢|?>=|al?>+|bf? for real («,w), it follows

(k,w)=0 = 0= wy+Ck+SKk?+ Tjo(K),

in which we make the nondegeneracy assumption that |
(s) # 0. This causes the dispersion relation for reab enter
the lower halfw plane transversely to the realaxis (as seen
in Fig. 4).

For values of x, w) for which ¢(«, w) # 0, we introduce a
plane-wave source fielg and normalize its amplitude by the
eigenvaluel,

W~ (L7 +ae e (z — - ), thata(0,wp) =b(0,wp) =0.
The techniques discussed are applicable to general peri-
i~ be7d"(z — o), odic slab structuregincluding three-dimensional structujes

in which energy is conserved. The only additional require-

In this expressiora(x, w) is the reflected complex amplitude ments on our structure so far have been a simple nonrobust
andb(x, w) is the transmitted amplitude. bound state atx,w)=(0,w,) and the conditiorc=0 in the

The crucial point behind our explanation of the transmis-dispersion relation; both are typically forced by some sym-
sion anomaly is that both coefficienssand b can be ex- metry. We also make the generic assumptions that
tended in the complex variables and w into the relation  ga/9w(0,w,) # 0 anddb/ dw(0,w) # 0.
{(k,0)=0 and areanalytic in a complex neighborhooof In the ensuing analysis, we let=w—-w, in Eq. (1). The
the point(0,wo). (Proof of these statements is given in the weierstraR preparation theorem for analytic functions of two
remark and in the analysis preceding it in Sec).IMore-  variables (see, for example[15]) dictates the following
over, sincef is zero at(0,wg), botha andb must be zero forms for ¢,a, andb:

there. Ask is perturbed from 0 taking real values, the coin-
ciding zeros oft ,a, andb separate continuously in the com- _
plex w plane(Fig. 4). The upward spike seen in Fig. 3 occurs € =€ w + sk? + Tro( k) [So + Tro(k, @)1,
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a=e"[w+ 1+ 1?+ Tyo(k) 1o + Tro(k, )],

b=€&%w +t;k+ tx® + Tjo(x)[to + Tro(k, )],

wheres, ro, andty are positive real numbers. Inserting these

forms into the relation|¢|>=|a|?+|b|? for real («x,w) and
matching like terms yields the relations

r2+ti=s (w?term, 2)
roraf? + [tots]? = 0 (x term), 3)

which impliesr,;=t;=0, and using this, we obtain Re)
denotes the real part of

@ Re(s) = r3Re(r) + t2Re(t) (w«? term), (4)

We thus arrive at the expressions

|sI2=rglr]? + gt} (x* term). (5)

= eial[m + SK2 + THO(K)][SO + THO(KIW)]v (6)
a=€e%w +r®+ Tyo(K]ro+ Tholk,®)], (7)
b=¢&%w +tr® + Tyo(k) [to + Tro(k, @)1, (8)

and the following relations for complex pairs near,wg):

=0 w=wy-Sk’+Tyo(K),
a=0-+< w:wo_rK2+THo(K),

b=0 < »=wy-tc’+Tjo(K).

PHYSICAL REVIEW E 71, 026611(2005

(in the physics literature, the transmission coefficient is usu-
ally defined as ouf?) depends on the absolute value of the
ratio b/ a,

_lol_ bl |b/g]
€] V]aZ+[b]2 1 +]ora?’

11

andb/a has the form

b_ gololm i+ )

l+mw+mk+ o),
a ro(m+rK2+---)( i 72 )

in which 8=03-6,, n,=t;-r,, andn,=t,—r,. »; and Réz,)
have simple interpretations,

rod(bla) rod|b/al
@ m=—, (0,0, Ren)="""2(0,0.
0 (0} to ko)

[(0,0) refers to evaluation at=0 andw=0.] To put Reé#,)
in terms of T, we user3d|b/al/dw=dT/ow at k=0 andw
=0,

14T
—=2-(0,0).

=R =
7:=Re(n,) 2o

Whereas Rep;) has a clear meaning as an experimental
value, the constang, does not have such a simple interpre-
tation. An accurate expression that captures the full
asymptotic nature of the transmission anomaly depends on
the real parts of bothy, and 7,, as well as thec® term in the
first factors ofa andb in Egs.(9) and(10). Table | presents
a detailed analysis of the asymptotic behaviobtd near the
bound state in various asymptotic relations betwaews,
and the characteristic raties/ x?, as x and w tend to zero.

Due to the analyticity i andw, these eXpreSSionS are valid The column that shows the approxima’[ion ot gives the

also for (k,w) in a complex neighborhood d0,w). Be-
cause of Eq92) and(4), Re(s) lies between Re&) and Rét),

first two terms in an asymptotic expansion in the various
regimes. Thec® term in the first factors of andb is signifi-

and, as long as these real parts are not equal, we deduce thednt only in the final row of the table, where it as well@s

as the curve/ =0 for real k emanates from the real axis,

one of the curvea=0 orb=0 moves to its left and the other

to its right in the complexw plane(Fig. 4). If Im(r)=Im(t)

affect the constanis.
Despite the complexity of the asymptotics and the diffi-
culty in measuringn, and 7,;, we demonstrate numerically

=0, then, to leading order, the curvas0 andb=0 travel that knowledge of,t,t,, and »=Re(#;) alone(r, is deter-
along the reab axis, ask’=0 increases, giving rise to two mined fromt, by the relationr§+t§:1) delivers a good ap-
nearby values ofv moving apart from one another, one at proximation of the transmission anomalies. Thus we use the
which total reflection occurgb=0) and one at which total approximation
transmission occur&@=0). This is what happens in the nu-
merical example, as we see the formation and spreading of
the sharp dips and peaks in Fig. 3, although we do not have
an analytic proof that Iifr)=Im(t)=0 in this specific case.
We show now how the knowledge of the three quantitie
r,t, andty in Egs.(7) and(8), as well as the slopén w) of
the transmission graph at the bound state, allow one to obtain
a formula that approximates the transmission anomalies well.
We include the first-order terms in the expressionsafand
b, Figure 3 shows a comparison between this approximation
9) and the numerically calculated values of transmission in the
region of the anomaly.
Table | (the fifth row) gives the first two terms of the
asymptotic expansion fob/a or a/b in the (x,w) region

b
a

to|w + tx?|
~ 0—2|(1 +nw),

B r0|m +rK

which is then substituted into expressi¢il) or T to yield
She result

tolw + i (1 +
T~ - 0|m '2<|( nw) _ (12)
Vrolw + 1 + tolw + tPA(1 + pw)?

a=ro€2(w+ri+ - )(L+rm+rk+ o),

b=te€%(w +ti®+ - )(L+tywm + o+ --+).  (10)

In the first factor, the higher-order terms af¥«°); in the
second, they aré®(«*+w?). The transmission coefficierit

near whereb=0 or a=0, respectively. However, corrections
for the error in the placement of the rootstofinda, or the
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TABLE |. Asymptotics for the transmission anomaly.

Asymptotic region Corresponding relation Asymptotic value
in the k= plane betweenx, @, andw/x2 of b/a oralb
k=0,w<1 0=K*/w=k<w<1 bla~ty/ro(1+7w)
0#k<w<l1l K/ w<k<w<l bla~ty/ro(1+7w)
k~w<l1l K/ w<k~w<l bla~ty/ro(1+nw+7.K)
K<w<k<l w<k<K/w<1 bla~ty/ro(1+(t-r)k?/w)
K~w<k<l w<Lk<K’/w~1 b/a~to(w+tK2)/r0(m+rK2)(l+172K)
alb~ ro(ﬁr+rKZ)/to(m+tK2)(l—172K)
KB<w<ik?<l w<k<w/Kk’<1 bla~tot/ror(1+(t1-rHw/«x?
K~w<k?<1 w<k~w/K’<1 bla~tot/ror(1+(t1-rYw/ k?+ nok)
0+w<k3<1l w<w/K’<k<1 bl/a~tot/ror(1+7,k)
w=0,k<1 O=w=w/K?<k<l bl/a~tot/ror(1+73x)

placement of the points of 0% and 100% transmission, reeiscussed in the previous section. Asincreases and the
quire knowledge of th&® term in the first factors of andb.  spike widens, the amount of “amplitude enhancement” de-
Indeed, in examining the middle and lower figures in Fig. 3,creases. The lower image in Fig. 5 shows a field produced by
one can see an error in the point of zero transmissioncfor resonant scattering of a plane wave at a small valuwe arfid
=0.09 that is roughly equal te®. a frequencyw near wy,.

As special asymptotic cases, we compute the limiting val- Not surprisingly, the emerging high fields have a domi-
ues of the transmission coefficiefit:|b/¢| along the reak  nant contribution from the eigenfield of the operator A cor-
and o axes, responding to the eigenvalde={(«, ). To understand this,
we apply the spectral projection operaf@f]

lim T(0,w) =to,
w—wq 1
P, = —35 (€'1-A)de’
_ tolt] 2@ Jr
lim T(x, wg) = to|t/s| = TR (13
=0 Vrglr | + tolt] (the resolvent of A is integrated counterclockwise along a

Because of Eqg2) and(5), |5 lies betweerjr| and |t|, and, contourl in the complext’ plane encircling the eigenvalue
as long as these moduli are not equal, we conclude|that ¢) to Project any trace fields<C to the one-dimensional
#1s], so thatT is not continuous at0,w). From Fig. 3, itis  €igenspace corresponding to the eigenvaled («,w). In
evident that the point of zero transmission moves away fronP@rticular, applying the projectiofat any value ofic and w)
wo~0.669 faster than the point of 100% transmissiongas to a fixed eigenvectoty, corresponding toc=k,=0 andw

increases from zero. This means thtat-|r|, so that|t|>|s|, = =wo (where{=0), we obtain the field
and the first limit in Eq(13) is greater than the second. This R R
behavior of the discontinuity ifT is observed in Fig. 3, =Py,

where the transmission curves for small values,odis func- o _ _ _ _
tions of w, come together neaw, at a higher value than the Wwhich is a basis for the one-dimensional eigenspace of A at

value of the transmission curve fa=0. ¢ and depends analytically onand w.
The operator

IIl. RESONANT ENHANCEMENT _
P2 - I - Pl

We present a leading-order asymptotic theory to resonant L ,
field enhancement of plane-wave source fields scattered d§ @/SC @ projection and is complementary tH2+P,=1).
periodic slab structures, a phenomenon that, according to odi"€ images of these projections, denotedCyand C;, are
observations, accompanies anomalous transmission. The bgdependent subspaces 6t C, is the one-dimensional
sic observation is summarized as follows. At normal inci-igenspace of A for the eigenvaldéx,«). A acts invari-
dence(x=0), the scattering problem for frequencies near tha@ntly onC; and onC, and is therefore decomposed as A

of the bound statéw=w,) exhibits no apparent anomalous =A1+Az where A=AP, is multiplication by ¢ and A
=AP, is a bounded invertible operator 3.

behavior in numerical simulations: neither anomalous trans- be th . hat i v
mission nor resonant enhancement of plane-wave sources is -t oW ¢ be the trace of a source fieifithat is analytic

observed. As« is perturbed from zero and the bound statell (¥, @) near a paixo, wo) where€(xo, wo) =0. We demon-
disappears, fields of much higher amplitudes than the planéirate that our basic equationyé£ ¢ has a solution that is
wave source fields are observed in the slab structure at fré@nalytic near(xo, wo): Decompose the source field uniquely

quencies close to the double transmission “spike” that wes ¢p=P;d+P,p=ai+ ¢,, where the complex scalar and
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v
o

¢, e C, are analytic. Then observe thét m/;+€A51¢2 isa
solution. This can be seen clearly in matrix form, where one
easily verifies

ol )l ) koo
0 Al Ay, | Lty
As the projections Pand B are analytic and Ais bounded
with analytic inverseg is analytic.

Remark.The analyticity of¢ and formula(B7) for the 0.05 o1 0.15
calculation of the scattered fields imply immediately the ana- Wavenumber (k)
lyticity of the transmission amplitude=b(«, ) and the re-
flection amplitudea=(«, w) that formed a cornerstone of our
analysis in Sec. Il.

Any significant field amplitude enhancement should com

N
o

w
o

n
o
T

-
o
T

Maximal field amplitude (Ampl. Enh.)

o

o

FIG. 6. The solid dots represent numerically calculated maximal
values of (the boundary trace pfthe total field produced by an
incident plane wave of amplitude 1 at various valuescqforre-

: . e'sponding to different angles of incidenca the frequency of opti-
from the first component of the fielgh and should be mea- mal enhancement. The solid curve is the best fit of the numerical

sured by the ratiC}a/f: the second component is of order gata to the theoretical forne,/x+c, Here, c;=0.4053 andc,
O(¢) as is the incident field. I&x has a nonzero value when -5 47g.

evaluated atkk=0 and w=wy, the ratio blows up like the
reciprocal of thé¢| as(k,w)— (0,wp); there is singular field that (x, ) lies closestto the pointw ~—(s, +s,i) k2 on the
enhancement irrespective of how the limit is taken. This is indispers,,ion relatior{ignoring terms of ordei®). To see the

d|sagr(_aement W'.th res_ults in the cases th"’.‘t we haye tesn?gsponse to an incident plane wave at this optimal frequency,
numerically[13], including the example we discussed in Sec.We put

II. Indeed, upon illumination of the structures by a plane
wavewith the value ok fixed atO and withw close towg, no
significant field enhancement in the structure is observed. As

a result, we assume that(0,w)=0. [This means that the and obtain for the amplitude enhancemeht

source field contains no componentyef The source traced

W=~ §;K%, OF 0= wy— Sk,

is in the image of A atkg=0,wg), and the scattering problem A=% = 1 M‘
with source tracep has a steady-state solution at this pair 4 K iSoSp + * -
(Ko, o).

We adopt as the generic expansionaoin the vicinity of ~ SO thatA has the asymptotic form
(0,wp) (recall thatw=w— w)

c
a=pik+ Pom+ o . A~f+02+"'(ﬁ’:‘31K2,KHO)- (14)
Using this form fore and Eq.(6) for €, we obtain Figure 6 shows a numerical confirmation of this«<llaw
@ Bik+ Bywr + -+ ( 1 for the field amplitude in the structure. For various values of
— = — 4 . . . . . .
¢ PR T S 70, ' k, the scattering experiment is _smulate(d;smg the
(@ +5p7) isn S0€ boundary-integral equationat the optimal values =-s,«?,
in which s=s; +s,i. At normal incidence«=0), the form we and the results are plotted against the best fit of the form
have assumed fax gives us (14), using the first two terms. We use the maximal value of
the total fieldys to estimated numerically. The lower image
A~ ‘ C_Y‘ — constw — 0,k=0), in Fig. 5 shows a contour plot of the amplitude of the total

field produced by a plane-wave source field at the optimal

which agrees with the numerical observation of no resonarffequencye = wo=s,x” for x=0.12.

enhancement in this regime. The constant in Eq(14) dependsAorsz, as well as on
We now show how the forms af and¢ lead to a predic- So, 31, and the choice of eigenvecta¥ for A. The depen-

tion of the leading-order behavior of resonant enhancemeritence ons; is particularly significant, as, determines the

within the vicinity of the transmission anomalthe “spike”  imaginary part of thecomplex point @ =~ —(s;+is,)x? on

in Fig. 3), and then we compare this prediction with numeri-the dispersion relation. The corresponding complex guided

cal data. To this end, let be a small positive number and mode is a “resonance” for the structure. It grows spatially, as

allow w to range overeal values neaiv, (so thatw ranges |z —, but it decays exponentially in time. It is understood

over real values near zeravhich corresponds to scattering as a model for “leaky” or “quasiguided” moddsee, for

by harmonic plane-wave sources. The magnitude of the deexample,[12,8]). We see from our analysis how the imagi-

nominator ina/¢ is smallest whenw +s,x°~0; the corre- nary part of the complex mode affects scattering enhance-

sponding value ofw(w= wy—s,x?) lies between the lower ment at nearby real values of the frequency, particularly at

and upper peaks of the spike in the transmission gt&fth ~ the real part s;«* of the complex frequency (s, +S;i) k2.

3) for the given value ofk. This is the real value ofs such  The constant in Eq(14) is inversely proportional te,.
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APPENDIX A: SCATTERING AND GUIDED MODES When w is real-valued, the slab mode is a physical guided
Bloch mode, or a bound state; otherwise it is a quasimode, or
?eaky mode. In the latter case, we have shown thab, lifas
% nonzero imaginary part, the fieldl grows exponentially
away from the slab and decays in tifif§ (a fact that is easy
to see for solid slabs with no periodic structddg?]). The
(r,w) pairs that support guided modes of any of the two
types satisfy the dispersion relation @fetr, w))=0. The in-
~ eoxtny) ~ o tegral operator A is a Fredholm operator of the second kind;
=y(x,y,2)e v, andysis 2ar-periodic inx andy. We use it s stably invertible except at discrete eigenvalues(Rted-

boundary-integral representations to pose the scatteringo|m) determinant is well defined, and it depends analyti-
problem. The scattered and guided modes are specified yly on (s, w).

terms of the traceévalues of the tangential components

these fields on the interface between contrasting materials

composing the slab within a unit cell. The trace of a source  AppENDIX B: BOUNDARY INTEGRAL EQUATIONS

field alone is sufficient to determine the trace of the scattered

field, which, in turn, determines the total field in space. De- We present here the equations that relate the traces of the

tails on the integral equations are given in Appendix B. total electromagnetic field to traces of the source fields on
The integral representations give rise to an explicitthe interface between contrasting materials. Derivations of

bounded integral operator f&£qs.(B3), (B4a), (B4b), (B6a),  these equations can be found in various sources, including

and(B6b)] having the following property. If a source fielll ~ [17-19,9. We present them here as Fredholm integral equa-

scattered off the slab, produces the total figldthen the tions of the second kind,

respective field traceé of the source field ang of the total

field satisfy the governing integral equationf ¢b. The in-

tegral operator A depends on the geometry, on the frequency

o, and on the Bloch wave vectot=(k;,«,). It involves _ _ o

layer potentials using the pseudoperiodic radiating Green'd! Which # is a vector containing boundary values of the

We present the mathematical theory that provides th
foundations for the local analytic connection of the scatterin
states to the slab modésy means of the field), which we
used in the previous section.

We denote the vector of all electric and magnetic field
components with the time-dependent fiefdx,y,z)e
where the spatial partyy has the Bloch form ¢

Ag=¢, A=(1+C)

function G “unknown” total field ande is a vector containing boundary
values of the “known” source fields. | is the identity operator
1 & emld ) and C is a compact integral operator involving layer poten-
- (M) x+i (N icp) . L . .
G(xy,2) = 82 > o gy, tials of periodic fundamental solutior&reen’s functions
m,n=—x

for the Helmgholtz equation.
Let D e R*° denote one cell of a slab structure that is pe-
VG +eua’G=-4in S, riodic in x andy and bounded irz, with boundarydD andp
where S is one period of the structur&§={(x,y,z):0<x  outward pointing normal vectan(r) atr e JD. We suppose
<27, 0<y<2m,—0<z<o), YR =—epw+(M+ky)2+(n that the medium exterior tB is lossless with dielectric co-
+x)2+0, and§ is the Dirac delta function centered at the €fficient & and magnetic coefficient,. We make use of a
origin. e is the electric permittivity andu is the magnetic PSeudoperiodic radiating fundamental solutidreen’s

permeability exterior to the slab. For penetrable objects, thé4nction Go of the Helmholtz equatiorwith frequency .

Green function involving the interior coefficients also enters ' US: Go satisfies

the operator A. For real values efxw? and , the sign of

Ymn IS taken so that the Fourier harmonics are outga@ipgh (dyxt Ay + I+ €optow?)Go(X,Y, 2)
positive imaginary or decayind y,, hegative real The val- w
ues ofy,,, are continued analytically as complex functions of = — gl B 5(x = 2,y — 2kar,2) (B1)

o and k. All but a finite number of harmonics decay &b
— o, The generalized outgoing condition on a field is that it

have an expansion in Fourier harmonics of the outgoing fun- . . . . .
damental sglutiorG for sufficiently large values th|g 9N here 5 iis the Dirac delta function with unit strength at the

origin, as well as th@seudoperiodic condition
lﬁ’v 2 Cimnei(WKl)X+i(n+K2)yet7m”Z(Z—> + Oo),

m,n

=

Go(x,y,2) = €U YGy(x,y,2),

wherec,,, are constant vectors. This condition includes fields _

that decay asz| — «, which are characterized by the condi- whereG, has period 2 in x andy, and theradiating con-
tion ¢, =0 for all propagating harmonics. dition that all nondecaying Fourier harmonics are outgoing
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asz— +o. The Fourier form ofGy is =q(r), (B4a)

e’m 7

1 < . .
Go(X,y, Z) - _ 8_ 2 el(m+Kl)x+|(n+;<2)Y’ (BZ)

Thnm=— Ymn

m(r) —éJ n(r) X [m(r’) X V (e,G; — €,Gp)1dSr’)
in which €JiD

- _ 2 2 2 i
Yan= ~boge’ (M k) (1 ) - L 100 x 7 K6, - GGoas)
It is assumed thaf,,,# O for all pairs(m,n). We takei ymn weJ

<0 for the finite number of propagating Fourier harmonics, i

so that they are outgoing 48— %, and y,,<0 so that the - ——f n(r) X {[j(r') - V]V (Gy— Gp)}dSr') = q(r),
rest of the harmonics decay f— «. We denote byG, the @€ D

Green'’s function withey and ug replaced bye; and u;. (B4b)

Let (E,H) be the total field resulting from the scattering
of free Maxwell source fields by the structure, and denote the, which k3= eopow? andk?=e u 0% All of the Green func-

tangential traces of the total field, for= D, by tions and their derivatives are evaluatedratr’).
j(r)=-n(r) X H(r), Having solved forj and m on JD, one then computes
(E,H) for r off of 9D by using standard integral representa-
m(r) =n(r) X E(r). tion formulas.

. ~ . In the two-dimensional reduction, in which the structure
If the structure is a perfect metal, then the electric field isis jnvariant in thex direction, the fields can be decomposed

zero ondD and we allow an exterior source fielHy', HS;). into two polarizations, in which the electric and magnetic
In this case, we have an equation for the trace of the totafield, respectively, is pointing out of thez plane(E, andH,
magnetic field for D, fields, respectively D now denotes the two-dimensional
cross section of the structure in theplane. We make use of
j(r) +f n(r) X [j(r') X VGuldSr')=-n(r) X H(r). the two-dimensional fundamental solutiome reuse the no-
D tation Gy),
(B3)
In the case that the structure is a lossless material with 1< 1 yiol2] i (M)
== — —a”m K1)y
dielectric coefficient; and magnetic coefficient;, we must Goly.2) == mgx e , (BS)

make use of the fundamental soluti@y for the interior,
obtained by replacing the exterior by the interior material. .
coefficients in the expressions fgf,, that appear in Green's " Which

function (B2). We allow an additional sourd&, Hoy) ema-

nating from the interior. Denote the averages of the interior VA= — o€ow? + (M+ k)2

nd exterior fficien )
and exterior coefficients by Let u denote the out-of-plane field componentd, and

— €te  — uotu du/ on the limiting value from the exterior dd of its normal
€T, KT derivative ondD. Set v=puy/ o and o=(2uo)/ (uo+pq) in

] o ] the E, case, andv=¢,/ ¢y and o=(2¢y)/(ey+€;) in the Hy
and form the following combinations of tangential traces of .ose For < D, set

the source fields onD:

0= 22(-nx HEY + E2(-nx HL, Py = USY1) + Uy(r),
N
€ € i AE(r)  au(r)
q2=§°(n><E§0)+§1(n><E'so). p2=g<%+%

The following integral equations hold, where JD: o )
The following integral equations hold, where= dD:

1
J(r)—ﬁf n(r) X [j(r') X V (u,Gy = uoGp) JdSr") G-Gy
JdD d 1~ 20 ' ’
u(r) +LD —an(r’) u(r’)ds(r’)

+ I—_ [n(r) X m(r’)](kiG1 - k(Z)GO)dS(r’)
wpJ sp Ju

| —f’ (VG1‘Go)m(r')d5(r'):pl(r),

+— [ n(r)x{m(r’) - V1V (G, - Go)}dSr’) ®

WpJ oD (B6a)
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au(r) #(Gy - Gp) ) ) n(r’). Once the field and its normal derivative are determined
n T C Wu(f )as(r’) on the boundary, one computes the scattered field at a point
D in the exterior toD by the Green formula
f ﬁ(VG]_ - Go) Ju
-0
dD

Y — G !
an(r) an(r,)ds(l’ )—pz(r). (BGb) u(r)zj(m (MU(r’)—GO(r—r’)%(r’))ds(r’),

on

In these equationsg/dn(r’) refers to differentiation of (B7)

Go,1(r—r’) with respect to the variablg in the direction of and in the interior by a similar formula usir@,.
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